
Lexically-scoped type variables

April 1, 2004

Simon Peyton Jones and Mark Shields
Microsoft Research, Cambridge

Abstract

As type inference systems become more sophisticated, it becomes
increasingly important to allow the programmer to give type anno-
tations that both document the program and guide type inference.
In Haskell 98, it is not possible to write certain type annotations, be-
cause they must mention a type that is “in scope” and the language
provides no way to name such types.

The obvious solution is to provide language support for lexically-
scoped type variables, an area whose design space has not been sys-
tematically explored. Our contribution is to bring together the rel-
evant folk lore, in coherent form, and make it accessible to a much
larger community than hitherto. In particular, we describe and con-
trast two main alternative designs — the “type-lambda” approach
of SML 97, and an alternative “type-sharing” approach which is
used by GHC and OCaml — and survey some alternative design
choices.

Scoped type variables will play a key role in the type systems of the
future; they can no longer be added as an afterthought to language
implementations.

1 Motivation

Consider the following Haskell function:

prefix :: a -> [[a]] -> [[a]]
prefix x yss = let

-- xcons :: [a] -> [a]
xcons ys = x : ys

in
map xcons yss

Haskell allows the programmer to give a type signature for prefix,
as shown. The type variable “a” is implicitly quantified, so the type
signature for prefix really means:

prefix :: forall a. a -> [[a]] -> [[a]]

Submitted to ICFP’04

(In fact, Haskell 98 does not permit an explicit forall in a type
signature, but for the purposes of this paper we will assume that it
does – see Section 4.1.5.)

Unfortunately, there is no way to give a type signature for the local
function xcons, which is why we have put it in comments. If the
type signature was un-commented, it would mean

xcons :: forall a. [a] -> [a]

because of the implicit-quantification rule, and xcons simply does
not have that type because x is free in xcons’s right side. Even
if Haskell did not have an implicit-quantification rule, and all
forall’s were explicit, and we wrote

xcons :: [a] -> [a]

there would remain the question of what the free “a” refers to.

The inability to supply a type signature for xcons might seem
merely inconvenient, but we believe that it is just the tip of an
iceberg. Haskell uses type inference to infer types, and that is
a wonderful thing. However, insisting on complete type infer-
ence — that is, the ability to infer types for any typeable pro-
gram with no help from the programmer — places serious limits
on the expressiveness of the type system. Like Pierce and Turner
[Pierce and Turner, 1998], we believe that a better design choice is
to allow the programmer to guide the type inference process by
supplying occasional explicit type annotations, thereby leaving the
door open to more sophisticated type systems, as we discuss in Sec-
tion 2.

So the challenge we address is this: it should be possible for the
programmer to write an explicit type signature for any sub-term of
the program. To do so, some type signatures must refer to a type
that is already in the static environment, so we need a way to name
such types.

The obvious way to address this challenge is by providing language
support for lexically scoped type variables. Scoped type variables
are hardly a new idea but their design space has not been well doc-
umented or explored. We offer the following contributions:

� We describe and contrast two rather different approaches to
the challenge, the “type-lambda approach” exemplified by
SML (Section 3), and the “type-sharing approach” (Section 4)
exemplified by the Glasgow Haskell Compiler. The former is
specified by the SML Definition, but the presentation here, fo-
cused on scoped type variables, is more accessible. The latter
has not been formally described before at all.

� Abstracting from these designs, we sketch the salient aspects
of the design space, discuss implications and variants, and
mention other implementations known to us (Section 5).

1

Overall, the contribution of the paper is to bring together some folk
lore that is well known to a tiny group, to make it accessible to a
much larger community. Scoped type variables will play an increas-
ingly important role in the type systems of the future; they can no
longer be added as an afterthought to language implementations.

2 Why type annotations are important
Scoped type variables occur in programmer-written type annota-
tions. But are such annotations necessary or desirable in the first
place? When SML first appeared on the scene, its type system
seemed magical [Milner, 1978]. The compiler can infer polymor-
phic types for each function, including recursive functions, without
any help from the programmer. Indeed, type inference can find the
most general type for each function: if the program has any valid
typing, the inference engine can find it (or a more general one).
This approach has proved tremendously attractive and influential,
and is adopted by many languages, Haskell among them.

All mainstream languages that take the type-inference approach
also allow the programmer to supply type annotations. Haskell, for
example, permits two forms of type annotation: declaration type
signatures; and expression type signatures. This example shows
both:

fst :: (Int,Int) -> Int
fst (x,y) = x :: Int

In the type inference framework, type annotations written by the
programmer are seen as type restrictions: if the program type-
checks with the type annotations in place, it will also type-check
if they are all deleted. The programmer’s type annotations are seen
merely as machine-checked documentation, which sometimes have
the additional effect of restricting the type of the program frag-
ments.

However, in the last ten years or so, there has been an increasing
realisation that an insistence on complete type inference — insisting
that the type inference engine can type the program when all type
annotations are deleted — places inconvenient limitations on the
sophistication of the type system.

