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1 Introduction

Human beings as a species is quite unique to this biological world for they are
the only organisms known to be capable of thinking, communicating and pre-
serving potentially an infinite number of ideas that form the pillars of modern
civilization. This unique ability is a consequence of the complex and powerful
human languages characterized by their recursive syntax and compositional
semantics [40]. It has been argued that language is a dynamic complex adap-
tive system that has evolved through the process of self-organization to serve
the purpose of human communication needs [80]. The complexity of human
languages have always attracted the attention of physicists, who have tried to
explain several linguistic phenomena through models of physical systems (see
e.g., [32, 42]).

Like any physical system, a linguistic system (i.e., a language) can be
viewed from three different perspectives [52]. On one extreme, a language is a
collection of utterances that are produced by the speakers of a linguistic com-
munity during the course of their interactions with other speakers of the same
community. This is analogous to the microscopic view of a thermodynamic
system, where every utterance and its corresponding context contributes to
the identity of the language, i.e., the grammar. On the other extreme, a lan-
guage can be characterized by a set of grammar rules and a vocabulary. This
is analogous to a macroscopic view. Sandwiched between these two extremes,
one can also conceive of a mesoscopic view of language, where linguistic enti-
ties, such as the letters, words or phrases are the basic units and the grammar
is an emergent property of the interactions among them.

Complex networks provide a suitable framework to model and study the
structure and dynamics of linguistic systems from a mesoscopic perspective.
Although multi-agent simulation is the preferred modeling paradigm for mi-
croscopic studies in linguistics (see e.g., [15, 80]), there has been some work
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where networks are also involved. For instance, in [67], the interaction pattern
between the agents are modeled as a social network and the diffusion of lin-
guistic innovations (which are key to language change) are studied on various
network topologies. This survey is confined to the works pertaining to various
linguistic networks only at the level of mesoscopy.

There has been a plethora of work on linguistic networks with various
motivations and at various levels of linguistic structure. On the basis of the
primary goal of the research, the work in this area can be broadly classified into
two categories: (1) those which intend to investigate the structural properties
of language from the perspective of language evolution and thereby, explain
the emergence of certain universal characteristics of languages, and (2) those
which try to exploit the network based representations to develop certain
useful practical systems such as machine translation, information retrieval
and summarization systems. This article focuses on the former works, but a
brief overview of the latter is also presented in Sec. 5.

The survey is organized from the perspective of linguistic structure. Sec. 2
describes lexical networks, where the nodes are words and edges represent
lexical relationship between two words such as phonetic and semantic sim-
ilarity. In Sec. 3 we present an overview of various networks where again
the nodes are the words, but unlike the case of lexical networks, the edges
represent their co-occurrences in similar context. These networks are repre-
sentations of the interactions among words as governed by the grammar rules
of a language. Sec. 4 describes the phonological networks, where the nodes
are sublexical units such as phonemes or syllables. Applications of linguistic
networks in Natural Language Processing (NLP) and Information Retrieval
(IR) are discussed in Sec. 5. Sec. 6 concludes the survey by enumerating some
open problems in the area of linguistic networks.

2 Lexical Networks

The phrase “mental lexicon” (henceforth ML) usually refers to the repository
of word forms that is assumed to reside in the human brain. The average size of
the receptive vocabulary for a normal high school student has been found to be
more than 100,000 [63]. Quite surprisingly, speakers are capable of navigating
this huge lexicon in a very efficient way; reaction time to judge whether a word
form is legitimate takes less than 100 milliseconds. Consequently, there can be
two important questions associated with ML: (a) how are the words stored in
the long term memory, i.e., how ML is organized, and (b) how are these words
retrieved from ML. Note that, the above questions are highly inter-related –
to predict the organization one can investigate how words are retrieved from
ML and vice versa.

One of the earliest attempts to model the organization of ML has been
made in [13]. In this work, the authors propose a hierarchical structure of ML,
where the concepts are arranged in the form of a tree and the attributes of
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a particular concept in this tree can be inherited by all the child-concepts.
Figure 1 shows a representative example formed from the concepts “animal”,
“mammal”, and “fish”. While early studies as the above focused mainly on
representation of the local structure of ML, its global structure remained
largely unexplored.

Fig. 1. The Hierarchical Structure of ML.

Recently, researchers have also started to investigate the global structure of
ML primarily within the framework of complex systems and more specifically
complex networks (see [36, 45, 77, 83, 86] for reference). In all of these studies
ML is modeled as a web of inter-connected nodes, where each node corresponds
to a word form and the inter-connections may be based on any one (or more)
of the following:

• Phonological similarity (e.g., the words banana, bear, and bean may be
connected since they start with the same phoneme),

• Semantic similarity (e.g., the words banana, apple, and pear may be con-
nected since all of them are names of fruits),

• Frequency of usage,
• Age at which the word forms are acquired,
• Parts-of-speech, and
• Orthographic properties.

