
Energy Efficient Sensor Data Logging
with Amnesic Flash Storage

Suman Nath
Microsoft Research

sumann@microsoft.com

ABSTRACT
Flash storage based local data logging is beneficial for many
sensing systems. However, flash size and battery capacity of-
ten limit the amount of sensor data that may be logged on
a sensor node or an embedded gateway. An amnesic stor-
age system can address this limitation by compressing and
aging sensor data since sensor data is typically highly com-
pressible and for most applications, older data is less valu-
able than newer data. While algorithms for compression and
aging are well known, implementing them on flash leads to
new challenges due to unique write and erase characteristics
of flash memory. We show that existing amnesic compres-
sion schemes, although optimize for space or decompression
error, are not suitable for energy-constrained devices. We
present FlashLogger, an energy-efficient sensor data logging
system that uses lazy amnesic compression in a flash-efficient
manner. FlashLogger incorporates a suite of compression al-
gorithms suitable for progressively compressing time series
scalar, audio, and image data. All our methods are designed
for the limited memory and processing capabilities typical of
low power sensor nodes, and are prototyped on Tmote Sky
platform running TinyOS. Evaluation of FlashLogger with
several real world data sets shows orders of magnitude en-
ergy savings for both logging data and retrieving data within
a time range.

1. INTRODUCTION
Recent technology trends in flash memory storage, partic-

ularly NAND flash, have resulted in a paradigm shift where
a flash memory can be large enough to locally archive large
amounts of data and the associated energy cost can be one
or two orders of magnitude smaller than that of communi-
cation [3]. These trends argue for equipping sensor devices
with flash memory to archive sensor observations locally or
within the network. Query processing can then be pushed to
remote sensors to retrieve important events or processed data
only on demand [6]. Local data archiving is also necessary
in sensor systems that have no network connectivity (e.g., re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

mote sensor deployments [5]), or have a limited connectivity
(e.g., delay tolerant networks [9]). In all these instances, us-
ing energy efficient flash storage is extremely important.

In this paper we discus techniques to efficiently use flash
storage for sensor data logging on a sensor node. We focus
on amnesic storage systems that have a number of properties
particularly attractive for sensing applications. An amnesic
storage system archives streaming data using two key tech-
niques. First, data is compressed (usually with lossy com-
pression methods) in an online fashion before being archived.
Using compression provides two major benefits. First, it en-
ables archiving a larger amount of data, which is useful in
long-lived sensor deployments where the entire data stream
collected by a sensor may not fit in its flash memory. Sec-
ond, compression helps reduce the energy spent on flash in-
put/output at the expense of relatively small processing en-
ergy (Table 1).

The second key technique an amnesic storage system uses
is aging archived data—by reducing the fidelity of older data
to make space for newer data. Data is aged by progressively
recompressing it with lower fidelity (e.g., higher decompres-
sion error of scalar data, lower resolution of image data, etc.)
Such aging (also known as amnesic compression [16, 15],
time-decaying compression [2], and multi-resolution com-
pression [6]) is natural in many sensing applications where
older data is less important than newer data, and it can enable
archiving data over a longer period of time. For example, in
the Environmental Observation and Forecasting System [22],
sensor stations need to locally buffer data during occasional
network disconnection. However, since a station does not
know how long it will be offline and has a finite buffer, it
needs to use amnesic compression. Similar use of data ag-
ing has been reported in remote sensing [5], sensor-assisted
robots [7], sensor data aggregation [2], multi-resolution stor-
age of sensor data [6], etc.

In addition to showing the usefulness of amnesic compres-
sion, existing works have also proposed various amnesic com-
pression algorithms to optimize for various objective func-
tions. For example, in DIMENSIONS [6], authors used lazy
schemes to age and distribute multi-resolution compressed
data within the network for efficient iterative, drill-down queries.
In [16, 15], authors presented aggressive schemes to maintain
amnesic compressed streaming data with optimal decompres-
sion error or DRAM requirement.

In this paper, we focus on a complimentary problem: how

to efficiently store and index amnesic compressed streaming
data on local flash memory of a sensor node. The problem is
important because the flash I/O cost can be excessively high
without a suitable scheme to organize archived data on flash.
This is particularly true for aggressive schemes (more details
in Section 6). Interestingly, we show that even a lazy scheme
can incur a significantly high I/O cost if the physical layout
of compressed data on flash is not chosen carefully. This may
not be a major concern if the I/O cost is negligible (i.e., when
compressed data is maintained in DRAM), or can be ignored
(i.e., when available energy or tolerable latency is practically
infinite); but in a flash-equipped energy-constrained sensor
node, neither of these holds. Moreover, flash memory wears
out after a limited number of erase/write operations, further
emphasizing the requirement of I/O efficient archival algo-
rithm.

In this paper, we address the problem by designing and im-
plementing FlashLogger, a sensor data logging system that
enables energy-efficient amnesic compression on flash mem-
ory. FlashLogger consists of two main modules. First, its
Compression Module enables applications to use a suitable
amnesic compression algorithm that can compress (scalar,
audio, or image) data for a given fidelity requirement. In con-
trast to existing error- or space-efficient amnesic compression
schemes, our scheme is I/O-efficient; the I/O cost is reduced
by compressing data in a lazy fashion (like [6]), which also
enables efficient I/O batching. An application can extend this
module by plugging in its own compression algorithm.

Second, FlashLogger provides Am-Store (Amnesic Stor-
age), a novel flash-efficient abstraction for archiving data com-
pressed with an amnesic compression algorithm. Maintain-
ing amnesic compressed data is challenging on NAND flash
because of its unique write- and erase-constraints. Unlike
streaming compression algorithms [1] that only need to ap-
pend compressed data at one end of the archive, amnesic
compression requires updating and overwriting existing com-
pressed data, which are very expensive on flash memory. Am-
Store uses a number of techniques to reduce such expen-
sive operations. Finally, Am-Store maintains a skip-list based
index of its archived data that enables FlashLogger to effi-
ciently retrieve compressed data within a given time range.

We have evaluated FlashLogger using two prototypes. Our
first prototype is written in nesc and has been evaluated with
Moteiv Tmote Sky nodes. The second prototype is written
in C and has been compiled for a PC-class, as well as for
MSP430 and ARM processors. The first prototype uses sen-
sor’s on-board flash chip, and the second prototype uses an
external flash chip and a compact flash card. Evaluation of
FlashLogger with several real world data sets (including scalar,
audio, and image data) shows significant energy savings for
both logging data and retrieving data within a time range.

In summary, we make the following contributions.

1. We show that existing amnesic algorithms, even the lazy
ones, perform poorly on flash storage, and thus they are

not suitable for flash-equipped energy-constrained sen-
sor nodes.

2. We propose FlashLogger, an energy efficient sensor data
logging system that uses online amnesic compression
of sensor data in a flash-aware manner. FlashLogger
is extensible, and incorporates a suite of compression
algorithms for numeric, audio, and image data.

3. We present Am-Store, a novel and efficient abstraction
for maintaining amnesic compressed data on flash mem-
ory. It also provides techniques to efficiently retrieve
compressed data within a given time range.

4. We evaluate two prototypes of FlashLogger with real
senor platforms, flash memory, and datasets. Our re-
sults demonstrate orders of magnitude energy savings
for both logging and retrieving data.