2.1 Type annotations guide type inference

The most obvious example of this limitation is polymorphic recur-
sion. The elegant compromise that makes Hindley-Milner type sys-
tem work is that a recursive function can only call itself at the same
type instance as its current instantiation. Here is an example, taken
from [Okasaki, 1998], concerning a data type of sequences:

data Seq a = Nil
| Zero (Seq (a,a))
| One a (Seq (a,a))

cons :: a -> Seq a -> Seq a
cons x Nil = One x Nil
cons x (Zero ps) = One x ps
cons x (One y ps) = Zero (cons (x,y) ps)

The cons function is recursive, but its recursive call is at a different
type than the current instantiation. It is not typeable using standard
Hindley-Milner type inference. Examples like this crop up occa-
sionally in SML, but they are unusual. Haskell made the problem
much more pressing because Haskell permits higher-kinded type
variables; for example see [Okasaki, 1999].

One possible response to the problem of polymorphic recur-
sion is to make the type inference engine more powerful, so

that it can correctly infer types for programs that use polymor-
phic recursion. Though the problem is in general undecidable,
it turns out to be tractable in practice, but only at the cost of
fairly heroic changes to the inference algorithm [Mycroft, 1984,
Kfoury etal., 1993, Henglein, 1993].

Haskell 98, however, adopts a much simpler approach: polymor-
phic recursion is permitted if (and only if) the programmer supplies
a type signature for the function, as we did for cons above. This
approach was first used in the language Hope [Burstall etal., 1980],
and subsequently in Miranda [Turner, 1985]. It requires virtually no
change to the type inference algorithm: when analysing the right-
hand side of cons, type inference now has available a polymor-
phic type for cons, supplied by the programmer, and it uses that at
cons’s occurrences. Type inference of the definition of cons con-
cludes by checking that the type of the right-hand side matches the
supplied signature. It is rather like supplying an induction hypothe-
sis to a theorem prover; doing so reduces the problem from a search
of a huge space to a simple matter of checking deductions.

Another carefully-crafted compromise of the Hindley-Milner type
system is that the type of a lambda-bound variable must not be a
type scheme. For example, this definition of f is rejected:

f g = (g True, g ’a’)

Why? Because the lambda-bound variable g is applied to two
different types, a Bool and a Char. This is irritating, because
if we pass a polymorphic function to f all would, in fact, be
well. For example, no runtime error would result from evaluating
(f (\ x -> x)).

Again, one could imagine a more cunning type inference algorithm
to attack this problem [Kfoury and Tiuryn, 1992], but again there
is a much simpler solution: let the programmer supply the hard-to-
infer information using a type signature:

f :: (forall a. a -> a) -> (Bool, Char)
f g = (g True, g ’a’)

Now there is no difficulty. When performing type inference on
f, it is clear that g should be given a polymorphic type; and
one can also check that applications of f apply the function
to a suitably polymorphic argument [Odersky and Läufer, 1996,
Peyton Jones and Shields, 2004].

2.2 Scoped type variables

The general lesson is this: a little help from the programmer can
turn a seriously hard problem into an easy one, thereby allowing
the language to support a richer and more expressive type system.
If this is the way of the future, and we believe it is, then some type
annotations become an essential part of the program text, rather
than constituting optional, machine-checked documentation. That
in turn makes lexically-scoped type variables an essential compo-
nent of the language, so that it is possible to write the annotations
in the first place.

We begin with Standard ML, which has provided scoped type vari-
ables for many years.

3 The type-lambda approach: SML

One plausible approach to adding scoped type variables is to take a
hint from System F, the explicitly-typed polymorphic lambda cal-
culus [Girard, 1990]. System F is a well-studied formal calculus
that includes scoped type variables. Indeed, GHC, in common with

2

several other typed compilers, uses a variant of System F as its in-
termediate language, translating Haskell programs into System F
after type checking.

In System F, a type lambda, written “Λ”, binds a type variable, just
as a term lambda, written “λ”, binds a term variable. For example:

���
: � α � α � α�����

Λα � λ � : α �	�
A term Λα ��
 has type � α � τ, for some type τ, just as a term λ ����

has type τ1 � τ2.

Hence, a very natural idea is to bind a source-language type
variable with a source-language type lambda. We call this “the
type-lambda approach”, and it is the one adopted by SML 97
[Milner etal., 1997]. In SML one can write:

fun ’a prefix (x : ’a) yss
= let

fun xcons (ys : ’a list) = x :: ys
in
map xcons yss

Here, “’a” following the keyword fun is the binding site of an (op-
tional) type parameter of prefix; it scopes over the patterns of the
definition and its right hand side. We call the type annotations on x
and ys pattern type signatures, since they are attached to patterns.

3.1 Implicit scoping

Just as Haskell has implicit universal quantification in type signa-
tures, SML allows the programmer to introduce implicit type lamb-
das. This definition, for example, is elaborated into the previous
one:

fun prefix (x : ’a) yss
= let

fun xcons (ys : ’a list) = x :: ys
in
map xcons yss

The language definition gives somewhat intricate rules that explain
how the implicit type lambdas are placed. For example, consider:

fun f x =(fun (y:’a) => y)....

Where is the type lambda that binds the type variable ’a? In
SML one cannot answer that question without knowing both what
the “....” is, and the context for the definition fun f. Roughly
speaking, the type lambda for an implicitly-scoped type variable
’a is placed on the innermost function definition that encloses all
the free occurrences of ’a. Here is the exact rule, quoted from
[Milner etal., 1997]:

Every occurrence of a value declaration is said to
scope a set of explicit type variables, as follows.
First, a free occurrence of α in a value declaration
val
�����������
�������� � ����� is said to be unguarded if the
occurrence is not part of a smaller value declaration
within ����� � ����� . In this case we say that α occurs un-
guarded in the value declaration. Then we say that
α is implicitly scoped at a particular value declara-
tion val
�����������
�� ����� � ����� if (1) α occurs unguarded
in ����� � ����� , and (2) α does not occur unguarded in any
larger value declaration containing ����� � ����� .

