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Abstract

This paper describes a new toolkit - SCARF - for doing speech
recognition with segmental conditional random fields. It isde-
signed to allow for the integration of numerous, possibly re-
dundant segment level acoustic features, along with a complete
language model, in a coherent speech recognition framework.
SCARF performs a segmental analysis, where each segment cor-
responds to a word, thus allowing for the incorporation of acous-
tic features defined at the phoneme, multi-phone, syllable and
word level. SCARF is designed to make it especially convenient
to use acoustic detection events as input, such as the detection
of energy bursts, phonemes, or other events. Language model-
ing is done by associating each state in the SCRF with a state in
an underlying n-gram language model, and SCARF supports the
joint and discriminative training of language model and acous-
tic model parameters. SCARF is available for download from
http://research.microsoft.com/en-us/projects/scarf/
Index Terms: Segmental Conditional Random Field, Speech
Recognition Toolkit

1. Introduction

Current HMM based speech recognizers [1, 2, 3] have
reached a state of refinement in which good performance
on a variety of tasks is possible. Typically, the core HMM
approach is enhanced with training and adaptation meth-
ods such as VTLN, HLDA, fMLLR, SAT, (f)MMI, (f)MPE,
and MLLR. Each method improves some aspect of system
performance, and taken together they make a formidable
combination. Despite the success of this approach, there
are nevertheless some drawbacks which make it interest-
ing to explore alternative paradigms. These drawbacks
include the use of the frame level Markov assumption,
the necessity to decorrelate features before modeling them
with diagonal covariance gaussians, ad-hoc weighting fac-
tors associated with mixing discrete and continuous fea-
tures, an “add-on” approach to discriminative training, and
a forced separation between acoustic and language model
training.

The SCARF toolkit is designed to support research
into an alternative approach to speech recognition, based
from the ground up on the combination of multiple, re-
dundant, heterogeneous knowledge sources [4] in a dis-
criminative framework of manageable complexity. In par-
ticular, SCARF has been designed to integrate features

• which may be either discrete or continuous
• which may vary in scale, e.g. being defined at ei-

ther the sub-phonemic, phonemic, syllabic or word
levels

• which are derived from the occurrence of acoustic
events such as a phoneme detection

• which may carry redundant information, for exam-
ple features derived from both phoneme and sylla-
ble detections

• whose parameters can be learned from training data,
and then used in the context of a new vocabulary
with previously unseen words

As its mathematical basis, SCARF adopts segmental con-
ditional random fields also known as semi-Markov CRFs
[5]. This is a two layer model, in which the “top” state
layer corresponds to words, and the “bottom” layer cor-
responds to observations. In this model, each word is as-
sociated with a definite span of audio, and corresponding
segment-level features can be extracted. This approach
maintains conceptual simplicity by using a two-layer struc-
ture, while at the same time allowing for a rich set of
features through the use of a segmental analysis. When
SCARF is given input consisting of the detection of acous-
tic events, a wide variety of features can be automatically
constructed, where each feature measures some form of
consistency between the acoustic events and a word hy-
pothesis. These features vary in the degree to which or-
dering constraints are imposed, and in their ability to gen-
eralize to unseen words.

As we will see in Section 2, computation with SCRFs
involves summing and/or maximizing over all possible seg-
mentations of the observations into words. Therefore, it
is convenient to divide the computation between a “fast-
match” that quickly identifies possible words and their
boundaries, and a “detailed-match” that applies the full
model. [6].

In SCARF, the fast-match may be done externally with
an HMM system, and provided in the form of a lattice.
Alternatively, SCARF implements a TF-IDF based fast
match that finds potential words based on the TF-IDF sim-
ilarity between the observations in a detection stream and
those expected on the basis of dictionary pronunciations.
This is done by applying a segment-level decoding pro-
cess where the TF-IDF score is used as the acoustic score,
and is fully described in a companion paper [7].



Figure 1: A CRF.

The remainder of this paper is organized as follows.
In Section 2, we define the model. Section 3 defines the
inputs to SCARF. Section 4 describes the features which
SCARF uses. Finally, in Section 5 we describe the built-in
fast match function, before concluding in Section 6.

