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Abstract

A number of recent papers in the networking community study the distance matrix defined by the
node-to-node latencies in the Internet and, in particular, provide a number of quite successful distributed
approaches that embed this distance into a low-dimensional Euclidean space. In such algorithms it is
feasible to measure distances among only a linear or near-linear number of node pairs; the rest of the
distances are simply not available. Moreover, for applications it is desirable to spread the load evenly
among the participating nodes. Indeed, several recent studies use this ’fully distributed’ approach and
achieve, empirically, a low distortion for all but a small fraction of node pairs.

This is concurrent with the large body of theoretical work on metric embeddings, but there is a fun-
damental distinction: in the theoretical approaches to metric embeddings, full and centralized access to
the distance matrix is assumed and heavily used. In this paper we present the first fully distributed em-
bedding algorithm with provable distortion guarantees for doubling metrics (which have been proposed
as a reasonable abstraction of Internet latencies), thus providing some insight into the empirical success
of the recentVivaldi algorithm [7]. The main ingredient of our embedding algorithm is an improved
fully distributed algorithm for a more basic problem oftriangulation, where the triangle inequality is
used to infer the distances that have not been measured; this problem received a considerable attention
in the networking community, and has also been studied theoretically in [19].

We use our techniques to extendε-relaxed embeddings and triangulations to infinite metrics and
arbitrary measures, and to improve on the approximate distance labeling scheme of Talwar [36].

1 Introduction

A number of recent papers in the networking community study the distance matrix defined by the node-to-
node latencies in the Internet1 (e.g. [9, 13, 8, 20, 37]) and, in particular, provide a number of quite successful
distributed approaches that embed this distance into a low-dimensional Euclidean space [30, 7, 32, 5, 25].
In such algorithms it is feasible to measure distances among only a linear or near-linear number of node
pairs; the rest of the distances are simply not available. For instance, the Global Network Positioning (GNP)
algorithm of Ng and Zhang [30] uses thebeacon-basedapproach where a small number of nodes (’beacons’)
are selected uniformly at random in the network so that every node only measures distances to the beacons.
Using only these measurements (and allowing some processing at the beacons)GNP empirically achieves
low distortion for all but a small fraction of node pairs.

∗Preliminary version of this paper has appeared in16th ACM-SIAM SODA, 2005
†Department of Computer Science, Cornell University, Ithaca, NY 14853. Email:slivkins@cs.cornell.edu. Supported by a

David and Lucile Packard Foundation Fellowship of Jon Kleinberg.
1For Internet latencies the triangle inequality is not always observed; however, recent networking research indicates that severe

triangle inequality violations are not widespread enough so that the node-to-node latencies can be usefully modeled by metrics.
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The drawback of the beacon-based approach is the high load placed on the beacons. Indeed, theVivaldi
algorithm [7] and other works [32, 5, 25] that followedGNP provide embedding algorithms with similar
empirical performance where the load oneverynode is small; here the load includes computation, commu-
nication, storage and the completion time. Informally, we call such algorithmsfully distributed. It is an
important challenge to find provable guarantees for these fully distributed embedding algorithms.

Distributed metric embeddings As pointed out by Kleinberg et al. [19], the above Internet-related setting
gives rise to a new set of theoretical questions not covered by the existing rich theory of algorithmic metric
embeddings (e.g. [18]) where a full access to the distance matrix is assumed and heavily used. In particular,
in the embedding algorithm of Bourgain [3] and Linial et al. [26], the coordinates are formed by measuring
the distance from a point to aset; these sets can be as large as a constant fraction of nodes in a way that
would not be feasible to implement for all nodes in the context of Internet.

It is easy to see that a beacon-based embedding cannot guarantee good distortion onall node pairs [19].
Accordingly, [19] formulated the notion ofε-relaxed embeddingwhere for each nodeu there are at least
(1 − ε)n node pairsuv such that theuv-distance is embedded with the given distortion. To provide some
theoretical insight into the empirical success ofGNP, [19] came up with beacon-based algorithms that (for
any fixedε > 0) use a small number of beacons and provably compute a low-distortionε-relaxed embedding
into low-dimensionalLp, p ≥ 1 as long as thedoubling dimensionof the metric is small.

Here the doubling dimension of a metric is defined as the smallestk such that every ball can be covered
by 2k other balls of half the radius (see [2, 12]); a metric with this property is also called2k-doublingor just
doubling if k is a constant. Doubling metrics, which generalize the distance matrices of low-dimensional
point sets inLp, have been studied recently in the context of metric embeddings, nearest neighbour search
and other problems [12, 24, 36, 23, 22, 19, 28, 4]. At the same time, several recent studies suggest the
bounded growth rate of balls as a useful way to capture the structural properties of the Internet distance
matrix (see e.g. [34, 8, 30, 31, 41, 15]).

Our contributions: In this paper we settle a question left open by [19]: we show that there exists a
fully distributed algorithm that embeds a doubling metric into a low-dimensional Euclidean space with
low distortion, thus providing the first provable guarantees for the fully distributed embedding problem
introduced in the networking community. Specifically, given ans-doubling metric, our algorithm computes
anε-relaxed embedding into anyLp, p ≥ 1 with distortion and dimensionf(ε, s), so that the per-node load
is at mostf(ε, s)(logn)4, wheren is the number of nodes. The main technical ingredient of our algorithm is
a fully distributed triangulation algorithm that improves upon the one in [19] and is of independent interest;
we discuss it next.

We assume that the network provides the following functionality. Firstly, every node can, at unit cost,
communicate with (and, in particular, measure distance to) any other node given its ID. Secondly, every
node can select a node ID independently and uniformly at random among all nodes in the network [21, 38].
Such operation induces load on multiple nodes; to account for it, let us assume that when each node selects
one random node ID, this induces a per-node load of(logn). We call such networksuar-addressable.

Distributed triangulation Predating theGNPalgorithm, in the networking literature there were the IDMaps [9]
of Francis et al., and several other beacon-based approaches [17, 13, 20] that used the triangle inequality to
infer the distances that have not been measured. In particular, in [17, 13] theuv-distanceduv is estimated
by min(dub + dvb), where the minimum is taken over all beaconsb.

With this motivation in mind we define atriangulationof orderk as a labeling of the nodes such that a
label of a given nodeu consists of upper and lower bounds on distances fromu to each node in a setSu of
at mostk other nodes; for eachb ∈ Su we denote these bounds byD+

ub andD−
ub respectively [19]. Then any

two nodesuv can exchange their labels and use the triangle inequality to upper-bound theuv-distance by
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D+
uv = min(D+

ub + D+
vb), and lower-bound it byD−

uv = max(D−
ub − D+

vb, D
−
vb − D+

ub), where themax and
min are taken over allb ∈ Su∩Sv . An (ε, δ)-triangulation is a triangulation such thatD+

uv/D−
uv ≤ 1+δ for

all but anε-fraction of node pairsuv. Note that either bound can be seen as a(1 + δ)-approximate estimate
on theuv-distance, and, moreover, these bounds provide a ”quality certificate” for the estimate.