This informal, albeit carefully worded, paragraph is the entire spec-
ification of the binding of implicitly-scoped type variables; the for-
mal typing rules assume that a pre-processing pass has inserted an

explicit binding for every type variable that is implicitly bound by
the above rule.

The scoping rules sometimes give slightly odd results. For example:

let val (x:’a, y:’b) = <rhs> in <body>

Here, x and y are in scope in <body> but not in <rhs>, while ’a
and ’b are in scope in <rhs> but not in <body> (because they are
thought of as type-lambda bindings). In fact, since the definitions
would need to be polymorphic in ’a, such a program would often
be rejected anyway. For example:

fun swap p = let
val (x:’a, y:’b) = p

in (y,x)

Here, p is free in the environment, so x and y cannot be generalised
and the program would be rejected — and this question of general-
isation is what we turn to next.

3.2 Generalisation

Should this function be well typed?

fun ’a implies (x:’a) (y:’a) = not x || y

Statically, since (||) :: Bool->Bool->Bool, it follows that x
must have type Bool. So is it valid to claim it has type “’a”? The
type-lambda approach would clearly reject this definition: the func-
tion implies does not have a polymorphic type, and so has no type
lambda. Or, to put it another way, the programmer is claiming that
x’s type is arbitrary, so it should jolly well be arbitrary, and not
Bool.

In this case the type-lambda approach gave a clear answer, but that
is not always the case. Consider prefix again. Is this version OK?

fun prefix x yss
= let

fun ’a xcons (ys:’a list) = x :: ys
in
map xcons yss

In the absence of type annotations, type inference would attribute
ys with the type ’a list where ’a is a type variable, but xcons
would not be polymorphic in this type, because of the free occur-
rence of x in its right hand side. So xcons does not have a poly-
morphic type, and has no type lambda in its System F translation.
Hence, the type-lambda approach should reject the definition, and
indeed SML does so.

A programmer might find that hard to understand. After all, ys
really does have the type ’a list; it just happens that xcons is not
the function that is parametric in ’a; rather, it is prefix. It might
also be inconvenient, because it may force the programmer to bind
the type variable far away from where it is used. In our example,
the definition becomes valid only if we bind ’a at the definition of
prefix, as we did in the definitions of Section 3.

Similar subtleties arise when more than one type variable is men-
tioned:

fun f (x:’a) (y:’b) = [x,y]

The type-lambda approach rules this out too, because the two
supposedly-polymorphic type variables ’a and ’b turn out to be
the same — f has only one type lambda. Indeed, the function is re-
jected even if the different type variables scope over different equa-
tions:

3

fun choose True (x:’a) (y:’a) = x
| choose False (x:’b) (y:’b) = y

Each equation by itself is OK but, when they are put together, the
type variables ’a and ’b are unified, and that is rejected (by SML)
as being insufficiently polymorphic. This happens even if the two
type variables occur in separate, but mutually recursive, functions:

rec fun
ch1 True (x:’a) (y:’a) = x
ch1 b x y = ch2 b x y

and
ch2 False (x:’b) (y:’b) = y
ch2 b x y = ch1 b x y

Again, this is rejected under the type-lambda approach, because ’a
and ’b are unified; there is only one type lambda, not two.

3.3 Type checking

We summarise the effect of scoped type variables on SML’s static
semantics in Figure 1.

A scoped type variable can only be bound at a value binding. To
keep things simple, we provide syntax for a simple, non-recursive
let expression; the α are the explicitly-bound type variables. A
scoped type variable can occur in a type written by the programmer;
in our tiny syntax, such a type can annotate the bound variable of a
fun (lambda), or serve as the type signature of arbitrary term. We
let
 range over terms, τ and υ over types, and σ over type schemes.
We write α and τ to denote sequences of type variables or types.

The first two judgements formalise the pre-processor that adds ex-
plicit bindings for implicitly-bound scoped type variables. The
judgement α �
�� �
�� means that term
 is transformed to the
explicitly-annotated term
�� , in a context where the type variables
α are bound in some outer scope. The auxiliary judgement �
 ∇ δ
means that the type variables δ occur unguarded in
 (Section 3.1
gave the SML defintion of unguarded). Notice the way that this
judgement ignores the right-hand side of a let (rule ULET) because
occurrences there are guarded.

Once the term is fully annotated we can describe type checking,
which is the third judgement in Figure 1. The environment Γ con-
tains typings for identifiers, ��� : σ � , and type variables, α. The latter
are added to Γ when a binding for a lexically-scoped type variable
is encountered. The judgement Γ � τ means that τ is well-formed
in environment Γ, and is used to check the validity of a type written
by the programmer. A type τ is well-formed in Γ if (a) the free type
variables of τ are bound in Γ, and (b) the type is well-kinded. So far
as well-kinding is concerned, we assume that each type constructor
(int, list, etc) carries its kind with it.

As we have discussed, lexically-scoped type variables are inti-
mately coupled with generalisation, as rule LET shows. The
explicitly-scoped type variables are added to the environment be-
fore type-checking the right-hand side � , for two reasons: (a) it
supports the well-formed-ness check for type annotations in � , and
(b) when generalising inner bindings in � we must not generalise
over any type variables in α. That is the reason that 	��
� Γ � , defined
in Figure 1, includes the type variables bound in Γ as well as those
occurring in types in Γ. Finally, the condition α �� 	��
� σ � checks that
we have generalised over all the explicitly-bound type variables.