In the rest of this section we review one representative study each (refer-
ring, wherever applicable, to the other relevant ones) of such complex networks
constructed based on (a) phonological, (b) semantic, and (c) orthographic
similarities of the word forms. Syntactic similarity based networks will be
discussed in detail in the next section.

2.1 Phonological Similarity based Networks

Phonological similarity among the word forms has been extensively studied
in the past to infer the structure of ML and consequently, the nature of a
linguistic system [4, 35, 71, 81]. This large-scale phonological ML has also
been studied in the framework of complex networks in which the word forms
represent the nodes and two nodes (read words) are connected by an edge
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if they differ only by the addition, deletion or substitution of one or more
phonemes [36, 45, 83, 86]. [45] reports one of the most popular studies, where
the author constructs a Phonological Neighborhood Network (PNN) in order
to unfurl the organizing principles of ML. In PNN there is an edge (u, v)
connecting the nodes u and v iff at least 2

3 of the phonemes that occur in the
word represented by u also occur in the word represented by v. For instance, if
the word is 6 phonemes long, then one can derive all its neighbors by changing
at most two phonemes through insertions, deletions, and substitutions.

The author uses the Hoosier Mental Lexicon database [68] and builds the
above network from the phonologically transcribed forms of each word present
in the database. More specifically, he constructs a directed network, where a
long word can have a short word as its neighbor without the short word being
the neighbor of the long word. For instance, if the number of segments in which
the two words, say w1 and w2, differ is less than 1

3 of the length of w1, then
there will be a directed edge from the node corresponding to w1 to the node
corresponding to w2. The fraction 1

3 is chosen, because it has been useful
in earlier experiments for predicting reaction times and familiarity ratings
(see [53] for reference).

The author shows that PNN is characterized by a very high clustering
coefficient (0.235) but at the same time exhibits a long average path length
(6.06) and diameter (20). This indicates that, like a small-world network,
the lexicon has many densely inter-connected neighborhoods. However, links
between two nodes from different neighborhoods are harder to find unlike
small-world networks.

Low mean path lengths are necessary in networks that are to be traversed
quickly, the purpose of traversal being search in most of the cases. However,
in the case of ML, the search should not inhibit the neighbors of the stimulus’
neighbors that are non-neighbors of the stimulus itself and are therefore, not
similar to the stimulus. Hence, it can be conjectured that, in order to search
in PNN, traversal of links between distant nodes is usually not required. In
contrast, the search involves an activation of the structured neighborhood
that share a single sub-lexical chunk that could be acoustically related during
word recognition [55].

Further, the author shows that the degree distribution of the nodes in PNN
is exponential rather than scale-free. Thus, one can posit that the structure
of ML is not consistent with “growth via preferential attachment” at least
for the neighborhood density metrics used for this study. This is because, for
the standard preferential attachment model, the emergent degree distribution
of the network is known to be scale-free [5]. The cause for the emergence of
the exponential degree distribution for PNN is not yet well understood and is
quite an open area for further research.



Linguistic Networks 5

2.2 Semantic Similarity based Networks

One of the classic examples of semantic similarity based networks is the
Wordnet [20]. In this network, concepts (known as synsets) are the nodes
and semantic relationships between them are represented through the edges.
In [77] the authors analyze the structure of the nouns in the English Word-
net database (version 1.6). The semantic relationships between the nouns can
be primarily of four types (i) hypernymy/hyponymy (e.g., animal/cat), (ii)
antonymy (e.g., day/night), (iii) meronymy/holonymy (e.g., trunk/tree), and
(iv) polysemy (e.g., the concepts “the main stem of a tree”, “the body exclud-
ing the head and neck and limbs”, “a long flexible snout as of an elephant”
and “luggage consisting of a large strong case used when travelling or for stor-
age” are connected to each other due to the polysemous word “trunk” which
can mean all of these). Some of the important findings of this work are:

• Semantic relationships are scale invariant,
• The hypernymy tree forms the skeleton of the network,
• Inclusion of polysemy reorganizes the network into a small-world,
• The nodes with the most traffic (i.e., nodes with maximum number of paths

passing through them) correspond to those concepts, which are expressed
by the most polysemous words. They are also found to have very high
clustering coefficient,

• In presence of polysemous edges, the distance between two nodes across
the network is not in correspondence with the depth at which they are
found in the hypernymy tree.