An (ε, δ)-triangulation of ans-doubling metric can be achieved if each node measures distances to
f(ε, δ, s) beacons selected in advance uniformly at random in the network [19]. Moreover, for a uar-
addressable network the same paper obtains such triangulation by a fully distributed algorithm with a per-
node load at mostf(ε, δ, s)(logn)O(log s). Actually, this algorithm provides somewhat stronger guarantees:
for each nodeu the desired triangulation property holds for at least(1 − ε)n node pairsuv; we call it a
strong(ε, δ)-triangulation.

Our contributions:we improve the per-node load for a strong(ε, δ)-triangulation tof(ε, δ, s)(logn)4.

Distance labeling We extend our techniques to obtain approximate distance labeling schemes [10] for
doubling metrics. Specifically, for any fixedδ > 0 we obtain a(0, δ)-triangulation of orderO(log2 n)
(which is of independent interest) and convert it to a(1 + δ)-approximate distance labeling scheme with
O(log2 n)(logn+log log∆) bits per label, where∆ is the aspect ratio of the metric.2 We show that it is the
best possible dependence on∆. Since∆ can be arbitrarily large with respect ton, this improves over the
labeling scheme of Talwar [36] that usesO(log∆) bits per label. Moreover, in our labeling scheme, unlike
the one in [36], given the labels foru andv we can not only estimate theuv-distance but also verify the
quality of this estimate.

Our techniques In a fully distributed triangulation algorithm each nodeu only measures distances to a
small set of other nodes, called theneighboursof u. In [19] these neighbours are simply selected uniformly
at random in the entire network, whereas in this paper the neighbour selection is much more elaborate and,
in fact, is the key ingredient of our algorithm. In particular, we make sure that in any ball of sufficiently
large cardinality and radiusr any two points are connected by a neighbour-to-neighbour path that has at
mostO(logn) hops and metric lengthO(r).

Since the set of neighbor pairs can be seen as an overlay network, our construction is similar in spirit to
the overlay topologies constructed for locality-aware distributed hash tables and distributed nearest neighbor
selection (e.g. [34, 16, 15, 41]), most notably to the topology constructed in [39]. However, our construction
is quite different on the technical level since it is designed to yield provable guarantees on doubling metrics,
and is tailored to the specific problem of triangulation.

After the neighbours are selected, some nodes elect themselves as virtual beacons and propagate this
information using a neighbour-to-neighbour gossiping. The gossiping protocol ensures thatwithout any
new distance measurementseach node gets bounds on distances to beacons that are sufficient to simulate a
beacon-based triangulation of the desired quality. This protocol is more complicated than the one in [19];
its performance relies on the ”quality” of the set of neighbour pairs produced by our algorithm.

To extend our triangulation to an embedding we simulate a beacon-based algorithm which builds on the
techniques of Bourgain [3] and Linial et al. [26]. The analysis is considerably more difficult since instead of
the actual distance function we use the upper boundD+ from the triangulation, which is not necessarily a
metric. In particular, in our proofD+ cannot be replaced by an arbitrary function that approximately obeys
the triangle inequality: it will be essential thatD+ is close to the specific metric. Moreover, our embedding
algorithm has to use the same set of virtual beacons as our triangulation algorithm.

2The conference version of this paper erroneously claimedO(log2 n)(log log ∆) bits per label.
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Extensions and related work For infinite metrics the notion ofε-relaxed embedding is not well-defined;
we redefine it with respect to an arbitrary measureµ and call it an(ε, µ)-relaxed embedding(so that an
ε-relaxed embedding is(ε, µ)-relaxed with respect to a uniform metricµ). We show that for any infinite
complete doubling metric space with an arbitrary measureµ there exists an(ε, µ)-relaxed embedding into
anyLp, p ≥ 1 with finite dimension and distortion. We also obtain similar guarantees for triangulations.

We have already discussed the connection of our work to distance labeling. It is also related to the work
on property testing in metric spaces (see [35] for a survey); however, this work considers problems quite
different from what we study here, and makes use of different sampling models and objective functions. Fi-
nally, our use of triangulation corresponds to the notion oftriangle inequality bounds smoothingin distance
geometry [6], but our setting is different.

Preliminaries Denote theuv-distance byduv. Let n be the number of nodes. Call a set of node pairs a
ε-denseif for each nodeu it contains at least(1 − ε)n pairsuv. Let Bu(r) be a ball of radiusr aroundu;
by default all balls are closed. Letru(ε) be the smallest radiusr such thatBu(r) contains at leastεn points.
For everyx > 0 denote the set[x] := {0, 1, 2 . . .dxe − 1}.

Let n be the cardinality ofV , and letσunif be the uniform distribution onV . Say a distributionτ onV is
near-uniformif ‖σunif − τ‖∞ ≤ 1

2n . We can define near-uniform distributions on any given subset of nodes
in a similar fashion.

Some of our guarantees arewith high probability, which in this paper means that the failure probability
is at most1/nc, for a sufficiently high constantc.

Organization of the paper. in Sections 2 we present our triangulation algorithm; we extend it to embed-
ding in Section 3. The neighbour selection scheme is deferred to Section 4. Extentions to infinite metrics
and distance labeling are described in Sections 5 and 6, respectively. Some relevant facts on tail inequalities
and expander graphs are placed in Appendix A and Appendix B, respectively. A useful theorem on random
node selection in a network is stated in Appendix C.2.

2 Fully distributed triangulation

Throughout the paper we will assume that the distance function is a metric. For simplicity we define a
per-node load in terms of computation, communication and storage; communication includes pings used for
latency measurements. Specifically, say a distributed algorithm imposes loadk on a given node if during
the execution this node stores, sends and receives at mostk bits, and computes for at mostk cycles.

We start with a fully distributed algorithm for strong(ε, δ)-triangulation.

Theorem 2.1. Consider a uar-addressable network with ans-doubling distance metric of aspect ratio∆.
There is a fully distributed algorithm that for any given(ε, δ, s) with high probability constructs a strong
(ε, δ)-triangulation of order at mostO(x logx), x = 1

ε s
O(log1/δ). For this algorithm, the per-node load is

at mostO(x log2 n + T ), whereT = sO(1) log6 n. The total running time isO(x log2 n + T log ∆).