The rules for type annotations are straightforward (AABS and AN-
NOT) but notice that SML only permits a term to be annotated with
a monotype τ. (In constrast, Haskell allows a quantified type, σ –
see Section 4.2.)

Syntax

 ::
� � � ��
 let val α � = � in

 fun ��� :τ � ��
�

 : τ

Γ ::
�

ε
 Γ ����� : σ ��
 Γ � α

	��
� Γ � � � 	��
� σ ��
���� : σ � � Γ ��� � α
 α � Γ �

Pre-processing α �
�� �
 �

α �
�� �
��
��� ∇ δ

β � � β ��� δ � α �
α � β � ����� �����

PLET
α � let val β � = � in
�� � let val β � � = � � in
 �

α �
�� �
 �
PABS

α � fun ��� :υ � ��
�� � fun ��� :υ � ��
 �

α �
�� �
 �
PANNOT

α � �
 : τ �!� �"�
 � : τ �

Unguarded occurrence �
 ∇ δ

�
 ∇ δ
ULET

� let val α � = � in
 ∇ δ

�
 ∇ δ
UABS

� fun ��� :υ � ��
 ∇ δ �#	��
� υ �

�
 ∇ δ
UANNOT

� �
 : τ � ∇ δ �#	��
� τ �

Type checking Γ �
 : τ

Γ � α � � : τ $
β �� 	��
� Γ �
σ
� � β � τ $

α �� 	��
� σ �
Γ � � : σ �
 : τ

LET
Γ � let val α � = � in
 : τ

Γ � υ
Γ ����� : υ �!�
 : τ

AABS
Γ � fun ��� :υ � ��
 : υ � τ

Γ � τ
Γ �
 : τ

ANNOT
Γ � �
 : τ � : τ

Figure 1: Additional type-checking rules for ML-style explicitly-
scoped type variables

4

4 The type-sharing approach: GHC

The type-lambda approach is perfectly viable, as SML shows, but
as we have seen, its details are somewhat subtle. In this section we
describe an alternative approach, which has been implemented in
the Glasgow Haskell compiler for several years. (In the rest of the
paper we revert to Haskell syntax.)

The central idea is this:

A scoped type variable is simply a name for a type.

So, if I write (\x::a -> (x,True) :: (a,Bool)), I mean only
that a is a name for the type of x, no more and no less. This name
is mentioned in the expression type signature (a,Bool), which
claims that (x,True) has a pair type whose first component is a,
the type of x, and whose second component is Bool.

In contrast to the type-lambda approach, there is no connection be-
tween scoped type variables and generalisation. For example, con-
sider again our prefix example:

prefix x yss = let
xcons (ys::[a]) = x : ys

in
map xcons yss

This definition is valid in our system; the scoped type variable a
simply names the type of the elements of ys, without any require-
ment that xcons be parametric in that type. Scoped type variables
simply identify a sharing point in the type graph, rather than iden-
tifying polymorphism. For this reason, we call it the type-sharing
approach1 .

The type named by a scoped type variable does not even need to be
a type variable. For example, our implies example is valid in our
system:

implies (x::a) (y::a) = not x || y

Here a is simply a name for the type of x and y (which must there-
fore be the same). The two pattern type signatures require that x
and y have the same type, but say nothing about what that type is.
The fact that x is an argument to not forces that type to be Bool, so
in the end a names the type Bool.

We have found that this view is much easier to explain than the
type-lambda view. Having implemented both, we know that it is
also easier to implement.

4.1 Scoping in GHC

Syntactically, GHC’s scoped type variables look very similar to the
implicit-type-lambda approach: a scoped type variable can be in-
troduced by binding it in a pattern type signature. For example:

prefix :: b -> [[b]] -> [[b]]
prefix (x::a) yss
= let

xcons (ys::[a]) = x : ys
in
map xcons yss

The “::a” in the first argument of prefix is called a “pattern type
signature”, because it gives a type annotation for a pattern. It brings
into scope the type variable a.

1Not to be confused with the type sharing constraints of the
SML and OCaml module systems.

4.1.1 Pattern type signatures

Pattern type signatures obey the following rules:
� A pattern type signature brings into scope any type variables

free in the signature that are not already in scope. For exam-
ple, the pattern x::a brings the type variable a into scope (as
well as the term variable x). On the other hand, the pattern
ys::[a] mentions a, rather than shadowing it as a conven-
tional lambda binding would, because a is already in scope.

� The scope of a freshly-introduced type variable is lexical, and
is the same as the scope of any term variable bound by the
same pattern. For example, the scope of a is the same as
the scope of x. This simple scoping rule contrasts with the
subtleties involved in finding a suitable type-lambda binding
site (Section 3.1).

� The scope of a freshly-introduced type variable includes sub-
sequent patterns in the same binding. For example, we could
write prefix like this:

prefix (x::a) (yss::[[a]]) = ...

The pattern x::a brings into scope the type variable a, and it
scopes over subsequent patterns2 , including ys::[[a]].