Further references to the studies on such semantic relationship based networks
can be found in [1, 82]. Although there are several work attempting to analyze
the structure of the semantic network of words, one hardly finds any study
explaining the emergence of these topological properties through models of
network synthesis. It would be very interesting to study the correlates of
semantic acquisition and symbol grounding with the model parameters.

2.3 Orthographic Similarity based Networks

Like phonological similarity networks, one can also construct networks based
on orthographic similarity, where the nodes are the words and the edit-
distance between two words defines the edge weight between the nodes corre-
sponding to them. Such networks have been studied in order to investigate the
difficulties involved in spelling error detection and correction [11]. In this work
the authors construct such networks (SpellNet) for three different languages
(Bengali, Hindi and English) and analyze them to show that

• For a particular language, the probability of real word errors can be
equated to the average weighted degree of SpellNet,

• The hardness of non-word error correction correlates to the average clus-
tering coefficient for a language,
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• The basic topological properties are invariant in nature for all the lan-
guages; for instance the authors find that the SpellNet for all of the three
languages are characterized by an exponential degree distribution, high
clustering coefficent and positive correlation between the degree and clus-
tering coefficient of the nodes.

3 Word Co-occurrence Networks

In this section, we review the work on word co-occurrence networks where
the nodes are the words and an edge between two words indicate that the
words have co-occurred in the language in certain context(s). Depending on
the definition of the context, various networks can be defined. We describe
in detail two such networks, namely the collocation network and the syn-
tactic dependency network. As an application, we discuss the work by [79]
where the collocation network has been used for unsupervised induction of
the grammatical structure of a language.

3.1 Collocation Network

One of the most basic and well studied co-occurrence networks are the word
collocation networks, where two words are linked if they are neighbors, that
is they collocate, in a sentence [24]. In this work, two types of collocation
networks – the unrestricted and the restricted ones – were constructed for
English from The British National Corpus. In the unrestricted network, all
the collocation edges are preserved, whereas in the restricted one only those
edges are preserved for which the probability of occurrence of the edge is
higher than the case when the two words collocate independently. All these
networks are undirected and unweighted, even though in language order of the
words (“ticket book” is different from “book ticket”) as well as the frequency
of the collocations have obvious significance.

The authors found that both the networks exhibit small world properties.
The average path length between any two nodes is small (around 2 to 3) and
the clustering coefficients are high (0.69 for the unrestricted and 0.44 for the
restricted networks). However, the most striking observation regarding these
networks is that the degree distributions follow a two regime power-law. The
degree distribution of the 5000 most connected words follow a power-law with
an exponent −3.07, which is surprisingly close to that of the Barabási-Albert
growth model [5]. These findings led the authors to argue that the word usage
of the human languages is preferential in nature, where the frequency of a word
defines the comprehensibility and production capability. Thus, the higher the
usage frequency of a word, the higher is the probability that the speakers
will be able to produce it easily and the listeners will comprehend it fast.
This is known as the recency effect in linguistics [3]. The small-world property
of the collocation network on the other hand makes it easier to search the
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mental lexicon. In essence, the authors conclude that evolution of language
has resulted in an optimal structure of the word interactions that facilitate
easier and faster production, perception and navigation of the words.

It does not follow, however, from the collocation networks that a word
with high degree is indeed a word with high usage frequency (unless the word
co-occurrences are completely independent in nature, which essentially is not
the case). In a separate study, Cancho and Solé [25] have shown that the rank-
degree distribution of the words in a very large corpus also follows a two regime
power-law supporting their claim regarding the presence of a core-lexicon
whose size is about 5000 words. In order to explain the two regime power-
law in word collocation networks, Dorogovtsev and Mendes [18] proposed a
preferential attachment based growth model. At every time step t, a new
word (i.e., a node) enters the language (i.e., the network) and connects itself
preferentially to one of the pre-existing nodes. Simultaneously, ct (where c
is a positive constant) new edges are grown between pairs of old nodes that
are chosen preferentially. Through mathematical analysis and simulations, the
authors establish that this model gives rise to a two regime power-law with
exponents very close to those observed in [24].

There have been studies on the properties of collocation networks for lan-
guages other than English. Examples include Russian [46] and many oth-
ers [41]. The basic topological properties of the networks (e.g., scale-free, small
world, assortative) are similar across languages and thus, points to the fact
that like Zipf’s law, these characteristics are also linguistic universals and call
for a non-trivial psycho-linguistic account of their emergence and existence.