We would like to emphasize that unlike previous work [19,
21], the goal of this paper is not to design new compression
algorithms for sensor networks; rather to show how to effi-
ciently maintain compressed data on flash. We use particular
compression algorithms for concreteness of our implementa-
tion and evaluation. On the other hand, our effort is comple-
mentary to existing work; for example, in DIMENSIONS, a
sensor node can use FlashLogger to efficiently organize com-
pressed data on its local flash.

The rest of the paper is organized as follows. Section 2 dis-
cusses design considerations and Section 3 characterizes an
amnesic storage system. Sections 4 and 5 present FlashLog-
ger. We present our implementation details and evaluation
results in Section 6. Finally, we discuss related work in Sec-
tion 7 and conclude the paper in Section 8.

2. DESIGN CONSIDERATIONS
Flash Properties. A NAND flash memory consists of many
blocks, and each block consists of a fixed number of pages.
For example, the Telos mote uses the ST Microelectronics
M25P family of flash memories; this memory chip has 16
64KB blocks, each block consisting of 256 512B pages. Reads
and writes happen at a page granularity; while erases happen
at a block granularity. A unique property of flash memory
is its block-erase constraints—once a data page is written to
flash, it cannot be updated or rewritten until the entire block
containing the page is erased. More details can be found
in [10, 14].

A sensor node may have an on-board flash chip, or an ex-
ternal flash card such as a compact flash card. An energy-
efficient storage system for such node must follow a few de-
sign principles to cope with flash’s unique properties (see [13]
for details). First, since read/write happens at a page granu-
larity, data should be buffered in memory, until a full page
worth of data is collected, before writing to flash. Second,
applications should avoid or minimize “in-place" updates in
flash, which requires erasing an entire block and moving valid
data in the block before and after the erase. This is very ex-
pensive in terms of latency and energy. Third, random writes

Task Energy overhead (µJ)
Compression MSP430 4.4

ARM 7.6
Decompression MSP430 4.2

ARM 7.2
Fastest sequential I/O Read 109.6

in a Lexar CF card Write 101.6
Fastest random I/O Read 211.2
in a Lexar CF card Write 7945.1

I/O in a Toshiba Read 462.6
TC58DVG02A1FT00 flash chip Write 598.5

Erase 3429
I/O in an external Read 343.2

FujiFilm XD card flash chip Write 350.1
Erase 7891

Table 1: Measured energy overhead (compared to an idle
processor/flash) of compressing and accessing 4KB data
with different processors and flash media.

should be avoided, as they can be orders of magnitude more
expensive than sequential writes in flash cards (e.g., compact
flash cards). A cheaper alternative to random write is semi-
random writes, as defined in [13], where blocks to be written
can be chosen randomly, but pages within a block must be
written sequentially. Finally, deletion of existing data, or allo-
cating/deallocating space from flash should happen at a block
granularity; performing such tasks in sub-block granularity is
expensive. FlashLogger design follows these principles.

Energy and Memory Constraints. Table 1 shows the mea-
sured average energy overheads over the idle modes of two
processors, typically used in low power sensor nodes, to com-
press and decompress 4KB data (Temperature data used in
Section 6). For this measurement, we consider compressing
and decompressing using lossless QuickLZ algorithm [18],
although the compression algorithms we use in our prototype
are much simpler than QuickLZ. The results show that flash
I/O is significantly more expensive (more than two orders
of magnitude) than compressing/decompressing data. There-
fore, in designing FlashLogger, we aggressively optimize to
reduce flash I/O, by adhering to the aforementioned design
principles. To reduce flash I/O, FlashLogger maintains fre-
quently modified data structures in memory. However, as
sensor nodes have a limited memory size, the data structures
must have a small memory footprint.

Temporal Indexing. Sensor data is time-stamped and typi-
cally accessed sequentially in time, potentially within given
time ranges. For instance, in an event reporting network,
the base station may request logged data from a sensor node
within a time window surrounding a reported event. To effi-
ciently support such queries, FlashLogger needs to maintain
a time-based index over compressed data.

3. AMNESIC COMPRESSION
We consider lossy compression and archival of a poten-

tially long data-stream in a limited storage. We consider an
amnesic system, where an application prefers keeping old
data, rather than discarding them, by reducing their fidelity
(i.e., by aging them) to make space for newer data. For ex-

ample, an image sensing application may prefer to keep older
images with lower resolutions than newer images. In general,
the data distortion ε of compressed data gradually increases
with the age of data. When application needs space for newly
compressed data and the flash is full, it further compresses
older compressed data with a higher ε value to free up space.
If old data can not be meaningfully compressed within the
limited space, it is discarded.

An amnesic system consists of two key components: an
amnesic function and an amnesic compression algorithm.

3.1 Amnesic Error Function
The function E(x), which bounds the amount of error a

piece of data with a given age x ≥ 0 can have, is called an
amnesic function. The age x is defined as the time difference
between the current time and the time when the data arrived
the system. E(x) can be absolute or relative; in the former,
E(x) is given by an absolute value, while in the latter, E(x)
is given as a function of E(0) and x. For example, a biologist
may decide that data that is twice as old can have twice as
much error, and thus, specify a relative linear amnesic func-
tion E(x) = xE(0). In contrast, an environmental scientist
using classic models might well specify an absolute exponen-
tial amnesic function E(x) = ax.

A key property that an amnesic function has to satisfy is its
error-monotonicity property.

DEFINITION 1. An amnesic error function E(x) is called
monotonic if and only if E(x) ≤ E(x + 1), for every x.

Intuitively, a monotonic amnesic function allows a piece of
data to be progressively compressed with higher compression
errors over time. A monotonic amnesic function can take dif-
ferent shapes, depending on application requirements, such
as piecewise constant, linear, piecewise linear, etc.

3.2 Amnesic Compression Algorithm
Suppose a piece of data d of size |d| is compressed to dε

with decompression error ε, where |d| ≥ |dε|. An amnesic
compression algorithm is able to recompress dε to dε′ , for a
given error ε′ > ε. The key property an amnesic compression
algorithm needs is its space-monotonicity property.

DEFINITION 2. An amnesic compression algorithm is mono-
tonic if it can compress dε1 to dε2 , ε1 < ε2, such that |dε1 | ≥
|dε2 |, for any ε1 and ε2.

Intuitively, a monotonic amnesic compression algorithm
ensures that compressing with a higher error requires less
storage; hence, the same piece of data can be progressively
compressed more and more over time to free up additional
space. Examples of such algorithms include piecewise lin-
ear approximation, discrete wavelet transforms, etc. (Sec-
tion 5.1).

Existing algorithms. Even though general compression is a
well explored area, a little has been explored to use them ef-
ficiently in an amnesic setting. In [15], authors consider the
problem of online amnesic compression given a storage size
and a monotonic amnesic function such that, at any point of

time, the decompression error is minimized. A dual problem
is to optimize storage space given a decompression error. We
call such algorithms error-efficient and space-efficient am-
nesic compression algorithms respectively. An error-efficient
or space-efficient algorithm works as follows. Every time a
new data point comes, it recompresses some carefully cho-
sen section of old (compressed) data with a lower fidelity,
and uses the freed-up space to store the new data. In [6], au-
thors propose a lazy scheme that compresses data in batch;
the batches are chosen in order to optimize drill-down query
constrains and to bound decompression error below a given
threshold. Even though these existing systems address im-
portant questions of how often and which piece of data should
be compressed, they do not address the orthogonal problem
we consider: how to physically organize compressed data on
flash memory.

3.3 I/O Efficiency
Since existing amnesic algorithms do not optimize for I/O

costs, they pose multiple challenges in I/O expensive media
such as a flash memory.