� A pattern type signature may be attached to any pattern what-
soever: in function arguments, lambda abstractions, case ex-
pressions, and pattern bindings in let and where blocks. The
pattern need not be a simple variable, nor does the type in a
pattern type signature need to be a simple type variable. For
example, the following are all legal

-- Function argument
f ((x,y)::a) = x && y

-- Here a = (Bool,Bool)

-- Lambda abstraction
f = \ ((x,y)::(a,b)) -> x + y

-- Case expression
f p = case p of

(x::a, y::b) -> x + y

-- Pattern binding
f p = let (x,y)::(a,b) = p in x+y

In all these cases, the scope of a and b is the same as the scope
of x and y. For example, in the last example, a and b scope
over the right-hand side of the let as well as the in part. (In
Haskell, let is always recursive.)

A scoped type variable is a name for a type, and not a type scheme.
(A type has no embedded forall’s inside it.) This restriction is
necessary to preserve type inference, and it is not onerous in prac-
tice; when writing this paper we were unable to produce any plau-
sible example programs that violate it.

4.1.2 Result signatures

A pattern type signature allows one to bind a scoped type variable to
(part of) the type of an argument. Sometimes, though, it is helpful
to name components of the result of a function.

2Since patterns never contain occurrences of term variables, it
does no harm for term-variable bindings to scope over subsequent
patterns as well.

5

f n :: ([a] -> [a])
= let

g (x::a, y::a) = (y,x)
in
\xs -> map g (reverse xs ‘zip‘ xs)

The type annotation “:: ([a] -> [a])” is a result signature. It
claims that the right hand side of f has type [t] -> [t] for some
type t, and binds the scoped type variable a to t. The scope of the
bound type variable(s) is the right-hand side of the definition.

Result signatures can be used on lambda abstractions and case ex-
pressions, as well as function definitions.

4.1.3 Class and instance declarations

In GHC, the type variables introduced by Haskell’s class or
instance declarations also scope over the body of the declaration.
For example:

class Eq a where
(==), (/=) :: a -> a -> Bool
(/=) x y = not ((x::a) == (y::a))

instance (Eq a, Eq b) => Eq (a,b) where
(==) (x1,y1) (x2,y2) = ((x1::a) == x2)

&& ((y1::b) == y2)

In the class declaration, the type variable a scopes over the entire
where clause, including the type signatures (x::a) and (y::a);
and similarly for the type variables a and b introduced in the in-
stance declaration.

4.1.4 Existentials

Several Haskell compilers support existential data types. For exam-
ple:

data Ap = forall a. Ap [a] ([a] -> Int)

This declaration defines Ap as an existential pair: the constructor Ap
has type

Ap :: forall a. [a] -> ([a] -> Int) -> Ap

(Hence the “forall”.) Notice that the type Ap is not parameterised
over the type a.

Values of type Ap can be taken apart using pattern-matching as
usual, and pattern type signatures can be particularly useful to name
the existential type:

revap :: Ap -> Int
revap (Ap (xs::[a]) f) = f ys

where
ys :: [a]
ys = reverse xs

Here the pattern type signature for xs brings a into scope, while the
declaration type signature for ys makes use of that binding.

4.1.5 Implicit quantification of type signatures

Pattern type signatures bring type variables into scope, and these
lexically-scoped type variables modify the implicit-quantification
rule for Haskell’s existing type signatures, in the following way. In
an ordinary Haskell type signature (on declarations or expressions),
the implicit-quantification rule applies only to type variables that
are not in scope. So we could write prefix like this:

Syntax

External monotypes υ ::
� ��
 υ1 � υ2

External polytypes φ ::
�

forall � � υ
Internal monotypes τ ::

���
 α
 τ1 � τ2
Internal polytypes σ ::

� � α � τ

Terms
 ::
� � � �
 \ ��� :: υ � ��

 :: φ

Identifier envt Γ ::
�

ε
 Γ � � : σ �
Type var envt Φ ::

�
ε
 Φ � ���� τ �

Type checking Γ ; Φ �
 : τ

� � 	��
� υ � � ���	� � Φ � Φ � � Φ � �
�� τ �
τ $ � Φ � � υ � � τ $ Γ � � : τ $�� ; Φ � �
 : τ �

AABS
Γ ; Φ � \ ��� :: υ � ��
 : τ $ � τ �
�

fresh τ
 � Φ � ���� � � � υ �
� τ
 Γ ; Φ �
 : τ
 ANNOT

Γ ; Φ � �
 :: forall � � υ � : Φ � �
�� τ � � υ �
Figure 2: Additional syntax and type-checking rules for sharing-
style scoped type variables

prefix :: b -> [[b]] -> [[b]]
prefix (x::a) yss
= let

xcons :: [a] -> [a]
xcons ys = x : ys

in
map xcons yss

In the declaration type signature for xcons there is no implicit uni-
versal quantification at all, because a is in scope. One can have
mixtures, of course. We could define xcons’ like this:

xcons’ :: b -> [a] -> [a]
xcons’ v ys = x : ys

Since b is not in scope, but a is, the implicit-quantification rule
means that b is quantified, but a is not:

xcons’ :: forall b. b -> [a] -> [a]

Whenever a language does something implicitly, it is good prac-
tice to provide a way to do it explicitly too. For example, paren-
theses allow the programmer to make operator precedence explicit,
rather than relying on implicit grouping based on operator priori-
ties. So far as quantification is concerned, it seems very desirable
to allow the programmer to quantify type signatures explicitly, with
forall, and GHC supports this. A use of forall in a type com-
pletely switches off implicit quantification for that type.