3.2 Syntactic Dependency Network

Although collocation networks are easier to construct, they do not necessarily
capture the syntactic and semantic relationships between the words. This is
because syntactic and semantic relations often extend beyond the local neigh-
borhood of a word. Syntactic relations between the words of a language are
governed by the underlying grammar. There are various formalisms, such as
phrase structure grammar, tree-adjoining grammar and dependency gram-
mar, to capture these relationships. In the dependency grammar formalism a
relationship, often shown as a directed edge, connects two words – the head
and the dependent. The dependent word modifies the head word in a certain
way. For example, the nouns are the heads of the adjectives that modify them.
Similarly, the verbs are the heads of their subjects, objects and other argu-
ments. Thus, in the dependency formalism, every sentence is represented as a
directed acyclic graph or the dependency tree as illustrated in Fig. 2. Usually,
the finite verb is the head of the whole sentence and is not dependent on any
other word.

Cancho and his co-authors [21, 26] defined the syntactic dependency net-
work (SDN) where the words are the nodes and there is a directed edge be-
tween two words if in any of the sentences of a given corpus there is a directed
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Fig. 2. Example of a dependency tree. The arrows are labelled by the type of
depedency relation and run from the dependant to the head words.

dependency relation between these words. The direction of the dependencies
in their construction is from the dependent word to the head word. In order
to construct the SDN, one needs to know the dependency relations between
the words of a sentence. Fortunately, there are large dependency treebanks for
some languages consisting of human annotated dependency trees for a several
thousand sentences. The authors studied the SDN for three languages: Czech,
German and Romanian, and observed strikingly similar characteristics.

All the networks exhibit power-law degree distributions and small world
structure. Some of the very interesting topological properties observed are:

• Disassortative mixing: This shows that words that are used for linking
other words (such as prepositions) and therefore, have high degree in the
networks, are not linked themselves.

• Hierarchical organization: It implies that there is a top down hierarchy
that is the basis of phrase structure formalism.

• Small world structure: This is necessary for recursion and fast navigation
of the mental lexicon.

It is a well known fact that syntactic dependency links usually do not
intersect in any of the world’s languages. In [22], the author conjectured that
this phenomenon is an outcome of minimization of the Euclidian distance
between the syntactically related words of a sentence, where the Euclidian
distance between two words is given by the number of words separating them3.
Later on, Cancho et al [23] showed that spectral clustering of SDN puts words
belonging to the same syntactic categories in the same cluster. As we shall
see in Sec. 5, quite similar techniques are being used in the field of NLP for
unsupervised induction of syntactic categories.

3.3 Unsupervised Grammar Induction

One of the fascinating applications of word collocation networks, illustrated
in [79], is related to unsupervised induction of grammar. Explaining the pro-

3While it is true that syntactic dependencies have a tendency to avoid crossing,
there are systematic exceptions to that generalization in languages with relatively
free constituent order. In German, for example, about one third of all relative clauses
are extraposed, thus creating crossing dependencies.
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cess of language acquisition is one of the greatest challenges to modern science.
Children learn languages, that they are exposed to, quite accurately and ef-
fortlessly. This is one of the strongest evidence in support of our instinctive
capacities towards languages [70], which is dubbed as the Universal Grammar
by Noam Chomsky [10]. In [79], the authors proposed a very simple algorithm
for learning hierarchical structures from the collocation graph of a raw text
corpus. The algorithm, ADIOS, works as follows.

A directed collocation graph is constructed from the corpus, where the
words are the nodes and an edge is drawn from words w to v if v follows w
in a sentence. In fact, each sentence is represented as a separate path in the
graph. The algorithm then iteratively searches for motifs that are shared by
different sentences. A linguistic motif is defined as a sequence of words, which
tends to occur quite frequently in the language and also serves some special
function. For example, “that the X is Y” is a very commonly occurring motif
in English, where X and Y can be substituted by a large number of words and
this whole pattern can be embedded in various parts of a sentence.

Solan et al. [79] define the probability of a particular structure being a
motif in terms of network flows. After finding the motifs, the algorithm pro-
ceeds to identify interchangeable motifs and merge them into a single node.
Thus, at every step the network becomes smaller and a hierarchical structure
emerges. This structure can then be presented as a set of phrase structure
grammar rules.

ADIOS has a high precision (≈ 70%), but low recall (≈ 40%). Through a
comparative analysis of the induced grammars, the authors were able to con-
struct a dendogram of 6 languages that have been studied. Quite surprisingly,
the dendogram reflects the phylogenetic relations between these 6 languages.
There are other graph based methods for unsupervised induction of syntac-
tic structures, but unlike ADIOS, these algorithms are based on standard
probability theory and Bayesian models.