1. Excessive I/Os. Error- or space-efficient schemes aggres-
sively optimize for decompression error or space usage by
recompressing old compressed data on every new data ar-
rival. Recompressing old data requires reading them from
flash, deleting them, and writing new compressed data—all
of which are very expensive on flash, and can accumulate
prohibitively for a long data stream. Moreover, updates are
performed on small amount of data, which mismatches the
access granularity on flash. For example, when data is com-
pressed using piecewise linear approximation, each update
involves reading two adjacent line segments (eight real num-
bers) and writing one line segment (four real numbers). Even
though this involves a small amount of data, in flash, it re-
quires at least one page read, one page write, and one block
erase operation, making the operation very expensive.1 More-
over, such excessive I/O can quickly wear out a flash.

The above problem can be addressed by using lazy schemes
such as the ones used by DIMENSIONS. However, irrespec-
tive of a scheme being aggressive or lazy, it can still incur a
high flash I/O overhead unless the compressed data is orga-
nized carefully on flash, as discussed below.

2. Fragmentation of Adjacent Data. In the amnesic model,
compressed data with adjacent timestamps may become scat-
tered in non-adjacent physical locations of the flash. For ex-
ample, assume that starting with an empty flash, compressed
data is written sequentially from the start to the end of the
flash. Now, to make room for new data, some older data at
its existing location, l, in the flash may be re-compressed.
This will create free space near l where subsequent data can
be written. But this newly written data may not be continu-
ous with the previously written most recent data at the end of

1In practice, the cost will be even higher, as data from other pages
in the same block must be moved before the erase operation.

the flash, making the new data physically non-adjacent from
previous data.

Such fragmentation is problematic if compressed data within
a given time-range need to be retrieved sequentially, in order
of their timestamps. Two simple data structures that can sup-
port this are an Array and a List. An Array keeps logically
adjacent compressed data physically compressed as well, by
compacting the flash if needed after each recompression. Even
though such compaction is expensive, an Array allows one to
use efficient binary search to locate the starting of a time-
range, and to sequentially read subsequent data. In contrast,
a List organizes compressed data as a linked list so that fol-
lowing its links enables accessing data in a time-sorted order.
The nodes of the List must be chained with backward point-
ers (i.e., newer data point to older data); forward pointers are
extremely expensive in flash as older elements on the flash
cannot be modified to point to newer elements without in-
curring high costs [10]. Compared to Array, List does not
require expensive flash compaction, but it makes the lookup
operation for data expensive as one can no longer use binary
search to locate the first item within the time range. Thus,
these two data structures pose a tradeoff between archiving
and lookup cost.

3. Modification of Existing Data. Suppose the data is or-
ganized as a List where each node contains all compressed
data within a time range. In the amnesic model, compressed
data in a node N , possibly in the middle of the list, is fur-
ther compressed. The modified node can be written to the
same location, which requires expensive in-place update. Al-
ternatively, modified node can be written as a new node N ′

in a new location. This would require changing pointers of
the existing node pointing to N . Because a pointer cannot be
updated in place, this node, with pointer to N ′, must be writ-
ten to a new location. However, this would require updating
pointer of node that points to the updated node, and so on.
Thus, recursively, many nodes would be required to be writ-
ten to new locations due to a single recompression operation.

In summary, even a lazy compression scheme may be I/O
expensive if compressed data is archived with a sub-optimal
data structure on the flash. Next we present how FlashLog-
ger uses an I/O efficient amnesic compression scheme that
employs a carefully designed flash-friendly data structure.

4. FlashLogger
We now present FlashLogger, a flash-optimized abstraction

for compressing and aging sensor data streams according to
application specified amnesic function and compression al-
gorithm. It consists of two main components: (1) the Com-
pression Module contains a suite of amnesic compression al-
gorithms that an application can choose from for its data type,
and (2) the Am-Store (Amnesic Storage) maintains the com-
pressed data on flash, and is the main focus of this paper. Am-
Store also allows applications to efficiently retrieve data with
timestamps within a target range. The core compression al-
gorithm and data structures required to organize compressed

Er
ro

r

1

t 1 t 2 t 3t 0

f 2

Age

f

Figure 1: Piecewise constant approximation of an am-
nesic function
data on flash have very small memory footprint, making Am-
Store suitable for power constrained devices such as motes.

4.1 Addressing the challenges
Before presenting the details of our solution, we will high-

light the basic approach to address the challenges mentioned
in Section 3.3.

To address the first challenge, instead of being aggressive
about optimizing for decompression errors or storage space,
we age data lazily. This is illustrated in Figure 1. Given
a monotonic amnesic function f1, a space- or error-efficient
algorithm would recompress old data at every time step to
ensure that overall decompression error is minimized and is
bounded by the function f1. As mentioned before, this in-
curs excessive I/O cost. Instead of doing that, we batch the
recompression of multiple data items periodically, and be-
tween two recompression events, fidelity of a piece of data
does not change. For example, in Figure 1, a piece of data
is compressed at ages t0, t1, t2, and t3; therefore, its decom-
pression error follows a piecewise constant approximation f2

of f1. To determine f2 for a given f1, one needs to deter-
mine the ages ti at which compression fidelity of a piece of
data is changed. In [6], authors presented how this can be for-
mulated as an optimization problem and be solved in simple
greedy algorithms. Note that, such a lazy scheme does not
compromise the semantics of amnesic compression, since f2

is still bounded by f1. The only side effect is that at any
point of time, some data may be stored with a higher fidelity
than required by the amnesic function f1, and hence may take
more space than necessary. However, we show in Section 6
that such overhead is typically small (< 20%), and accept-
able in situations where optimizing for energy is more criti-
cal. Moreover, such piecewise constant approximation of the
error function is natural in many scenarios; for example, a
sensor may decide to log its data over last one hour without
any decompression error, over last one day with a small error,
over last one week with a higher error, and so on.

Our lazy scheme is I/O efficient as it provides two advan-
tages in reducing energy consumption. First, it reduces the
frequency at which a particular piece of data is compressed
(only at ages t0, t1, t2, and t3, instead of at every time step, in
Figure 1). Second, it allows recompressing multiple pieces of
data (e.g., all data with age between t0 and t1) in batch. This
is extremely useful for flash, as read and write granularity is
a flash page that can contain multiple pieces of data.

The second challenge mentioned in Section 3.3 comes from
expensive pointer modification on flash. This is addressed
by two techniques in Am-Store: i) maintaining multiple lists

D
ilu

tio
n

1f 2f 3f 4

b1

b2

b3

b4

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

����
����
����
����

�����
�����
�����
�����

����

Time

Truncate

f

Figure 2: The Am-Store data structure

(called buckets), instead of one list; with this organization,
we ensure that data is always inserted in the beginning of a
bucket, modified or deleted at the end of a bucket, and there-
fore, only an in-memory pointer needs to be updated during
insertion or recompression in a bucket; and ii) using times-
tamped pointers, which enables leaving dangling pointers to
deleted items unmodified. These features are described in
Section 4.3.

To address the third challenge, i.e., to support efficient lookup
of data with a given timestamp, each bucket is organized as
a skip list, which enables logarithmic time lookup. In Sec-
tion 5.2, we elaborate how we maintain a skip list on flash
and how we support queries on it.