4.2 Type checking

Figure 2 shows the additional syntax and type-checking rules re-
quired to add scoped type variables to Haskell. All existing syntax
and rules remain unchanged.

Our presentation is made simpler if we distinguish between exter-
nal types, (υ � σ, with type variables �), and internal types (τ � ρ, with
type variables α). Type annotations in the language syntax are writ-
ten using external types, while the typing judgements use internal

6

types. We will continue to use the term “scoped type variable” to
mean the same as “external” type variable. We write 	��
� υ � to de-
note the set of all free (external, scoped) type variables in υ.

The basic type-checking judgement form is quite conventional:

Γ ; Φ �
 : τ

which is read “in environments Γ and Φ, term
 has type τ”. Here,
Γ is conventional: it ranges over type contexts, bind each in-scope
term variable � to its (internal) type σ.

The context Φ maps each scoped type variable, � , to the monotype,
τ, that it represents. It follows that Φ is idempotent, because its
range and domain are disjoint. The idea is that when the binding
site of a scoped type variable is encountered, Φ is extended to bind
that variable to a monotype. Then Φ is applied to all programmer-
written types, to replace their scoped type variables by the corre-
sponding monotypes.

Rule AABS type checks a type-annotated λ-abstraction. First, we
find � , the free exernal type variables of υ that are not already bound
by Φ; these are the ones that are newly brought into scope. Then
we invent arbitrary monotypes τ for each of them, and extend Φ to
reflect this choice. Finally, we apply that substitution to υ, giving
x’s type τ $, then kind-check τ $, and type-check the body of the
lambda. The judgement � τ $ checks that the chosen substitution
makes τ $ is well-kinded; there is no need for an environment for
this judgement, because all the lexically-scoped type variables in υ
have by now been substituted away – or, if not, the � υ judgement
should fail. As in the SML case, the kind check requires that any
type constructors carry their kinds with them.

Rule ANNOT checks that
 has the specified external type φ. We
invent fresh skolem type constants

�
, and use them to instantiate

the supplied type by applying the extended substitution Φ � ���� � � ,
to get the expected type of the body τ
 . Then we check that τ
 is
well-kinded, and that the body
 does indeed have that type. Notice
that the type variable environment Φ is not extended here. Finally,
the supplied type signature is specialised by τ in the result. Haskell
allows a polytype, σ, to annotate a term, while SML only permits
a monotype. That is why the rule is a bit more elaborate than the
corresponding one in Figure 1.

4.3 Extending to Haskell

We have implemented scoped type variables for the full Haskell
language. It turns out that there are really no significant complica-
tions in scaling up the rules we give to the full Haskell language,
including its many extensions.

The only exception is the question of kind inference for scoped type
variables. In the type checking rule ANNOT, and its correspond-
ing inference rule IANNOT, we took care to check that the user-
written type was well-formed, which includes a well-kindedness
check. Haskell has higher-kinded type variables, so we must infer
the kind of any newly-bound type variables. Our implementation
infers these kinds by a separate traversal of the “nearby” type(s) –
that is, other type signatures in the same pattern-matching construct.

5 Discussion
We have now seen two designs for lexically-scoped type variables
in some detail, so we have enough context to understand something
of the design space. The main design choices seem to as follows.

Lexical structure (Section 5.1). Given an occurrence of a scoped
type variable in the program text, can one point to the binding

occurrence in the program text? If so, we say that the type
variable is explicitly bound; otherwise it is bound implicitly.

In the case of explicit binding we take it for granted that alpha-
renaming does not change the meaning of the program – that
is the very essence of lexical scoping! In the implicit-binding
case, though, what is the rule that specifies which set of occur-
rences of some scoped type variable � may be simultaneously
renamed to (say) � ?

Type or type variable (Section 5.2)? Does a type variable in the
program text stand for a type variable, or for an arbitrary type?
In the latter case, can the type be polymorphic?

Quantification (Section 5.3). Does the use of a scoped type vari-
able affect where quantification takes place, or the nature of
that quantification (e.g. universal vs existential)? Can two
distinct scoped type variable denote the same internal type?

5.1 Lexical structure

The simplest binding choice is to require every lexically-scoped
type variable to be bound explicitly by the programmer. That is
certainly what happens in explicitly-typed languages that embrace
polymorphic types, such as Generic Java and C#. However, both
Haskell and all variants of ML have always supported implicit
binding of universally-quantified type variables. For example, in
Haskell, one writes

reverse :: [a] -> [a]

rather than the more-explicit

reverse :: forall a. [a] -> [a]

The scope of these implicit forall bindings is very local, however:
it is just a single type annotation.

GHC goes no further: all other binding of scoped type variables
is explicit, in the sense that one can point to a textual binding site
for every other type variable. Furthermore, in the most common
case where the type variable is bound as part of a pattern, the scope
of such bindings is identical to the scope of term variables bound in
the same pattern. Having said that, GHC is a little coy about exactly
which type variables occurring in patterns are binding occurrences.
For example, consider

f (x::a) = let g (y::a) = y in g x

The first occurrence of a in “(x::a)” (assuming that a is not al-
ready in scope), while the second is certainly a bound occurrence.
This coyness is a design choice, of course. One could use some
lexical notation (a tick, perhaps, thus ’a) to distinguish a binding
site from an occurrence:

f (x::a) = let g (y::’a) = y in g x

In contrast, SML makes a syntactic distinction between binding
sites and mere occurrences. On the other hand, it goes much further
in the implicit-binding direction, by giving a rather tricky rule that
defines the implicit binding site that encloses two occurrences, as
we saw in Section 3.1.