2. Segmental CRF Model
We begin our discussion with the illustration of a classical
CRF model [8] in Figure 1. Associated with each vertical
edgev are one or more feature functionsfk(sv, ov) relat-
ing the state variable to the associated observation. As-
sociated with each horizontal edgee are one or more fea-
ture functionsgd(s
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associated with an edgee. ) The set of functions (indexed
by k andd) is fixed across segments. A set of trainable
parametersλk andρd is also present in the model. The
conditional probability of a state sequences given the ob-
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Segmental CRFs (SCRFs) extend CRFs by defining
the feature functions at thesegment rather than frame or
single observation level. With segmental CRFs, it is nec-
essary to sum over all possible segmentations consistent
with the known word sequence during training, and to
maximize over all segmentations consistent with a hypoth-
esized word sequence at decoding time. The notion of
different segmentations is illustrated in Figure 2, where
two different segmentations of an observation stream are
shown. SCRFs are related to the Hidden CRFs of [9] in
that there is an unknown segmentation; however [9] ap-
plies the frame level Markov assumption to do phoneme
recognition, and we are interested in a fully segmental
model without the frame level Markov assumption, and
one in which the states represent words. The c-Aug model
of [10] defines a related segmental model using a fixed set
of features.

We now define the SCARF model. Denote byq a seg-
mentation of the observation sequences, for example that
indicated by the boxes at the top of Fig. 2 where|q| = 3.
The segmentation induces a set of (horizontal) edges be-
tween the states, referred to below ase ∈ q. One such
edge is labelede at the top of Fig. 2 and connects the state
to its left,se

l
, to the state on its right,se

r. Further, for any
given edgee, let o(e) be the segment associated with the
right-hand statese

r
. The segmento(e) will span a block of

observations from some start time to some endtime,oet
st;

at the top of Fig, 2,o(e) is the blocko4

3
. With this nota-
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, o(e)) where

Figure 2: A Segmental CRF and two segmentations.

o(e) are the observations associated with the segment of
the right-hand state of the edge. (The first block of obser-
vations is treated with an extra notional edge leading into
the leftmost state.) The conditional probability of a state
sequences given an observation sequenceo for a SCRF
is given by
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Training is done by gradient descent using Rprop [11]

and SCARF further appliesL1 andL2 norm regulariza-

tion. Taking the derivative of the log likelihoodL =
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This derivative can be computed efficiently with dynamic
programming, using the recursions described in [12].

2.1. Continuous Speech Recognition

In order to model continuous speech, the values of the
state variable in the SCRF model are made to correspond
to states in a finite state representation of an n-gram lan-
guage model. This is illustrated in Figure 3. In this figure,
a fragment of a finite state language model is shown on the
left. The states are numbered, and the words next to the
states specify the linguistic state. At the right of this figure
is a fragment of a CRF illustrating the word sequence “the
dog nipped.” The states are labeled with the index of the
underlying language model state. This enables the transi-
tion features to fully encode an n-gram language model.
Features derived from the language model are described
in Section 4.4.



Figure 3: Correspondence between language model state
and SCRF state. The dotted lines indicate the path taken
in hypothesizing “nipped” after ”the dog.” A line from
state 7 to state 1 has been omitted for clarity.

3. Inputs

The inputs to SCARF consist of the following elements:

• Acoustic detector streams, which indicate acoustic
events that have been detected.

• Dictionaries that provide a “pronunciation” of each
word in terms of the units in a detector stream.

• Transcriptions, used in training to define word/unit
co-occurrence features.

• Numerator and denominator constraint files or lat-
tices. These represent the segmentations into word
sequences that have appreciable probability. The
numerator lattices are restricted to paths consistent
with the transcriptions.

• An ARPA-format language model.
• User defined features, expressed as lattice annota-

tions.
• A “baseline” detector stream, consisting of the 1-

best word output of any baseline system. This al-
lows SCARF to build on existing “best-systems.”

The formats of SCARF detector and lattice files are il-
lustrated in Figure 4. A detection file simply shows which
units are detected, and associates a single time with each
unit, e.g. its midpoint. Multiple detector streams, in sep-
arate files, may be specified. In a lattice file, the first two
columns are the start and end times of a word; the third
column is the word value; the fourth and fifth columns are
optional and are the indices of the start and end states (not
times) of the word in a lattice graph. In the absence of
these constraints, any word ending at timet can be fol-
lowed by any other beginning att + 1. The last column,
also optional, provides the values of user-defined features.
An arbitrary number of user features can be added using
comma separation. A full specification of all file formats
can be found in theSCARF Manual provided with the dis-
tribution.