Algorithm 1 Compress()
Require: Compresses and adds a datastream to an Am-Store.
Definitions:

n: number of buckets in Am-Store
F : {f1, f2, . . . , fn}
E : {ε1, ε2, . . . , εn}

1: cfile ← new Am-Store(n, F, E)
2: for each data item (vi, ti) in the stream do
3: cfile.AddItem(vi, ti)
4: if cfile.size = FlashSize then
5: cfile.T runcate()
6: for each bucket i from (n− 1) downto 1 do
7: cfile.Dilute(i)

4.2 Am-Store overview
Given the fractions F = {f1, f2, . . . , fn},

∑
fi = 1, and

errors E = {ε1, ε2, . . . , εn}, ε1 < ε2 < · · · < εn, Am-
Store maintains an amnesic compressed archive of an evolv-
ing data stream such that data in the most recent f1 fraction
of the active window is compressed with a guaranteed maxi-
mum error of ε1, that in the previous f2 fraction of the active
window is compressed with a maximum error of ε2, and so
on. In essence, the parameters F and E define the piece-
wise constant amnesic function for compression. Am-Store
uses the algorithm shown in Algorithm 1, which consists of
the following main ideas. First, Am-Store uses an amnesic
compression algorithm (Line 3), provided by the Compres-
sion Module, as the basic building block. Concrete examples
of such algorithms will be given in Section 5.1.

Second, Am-Store maintains n buckets {bi}n
i=1 such that

bucket bi maintains data compressed with error εi, beginning
with bucket b1 that maintains the most recent data with small-
est error ε1. Figure 2 shows the basic organization of buckets.

Third, when the flash is full, we use two techniques, as
shown in Figure 2, to reclaim space. The first technique
is bucket truncation (Line 5 of Algorithm 1), which keeps
on discarding oldest data from the last bucket, until enough
space (at least one flash block) is reclaimed for new data. The
second technique is bucket dilution, used in Line 7 of Al-
gorithm 1. Starting from the second last bucket, it removes
some old data d from the end of each bucket bi, further com-
presses it to d′ with a larger error εi+1, and adds it to the front
of the bucket bi+1. Since εi+1 > εi, |d′| ≤ |d|, and it frees up
some space. Conceptually, newly compressed data is added
to b1, diluted over time with higher compression errors and
moved to higher indexed buckets, and finally discarded from
the last bucket. We will describe these operations in more
detail in Section 4.3.2.

4.3 Am-Store design
We now present the detailed design and key features of

Am-Store. Logically, Am-Store consists of a set of buckets
∪iBi stored on a flash media. At a high level, the Am-Store
supports the following operators:

1. new Am-Store(n, F, E): Creates a new Am-Store with
n buckets, such that the i’th bucket bi contains compressed
data, with errors E[i], over fractions F [i] of active window.

2. AddItem(v,t): Archives data v with timestamp t. It uses an
amnesic compression algorithm from the Compression Mod-
ule to compress new data and adds the output to the first
bucket of the Am-Store.

3. size: Returns the size of the entire Am-Store.

4. Dilute(i): Dilutes the i’th bucket bi, by recompressing its
data with error E[i + 1], and reclaim the space freed up by
the process.

5. Truncate(): Discard a batch of the oldest data from the
highest-indexed non-empty bucket.

4.3.1 Bucket layout and maintenance
The physical layout of buckets involves two important de-

sign decisions. The first design decision involves choosing an
appropriate data structure. In DRAM or magnetic disk, there
are a variety of possible organizations (array, stack, queue,
singly- or doubly-linked list, etc.) that may be desirable de-
pending on the context. However, on flash, certain organiza-
tions can be extremely expensive to maintain. For example,
as mentioned before, older elements on the flash cannot be
modified to point to newer elements without incurring high
costs; hence data structures with forward pointers (i.e., point-
ers from older elements to newer elements), such as a queue
or a doubly-linked list, are not suitable in flash. An array,
although efficient, is not a suitable choice because the size
of a bucket cannot be reasonably estimated a priori (this de-
pends on compression ratio of data). Therefore, we organize
each bucket as a linked list with backward pointers, such that
newer elements point to older elements in the list.

The second design decision involves the node size of the

1 B1B2 B2 BT

Free Lists

D
R

A
M Write Buffer Sector Pointer

Bucket 1 Bucket 2 Bucket T

Fl
as

h

Sector
B1 B

Figure 3: Physical layout of the buckets
linked list organization of a bucket. If Am-Store has direct
access to flash, possible granularities of a node size include
fraction of a flash page, a flash page, and a flash block. Note
that flash allows erasing data only at a block granularity. Thus,
with the first two choices, when nodes are deleted during
bucket dilution or truncation, valid data within the block con-
taining the node must first be copied elsewhere. The over-
head can be significant since a page is very small compared
to a block. Thus, if Am-Store has access to physical flash, it
keeps the node size to match with flash block size. On the
other hand, if Am-Store operates over a flash package with
FTL (e.g., a compact flash card), then Am-Store has no access
to flash blocks but can only read, write, or allocate space in
the granularity of logical sectors exposed by the FTL; there-
fore, in such cases, node size is kept the same as a sector size.
For simplicity in the rest of paper, we use the term sector to
denote the space taken by a node, which can be a flash block
on a physical flash, or a logical sector on a flash card.

Figure 3 depicts the physical layout of Am-Store buckets.
The upper box shows the in-memory portion. For each Am-
Store bucket bi, we maintain an in-memory data structure
called bi.header. The header contains a sector pointer that
points to the first flash sector in that bucket, and a window
that represents the first and the last timestamp of data in that
bucket. Search or retrieval of items in a bucket starts with the
sector pointer. We also maintain an in-memory write buffer
that can temporarily hold one flash page worth of data. Note
that at any point of time data is written to only one bucket—
during sensor data collection, data is always added to the first
bucket, and during dilution, data is transferred from the i-th
bucket to the (i + 1)-th bucket. The write buffer is shared
for all writes—when an item is added to a bucket, it is tem-
porarily put in the write buffer. When the write buffer holds
enough data, the buffer is flushed to the next available pages
within the sector pointed to by the sector pointer in corre-
sponding header. Am-Store uses two modules to maintain
this layout:

Bucket manager. The Bucket Manager (BM) writes the in-
memory write buffer to the next available page within the
sector h pointed by current bucket’s sector pointer. When
no empty page is available in sector h, a new sector h′ is al-
located by the Storage Manager (described below). A pointer
to the sector h is stored at the end of sector h′ and the sec-
tor pointer is updated to h′. Thus the sectors in a bucket

are chained together with backward pointers and the address
of the last sector is maintained in in-memory header of the
bucket.

Storage manager. The Storage Manager (SM) keeps lists of
available sectors and allocates them to the Bucket Manager
(BM) on demand. When BM discards sectors of a bucket
(during dilution or truncation), pointers to the sectors are re-
turned to SM. When BM requests a new sector, SM selects a
sector from its available sector list (erases it, if using physical
flash), and returns it to BM.

Am-Store also has a crash recovery module that can re-
cover in-memory data structures to a consistent state after a
system crash. We omit the details here for lack of space.

4.3.2 Bucket truncation and dilution
Bucket truncation and dilution are activated when the Am-

Store is full and must discard or recompress old data to re-
claim space for new data. The process requires the following
steps.

1. Bucket truncation. This discards old data in the last
sector of the highest-indexed non-empty bucket and adjusts
the bucket window accordingly. The sector is returned to the
Storage Manager for later allocation.

2. Identifying data to dilute. Bucket bi is supposed to have
fi fraction of the active window, and at any point of time,
Am-Store can easily compute the first and the last timestamps
t1 and t2 of the active window that should be within bi. Thus,
all data in bi with timestamps earlier than t1 can be diluted
and put in bi+1. Since Am-Store allocates and deallocates
space at a sector granularity, we dilute only the sectors all
of whose data have timestamps < t1. We will discuss in
Section 5.2 how to efficiently locate the first such flash sector
within a bucket.

