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Many drug failures are due to an unfavorable ADMET profile 
(Absorption, Distribution, Metabolism, Excretion & Toxicity). 
Lipophilicity is intimately connected with ADMET and in today’s 
drug discovery process, the octanol water partition coefficient log 
P and it’s pH dependant counterpart log D have to be taken into 
account early on in lead discovery. Commercial tools available 
for ’in silico’ prediction of ADMET or lipophilicity parameters 
usually have been trained on relatively small and mostly neutral 
molecules, therefore their accuracy on industrial in-house data 
leaves room for considerable improvement (see Bruneau et al. 
and references therein).[1] Using modern kernel-based machine 
learning algorithms – so called Gaussian Processes2 (GP)– this 
study constructs different log P and log D7 models that exhibit 
excellent predictions which compare favorably to state-of-the-art 
tools on both benchmark and in-house data sets. 

GP models are Bayesian non-linear regression models and it 
is the Bayesian framework that allows to provide theoretically well 
founded criteria to automatically choose the “right amount of 
nonlinearity” for modeling, thereby avoiding to depend on the 
users experience for choices like the architecture of neural 
networks.[3] For chemistry applications one of the most interesting 
virtues of GPs certainly is that they can provide insihts into the  

 

Figure 1. Evaluation on Bayer Schering Pharma in-house data in blind test: 
Scatterplots for ACDLabs v9 (left) and the GP log D7 model (center), predicted 
(black) vs. ideal (red) error bar confidence (right) 

relevance of individual descriptors, e.g. like in this work to 
lipophilicity. During model fitting the GP algorithms automatically 
assigns weights to each descriptor that enters the model as 
relevant input. Moreover and equally important, GPs 
automatically supply the user with an error bar when predicting 
the outcome of an experiment. In practice, the latter should be 
valued especially high since the machine will quantify its 
uncertainty, which allows to reduce the error rate by discarding 
predictions with large error bars (for a detailed explanation of GPs 
and the algorithmic approach used see Schwaighofer et al.).[2a]  

The machine learning approach to computational chemistry 
requires a training set from which the underlying statistical 
properties are inferred and a prediction model is selected.[2,4] 
Typically, cross-validation or resampling methods help to tune the 
hyperparameters of this modeling. Once the model has been 
fixed, an out-of-sample prediction is performed on held-out data 
(test set) that was not used to tune the model. Ideally the 
prediction quality should be measured in a blind test, where the 
predicting team (1) has no knowledge of the labels of the blind 
test set, (2) has to apply the statistical model to this set and (3) 
has to provide its predictions to the evaluating team, which only 
has knowledge of the labels of the blind test data and can 
therefore assess the prediction error in a more objective manner. 
The latter setup, as opposed to usual benchmark evaluations, 
allows a nearly unbiased evaluation where ’cheating’, i.e. re-
tuning the model on held-out data, becomes unfeasible. Note 
however that the blind test data needs to surpass certain minimal 
size criteria otherwise the evaluation results of the blind test will 
not be statistically significant. 

Earlier studies have already shown the applicability of 
Gaussian Process models to problems in computational 
chemistry, however mainly on comparatively small data sets and 
typically without blind test.[5] Note that until recent improvements 
in GP algorithms, it was unfeasible to learn on larger data sets 
and it is due to elegant approximations and advances in sampling 
techniques that large systems can now be analysed.[6] While 
Burden predicted activity of compounds with respect to 
benzodiazepine and muscarinic receptors and their toxicity,[5a] the 
largest data set used contained only 277 compounds (no blind 
validation). Enot et al. used GP models to predict log P on a set 
of 1,2-dithiole-3-one molecules; only 44 compounds were 
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employed (no blind validation).[5b] Tino et al. built GP models for 
log P on a public data set of 6912 compounds. They performed a 
blind evaluation, however, with a validation set (from Pfizer) that 
contained only 226 compounds.[5c] 

The present study goes beyond this prior work as our model 
was trained and evaluated on large sets of public and in-house 
data, furthermore a blind test was performed on a large set of 
7013 recent drug discovery molecules at Bayer Schering Pharma 
that have not been available to the modeling team. The complete 
list of compounds in the public data set is included in the 
supporting information to facilitate reproduction of our results by 
other researchers.  