Two other experimental Haskell-like languages, Mondrian
[Meijer and Claessen, 1997] and Chameleon [Sulzmann, 2003],
use declaration type signatures to bring type variables into scope.
For example, the type signature

prefix :: b -> [[b]] -> [[b]]

7

would bring b into scope in the definition of prefix. One advan-
tage of this is that it can also bring into scope type variables that do
not appear in the type of any value, but instead appear only in the
constraints:

eval :: Eval (a->(b,c)) => a->b

Here, the type-class constraint Eval (a->(b,c)) mentions the
type variable c that does not appear in the rest of the type at all.
These types simply cannot be named using pattern type signa-
tures alone. There are several disadvantages too. First, it cou-
ples scoped type variables with polymorphism and type lambdas
(see Section 5.3). Second, the type signature in a Haskell program
can be arbitrarily far away from the function definition itself, so it
may not be easy to find the binding site for a scoped type variable.
Lastly, it seems messy to say that a closed type, such as

forall b. b -> [[b]] -> [[b]]

should bring anything into scope elsewhere.

The Caml language displays another variant. In Caml, all
implicitly-scoped type variables are brought into scope at the level
of the top-level (or module-level) definition that mentions it. For
example, consider:

let pair = (fun (x : ’a) -> x),
(fun (x : ’a) -> x)

Here, ’a is considered to have been brought in scope by the top-
level let. Thus, the two ’a are treated as the same type variable,
giving pair the type

forall ’a. (’a -> ’a) * (’a -> ’a)

rather than

forall ’a, ’b. (’a -> ’a) * (’b -> ’b)

as it would have in GHC.

5.2 Type variable or type?

In the type-lambda approach a scoped type variable stands for a
type variable in the program’s typing derivation. In the type-sharing
approach, as we described it, a scoped type variable stands for an
arbitrary monotype.

This difference is more apparent than real, however. A minor vari-
ant of the type-sharing approach would insist that a scoped type
variable names a type variable rather than a type. The technical
aspects are essentially unchanged, so this choice is primarily a mat-
ter of taste. The approach as described allows the programmer to
name, say, x’s type without having to write down its structure. Ar-
guably, though, if the programmer writes something that looks like
a type variable she should get a type variable.

In any case, the type-sharing approach accommodates both choices,
while the type-lambda approach absolutely requires the stands-for-
variable choice. Both GHC and Caml, which take the type-sharing
approach, currently bind a scoped type variable to a type, rather
than a type variable. Chameleon uses different syntax to support
both: the signature f :: a -> a means that f has the polymorphic
type � ��� � � � and binds a to the argument/result type � in f’s
body. The signature f ::: a -> a, with three colons, means that
f has the monomorphic type τ � τ, for some type τ, and binds a to
τ in f’s body.

5.3 Quantification

Scoped type variables inevitably interact in some way with quan-
tification (notably generalisation), and here there is more variation,
and it is harder to classify:

In the type-lambda approach, scoped type variables are inextrica-
bly bound up with generalisation. Every scoped type variable is
bound at the point at which it is generalised. Several somewhat-
unexpected consequences of this choice were explored in Sec-
tion 3.2.

In the type-sharing approach, in contrast, one can introduce a
scoped type variable with no connection whatsoever to generali-
sation. For example, this expression is perfectly legal:

map (\(xs::[a]) -> ys ++ reverse xs)

The lambda abstraction passed to map is not generalised (because it
is not let-bound), and indeed cannot be (since ys is free), but it is
nevertheless perfectly OK to bind a to the type of the elements of
xs. Similarly, we may bind type variables in the patterns of a case
expression, thus:

case v of { (x::a, y) -> (x, x) :: (a,a) }

Again, no generalisation is involved. This separation of scoping
and quantification is particularly welcome, because it permits exis-
tential, as well as universal, quantification, (Section 4.1.4).

Nevertheless, there is one subtle interaction between scoped type
variables and generalisation. One cannot, of course, generalise over
a type variable that is free in the environment. But consider the
Haskell binding

let { (x, y) = (\v->v, True) } in <body>

The left hand side of the binding is a pattern, rather than a function
applied to argument patterns, so it is called a pattern binding. Pat-
tern bindings are generalised as usual, so GHC will infer the type
� � � � � � for x and Bool for y. Now suppose that we add a type
annotation to x:

let { (x::(a->a), y) = (\v->v, True) } in <body>

What is the scope of a? The same as the scope of x, of course!
Hence <body> may mention a, and x cannot be generalised be-
cause a is free in the environment. This applies even for degenerate
patterns consisting of a single variable. For example, the following
definition binds x to a monomorphic identity function, whether or
not a is actually mentioned in <body>:

let { x::(a->a) = \v->v } in <body>

Caml has the same rule, that one cannot generalise over a type vari-
able free in the environment, but since in Caml all user-provided
type variables are always in scope, this means that they are never
generalized in an inner let, but only at the top-level (or module-
level) let. For example, this definition

let y = let id (x : ’a) = x
in (id 1, id true)

is rejected because the ’a in the type ’a -> ’a for id cannot be
generalised in the local let. Leroy writes3: “this is the really ques-
tionable aspect of the Caml approach, which we’ll have to address
in the future”.