Each nodeu stores the addresses of, and distances to (a small number of) other nodes, which are called
theneighboursof u. A pair of neighbours can be treated as an undirected edge. We call a pathneighbour-
only if each edge in the path corresponds to a pair of neighbours. A path is calledr-telescopingif its i-th
hop has length at most2r/2i (so that the total metric length of the path is at most2r). A uv-path is called
(r, k)-zoomingif for some intermediate nodew the subpathsuw andvw arer-telescoping and consist of at
mostk hops each. The setE of edges is anε-frame if for any ball of size at leastεn and radiusr any two
points in this ball are connected by a(3r, logn)-zooming path inE. The crux of our algorithm is a fully
distributed way to select neighbours so that the neighbour pairs form anε-frame.
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Theorem 2.2. Consider a uar-addressable network with ans-doubling distance metric of aspect ratio∆.
There is fully distributed algorithm that for anyε > 0 selects neighbours so that with high probability the
set of pairs of neighbours is anε-frame, and each node has at mostsO(1) O(log2 n + 1

ε logn) neighbours.
The per-node load is mostO(1

ε sO(1) log2 n+T ), whereT = sO(1) log6 n. The total running time is at most
O(1

ε sO(1) log2 n + T log∆).

We defer the proof of this theorem to Section 4 and proceed with the rest of the algorithm. Once
the neighbours are selected, some nodes elect themselves as beacons, and use broadcasting to announce
themselves to the network. This is our basic broadcasting protocol.

Lemma 2.3. There is a broadcasting protocol such that any nodeu can broadcast a messageMurk which
reaches a given node via an(r, k)-zooming neighbour-only path whenever such path exists. During such
broadcast every node storesO(k) bits, and every pair of neighbours exchanges at mostO(k) messages.
Proof: First let’s specify the protocol. Nodeu sends a messageMurk(1) to all neighbours within distance
r. If some nodev 6= u receives a messageMurk(i), it does the following:

• If i > 0 andv does not store anyMurk(·) then for eachj, 0 < j ≤ k it forwardsMurk(1 − j) to all
neighbours that lie within distancer/2j .

• If 0 ≤ |i| ≤ k andv does not storeMurk(i), v saves it and then, if the inequality is strict,v forwards
Murk(i + 1) to all neighbours that lie within distancer/2|i| from v.

This completes the specification. It is easy to see that the storage and the number of messages exchanged are
as required, and that the messages propagate along(r, k)-zooming paths. Ifu andv are connected by such a
path, then by definition there exists anr-telescopinguw pathP1 and anr-telescopingvw pathP2, of length
at mostk each. Then using induction oni one shows that thei-th node ofP1 will receiveMurk(1 + i), and
then similarly that thei-th node ofP2 will receiveMurk(1 − i).

Recall that we are given arbitrary(ε, δ) and we’d like to construct a strong(ε, δ)-triangulation. Letting
ε′ = εδ2 log s/(2s), we select neighbours using the algorithm in Theorem 2.2 so that the set of neighbour pairs
is anε′/2-frame. In particular, every nodeu will haveN = Θ(logn)/ε′ neighbours selected uar in the entire
network, call them thedesignated neighbours ofu. Then every node elects itself as abeaconindependently
at random with probabilityNbeac/n, whereNbeacis the desired number of beacons which we will specify
later. Once self-elected, each beaconb announces itself by broadcasting the messageM(b, r′b, logn) as in
Lemma 2.3, wherer′b is the(ε′N/

√
2)-th smallest distance fromb to its designated neighbours.

Whenever a nodeu receives a messageMbrk from a beaconb via a path of lengthx, this message
certifies thatb lies within distancex from u; accordingly, nodeu updatesD+

ub if necessary. Moreover, it
sends a messageM ′(b, x) to every nodev such thatu is a designated neighbour ofv. For nodev such
message certifies thatdvb lies within duv ± x; accordingly,v updatesD±

vb if necessary. This completes the
algorithm.

During the broadcasting phase of this algorithm, every pair of neighbours exchanges at mostO(logn)
messages per each beacon. Lettingru = ru(ε′), the quality of the boundsD±

ub is as follows.

Claim 2.4. Whp every nodeu forms, for every beaconb, boundsD±
ub that lie withindub ± O(rb).

Proof: Fix a nodeu. Since the ballBb(rb(ε′/2)) has size at leastε′n/2, with high probabilityu has a
neighbour in it, call itv. Since by Chernoff bounds with high probabilityrb(ε′/2) ≤ r′b ≤ rb, by definition
of ε-frame there exists an(r′b, logn)-zoomingbv-path. By Lemma 2.3 a message fromb will reach v by
traversing such a path (call itρ), and thenv will sendM ′(b, x) directly tou, wherex is the metric length of
ρ. Upon receiving this message,u will bound dub by duv ± x. The claim follows sincex is at mostO(rb),
andduv lies within dub ± rb.
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Let Nbeac= (logn)/ε′. In [19] it was proved that for anε-dense set of node pairsuv there is a ballB
of radiusδduv either aroundu or aroundv which has cardinality at leastε′n; say this is a ball aroundu. In
particular, with high probability this ball contains a beacon, call itb. ThenBb(2ru) containsB, hence has
size at leastεn, sorb ≤ 2ru ≤ 2δduv. Therefore (omitting some details) by Claim 2.4 nodesu andv can
used±ub andd±vb to boundduv by duv ± O(δduv) as desired.

This gives an strong(ε, δ)-triangulation of orderΘ(Nbeac). With some more work we can makeNbeac

independent ofn: setNbeac= Θ(s3/ε′) log(s/ε′) and use Lemma 5.2 to guarantee that with high probability
every ballBu(6ru) contains a beacon. Then, as before, for anε-dense set of node pairsuv, nodesu andv
can boundduv by duv ± O(δduv) as desired. This completes the proof of Theorem 2.1.

3 Fully distributed embeddings

In this section we extend the algorithm from Section 2 to a fully distributed algorithm that computes an
ε-relaxed embedding into anyLp, p ≥ 1 with dimension and distortion that depend only on(ε, s), not onn.

Theorem 3.1.For a uar-addressable network with ans-doubling distance metric there is a fully distributed
algorithm that for any given(ε, s) with high probability constructs anε-relaxed embedding into anyLp,
p ≥ 1 with distortionO(logk) and dimensionO(k log k), wherek = ( s

ε )
O(log log(s/ε)). In this algorithm the

per-node load and the total completion time are at mostO(k2 log3 n).

Fix (ε, s), and fix a constantc to be specified later. Note that there existsk = ( s
ε )

O(log log(s/ε)) such that
for δ = c/ logk the algorithm in Section 2 with high probability computes an(ε, δ)-triangulation with at
mostk and at leastΩ(k) beacons; the proof is a simple but tedious computation which we will omit.