3. Bucket dilution. Next, we recompress the data selected
in Step 2 with a larger error bound εi+1, by using application
specified amnesic compression algorithm provided by Com-
pression Module. The new data is inserted in the beginning
of bucket bi+1.

4. Timestamped pointer. Recall that a bucket is simply
a linked list of sectors. Removing sectors from the end of
a bucket makes any pointer that points to these sectors in-
valid. Modifying any existing pointers in place is expensive
in flash. We address this by appending each pointer with
the earliest timestamp in the pointed sector and maintain-
ing in the in-memory bucket header the latest of timestamps
of any diluted sectors of the bucket. We call the timestamp
associated with each pointer its look-ahead timestamp and
the timestamp maintained in bucket header the fence of the
bucket. This enables us keeping pointers to deleted sectors
unchanged, since pointers with lookahead timestamp earlier
than the fence of the bucket are implicitly invalid and can be
ignored.

5. Bucket window adjustment. Finally, the windows (in

te
v

s

,

0t Time

2ε2ε

Figure 4: Compressing a numeric data stream into seg-
ments. Rectangles are segments with error ε, while
shaded boxes are segments with error ε′ > ε.

headers) of the two buckets involved in the dilution operation
are adjusted to reflect the smallest and the largest timestamps
of data contained in corresponding buckets.

5. COMPRESSING AND QUERYING
IN FlashLogger

5.1 Amnesic compression algorithms
The Compression Module of FlashLogger provides the fol-

lowing collection of amnesic compression algorithms that ap-
plications can choose from to use with Am-Store for different
data types. An application can also extend the Compression
Module by implementing its own compression algorithm.

Scalar data. For simple time series data, e.g., from tem-
perature sensor, one can use a piecewise polynomial approx-
imation scheme (such as piecewise constant, piecewise lin-
ear, etc.). We have implemented an online algorithm that
compresses a numeric data-stream with a guaranteed max-
imum decompression error ε, where ε is tunable [1]. The
algorithm converts a data-stream into a list of segments (Fig-
ure 4) where each segment has a height of 2ε and is repre-
sented by three parameters: ts, te, and v0, where ts and te
are timestamps of first and last data points in the segment,
and v0 is the minimum data point represented by the seg-
ment. An incoming data point is greedily packed into the
latest segment; if it cannot be fit, a new segment is created.
During decompression, any data item xi with a timestamp
between ts and te is represented with the value x̂i = v0 + ε.
It is easy to see that this invariant ensures our error bound:
|xi − x̂i| ≤ |(v0 + 2ε) − (v0 + ε)| = ε. It can also be
shown that given an error bound ε, the above algorithm finds
a minimum segment approximation whose error is at most ε.
Dilution of data with a higher error bound ε′ > ε is done
by greedily packing the existing segments into new segments
with height 2ε′.

Audio data. For audio data, one can use polynomial ap-
proximation schemes, or discrete transforms such as Fourier
Transform (DFT), Cosine Transform (DCT), Wavelet Trans-
form (DWT), etc. We have implemented a DWT-based audio
compression algorithm that, for a given chunk of audio sig-
nal, computes its DWT coefficients and stores n largest (al-
ternatively, first) coefficients, where n is determined by the
desired fidelity. Like previous work [21], we use average dis-
tortion δ =

∑N
i=i |Si−S′i|/N , where S is the original signal

of length N and S′ is the decompressed signal, as the fidelity
metric. During decompression, the dropped coefficients are
approximated with zeros. To dilute a compressed segment

with n1 coefficients to a lower fidelity segment with n2 < n1

coefficients, we drop the (n1 − n2) smallest (alternatively,
last) coefficients.

Image data. Image and video data can also be compressed
using DFT, DCT, DWT, etc., and thus one can use the DWT
implementation mentioned above. In addition, we have im-
plemented a simple run length encoding algorithm that works
well with a sequence of images (e.g., Figure 5). Given two
images I1 and I2 of resolution x × y, the algorithm com-
putes their similarity score as σ = 1−∑x

i=1

∑y
j=1 |I1(i, j)−

I2(i, j)|/xy, where I(i, j) denotes the (i, j)’th pixel, normal-
ized within the range [0, 1], of image I . For a given a thresh-
old ε, two images are similar if σ ≥ ε. The algorithm drops
an image if it has a high similarity score with respect to the
last saved image. For example, for the sequence of images in
Figure 5, images (b) and (c) will be dropped for a similarity
threshold of 0.9. To dilute a sequence of images, progres-
sively larger values of similarity thresholds are used.

5.2 Handling time-range queries
Given a time range [t1, t2], Am-Store can return all com-

pressed data items with timestamps within the time window
[t1, t2]. Note that, within each Am-Store bucket, compressed
data are sorted in descending order of timestamps as a linked
list. Moreover, adjacent buckets store adjacent parts of the
active window. These two properties simplify answering a
time-range query—first, Am-Store needs to find the most re-
cent data item I0 with a timestamp ≤ t2; Am-Store can then
sequentially scan the bucket for as long as it finds items with
timestamps≥ t1. If the scan does not finish before the end of
the bucket, it restarts the scan from the beginning of the next
bucket.

Since the window of a bucket (maintained in the bucket
header) specifies the range of timestamps of data in the bucket,
Am-Store can easily determine which bucket contains the
first data point I0. However, the bucket can be very large,
and scanning all the data within it to locate I0 can be very
expensive. Since buckets of the Am-Store are organized as
linked lists, one cannot use binary search to efficiently locate
I0. Therefore, Am-Store needs to maintain a suitable data
structure to locate I0 within a bucket.

Skip-list organization. To facilitate efficiently locating I0,
Am-Store organizes sectors within a bucket as a randomized
skip list [17]. A skip list is an ordered linked list with addi-
tional forward links, added in a randomized way with a geo-
metric/negative binomial distribution, so that a search in the
list may quickly skip parts of the list. In terms of efficiency, it
is comparable to a binary search tree (O(log n) average time
for most operations). Skip list has been used in many other
applications (for flash memory as well [13]), but we construct
it in a novel way using timestamped pointers.

Implementing a general skip list, which allows inserting
items in the middle of the list, would be expensive in flash;
since insertion or deletion in the middle of the list would

require updating existing pointers. Fortunately, sectors in
a Am-Store bucket are always inserted at the front of the
bucket, for either new sensor data collection or due to di-
lution. Inserting a new node at the front of a skip list can
be efficiently implemented on flash as follows. In memory,
each bucket’s header maintains a skip-list header that keeps
maxLevel number of forward pointers forward. To insert a
sector into the list, a level, lvl, is generated for it such that all
sectors have level≥ 1, and a fraction p (a typical value for p is
1
2) of the nodes with level ≥ i have level ≥ (i + 1). (See [17]
for more details.) For each level i, the bucket header main-
tains the most recent sector with level ≥ i. For each level i
up to lvl, the new sector copies the level i pointer from the
bucket header into its level i pointer and then writes a pointer
to itself as the new level i pointer in the bucket header. Thus,
inserting a sector requires writing to just the bucket header
and the first page of a new sector, both of which are in mem-
ory. This takes constant time.