4 Phonological Networks

In the earlier sections, we have seen how complex networks can be used to
study the different types of interactions (phonological, syntactic, and seman-
tic) between the words of a language. In this section, we shall review some of
the work, where the networks are constructed from linguistic units that are
smaller than words, e.g., phonemes and syllables.

4.1 Network of Human Speech Sounds

The most basic units of human languages are the speech sounds. The reper-
toire of sounds that make up the sound inventory of a language are not chosen
arbitrarily, even though the speakers are capable of perceiving and producing
a plethora of them. In contrast, the inventories show exceptionally regular
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patterns across the languages of the world, which is arguably an outcome of
the self-organization that goes on in shaping their structure. In fact, a large
number of computational models have been proposed in the literature in order
to explain the self-organization of the vowel inventories [15, 47, 51, 76]. A few
attempts have also been made in the area of linguistics to reason the observed
patterns across the consonant inventories. Most of these works confine them-
selves to explaining certain individual principles rather than formulating a
general theory describing the emergence of them. However, complex networks
have been recently used quite successfully to explain the self-organization of
the consonant inventories. In [65] the authors construct a bipartite network
called PlaNet or the Phoneme-Language Network in which one of the par-
titions consist of nodes representing the languages while the other partition
consists of nodes representing the consonants. There is an edge between the
nodes of these two partitions if a particular consonant occurs in a particu-
lar language. The authors further construct PhoNet (Phoneme-phoneme Net-
work), which is the one-mode projection of PlaNet onto the consonant nodes
i.e., a network of consonants in which the nodes are linked as many times
as they have co-occurred across the language inventories. The data used for
constructing the above networks is drawn from the UCLA Phonological Seg-
ment Inventory Database (UPSID) [54] that consists of 317 languages and 541
consonants that are found across these languages. The authors observe that,

From the study of PlaNet [65]
• The degree distribution of the consonant nodes in PlaNet roughly follows

a power law with an exponential cut-off towards the tail,
• A synthesis model based on preferential attachment (a language node at-

taches itself to a consonant node depending on the current degree (k) of
the consoant node) can explain the emergence of the degree distribution
of PlaNet. The results match the empirical data more accurately if the
attachment kernel is super-linear (i.e., the attachment probability is pro-
portional to kα, where α > 1).

From the study of PhoNet [64, 65]
• The degree distribution of the consonant nodes in PhoNet also roughly

indicate a power-law behavior with exponential cut-offs,
• The clustering coefficient of PhoNet (=0.89) is significantly higher than

that of a random graph with the same number of nodes and edges (=0.08),
• Community structure analysis of PhoNet can capture the strong patterns

of co-occurrence of consonants that are prevalent across the languages of
the world,

• The driving force that leads to the emergence of these communities is
feature economy, which states that languages tend to use a small number
of distinctive features and maximize their combinatorial possibilities to
generate a large number of consonants,

• The emergence of the degree distribution and the clustering coefficient of
PhoNet can be explained through a synthesis model that is based on both
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preferential attachment and triad (i.e., fully-connected triplet) formation.
While the preferential part of the model reproduces the degree distribution
of the network, the triad formation part imposes a large number triangles
onto the generated network thereby increasing the clustering coefficient,

• The emergence of feature economy can be explained by having a synthesis
model, which is a linear combination of two different parts, one being
driven by the usual degree-dependent preference and the other by a factor
that favors the choice of those consonants that share a lot of features with
the already chosen ones.

The authors postulate that the physical significance of the synthesis models
are grounded in the process of language change. Language change is a collec-
tive phenomenon that functions at the level of a population of speakers [80].
They also conjecture that it is possible to explain the significance of the models
at the level of an individual, primarily in terms of the process of language ac-
quistion. Further, they argue that there are two orthognal preferences: (a) the
occurrence frequency of a consonant, and (b) the feature-dependent preference
(that increases the ease of learning), which are instrumental in the acquisition
of the inventories. The synthesis model is essentially a linear combination of
these two mutually orthogonal factors.

4.2 Network of Syllables

The syllable inventory of each language can also be modeled and analyzed in
the framework of a complex network. Each node in this network is a syllable
and links are established between two syllables each time they are shared by
a word. In [78] the authors report the study of the network of Portuguese
syllables from two different sources: a Portuguese dictionary (DIC) and the
complete work of a very popular Brazilian writer – Machado de Assis (MA).
The authors show that

• The networks have a low average shortest path (DIC: 2.44, MA: 2.61),
• The networks indicate a high clustering coefficient (DIC: 0.65, MA: 0.50),
• Both the networks show a power-law behavior.