The high-level algorithm is simple. First we letδ = c/ logk and compute an(ε, δ)-triangulation using
the algorithm from Section 2. Then the beacons measure distances to one another and broadcast them to the
entire network using a uniform gossip [33]; in this phase each beacon broadcasts one message of sizeO(k),
the total per-node load being at mostO(k2 logn). Upon receiving this information nodes update the bounds
D+ on their distances to beacons accordingly, by running a shortest-paths algorithm. (Note that in this step
D+ can only decrease, but not below the true distance; in particular, Claim 2.4 still holds.) Finally, run the
embedding algorithm in Theorem 3.3 of [19]on the same beacon set, using the upper boundsD+ instead of
the latent true distances to the beacons.

Our proof outline follows that of Theorem 3.3 of [19]: first we bound the distortion on node-to-beacon
distances, then use those to bound distances between other node pairs. The details are very different, though,
since we are embeddingD+ which is not necessarily a metric. In particular, in our proofD+ is more than
just a function that approximately obeys the triangle inequality: it it will be essential thatD+ is close to a
specific metric, as expressed by Lemma 2.4. we will use this lemma to reason about the embedded distances
to beacons, which is why we use the same set of beacons for both triangulation and embedding.

For completeness let’s restate the embedding algorithm (which is adapted from [19] and is closely re-
lated to the algorithms of Bourgain [3] and Linial et al. [26]). LetSbeacbe the beacon set from the(ε, δ)-
triangulation; for simplicity assume there are exactlyk beacons. For eachi ∈ [logk] chooseΘ(k) random
subsets ofSbeac of size2i each; letSij be thej-th of those. These subsets are broadcasted to the entire
network using a uniform gossip [33]: one message of sizeO(k2) is broadcasted, incurring a per-node load
at mostO(k2 log n). Then every nodeu embeds itself intoLp so that each dimensionij is defined as
D+(u, Sij)/Θ(k), whereD+(u, S) is the smallestD+

uv such thatv ∈ S.
Note the differences with the algorithm of [26]. Firstly, the beacon setsSij are sampled fromSbeac, not

from the entire network. Essentially, we embedSbeacusing the algorithm of [26], and then embed the rest of
the nodes using the same beacon sets. While embeddingSbeacwe useΘ(k) beacon sets of each size scale,
notΘ(log k) as [26] does. This is necessary to guarantee the following claim from [19]:
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Claim 3.2. with high probability for anyi ∈ [logk] and any pair of disjoint subsetsS, S ′ ⊂ Sbeacof size at
leastk/2i and at most2k/2i, respectively, it is the case that at leastΩ(k) setsSij hit S and missS ′.

Then, lettingd′uv be the embeddeduv-distance, we can bound the embedded node-to-beacon distances:

Claim 3.3. Whp for each nodeu and every beaconb we havedub ≤ d′ub ≤ O(logk)D+
ub.

Now, as we saw in the proof of Theorem 2.1, with high probability for anε-dense set of node pairsuv
there is a beaconb within distance6δduv from u or v (say, fromv) such thatrb ≤ 12δduv. Therefore by
Claims 2.4 and 3.3 we have

(1− 6δ)duv ≤ d′ub ≤ O(logk)duv

andd′vb ≤ O(logk)δduv, so it follows that

duv/2 ≤ d′ub − d′vb ≤ d′uv ≤ d′ub + d′vb ≤ O(logk)duv

as long as the constantc that definesδ is small enough.
To complete the proof of Theorem 3.1 it remains to prove Claim 3.3. For simplicity consider the case

p = 1 first. For a node setS and any pairuv of nodes defineD+
uv(S) = |D+(u, S)− D+(v, S)|. Then the

embeddeduv-distanced′uv is equal to the sum
∑

D+
uv(Sij) over all beacon setsSij . In order to establish the

desired upper bound ond′ub it suffices to prove that ifu is a node,b is a beacon andS is a set of beacons then
D+

ub(S) ≤ 2D+
ub. It will follow by a standard argument from the following claim:|D+

ub′ −D+
bb′ | ≤ 2D+

ub for
any two beaconsb, b′.

Let’s prove this claim. Consider the beaconbu that is closest tou with respect toD+; let x = D+(u, bu)
andy = d(b′, bu). The beacons measure distances to each other, soD+

bb′ = dbb′ . Nodeu has updatedD+
ub′

according to these measurements, so it is at mostx+y; obviously, it is at leastdub′ , which is lower-bounded
by y − x. Therefore|D+

ub′ − y| ≤ x, so, completing the proof,

|D+
ub′ − D+

bb′ | ≤ |y − dbb′ | + |D+
ub′ − y| ≤ d(b, bu) + x ≤ dbu + 2x ≤ 3D+

ub.

It remains to establish the lower bound in Claim 3.3, which we will accomplish by a version of Bour-
gain’s telescoping sum argument. LetSu(r) be the set of beaconsb such thatD+

ub ≤ r. For a fixed nodeu
and beaconb, let ρi = min(ρu(i), ρv(i), dub/2), whereρu(i) is the smallestr such thatSu(r) contains at
leastk/2i beacons.

We claim that for each giveni the sumXi =
∑

j D+
ub(Sij) is at leastΩ(k)(ρi−1 − ρi). Indeed, fixi and

without loss of generality assume thatρu(i) ≤ ρb(i). Note that the setsS = Su(ρi) and the interiorS ′ of
Sb(ρi−1) are disjoint since if a nodev belongs to bothS andS ′ then

dub ≤ duv + dbv ≤ D+
uv + D+

bv < ρi + ρi−1 ≤ dub,

contradiction. Therefore by Claim 3.2 with high probability for eachi at leastΩ(k) setsSij hit S and miss
S ′, thus contributing at leastρi−1 − ρi each toXi. This proves the claim.

Let t = blogkc and note that by definitionρb(t) = 0 (sinceSb(0) contains at one beacon, namelyb

itself), soρt = 0. Summing up theXi’s we getd′ub ≥ Ω(k)(ρ1 − ρt) = Ω(k)dub as desired, as long as
ρ1 ≥ dub/4. Now supposeρ1 < dub/4 and assume thatρu(1) < ρb(1) (the caseρu(1) ≥ ρb(1) is treated
similarly). Then the setsS = Su(dub/4) andS ′ = Sbeac\ S are disjoint and have size at leastn/2 and at
mostn/2, respectively. Therefore by Claim 3.2 with high probability at leastΩ(k) setsS1j hit S and miss
S′, thus contributing at leastD+

ub/2 = Ω(dub) each toXi, so thatd′ub ≥ Ω(k)dub as desired. This completes
the proof of Claim 3.3 forp = 1. We can extend it to generalp ≥ 1 following [26]; we omit the details.
This completes the proof of Theorem 3.1.
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4 Finding good neighbours

In this section we discuss our neighbour selection algorithm and prove Theorem 2.2. We start with an
overview. On the very basic level our algorithm will only guarantee properties that are local to every given
node; we call theminvariants. To prove that we indeed construct anε-frame we will need to ”connect” these
invariants via certain global structures. First for every ballB we establish such a structure – essentially, a
nesting sequence of balls with lots of nice properties. Then we will define the invariants and show that if they
hold andB is large enough then every node in every ball in the sequence will have a neighbour in the next
ball of the sequence; this (denoting the radius ofB by r) will guarantee the required(3r, logn)-zooming
neighbour-only path connecting every pair of nodes inB. Finally, we will specify the algorithm and prove
that it satisfies the invariants.