During dilution, data is removed from the end of a skip list
and added to the skip list of the next bucket. Ideally, this re-
quires changing skip pointers that point to the deleted data to
null. However, as mentioned before modification of pointers
in flash is expensive. We address this by timestamping each
forward pointer (in a sector or in header)—with each pointer,
we maintain the timestamp of the oldest data in the sector
the forward pointer is pointing to. This allows us to keep a
forward pointer unmodified even when the data pointed by
the pointer is moved to a different bucket during dilution—a
forward pointer with a timestamp outside the window of the
bucket is implicitly considered as null.

Searching within a time range. Searching for items within
a time window uses a combination of skip search and binary
search. First, the bucket that contains I0 is selected by com-
paring t2 with the bucket’s window. Then skip search is used
to locate the sector containing I0, as follows. Starting from
the header of the bucket, Am-Store searches for a sector by
traversing the highest level backward pointers that do not un-
dershoot the sector containing the item with timestamp t2 (re-
call that items are sorted in descending order of timestamps).
When no more progress can be made at the current level of
forward pointers, or the timestamp associated with the pointer
is outside the window of the bucket, the search moves down
to the next level. When no more progress at level 1 can be
made, the search must be immediately in front of the sector
that contains the desired item (if it is in the list). The selected
sector is then considered as an array of pages and Am-Store
uses binary search to locate the page containing I0. After lo-
cating the page, subsequent pages are read sequentially from
the same sector. If the last page of the sector does not con-
tain a timestamp < t1, the read continues from the first page
of the next sector of the bucket. If the last data of the cur-
rent bucket does not contain a timestamp < t1, the scan starts
from the first sector of the next bucket. The scan halts as soon
as a timestamp < t1 is encountered.

(a) Reference image (b) Score = 0.99 (c) Score = 0.91 (d) Score = 0.84 (e) Score = 0.71
Figure 5: 5 images from a Cyclops sensor looking at a bird nest in James Reserve, CA, and their similarity scores with
respect to the first image.

6. IMPLEMENTATION AND EVALUATION
In this section we evaluate FlashLogger with two proto-

types. The focus of our experiments is not to evaluate any
particular compression algorithm, but to understand the per-
formance of FlashLogger in archiving compressed data on
flash.
6.1 FlashLogger Implementation
TinyOS implementation. Our first prototype of FlashLog-
ger is implemented on a Moteiv Tmote Sky node running
TinyOS 2.1. The prototype is implemented using approxi-
mately 500 lines of nesc code and it has around 14KB ROM
footprint and 1.5KB RAM footprint. It captures data from the
temperature sensor, and archives it in the local flash storage.
We use piecewise constant approximation to compress data
(Section 5.1).

Our implementation uses TinyOS’s LogStorage abstraction
as follows. We statically partition the flash chip into volumes,
each of which works as an Am-Store bucket with a given fi-
delity. Within each volume, data is written as a circular buffer
supported by the LogStorage abstraction. During dilution of
a bucket, data is read from the head of its volume, compressed
it with a higher compression error, and written at the tail of
the next volume. The data that has been copied from the head
of the volume gets overwritten by new data added at the tail
of the circular buffer.

Linux implementation. The above implementation does not
allow us to experiment with flash packages other than Tmote’s
on-chip 1MB flash, which is very small for evaluating many
features of FlashLogger, especially for audio and image data.
We address this limitation in our second and the default pro-
totype for this evaluation. It is written in C and has been
compiled in several processors including MSP430 and ARM.
However, for our evaluation, we have used it in an Intel P4 1.7
GHz PC running Linux, as it gave us the flexibility to use sev-
eral existing compression libraries (e.g., for DWT) as well as
several compact flash (CF) cards and flash chips. For measur-
ing the energy consumed by a flash card, we connect a Lexar
2GB CF card, through a CF Extend 180 Extender Card2 and
measure voltage and current with a DAQ card.3 For accessing
raw flash chip from the PC, we connect a FujiFilm 1GB XD

2http://www.sycard.com
3http://www.measurementcomputing.com

card through an Olympus Camadia MAUSB-10 card reader.
The XD card contains a raw flash chip and, unlike other flash
packages such as CF or SD cards, gives access to the physical
flash chip without any FTL. For measuring power consumed
by flash I/Os, we connect a DAQ card to the internal circuit of
the card reader. We measure the power drawn only by flash
memory; the consumed energy should be roughly similar had
the card/chip connected to other types of processors. We ig-
nore the CPU cost of this prototype, since compression cost
is very small compared to I/O cost (Table 1).

6.2 Experimental setup
We use the following datasets and compression algorithms:

Temperature. This is a stream of temperature data collected
from 35 sensors deployed in a data center. The temperature
varies by up to 25 degree Celsius at different times of the
day. The entire dataset contains around 70 million points (to-
tal 1GB). For this data, FlashLogger’s Compression Module
uses the optimal piecewise constant compression scheme, as
described in Section 5.1.

Audio. This is an audio signal, sampled at 100Hz, capturing
several birds occasionally chirping in a forest. The original
audio signal is 30 minutes long; and we create a larger au-
dio signal (total 200MB) by concatenating the signal multi-
ple times. For this data, FlashLogger’s Compression Module
uses DWT, as described in Section 5.1.

Image. This is a sequence of images captured by a network
of Cyclops camera sensors monitoring bird nests in James
Reserve, CA4. The images have a resolution of 128 × 128,
and each camera takes one image every 15 minutes approxi-
mately. (Figure 5 shows a few example images.) The data
set contains 12000 images, total 200MB in size. For this
data, FlashLogger’s Compression Module uses the compres-
sion scheme described in Section 5.1.

We report the performance of Am-Store and other schemes
in steady state by starting with an already full flash. If the
dataset is too small to fill the flash, we concatenate multiple
copies of it.

6.3 FlashLogger benefits
We experimentally compare Am-Store with the following

alternative schemes.
4http://lecs.cs.ucla.edu/~cyclops/nestboxes/

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

C
om

pr
es

si
on

 R
at

io

Max absolute error (Degree Celsius)
104

105

106

107

108

109

Error-eff Array List Am-Store

I/O
 c

ou
nt

Read
Write

Erase

 519(5787) KJ

11(126) KJ
4(45) KJ

0.8(1.1) KJ

104

105

106

107

Bucket Bucket+TS Am-Store

I/O
 c

ou
nt

Read
Write

Erase2.4(3.3) KJ
1.1(1.2) KJ

0.8(1.1) KJ

(a) Compression ratio (b) Comparison of Am-Store (c) Optimizations in Am-Store

Figure 6: Performance of Am-Store with Temperature data. In (b) and (c), the number at the top of each bar shows the
total energy consumption with the flash chip (and with the CF card, inside parentheses).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.004 0.008 0.012 0.016

C
om

pr
es

si
on

 R
at

io

Distortion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

C
om

pr
es

si
on

 R
at

io

1 - Similarity

 0.1

 1

 10

 100

 1000

Error-eff Array List Am-Store

E
ne

rg
y

(K
J)

Image
Audio

(a) Compression ratio of Audio data (b) Compression ratio of Image data (c) Performance comparison
Figure 7: Performance of Am-Store with Audio and Image data

Error-efficient. This is the aggressive, error-efficient scheme
in [15] (Section 3). The I/O cost of this scheme is the same
as its dual space-efficient scheme.

Array. This scheme uses lazy, batched compression as used
in Am-Store and in previous work such as DIMENSIONS.
To organize data on flash, it considers the flash as a circu-
lar buffer of blocks. On recompression of data, the array is
compacted to allow binary search to locate data with a given
timestamp (Section 3.3).