Modeling was performed as follows: For each molecule, the 
3D structure of one conformation is predicted using the program 
Corina.[7] From this 3D structure, 1,664 Dragon descriptors are 
generated.[8] We inspected the relative weighting of descriptors as 
computed by the GP model. Among the descriptors with highest 
weight, the following set with a clear link to lipophilicity was 
identified automatically: Number of hydroxy groups, carboxylic 
acid groups, keto groups, nitrogen atoms, oxygen atoms and total 
polar surface area. This information can be used to select a 
subset of features for model building. For all three models 
employed in this study, reducing the number of descriptors 
resulted only in a slight performance decrease, even when less 
than 100 features were retained. The quality of the predicted error 
bars of the GP model, however, was significantly decreased. 
Therefore, the full set of descriptors was retained. 

Based on consensus values of log P / log D7 measurements 
and molecular descriptors of a large set of compounds, a 
Gaussian Process model is fitted to infer the relationship between 
the descriptors and the log P / log D7 for two data sets: 

The first set of data contains 7926 log P measurements of 
neutral (between pH 2 and 13) molecules that were extracted 
from the PhysProp and Beilstein databases (supporting material). 
Different machine learning methods were validated on this set of 
data in leave 50 % out cross-validation. Achieved accuracies are 
given in Table 1, along with results of four commercial tools, 
evaluated on the same dataset (plots are included in the 
supporting information). The two best performing commercial 
tools, Wskowwin and ACDLabs and our own SVM and GP 

models perform equally well (89 to 92 % correct within one log 
unit) when applied to the whole set of data. The accuracy of the 
linear Ridge Regression model being much lower (60 %), we 
conclude that modeling Log P based on the given data and 
descriptors requires non-linear regression models like GP, SVM, 
or neural networks. Note that all four commercial tools have been 
constructed using some measurements that are also included in 
the PhysProp and Beilstein databases. Predictions for 
measurements that have been used to train the model are clearly 
not ’out-of-sample’ predictions and thus in a sense trivial, 
therefore these results are somewhat biased towards better 
performance. Our own validation procedure is based on 
repeatedly leaving out 50% of the data from training and then 
only evaluating predictions for truly ”unseen” compounds. The 
compounds to leave out were picked at random, so the 
distribution across different compound classes is similar for test 
and training data. In drug discovery practice, this idealized 
statistical assessment does typically not hold: In new projects, 
new compound classes may be investigated, resulting in less 
accurate predictions. To get a realistic estimate of the 
performance on unseen data, a blind evaluation of models using 
data from new projects is crucial for a real-life out of sample 
estimate. 

We independently constructed models based on an in-house 
set of 14556[9] HPLC log D7 measurements from Bayer Schering 
Pharma. The GP model was validated in blind evaluation by our 
colleagues at Bayer Schering Pharma on a set of 7013 new 
measurements of drug discovery molecules from the last months. 
Afterwards, the new data was made available to the modelers 
and used to validate to remaining models. See Table 2 and figure 
1 for results. All three models constructed in this study exhibit 
reasonable overall performance (81.2 – 82.2 %). The advantage 
of the GP model becomes obvious when the predicted error bars 
are used to focus on reliable predictions: 5398 compounds are 
predicted with error bars smaller than 0.7 and 87 % of these 
predictions are correct within one log unit. Focusing on the 2603 
compounds with error bars below 0.3 results in 91 % of these 
predictions being correct within one log unit. 