Now we will describe the proof in detail. Assume the metric iss-doubling.

Definition 4.1. A subset of a ballBu(r) that contains the corresponding open ball and at least one boundary
point is called afuzzy ball. For any such ballB and a scalarα > 0, define a shorthandαB := Bu(αr). A
fuzzy ballB is called(α, β)-padded|αB| ≤ sβ |B|.

Lemma 4.2. For any fuzzy ballB there exists a(16, 5)-padded fuzzy ballB∗ such that

32B∗ ⊂ 2 1
16 B and |B∗| =

⌈
|B|/8s5

⌉
. (1)

Proof. Suppose not. Letx = |B| and letu be the center ofB. Consider the smallest ball aroundu that
has cardinality at leastx/8, call it Bu(r). By the doubling property of the metric,Bu(r) can be covered
by s5 balls of radiusr/32. At least one of them, centered at (say)v, has cardinality at leastx/(2s5); note
thatduv ≤ 33

32r. A fuzzy ball aroundv of cardinality exactlydx/(8s5)e (call it B′) has radius at mostr/32;
obviously,Bv(r) lies within Bu(2 1

16r). ThereforeBv(r/2) has cardinality at leastx/8, since otherwiseB′

is (16, 5)-padded, contradiction.
Iterating this argumenti times, we come up with a nodev such thatduv ≤ 33

32r(2− 2−i) and either there
is a(16, 5)-padded fuzzy(v, r/2i+4)-ball which is zooming with respect toB, or Bv(r/2i) has cardinality
at leastx/8. However, the latter cannot be true wheni is large enough, e.g. whenr/2i is less than the
minimal distance.

If two fuzzy ballsB andB∗ satisfy (1), let us say thatB∗ is zooming with respect toB. The constant8
in (1) is tailored to the forthcoming arguments.

A sequence of fuzzy balls is calledzoomingif each ball is zooming with respect to the previous one,
and the last ball consists of only one node. By the above lemma, for any ballB there is a zooming sequence
σ(B) of (16, 5)-padded fuzzy balls starting with a ballB∗ which is zooming with respect toB. Every
nodeu will select enough neighbours independently and uniformly at random from the entire network so
that if B contains at leastεn nodes then with high probabilityu has a neighbour inB∗. Our neighbour
selection algorithm will make sure that for every suchB, every node in every ball in the sequenceσ(B) has
a neighbour in the next ball of the sequence. Since the last ball inσ(B) consists of a single nodew, for any
nodesu, v ∈ B this gives (lettingr be the radius ofB) a 2 1

16r-telescopinguw- andvw-paths of length at
mostlogn each, as required.

We distinguishout-neighborsandin-neighbors: nodev is an out-neighbor of nodeu if and only if v is
an in-neighbor ofu. Two nodes are neighbors if and only if one is an out-neighbor of another. Each node
u selectss5k/ε global out-neighbours independently and uniformly at random from the entire network,
incurring a per-node load ofO(1

ε sO(1) log2 n). Moreover, nodeu will have local out-neighbors that are
distributed on smaller balls aroundu. Let us say that nodeu is a global/local in-neighbor of nodev if v is a
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global/local out-neighbor ofu. Note that by Chernoff Bounds with high probability every node has at most
O(1

εs
O(1) logn) global in-neighbours.

Local neighbors of nodeu are partitioned into some numberlu ≤ logn levelsnumbered0, 1, 2, . . .,
so that for eachi ∈ [lu] there are exactlyk level-i neighbours; herek = c s15 logn, where the constantc
is large enough to use the Union Bound where appropriate. All level-i neighbors of nodeu are contained
in some ballBui := Bu(ρui), whereρui is thecharacteristic radiusspecified by the algorithm. By abuse
of notation we will also callBui the i-th level of nodeu. Level-0 neighbors of each nodeu are selected
independently and uniformly at random from the entire network; accordingly, we setρu0 = ∆. We will
maintain the following invariant:

Invariant 1. For every levelBui, ball Bui is (2, 5)-padded and|Bui| ≤ 1
2 |B(u,i−1)|.

Our construction is highly randomized. To analyze it, we consider the probability space induced by the
random choices in the construction. In particular, intuitively we would like all level-i neighbours of a given
nodeu to be distributed independently and uniformly (or near-uniformly) in the corresponding ballBui.
What we actually ensure is a somewhat weaker condition, which however suffices for our purposes.

Essentially, we condition on levels with larger characteristic radius. We treat each level-i neighbor of a
given nodeu as a random variable distributed on the corresponding ballBui. For eachj ∈ [log∆] let us say
that thestage-j levelsare those with characteristic radii in the interval[∆/2j, 2 × ∆/2j). LetFnbrs

j be the
family of all random variables corresponding to neighbors in stage-j levels. For convenience let us define
Fnbrs
−1 = ∅.

Invariant 2. For eachj ∈ [log∆], the familyFnbrs
j is conditionally independent given∪l<j Fnbrs

l . More-

over, if random variableX ∈ Fnbrs
j corresponds to a level-i neighbor of nodeu, then given∪l<j Fnbrs

l this
X has a near-uniform distribution on the corresponding ballBui.

Let us bound the number of local in-neighbors using the above invariants.

Claim 4.3. If Invariants (1-2) hold then with high probability every node has at mostO(sO(1) log2 n) local
in-neighbours.

Proof. Fix a nodeu and define the family of levels

Fu := {all levelsBwi′ : i′ ≥ 0, w ∈ V, u ∈ Bwi′}.

Let us treat the levels inFu as balls. For eachi ∈ [logn] let Fui be the family of balls fromFu that have
cardinality in the interval(2i, 2i+1]. Let B∗ be a ball inFui with the largest radius. Then2B∗ contains the
centers of all balls inFui. SinceB∗ is (2, 5)-padded andFui contains at most one ball with a given center,
it follows that |Fui| ≤ s5 2i+1. Therefore

∑

B∈Fu

1/|B| =
∑

i

∑

B∈Fui

1/|B| ≤
∑

i

|Fui|/2i ≤ 2s5 logn. (2)

So the expected number of non-global reverse neighbours ofu is at most2ks5 log n. Using generalized
Chernoff bounds (Theorem A.2) we get the desired high probability result.