List. This scheme uses lazy compression as well, but orga-
nizes compressed flash blocks as a linked list. Re-compressed
data is written to new blocks (Section 3.3).

The lazy compression used by Array and List, as well as by
Am-Store, uses parameters parameters F = {x, 2x, 3x, 4x, 5x, 6x}, x =
1/21 and E = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. For each scheme,
we allocate 200MB in the flash memory. We use the Temper-
ature dataset in this section; Figure 6(a) shows compressibil-
ity of the data under different fidelity.

Figure 6(b) shows I/O counts and total energy consump-
tions (shown at the top of the bars) of different schemes to
compress the entire Temperature dataset in steady state. It
shows that Error-efficient incurs a large number of I/Os, which
are needed to ensure that decompression error (or space us-
age) of the compressed data is optimal at any point of time.

Second, the I/O cost can be largely reduced by being lazy
on recompression, as discussed in Section 4.1, and as demon-
strated by the last three schemes in Figure 6(b). However, Ar-
ray still incurs a large number of I/Os, many of which occurs
because sometimes unmodified data needs to be moved dur-
ing compaction to keep data adjacent. Such data movement is
avoided in the List organization, which allows data with ad-
jacent timestamps to be scattered into non-adjacent physical
locations. Leaving the unmodified data in place improves the

performance of List by 66% than Array.
Third, List still incurs a large number of I/Os, many of

which comes from expensive pointer updates. This is avoided
in Am-Store by using several optimizations. As shown in Fig-
ure 6(b), Am-Store improves performance by ≈ 80% over
List. Overall, Am-Store is > 15× and > 650× more energy
efficient than Array and Error-efficient, respectively.

Finally, Figure 6(b) shows an additional, yet subtle, ad-
vantage of Am-Store when used with a CF card. For Error-
efficient, Array, and List, total energy consumption for CF
card is an order of magnitude higher than that for flash chip;
while the difference for these two flash media is very small
with Am-Store. This is due to the fact that most writes in
Am-Store are sequential (in contrast, other schemes use many
random writes), and sequential writes are at least an order of
magnitude cheaper than random writes in existing CF cards.

In summary, a lazy compression scheme, as used in FlashLog-
ger, can provide significant performance benefit over exist-
ing error-efficient algorithms. However, simply using a lazy
compression is not sufficient to minimize I/O costs if the
compressed data is physically organized with simplistic data
structures such as an Array or a List. Using Am-Store signif-
icantly reduces the I/O cost over these structures.
6.4 Effect of Am-Store optimizations

To understand how different optimization techniques within
Am-Store contribute towards its efficiency, we consider the
following stripped down versions of Am-Store. (1) Am-Store:
Our proposed data structure.(2) Bucket+TS: This is Am-Store
without skip list. (3) Bucket: This is Am-Store without skip
list and timestamped pointers.

Figure 6(c) shows performance of these different versions
of Am-Store. First, the Bucket structure is a significant (≈
40%) improvement over the List structure in Figure 6(b). This
shows the benefit of maintaining multiple lists or buckets,

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 10 102 103 104 105

En
er

gy
 (J

)

Query Length (minutes)

Sequential scan
Skip list

Figure 8: Query cost in Am-Store

since recompressed data are added in front of the a bucket
and only the in-memory sector pointers need to be updated.
Second, removing data from the end of a bucket still requires
modifying in-flash pointers (to removed data) to null. This is
avoided by using timestamped pointers, which allows point-
ers to deleted nodes to be left unmodified. As shown in the
figure, this reduces energy consumption by ≈ 50%. In addi-
tion to the above optimizations, Am-Store also uses skip list
to efficiently locate data within a bucket for re-compression.
This further reduces total costs by around 25%.
6.5 Am-Store overhead

As mentioned in Section 4, the benefits of lazy compres-
sion of FlashLogger comes with some space overhead. We
use the entire s = 200MB space in Am-Store, and measure
how much space s′ < s Error-efficient takes to compress the
same data within the active window of Am-Store. Then, we
define (s− s′)/s as the space overhead Am-Store.

With our aforementioned experimental setup, the space over-
head of Am-Store is≈ 20%. However, this overhead depends
on the number of buckets and their associated errors. We
tried several other configurations; we found that space over-
head can be further reduced (< 10%), but that increases the
energy consumption as the cost of dilutaion increases. Our
target devices are constrained more on energy than on flash
space; therefore, such a small storage overhead can be easily
afforded in many devices (given that very large flash cards
can be incorporated to some sensors).
6.6 Using audio and image data

Figures 7(a) and (b) show compressibility of our Audio and
Image data under different fidelity (defined in Section 5.1).
Figure 7(c) compares Am-Store with other schemes with the
Audio and the Image data, on the flash chip. As before, Am-
Store consumes four orders of magnitude less energy that
Error-efficient, and around 20× and 8× less energy than Ar-
ray and List. The performance difference between Tempera-
ture data and Audio/Image data comes due to the difference
in size of an individual piece of data (each Temperature data
point is 8 bytes, each image is 16KB, and each audio segment
is 1KB), and different compression ratio.

6.7 Time-range queries in Am-Store
To evaluate querying cost, we first compress and archive

Temperature dataset in an Am-Store. We then measure the
energy consumed to extract all the records with timestamps
within a time window [t1, t1 + length], where t1 is uniformly

Erase

Read

Write

 0

 20

 25

 0 5 10 15 20 25 30 35 40 45

Po
we

r (
mW

)

Time (sec)

 10

 5

 15

Figure 9: Energy measurement with Tmote Sky

randomly distributed within the active window. Figure 8 shows
the energy consumed for different values of length in min-
utes. We consider two alternatives to locate the first data item
(≤ t1 + length) in a bucket: sequentially scanning the bucket
(as done in a simple linked list) and using skip list. The re-
sults show that the query cost increases with the length. For
smaller query length (< 104 minutes), using skip lists con-
sumes an order of magnitude less energy than a sequential
scan. The benefit comes from a small number of page reads
required to locate the first record in the bucket. However, the
benefit diminishes as the query size grows bigger, as the cost
of locating the first record becomes insignificant compared to
the cost of reading all the records in the query range.

6.8 TinyOS evaluation
We have measured the energy consumed by our TinyOS

implementation on a Tmote Sky node. For this evaluation,
we compress data from Tmote’s temperature sensor and use
an Am-Store with 4 buckets with errors 0.2, 0.4, 0.6, and
0.8 degree Celsius. Figure 9 shows part of the timeline of
total power consumption of a Tmote node, measured with
a DAQ card. The region between two dashed lines shows
flash activities of the Am-Store during one dilution phase.
Our key findings are as follows. First, a block erase, a page
read and a page write operations consume 15.7mJ , 0.32mJ ,
and 0.78mJ respectively. Second, a dilution operation takes
around 42 seconds, and consumes ≈ 71mJ . This may ap-
pear expensive; but a dilution process creates space for 1558
new readings on average. Assuming that one sensor reading
is logged every minute, Am-Store needs to be diluted once
per day. During regular operation, Am-Store consumes only
0.012mJ to compress and write an 8 byte record (a sensor
reading plus timestamp). Thus, the amortize cost per sensor
reading (including logging and dilution) is 0.05mJ , which is
≈ 700× cheaper than an error-efficient scheme, which con-
sumes ≈ 35mJ per sensor reading.5 Third, the logged data
occasionally misses a few temperature readings from the on
board sensor. This happens because TinyOS does not sup-
port multiple threads and thus it cannot perform logging and
sensing concurrently. However, with FlashLogger this occurs
only during the dilution period, since its regular logging op-
eration is fast. An error-efficient scheme aggravates the situ-
ation as all of its logging operations are slow. This may be an

5We implemented Error-efficient using TinyOS’s BlockStorage ab-
straction since it allows random reads and writes.

important issue with high frequency sensors (e.g., audio).