Since in Portuguese the syllables are close to the basic phonetic units unlike
the case in English, the authors argue that the properties of the English syl-
labic network should be different from that of Portuguese. The authors further
conjecture that since Italian has a strong parallelism between its structure and
syllable hyphenization it is possible that the Italian syllabic network has prop-
erties close to that of the Portuguese network pointing to certain universal
characteristics of language.

5 Applications in NLP and IR

Graph based approaches are quite common in the areas of NLP and IR. In-
terestingly, although there are no obvious technical differences between the
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scope of graph theory in these areas and in complex networks, the terminolo-
gies used and the objectives are often quite different. The works on linguistic
networks discussed in the last three sections were primarily targeted to the
statistical physics community and the objective was to unfurl the structure of
languages and their dynamics. In this section, we will survey some equally in-
teresting and significant works, which use the same set of mathematical tools,
but the objective is to develop practical applications concerning languages.

5.1 Induction of Syntactic and Semantic Categories

One of the earliest and recurrent applications of networks in NLP have been
in automatic induction of syntactic and semantic categories based on the
distributional hypothesis [39]. The distributional hypothesis states that words
of similar syntactic (semantic) category are found in similar contexts [39]. To
illustrate this concept, consider two unknown words X and Y that occur in
the following sentences:

(1) The red X is very beautiful.
(2) If you Y then I shall punish you.
Even though we do not know what X and Y are, it is easy to infer that the

former is a noun and the latter is a verb. We can draw such inferences about
the syntactic categories (in this case the parts-of-speech) of words based on
our knowledge that nouns, but not verbs, can be preceded by articles (the) and
adjectives (red). The concept of distributional hypothesis is equally relevant
for semantic categories. Words belonging to the same domain club together.
Thus, the word student is expected to be in vicinity of the word school, rather
than market.

Measuring to what extent two words appear in similar contexts measures
their similarity [62]. The general methodology [12, 27, 31, 72, 74, 75] for
inducing word class information can be outlined as follows:

1. Define the context of a word as a vector. It could be just the set of words
which occur in the same sentence, or only the immediate neighbors of the
words. For syntactic class induction, usually the word order is preserved
during construction of the vectors and the context vectors are defined only
in terms of the function words (such as is, of, the and a).

2. Collect global context vectors for the words by summing up the local
contexts.

3. Construct a weighted network, where the nodes are the words and the
weight of the edge between two words is the distance between their context
vectors. There are several ways to define the distance between the vectors.
Some of the common measures are Euclidian distance, cosine similarity
and correlation coefficients.

4. Apply a clustering algorithm on these networks to obtain the word classes.

In the syntactic category induction literature, the 150-250 words with the
highest frequency are considered as function words and the context vectors
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are defined based on them. Some authors employ a much larger number of fea-
tures and reduce the dimensions of the resulting matrix using Singular Value
Decomposition [72, 74]. [27] use the Spearman Rank Correlation Coefficient
and a hierarchical clustering, [74, 75] uses the cosine between vector angles
and Buckshot clustering, [31] use cosine on Mutual Information vectors for
hierarchical agglomerative clustering and [12] applies Kullback-Leibler diver-
gence in his CDC algorithm.

[28] does not sum up the contexts of each word in a context vector, but uses
the most frequent instances of four-word windows in a co-clustering algorithm
[16]: rows and columns (here words and contexts) are clustered simultaneously.
Two-step clustering is undertaken by [74]): clusters from the first step are
used as features in the second step. More recently, Biemann [6] proposed the
Chinese Whispers algorithm for clustering, which is fast and does not require
any parameters to be specified. [7] reports application of Chinese Whispers
for POS induction in English, Finnish and German, very recently which has
also been applied to Bengali [66]. In this work, the authors also investigate
the topological properties of the word networks so constructed and report a
scale-free degree distribution, high CC and power-law cluster size distribution.

Widdows and Dorow [87] propose an unsupervised incremental cluster
building approach for acquisition of semantic classes. There are also graph
based algorithms to infer semantic classes (sets of synonyms, to be specific)
from the lexicons (see e.g., [17, 43]).

Identification of syntactic or semantic classes is of great importance to NLP
and IR. For instance, parts-of-speech (POS) tagging is the first step towards
parsing. However, the supervised machine learning techniques for POS tagging
demand a large amount of human annotated data which is expensive as well
as non-existent for most of the languages. Since automatic induction of POS-
tags through graph clustering do not require annotated data, it might turn out
to be a very useful technique in NLP for resource poor languages. Similarly,
semantic clustering of the words is useful for search and IR.