While Invariants (1-2) specify the properties of the levels once they exist, we also need guarantees as to
when they actually exist. To formulate those, we need a few definitions.

Definition 4.4. Call levelBui healthyif for any v ∈ Bui the smallest ballBvj such thatρvj ≥ min(2ρui, ∆)
has cardinality at most8s10 times that ofBui.
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Definition 4.5. Say a ballB centered at nodeu is friendly for a ballB′ if x/8 ≤ |B| ≤ x, wherex is the
cardinality of the smallest ball aroundu that containsB′.

Invariant 3. If levelBui is healthy then for any(2, 5)-padded ballB ⊂ Bui aroundu of cardinality at least
1/(2s10) that ofBui there is a friendly levelB(u,·).

Before fully specifying the algorithm, we will show that if the invariants are satisfied then the required
neighbour-only paths exist. As we have seen, it suffices to prove that with high probability for any ballB0

of size at leastεn, every node in every fuzzy ball in the sequenceσ(B0) has a neighbour in the next fuzzy
ball. Note that although there can be exponentially many fuzzy balls, only a polynomial number of them is
used in sequencesσ(B0), so we can achieve a high-probability result just by increasing the constant in the
definition ofk.

Letσ(B0) = (B∗
1 , B∗

2 , B∗
3 , . . .) and letBi = 2 1

16 B∗
i for all i. Note that each ballBi is (7, 5)-paddedand

the sequence(B1, B2, B3, . . .) is nesting; the latter can be seen by induction on the length of the sequence.

Claim 4.6. If Invariants (1-3) hold then with high probability for eachi and everyv ∈ Bi there is a healthy
levelB(v,·) which is friendly forBi.
Proof: we will use induction oni. For the base case consider somev ∈ B1. By Invariant (3) there exists a
levelB(v,·) friendly for B1. This level is healthy sinceB1 has cardinality at leastn0. For the induction step,
assume the claim holds for someBi, and letv ∈ Bi+1. Then by induction hypothesis there is a levelBvj

which is healthy and friendly forBi. Note that, lettingx = |B∗
i |, the cardinality ofBvj is at mostxs5.

The smallest ballB aroundv that containsBi+1 is (2, 5)-padded. (Indeed, lettingBi+1 = Bu(ρ) and
B = Bv(r), we haver ≤ 2ρ and thereforeBv(2r) ⊂ Bu(5ρ) is small enough.) Since|B| ≥ |Bi+1| ≥
1
2x/s5, applying Invariant (3) toBvj shows that ifB ⊂ Bvj then (sinceBvj is healthy) there is a levelBvl

friendly for B. If B 6⊂ Bvj thenBvj ⊂ B and (since it is easy to see thatB ⊂ Bi) levelBvj itself is friendly
for B. So there is a levelBvl, l ≥ j that is friendly forB, and hence friendly forBi+1.

It remains to show thatBvl is healthy. Fixw ∈ Bvl. SinceBvl is contained inBi+1 and has cardinality
at leastx/(8s5), it suffices to find a levelB(w,·) of cardinality at mostxs5 such thatρwt ≥ 2r. Sincew ∈ Bi,
applying induction hypothesis yields a levelBwt which is friendly forBi, hence has cardinality at mostxs5

and at leastx/2. Now, sinceBi+1 = Bu(ρ) is (7, 5)-padded andBw(2r) ⊂ Bv(3r) ⊂ Bu(7ρ), it follows
that |Bw(2r)| ≤ s5|B∗

i+1| = x/2 ≤ |Bwt|, soρwt ≥ 2r. ThereforeBwt is the required level.

Claim 4.7. If Invariants (1-3) hold then with high probability in each ballBi every nodev ∈ Bi has a
neighbour in the ballBi+1.

Proof. Fix v ∈ Bi. Recall thatBi ⊂ Bi−1. By Claim 4.6 sincev ∈ Bi−1 there exists a levelBvj which is
friendly for Bi−1. We claim thatBi+1 ⊂ Bvj .

Indeed, letB be the smallest ball aroundv that containsBi. SinceBi+1 ⊂ Bi ⊂ B, it suffices to prove
thatB ⊂ Bvj . First, note thatB ⊂ 2Bi ⊂ 41

8 B∗
i . Since fuzzy ballB∗

i is (16, 5)-padded, it follows that
|B| ≤ s5|B∗

i |. SinceB∗
i is zooming with respect toBi−1, we have|B∗

i | ≤ |B∗
i−1|/8s5. Since ballBvj is

friendly for ball Bi−1, we have|B′|/8 ≤ |Bvj | ≤ |B′|, whereB′ is the smallest ball aroundv containing
Bi−1. Putting it all together,

|B| ≤ s5 |B∗
i | ≤ |Bi−1|/8 ≤ |B′|/8 ≤ |Bvj |.

SinceB andBvj are balls around the same node, it follows thatB ⊂ Bvi, claim proved.
Moreover, it turns out thatBi+1 is a sufficiently large subset ofBvj :

|Bvj | ≤ |B′| ≤ |2 Bi−1| ≤ s5 |Bi−1| ≤ O(s15) |Bi+1|.

Now by Chernoff Bounds with high probabilityBi+1 contains a level-j neighbour ofv.
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4.1 Finding good neighbors: the construction

We specify the neighbour selection algorithm and show that it is load-balanced and satisfies the invariants.
After a given levelBui is constructed, nodeu eventuallyexploresit by calling procedureExplore(Bui).

This procedure uses the level-i neighbors of nodeu to find possible smaller characteristic radii, and attempts
to construct levels with these candidate characteristic radii via Theorem C.2 withQ = Bui. Call a given
levelBui unexploredif procedureExplore(Bui) has not been called yet.

For simplicity assume that the aspect ratio∆ is an exact power of two. The construction proceeds
in globally synchronized stages numbered0, 1 , . . . , log∆. Recall that thestage-j levelsare those with
characteristic radii in the interval[∆/2j, 2 × ∆/2j). We maintain the following invariant:

Invariant 4. Each stage-j level is explored in stagej; no stage-j levels are explored outside stagej.

Note that by Invariant (4) all stage-j levels are constructed before the end of stagej.
For a given nodeu and stagej, the pseudocode is quite simple: while there are unexplored stage-j

levels, callExplore(Bui), whereBui is the unexplored stage-j level with the largest characteristic radius.
Note that this pseudocode trivially satisfies Invariant (4).

Now let us specify procedureExplore(Bui).

Definition 4.8. For a setS of numbers, let us define aδ-medianof S as thedδ|S|e-th number in the ascending
ordering ofS. Forδ ≤ 1, let φui(δ) be theδ-median of distances fromu to its i-level neighbours. To define
a similar quantityφui(δ) for δ > 1, let us choose the smallest ballBuj such thatρui = φuj(δ′) for some
δ′ ≤ 1

δ , and defineφui(δ) = φuj(δδ′).