7. RELATED WORK
Data compression is a well established research field [20],

and it has been used to optimize memory [4, 23] and disk
space [12] in many systems. These systems do not address
unique constraints posed by flash memory. Some recent works
have addressed the issue of compressing data for flash mem-
ory [8, 24, 25]. However, all existing systems for disk, DRAM,
or flash optimize for reducing storage space only, ignoring
I/O costs. For example, several of these systems pack multi-
ple compressed sectors together even if they cross page bound-
ary; however this is not desirable for energy aware designs on
NAND flash. Some existing flash specific methods [24] re-
quire changes to the flash translation layer (FTL) which is
typically implemented in the firmware of a flash card and can
only be changed by the flash card manufacturer. In contrast
to these existing systems, FlashLogger’s primary goal is to
reduce energy consumption for I/O. Moreover, unlike these
systems, FlashLogger has been designed to work with limited
battery energy, existing flash memory, and limited SRAM
size in sensor systems.

Another important aspect that makes FlashLogger different
from existing flash-based compression systems is its support
for amnesic compression. In addition to showing usefulness
of amnesic compression, existing works have also proposed
various amnesic compression algorithms to optimize various
objective functions. For example, in DIMENSIONS [6], au-
thors proposed lazy schemes to distribute multi-resolution com-
pressed data within the network for efficient iterative, drill-
down queries. In [16, 15], authors presented aggressive schemes
to maintain amnesic compressed streaming data with optimal
decompression error or DRAM requirement. Our effort is
complimentary to these line of work. We focus on how to
efficiently organize compressed data on flash memory in a
streaming scenario. To the best of our knowledge, our work is
the first to show how amnesic compression can be efficiently
implemented in flash.

Several recent studies have proposed efficient data struc-
tures and algorithms for flash storage, including flash-optimized
B-trees [14], stacks [10], queues [10], online random sam-
ples [13], etc. For energy-efficiency, these algorithms, like
ours, seek to avoid in-place updates and random writes, but
none of them studied our compression problem.

8. CONCLUSION
We have showed that existing aggressive amnesic compres-

sion schemes, although optimize for space or decompression
error, are not suitable for energy-constrained devices. We
also showed that existing lazy schemes can incur high I/O
costs if compressed data is organized on flash with subop-
timal data structures. We presented FlashLogger, an energy
and latency efficient sensor data logging system that uses lazy
amnesic compression of sensor data in a flash-efficient man-
ner. All our methods are designed for the limited memory and

processing capabilities typical of low power sensor nodes,
and are prototyped on TinyOS. Evaluation of FlashLogger
with several real world data sets showed orders of magni-
tude energy savings for both logging data and retrieving data
within a time range.

9. REFERENCES[1] BURAGOHAIN, C., SHRIVASTAVA, N., AND SURI, S. Space
efficient streaming algorithms for the maximum error
histogram. In ICDE (2007).

[2] CORMODE, G., TIRTHAPURA, S., AND XU, B.
Time-decaying sketches for sensor data aggregation. In ACM
PODC (2007).

[3] DIAO, Y., GANESAN, D., MATHUR, G., AND SHENOY, P. J.
Rethinking data management for storage-centric sensor
networks. In CIDR (2007).

[4] DOUGLIS, F. The compression cache: Using on-line
compression to extend physical memory. In USENIX Winter
Technical Conference (1993).

[5] FATLAND, R. Seamonster project page.
http://www.robfatland.net/seamonster/, 2008.

[6] GANESAN, D., GREENSTEIN, B., PERELYUBSKIY, D.,
ESTRIN, D., AND HEIDEMANN, J. An evaluation of
multi-resolution storage for sensor networks. In ACM SenSys
(2003).

[7] HOGG, R., RANKIN, A., MCHENRY, M., HELMICK, D.,
BERGH, C., ROUMELIOTIS, S., AND MATTHIES, L. Sensors
and algorithms for small robot leader/follower behavior. In
SPIE AeroSense Symposium (2001).

[8] HUANG, W.-T., CHEN, C.-T., CHEN, Y.-S., AND CHEN,
C.-H. A compression layer for NAND type flash memory
systems. In Proceedings of the Third International Conference
on Information Technology and Applications (2005).

[9] JUANG, P., OKI, H., WANG, Y., MARTONOSI, M., PEH,
L. S., AND RUBENSTEIN, D. Energy-efficient computing for
wildlife tracking: design tradeoffs and early experiences with
zebranet. SIGOPS Oper. Syst. Rev. 36, 5 (2002), 96–107.

[10] MATHUR, G., DESNOYERS, P., GANESAN, D., AND
SHENOY, P. Capsule: an energy-optimized object storage
system for memory-constrained devices. In ACM SenSys
(2006).

[11] MATHUR, G., DESNOYERS, P., GANESAN, D., AND
SHENOY, P. Ultralow power data storage for sensor networks.
In IPSN-SPOTS (2006).

[12] MICROSOFT CORPORATION. What is DoubleSpace and how
does it work. MS DOS 6 Technical Reference.

[13] NATH, S., AND GIBBONS, P. B. Online maintenance of very
large random samples on flash storage. In VLDB (2008).

[14] NATH, S., AND KANSAL, A. FlashDB: dynamic self-tuning
database for NAND flash. In IPSN (2007).

[15] PALPANAS, T., VLACHOS, M., KEOGH, E., AND
GUNOPULOS, D. Streaming time series summarization using
user-defined amnesic functions. IEEE Trans. on Knowl. and
Data Eng. 20, 7 (2008).

[16] PALPANAS, T., VLACHOS, M., KEOGH, E., GUNOPULOS,
D., AND TRUPPEL, W. Online amnesic approximation of
streaming time series. In ICDE (2004).

[17] PUGH, W. Skip lists: a probabilistic alternative to balanced
trees. Commun. ACM 33, 6 (1990).

[18] REINHOLD, L. M. QuickLZ. http://www.quicklz.com/.
[19] SADLER, C. M., AND MARTONOSI, M. Data Compression

Algorithms for Energy-Constrained Devices in Delay Tolerant
Networks. In ACM SenSys (2006).

[20] SALOMON, D. Data Compression: The Complete Reference,
4th ed. Springer, December 2006.

[21] SOROUSH, E., WU, K., AND PEI, J. Fast and
quality-guaranteed data streaming in resource-constrained
sensor networks. In ACM MobiHoc (2008).

[22] STEERE, D. C., BAPTISTA, A., MCNAMEE, D., PU, C.,
AND WALPOLE, J. Research challenges in environmental
observation and forecasting systems. In ACM MobiCom
(2000).

[23] YANG, L., DICK, R. P., LEKATSAS, H., AND
CHAKRADHAR, S. CRAMES: compressed RAM for
embedded systems. In Proceedings of the 3rd
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis (2005),
pp. 93–98.

[24] YIM, K. S., BAHN, H., , AND KOH, K. A flash compression
layer for smartmedia card systems. IEEE Transactions on
Consumer Electronics 50, 1 (2004 2004), 192–197.

[25] YIM, K. S., KOH, K., AND BAHN, H. A compressed page
management scheme for nand-type flash memory. In
Proceedings of the Third International Conference on
Information Technology and Applications (2005).