5.2 Word Sense Disambiguation

Word sense disambiguation (WSD) refers to the task of assigning the appropri-
ate sense or meaning to a word in a given context (i.e. sentence or paragraph)
out of the several possibilities. For example, the English word bank has two
different meanings as a noun: 1) river bank, and 2) a financial institution.
However, as shown in the following sentences, in a given context only one of
the senses is appropriate.

(1) They were walking down the bank enjoying the cool river breeze.
(2) She went to the bank to encash her cheque.
There are several ways in which graph based techniques have been applied

for WSD. Examples include lexical chaining [29], semantic relatedness mea-
sures based on path lengths and random walks on semantic network [57, 61]
and lexicon graphs [50]. Due to the paucity of space, here we discuss in detail
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Fig. 3. Example of Hyperlex: (a) the network of words for disambiguation of the
word “light”; (b) the minimal spanning tree obtained after introduction of thw word
“light”. The hubs are shown in bold font.

only one of the approaches – HyperLex [85] that rely on the word co-occurrence
graphs.

Consider the problem of automatically identifying and disambiguating the
various senses of the word light. The HyperLex algorithm works as follows. A
subcorpus consisting of all the paragraphs featuring at least one occurrence
of the word light is extracted from a raw text corpus. A word co-occurrence
graph is constructed from this subcorpus, where the nodes are the content
words except the word light. Two words are connected by an edge if they
co-occur in a paragraph more than a preset number of times. The weight of
an edge decreases as the number of times the words co-occur increases. It has
been found that word co-occurrence graphs built in this manner exhibit small
world properties.

In this co-occurrence network, nodes with very high degree are identified
as hubs. The word light, for which we want to build the disambiguator, is then
introduced to the network and connected to the hubs. A minimal spanning
tree is constructed from the co-occurrence graph, where light is the root node
and the first level consists of the hubs. Fig 3 illustrates this process. Each
node in the spanning tree can be thought of as a sense. Thus, the hubs denote
the basic senses and as we move further down the tree, we have more refined
senses of the word. This tree can then be used for disambiguating the sense
of the target word (here light) in a particular context.

5.3 Information Retrieval

The central problem of IR is to rank a given collection of documents with
their similarity to a query. Queries are usually very short and the collection of
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documents huge. In a typical IR setup, the whole web consisting of billions of
webpages represents this collection of documents to be ranked and the query
is only one or two words long. One of the challenges of IR is to utilize the
network structure of the web to compute the ranks of the documents. The web
can be conceptualized as a directed graph where the nodes are the webpages
and a hyperlink from webpage A to webpage B represents a directed edge
between the nodes corresponding to A and B.

PageRank [9] is one of the first and very popular ranking algorithms that is
allegedly used by Google search engine. The basic idea behind the PageRank
algorithm is – the rank (or popularity) of a node is a function of the rank of
its neighbors. In other words, the page which has a hyperlink from a popular
page is also popular. An alternative view of the PageRank algorithm involves a
random walker (here a random surfer). A random walker starts from a random
node and follows the edges of the graph randomly to reach other nodes. The
PageRank of a page is proportionate to the probability that a random surfer
reaches that page by following random hyperlinks on the web. Yet another way
to define PageRank is that it is the components of the principal eigenvector
of the nodes. Thus, PageRank is also known as eigenvector centrality in the
complex network literature.

PageRank considers only the incoming edges of a node. Kleinberg [48]
proposed another ranking algorithm, called HITS, where every node has two
scores – hub and authority. The authority scores are similar to PageRank,
whereas the hub scores are based on the outgoing links, but computed in the
same way. The final rank of a node is the combination of its hub and authority
scores. Kleinberg and co-authors [33] also demonstrated how eigenvectors of
the web structure can be used to cluster and disambiguate the pages corre-
sponding to ambiguous words such as “Jaguar” (referring to an animal or a
football team or the car).

One drawback of both PageRank and HITS is that the algorithms assume
that all the hyperlinks have the same importance. There are various modifi-
cations of these algorithms, which use machine learning techniques to learn
weights of the different types of hyperlinks. Examples include RankNet [73],
TrustRank [37] and NetRank [2]. Link analysis, as this field is popularly re-
ferred to, is a very active area of research in the IR community. Some of the
other emerging applications of complex networks in IR include mining social
networks and blogs. The Blogosphere [49], for example, can be represented
as a multi-tier network, where blogs, bloggers and other webpages (typically
news articles) are the nodes and there are various types of edges representing
the social network of bloggers, the links between blogs, and those between
the blogs and other webpages. Analysis of the Blogosphere network is useful
in classification and personalized suggestion of blogs, opinion and sentiment
analysis, as well as investigating the dynamics of the world of blogs.
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5.4 Other Applications

Due to paucity of space, it is impossible to do justice to the network based
techniques in NLP and IR. There are a variety of NLP tasks ranging from
parsing to text summarization, where graph based methods have been applied.
In the previous three subsections we have discussed three specific problems
to illustrate the various usages of such techniques. Before we wrap up this
section, we list a few more example applications to give a flavor of the extent
and potential of graph based techniques in these areas.