4. Features

From each detection stream, several features may be ex-
tracted. Each is defined with respect to a temporalspan
of detection events and a specific word hypothesis for that

Figure 4: A SCARF detector stream (left) and lattice file
(right). They are shown together to save space.

span. The Expectation and Levenshtein features below are
notable in that their weights can be trained with one set of
data, and then used in cases where other, previously un-
seen, words may be present.

4.1. Expectation Features

Expectation features are defined with reference to a dic-
tionary that specifies the spelling of each word in terms of
the units. The expectation features are:

• correct-accept of unitu: u is expected on the basis
of the dictionary, and it exists in the span

• false-reject ofu: u is expected but not observed
• false-accept ofu: u is not expected and it is ob-

served

4.2. Levenshtein Features

Levenshtein features are computed by aligning the ob-
served unit sequence in a hypothesized span with that ex-
pected based on the dictionary entry for the word. Based
on this alignment, the following features are extracted: All
edits are considered to operate on the dictionary pronun-
ciation.

• the number of times unitu is correctly matched
• the number of timesu is substituted
• the number of timesu is deleted
• the number of timesu is inserted

Compared to Expectation features, Levenshtein features
are more sensitive to the exact ordering of the units within
a segment.

4.3. Existence Features

Whereas Expectation and Levenshtein features require a
dictionary, Existence features indicate the simple asso-
ciation between a unit in a detection stream, and a hy-
pothesized word. An existence feature is present for each
unit/word combination seen in the training data, and in-
dicates whether the unit is seen within the hypothesized
word’s span.

4.4. Language Model Features

SCARF uses the language model in two ways. First, con-
ventional smoothed n-gram probabilities can be returned
as transition features. A singleλ is trained to weight these



features, resulting in a single discriminatively trained lan-
guage model weight. Secondly, 0/1 indicator features can
be introduced, one for each arc in the finite state language
model, which indicate when an arc is traversed in the tran-
sition from one state to another. For example, in Figure
3, the arcs(1, 2) and(2, 6) are traversed in moving from
state1 to state6. Learning the weights on the indica-
tor features results in a discriminatively trained language
model, trained jointly with the acoustic model.

4.5. The Baseline Feature

The baseline feature is designed to be used in association
with an existing HMM system, to provide a baseline level
of performance on which to build. It requires only the
baseline one-best sequence, which is treated as a detector
sequence. The baseline feature for a segment is always
either +1 or −1. It is +1 when the hypothesized seg-
ment spans exactly one baseline word, and the label of
the segment matches the baseline word. Otherwise it is
−1. The contribution of the baseline feature to a hypoth-
esis score will be maximized when the hypothesis has the
same number of words as the baseline decoding, and the
identities of the words match. Thus, by assigning a high
enough weight to the baseline feature, the best scoring
hypothesis can be guaranteed to be the baseline and thus
match its performance. In practice, the baseline weighting
is learned and its value will depend on the relative power
of the additional features.

4.6. Summary of Features

Table 1 summarizes the automatically defined features,
and whether, after training, the associated weights still can
be used with new vocabularies and language models.U is
the number of distinct units in a detector stream. Though
not previously mentioned, Existence and Expectation fea-
tures can be automatically created for n-grams of atomic
units, and this is the meaning ofn in those columns.V is
the size of the word vocabulary, andA the number of arcs
in the finite state language model representation. Note that
multiple detector streams may be used, in which case the
number of features is linearly increased.

5. TF-IDF Fast Match

The use of lattices to constrain the set of possible segmen-
tations is important to keep the SCARF runtime reason-
able (typically below real time). However, it creates an
external dependency on a separate system to provide the
lattices. As another option, SCARF provides a built in
“fast-match” which operates directly on a detector stream
to produce lattices. Algorithmically, the process is iden-
tical to the SCARF search process itself, except that no
a-priori constraints on the search space are required, and
there is a single acoustic feature - the TF-IDF similarity
between the detected units in a segment, and the expected
pronunciation of the hypothesized word. We refer to the
reader to a companion paper [7] for a full description.

Name Number Vocab & LM
Independent

Expectation 3Un yes
Levenshtein 4U yes
Existence V Un no
Single LM weight 1 yes
LM arc features A no
Baseline 1 yes

Table 1: Summary of automatically constructed features.
The weights of vocabulary and LM independent features
can be learned with once and then applied in the context
of a new vocabulary or LM.

6. Conclusion

This paper has described the SCARF toolkit for speech
recognition with segmental conditional random fields. SCARF
is designed to further research in speech recognition with
multiple partially redundant detection events, and is avail-
able at http://research.microsoft.com/en-us/projects/scarf/.
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