Among the levelsB(u,·) constructed so far, let us choose the one with the smallest characteristic radius,
call this radiusr0. Chooseδ0 such thatφui(δ0) = r0. We consider allδ ∈ [δ0/4; s−10] such thatδ = δ0/4l

for somel ∈ N. For each suchδ we check whether2φui(δ) ≤ φui(4s5δ). If this is the case, we call
r := φui(δ) a candidate radiusand attempt to select neighbors for thecandidate levelwith characteristic
radiusr. Note that by Chernoff Bounds Invariant (1) is satisfied.

We select neighbors for the candidate levels via Theorem C.2, so we need to tailor our setting to this
theorem. Firstly, each node partitions its neighbors in every given level into two equal-size groups:walk-
neighborsandseed-neighbors. The former are used for random walks in this theorem, and the latter are
used for random seeds.

Let Q be the ball corresponding to levelBui. For eachv ∈ Q, consider the levels constructed for node
v in stages1 throughj with characteristic radii at least2r. Among these levels, letBv be the one with the
smallest characteristic radii. LetG be the directed graph (possibly with loops and multiple edges) induced
by the walk-neighbors in levelsBv , v ∈ Q. Specifically, whenever nodev ∈ Q has a walk-neighborw in
levelBv , we add a directed edge(v, w) to the graphG. Let G∗ be the undirected version ofG.

We will use Theorem C.2 for graphG and subsetQ. Note that by Theorem A.2deg(G∗) ≤ O(k) with
high probability. Accordingly, in Theorem C.2 we will taked = dQ = O(k).

Since for this theorem each node needs to know itsG∗-neighbors (which are a subset of its reverse
neighbors), each nodev contacts all its neighbors so that each neighborw of v learns (a) that nodev is
its reverse neighbor, (b) what are the the characteristic radii of all levels ofv, and (c) in which level ofv
nodew is a neighbor. To bound the per-node overhead of this operation, recall that by Claim 4.3 each node
has at mostO(1

εs
O(1) log2 n) reverse neighbours. Note that for our purpoces each nodew ∈ Q should not

only know all its reverse neighbors, but know which of them are itsG∗-neighbors. In other words, for each
reverse neighborv of w we need to know whether nodew is one of the neighbors inBv . However, nodew
can determine this knowingr and the information that he receives from nodev.

By Theorem A.2 if levelBui is healthy then with high probabilitydeg(G|Q) ≥ 3 logn for eachv ∈ Q.
In this case by Theorem B.3(b) the graphG∗|Q is an expander with high probability. Letd0 = 3 logn.
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Moreover, as required in Theorem C.2, the graphG|Q is a(d0, γ)-quasi-expander, for some constantγ; this
is by Theorem B.3(a).

By Theorem A.1 with high probability at least one seed-neighbor in levelBui lies in Q; we choose any
such neighbor at random and designate it to be the random seed. Let algorithmA(Bui) be the construction
in Theorem C.2 (for graphG and subsetQ) with this random seed andk0 = Θ(s10 k). Either algorithm
A(Bui) aborts, or nodeu acquiresk0 nodes selected independently from a near-uniform distribution onQ.
In particular, the latter happens if levelBui is healthy, thus satisfying Invariant (3)

Suppose algorithmA(Bui) does not abort. Letr1, r2, . . . be the candidate radii in the decreasing order,
and letrl = φui(δl). Recall thatδl’s are exponentially decreasing and lower-bounded bys−10. We randomly
partition thek0 neighbors returned byA(Bui) into sets ofΘ(k/δl) nodes, one for each candidate levell.
In each such set by Theorem A.1 at leastk nodes will land inBu(rl) with high probability. We selectk of
those at random as the neighbors in the corresponding level. Note that Invariant (2) is satisfied since graph
G depends only on∪l<j Fnbrs

l .
This completes the description of the procedureExplore(Bui).

Load-balancing. Fix nodev. Let Zv(Bui) is 1 if nodev is visited by algorithmA(Bui), and0 otherwise;
i.e. this is precisely the random variableZv from Theorem C.2. Define the family of levels containingv:

F := {all levelsBui : i ≥ 0, u ∈ V, v ∈ Bui}.

Recall that by Theorem C.2 for each stage-j levelB ∈ F we haveZv(B) ≤ 1 and

E (Zv(B)| ∪l<j Fl) ≤ µB := O(k0t/|B|),

wheret = O(k2 log n). Moreover, by (2) we have

µ :=
∑

B∈F
µB = O(k0t)

∑

B∈F
1/|B| ≤ O(k0 ts5 logn) = O(sO(1) log4 n).

By Theorem A.2 with high probabilityZv :=
∑

B∈F Zv(B) ≤ O(µ).
Let us consider the load induced on a given nodeu by the construction of local neighbors. Let us

partition this load intonative loadinduced by algorithmsAu(·), andforeign load induced by algorithms
Av(·), v 6= u. Native load is at mostO(k0dt) for each of at mostlogn instances of algorithmAu(·), for a
total of O(sO(1) log5 n). To bound the foreign load, letS be the set of all local neighbors ofu; recall that
|S| is upper-bounded by Claim 4.3. By Theorem C.2 the foreign load onu is

O
(∑

v∈S Zv

)
≤ O(µ|S|) ≤ O(sO(1) log6 n).

Total running time. Note that in a given stage each message can be processed (in, essentially, a unit
time) as soon as it is received. The only possible delay occurs due to contention, when a given node
receives messages faster than it can process them. However, we assume that our construction happens in the
backgroung, at a sufficiently slow pace so that such contention is negligeable. Specifically, we assume that
before sending each message we wait for a random time interval, drawn from (say) a Gaussian with mean
T . Then the total running time in a given stage is upper-bounded byT times the per-node load.

5 Triangulation and embedding for infinite doubling metrics

The beacon-based triangulations and embeddings of [19] are for finite metrics;ε-dense sets are defined with
respect to the uniform measure. Here we extend them to infinite metrics and arbitrary probability measures.

12



Specifically, given a probability measureµ we define(ε, δ, µ)-triangulation and(ε, µ)-relaxed embedding;
here the desired properties hold for all node pairsuv, v ∈ Su whereµ(Su) ≥ 1 − ε. We aim for(ε, δ, µ)-
triangulations of finite order, and(ε, µ)-relaxed embeddings with finite distortion and dimension.

Theorem 5.1. Consider a (possibly infinite) completes-doubling metric space(V, d). Then for any proba-
bility measureµ onV and any positive parametersε, δ there exists:

(a) an(ε, δ, µ)-triangulation of orderk = O(s10)(1
ε )(

1
δ )2 log s, and

(b) an(ε, µ)-relaxed embedding intòkp, p ≥ 1 with distortionO(logk), wherek = ( s
ε )

O(log log(s/ε)).
Suppose we can take independent random samples from distributionµ. Then after takingO(k) such samples
we can construct respectively node labels in (a) or node coordinates in (b), in timeO(k) per node.