Text summarization is one of the notably important as well as challenging
applications of NLP, which has been elegantly modeled within the framework
of complex networks. The problem of text summarization involves identifica-
tion of a small number of sentences from a set of given documents that best
summarize the content of the documents. In [19] summarization has been
reformulated as the problem of finding out the node-centrality in a network
whose nodes are the sentences and the edges represent the word-level similar-
ity between two sentences. The most central sentences are those which cover
most of the ideas present in the given documents.

Other application areas include dependency parsing [56], textual entail-
ment [38], sentiment classification [34, 69], keyword extraction [60], novelty
detection [30] and prepositional phrase disambiguation [84]. See [8, 58, 59] for
further references.

6 Conclusion

So far we have seen that there has been quite a substantial amount of work to
understand the structure and dynamics of languages at the mesoscopic level
within the framework of complex networks. A parallel thread of research in the
field of NLP and IR tries to achieve a different goal, but uses very much the
same means. Nevertheless, mesoscopic models of language as well as network
based approaches to NLP are in a nascent state, especially when compared
to similar lines of research in the fields of biology, economics and other social
sciences (refer to the surveys in this volume). On the other hand, there seems
to be a great potential for application of complex network theory to a variety
of open problems in linguistics and language engineering.

One of the fundamental problems of linguistics is characterization and
explanation of linguistic universals, i.e., properties that are common to all
human languages. Differences among the languages, on the other hand, are
restricted by the typologies and implicational hierarchies [14]. We have seen
that, like Zipf’s law, there are many linguistic universals observable in the
linguistic networks. For example, the SDNs as well as word collocation net-
works of all languages exhibit scale-free degree distributions and small world
property. A systematic investigation of topological universals of linguistic net-
works can substantially improve our understanding of languages. At the same
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time, there are properties for which the linguistic networks vary across lan-
guages. For example, the average degree of the SpellNets are very different
for English, when compared to Hindi or Bengali. This difference has been at-
tributed to the different writing systems used by English (which is alphabetic)
and the two Indo-Aryan languages (which is abugida). Typological variations
have also been predicted in the topological properties of syllable networks.
Thus, it would be interesting to have a typological theory of languages based
on the structure of the linguistic networks.

Another question of great importance for any linguistic network is about
the emergence of its structural properties. It is least clear why should the
word collocation networks display small world and scale-free properties. Even
though the Dorogovtsev and Mendes model [18] can explain the emergence
of two-regime power law observed in the collocation networks, it does not ex-
plain by itself the validity and the physical significance of this model based
on preferential attachment. In other words, the phenomenon of preferential
attachement at the mesoscopic level needs an independent microscopic ex-
planation in terms of psycholinguistic factors, because words cannot volun-
tarily link to other words. Similar microscopic explanations are required for
the non-trivial topological properties of the other linguistic networks, such as
ML, SDN, PhoNet and SpellNet. This is presumably a hard problem, but any
mesoscopic explanation is incomplete without a corresponding microscopic
model.

In the context of NLP and IR applications, network based models are
mostly ad hoc and this reduces their credibility and thereby, the popularity,
as compared to the more principled Bayesian approaches. A network based
language model can bridge this gap and provide us with a more systematic
way of solving the NLP problems within this framework. Although there has
been some initiatives in this direction [44], this area is largely unexplored
and presents numerous challenging problems. Another relatively unexplored,
but potentially fecund, area of research is processes “on” linguistic networks.
Navigation of the ML can be modeled as guided random walks on the ML
network; similarly, typographical errors can be modeled as walks on SpellNet.
The exact nature of such guided walks are still to be explored and can provide
strong understanding of underlying cognitive principles.

In the previous sections we have seen several ways to define networks
where the nodes represent words. One can conceive of a universal word net-
work obtained through superimposition of these partial representations of a
linguistic system into a multi-tier network where the nodes are the words and
two nodes can be connected by several labeled edges signifying their pho-
netic, collocational, syntactic, orthographic, semantic and various other kinds
of similarities. Studies on such a network can reveal a holistic picture of the
interaction patterns between the words, thereby providing a unified model of
grammar at different levels of linguistic structure.
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