Out of the four commercial tools available to us, only 
ACDLabs v9 can calculate log D7. It predicts 44.2% of all 
compounds correct within one log unit. One has to keep in mind 
that ACDLabs predicts log D based on shake-flask 
measurements, while the measurements used in the blind-test 
scenario were done using the HPLC methodology described in 

Table 1. Public data, N=7926, results for Gaussian Process model, Support 
Vector regression, Ridge regression and several commercial tools 

log P MAE RMSE % ±1 
ACDLabs v9 0.43 0.90 89.2 
Wskowwin v1.41 0.25 0.90 91.6 
AdmetPredictor v1.2.3 0.65 1.32 86.9 
QikProp v2.2 0.76 1.23 79.6 
this study GP (trained on in-house data) [a] 1.21 1.68 56.4 
this study GP (trained on in-house data,  
   pred. err. bar < 0.3, N=179) [a,b] 

0.41 0.69 92.2 

this study RR 0.59 0.89 84.4 
this study SVM 0.40 0.71 91.8 
this study GP 0.38 0.66 92.6 
this study GP  
   (pred. err. bar < 0.7, N= 7072) [b] 

0.33 0.53 96.0 

this study GP  
   (pred. err. bar < 0.3, N= 5802) [b] 

0.28 0.45 96.8 

[a] Predicting public compounds with a GP model trained on in-house data 
results in low performance. [b] Focusing on confident predictions (small 
predicted error bars) results in increased performance 

Table 2. Bayer Schering Pharma in-house data in blind test, Nblind=7013, 
Ntrain=14556, results for  Gaussian Process model, Support Vector regression, 
Ridge regression and ACDLabs v9 

Log D, blind test MAE RMSE % ±1 
ACDLabs v9 1.40 1.79 44.2 
this study GP (trained on public data) [a] 1.21 1.68 56.4 
this study GP (trained on public data, 
   pred. err. bar < 0.3, N=339) [a,b] 

0.66 0.86 79.4 

this study RR 0.60 0.83 82.2 
this study SVM 0.58 0.81 81.6 
this study GP 0.60 0.82 81.2 
this study GP  
   (pred. err. bar < 0.7, N=5398) [b] 

0.51 0.70 86.8 

this study GP  
   (pred. err. bar < 0.3, N=2603) [b] 

0.40 0.55 91.3 

[a] Predicting in-house compounds with a GP model trained on  public data 
results in low performance. [b] Focusing on confident predictions (small 
predicted error bars) results in increased performance 
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the supporting information. Moreover, in-house compounds are 
structurally quite different from publicly available data: When 
applying GP models trained on in-house data to public data or 
vice versa, only a small subset of all predictions is made with high 
confidence (i.e. small predicted error bars, see Table 1,2, rows 
labeled [b]). Nevertheless evaluating all predictions results in low 
performance (see Table 1,2, rows labeled [a]). This is consistent 
with results of Bruneau[10] and  others. 

It follows from the definition of the error bar (σ), that 68,7 %, 
95 % and 99,8 % of all predictions have to be within σ, 2σ and 3σ 
intervals of the experimental values, respectively. The quality of 
predicted error bars can therefore be evaluated by counting how 
many of the predictions are actually within the respective σ, 2σ 
etc. intervals of the experimental values. Figure 1 (right) shows 
that the predicted errors indeed exhibit the correct statistical 
properties: Results on the blind test data (black line) are close to 
the ideal run of the curve (red line). In addition, predicted error 
bars can be used to identify reliable predictions. Focusing on 
predictions with small predicted error bars results in significantly 
increased performance (see Table 1,2, rows labeled [b]). 

In conclusion, we presented results of modeling lipophilicity 
using the Gaussian process methodology, Support Vector 
Machines and linear Ridge Regression. On public data the 
prediction quality of our models compares favorably with four 
commercial tools, with the non-linear models performing better 
than the linear model. On in-house data of Bayer Schering 
Pharma, all three models perform better than commercial 
software. If predicted error bars from the GP model are used to 
focus on compounds inside its domain of applicability, it clearly 
outperforms all remaining models. This is furthermore underlined 
by a blind evaluation on a large set of measurements from new 
drug discovery projects. Finally we would like to stress that 
machine learning techniques (in particular GP models) are not 
only capable to contribute good predictions, but they can provide 
automatized tools to gain insight in what descriptors are most 
important for the modeling task and even more important for drug 
discovery practice: GPs quantify the trust in a given prediction in 
a statistically very well founded manner. Future research will 

therefore strive for a continuous improvement of modeling for 
computational chemistry using machine learning methods. 
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