3Personal communication

8

6 Conclusion
As type systems become more sophisticated, the complexity of
complete type inference rises very sharply indeed, whether mea-
sured in terms of algorithmic complexity, in terms of the subtlety
of the code, or in terms of the predictability of the algorithm as
seen by the programmer. Rather than design increasingly heroic
type-inference algorithms, we believe that it is more productive to
use type inference to fill in the gaps between programmer-supplied
type annotations. Scoped type variables will become essential to
allow such type annotations to be expressed at all.

The main contribution of this paper is to describe and contrast the
two main currently-proposed approaches to adding lexically-scoped
type variables to Hindley-Milner-style type systems. The type-
lambda approach of SML is well specified by the SML Definition
but not well known; the type-sharing approach of GHC and Caml
is, so far as we know, described only in the respective user man-
uals of those compilers. Even the central idea, that of regarding a
scoped type variable as simply a name for a type, has received little
attention.

So which is better? Or would some other variant (Section 5) be
superior? We hope that the paper has equipped the reader to better
judge for herself, but the authors lean to the type-sharing approach.
Its formal expression does seem rather simpler (compare Figures 1
and 2). Furthermore, the decoupling of generalisation and scoped
type variables is a big advantage: generalisation is the trickiest area
in polymorphic type systems, especially when mutual recursion,
the value restriction, value recursion, not to mention type classes
in the case of Haskell, and so on, are involved. In fact, our first
implementation of scoped type variables in GHC did use the type-
lambda approach, but it became horribly complicated to implement
and very tricky to describe to the programmer. Switching to the
type-sharing approach made matters much simpler; it simply seems
to scale better with language complexity.

Be that as it may, we hope that this paper may set a context for
futher exploration of an increasingly-important design space.

Acknowledgements
Thanks to Mark Jones for earlier discussions that led to GHC’s ini-
tial implementation of scoped type variables, and to Xavier Leroy
who explained to us how Caml’s scoped type variables work. We
also thank Nick Benton, Benjamin Pierce, Martin Sulzmann, Clau-
dio Russo, Keith Wansbrough, and Stephanie Weirich for many
suggestions that helped improve the paper.

7 References
[Burstall et al., 1980] Burstall, R. M., MacQueen, D. B., and San-

nella, D. T. (1980). HOPE: An experimental applicative lan-
guage. In Conference Record of the 1980 LISP Conference,
pages 136–143.

[Girard, 1990] Girard, J.-Y. (1990). The system F of variable
types: fifteen years later. In Huet, G., editor, Logical Founda-
tions of Functional Programming. Addison-Wesley.

[Henglein, 1993] Henglein, F. (1993). Type inference with poly-
morphic recursion. ACM Transactions on Programming Lan-
guages and Systems, 15(2):253–289.

[Kfoury and Tiuryn, 1992] Kfoury, A. and Tiuryn, J. (1992). Type
reconstruction in finite rank fragments of second-order lambda
calculus. Information and Computation, 98(2):228–257.

[Kfoury et al., 1993] Kfoury, A., Tiuryn, J., and Urzyczyn, P.
(1993). Type reconstruction in the presence of polymorphic re-
cursion. ACM Transactions on Programming Languages and
Systems, 15(2):290–311.

[Meijer and Claessen, 1997] Meijer, E. and Claessen, K. (1997).
The design and implementation of mondrian. In Launchbury, J.,
editor, Haskell workshop, Amsterdam.

[Milner, 1978] Milner, R. (1978). A theory of type polymorphism
in programming. JCSS, 13(3).

[Milner et al., 1997] Milner, R., Tofte, M., Harper, R., and Mac-
Queen, D. (1997). The Definition of Standard ML (Revised).
MIT Press, Cambridge, Massachusetts.

[Mycroft, 1984] Mycroft, A. (1984). Polymorphic type schemes
and recursive definitions. In International Symposium on Pro-
gramming, volume 167 of LNCS, pages 217–228. Springer-
Verlag.

[Odersky and Läufer, 1996] Odersky, M. and Läufer, K. (1996).
Putting type annotations to work. In 23rd ACM Symposium on
Principles of Programming Languages (POPL’96), pages 54–
67. ACM, St Petersburg Beach, Florida.

[Okasaki, 1998] Okasaki, C. (1998). Purely functional data struc-
tures. Cambridge University Press.

[Okasaki, 1999] Okasaki, C. (1999). From fast exponentiation to
square matrices: an adventure in types. In ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP’99),
pages 28–35, Paris. ACM.

[Peyton Jones and Shields, 2004] Peyton Jones, S. and Shields, M.
(2004). Practical type inference for higher-rank types. Unpub-
lished manuscript.

[Pierce and Turner, 1998] Pierce, B. C. and Turner, D. N. (1998).
Local type inference. In 25th ACM Symposium on Principles
of Programming Languages (POPL’98), pages 252–265, San
Diego. ACM.

[Sulzmann, 2003] Sulzmann, M. (2003). A Haskell
programmer’s guide to Chameleon. Available at
http://www.comp.nus.edu.sg/˜sulzmann/chameleon/-
download/haskell.html.

[Turner, 1985] Turner, D. (1985). Miranda: A non-strict func-
tional language with polymorphic types. In Jouannaud, J.-P.,
editor, ACM Conference on Functional Programming and Com-
puter Architecture (FPCA’85), volume 201 of Lecture Notes in
Computer Science, pages 1–16, Nancy, France. Springer-Verlag.

9