SayS is an(ε, µ)-hitting set for the metric if it hits a ball of radius6ru(ε) around every nodeu, where
ru(ε) is the radius of the smallest ball aroundu of measure at leastε. The crux of the proof of Theorem 5.1 is
a lemma on the existence of finite (and small!)(ε, µ)-hitting sets, which we derive using a suitable analogue
of Lemma 4.2.

Lemma 5.2. Consider a completes-doubling metric. Then for any probability measureµ and anyε > 0
there is an(ε, µ)-hitting set of sizek = 2s3/ε. Moreover, with probability at least1− γ a set ofk log(k/γ)
points sampled independently at random with respect toµ is (ε, µ)-hitting.
Proof: Let ru = ru(ε). First we claim that for every nodeu either there is a nodebu ∈ Bu(2ru) of
measure at leastε/2, or there is a ballBu ⊂ Bu(3ru) of measure at leastε/(2s3) such that the ballB′

u

with the same center and four times the radius has measure at mostε/2. Indeed, following the proof of
Lemma 4.2 we can show that for a fixedu either suchBu exists, or there is an infinite nesting sequence of
balls(S1 ⊃ S2 ⊃ S3 ⊃ . . .) of exponentially decreasing radiiρi and measure at leastε/2 each, starting with
Bu(2ru). Consider the sequence of centers of these balls. This is a Cauchy sequence, so (since the metric
is complete) it has a limit, call itv. Thenv lies in eachSi, so for eachi the ballBv(2ρi) containsSi, hence
has measure at leastε/2. Thereforev has measure at leastε/2 as required. Claim proved.

For convenience defineBu = {bu} if suchbu exists. LetF be a maximal collection of disjoint ballsBu.
We claim that for every nodev some ballBu ∈ F lies within Bv(6rv). Suppose not. ThenBv 6∈ F , so it
overlaps with some ballBu ∈ F . If Bu = {bu} then we are done. Otherwise note that the ballBv(rv) has
measureε and hence cannot lie withinB′

u. Then sinceBv(3rv) overlaps withBu it follows that4rv ≥ 3r,
wherer is the radius ofBu. We come to a contradiction sinceBu lies inBv(3rv + 2r). Claim proved.

Lemma follows since any hitting set forF is an(ε, µ)-hitting set for the metric.

Proof Sketch of Theorem 5.1:Fix ε. First we note that the proof of Theorem 2.2 of [19] actually shows
that for each nodeu there exists a setSu of measure at least1− ε that has the following property: for every
v ∈ Su a ball aroundu or v of radiusδduv has measure at leastεδ = 1

2εδ2 log s/s. By Lemma 5.2 there
exists an(εδ, µ)-hitting setHδ of sizeΘ(s3/εδ). Now usingHδ/6 as the beacon set, the algorithm in Section
2 of [19] gives the desired(ε, δ)-triangulation; we omit the details. Similarly, the desired embedding is
obtained using the algorithm from Section 3 of [19], with beacon setHδ for small enoughδ; again, we omit
the details.

Note that the(ε, µ)-hitting setHδ can be chosen at random according to Lemma 5.2. Therefore, the
proof is algorithmic as long as one can sample at random with respect toµ.

6 Approximate distance labeling via triangulation

In this section we show that for any fixedδ > 0 any finite doubling metric has a(0, δ)-triangulation of order
O(log2 n). This leads to a(1 + δ)-approximate distance labeling scheme withO(log2 n log log∆) bits per
label, where∆ is the aspect ratio of the metric. we will use the notion ofdoubling measure[14].
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Theorem 6.1. For any δ > 0 anys-doubling metric has a(0, δ)-triangulation of orderO(1
δ )2 log s log2 n.

Moreover, such triangulation can be computed by an efficient centralized algorithm.
Proof: As proved in [14], there exists a measureµ such that the measure of any ballBu(r) is at mosts
times the measure of the ballBu(r/2); moreover, such measure can be efficiently computed. Using this
measure we select a set of ’beacons’ (call themµ-beacons), partitioned intolevels. Specifically, letting
K = 1/ minu µ(u) andk = c logn wherec is a constant to be adjusted later, for eachj ∈ [logK] select
a set of level-j µ-beacons as follows: add each nodeu independently with probability2jkµ(u). Moreover,
we select another set of beacons (calleduar-beacons), also partitioned into levels: for eachi ∈ [logn] select
a set of level-i uar-beacons: add each node independently with probability2ik/n.

Now we will use beacons to define the distance labels of nodes. For each nodeu and each leveli ∈
[logn], define level-i uar-neighboursof u as all level-i uar-beacons that lie within the ballBui = Bu(rui),
whererui = ru(2−i). Define level-i µ-neighboursof u as all level-j µ-beacons that lie within the ball
B′

ui = Bu(2rui/δ), for eachj such thatµ(B′
ui) < 21−j . Finally, the label ofu consists of distances to

all its neighbours. Using Chernoff bounds it is easy to see that with high probability each node hasΘ(k)
neighbors on each level, for the total ofΘ(k logn) neighbors.

Fix a node pairuv and letd = duv . We need to show that a ball of radiusδd around eitheru or v

contains a beacon that is a neighbour of bothu andv. Suppose there is no such beacon. Letr = (1 + δ)d
and choosei such thatrui < r + d ≤ r(u,i−1). This ”u-centric” choice yields some bounds onrvj ’s as well.
Specifically,r(v,i−1) ≥ r sinceBv(r) is contained inBu(d+r). Also, sinceBv(r+2d) containsBu(r+d),
it has at leastn/2i nodes, sorvi ≤ r + 2d.

Whp the ballBvi contains a level-(i − 1) uar-beacon which is, by definition, a neighbour ofv. If
Bvi ⊂ B(u,i−1) then this beacon is also a level-(i − 1) neighbour ofu, contradiction. Therefore we can
assumervi > δd. Similarly, we can assumerui > δd. Therefore, in particular, the ballB = Bu(δd) is
contained in bothB′

ui andB′
vi. Since the radii of the two bigger balls areO(d), their measure is at most

c′µ(B) wherec′ = O(1
δ )2 log s. Choose the largestj such that bothµ(B′

ui) andµ(B′
vi) are at most2/2j .

Then for a sufficiently largec = O(c′) with high probabilityB contains a level-j µ-beacon, which is (by
definition of aµ-neighbour) a level-i µ-neighbour of bothu andv.

It is easy to see that the above triangulation can be extended to a(1 + δ)-approximate distance labeling
scheme so that each neighbor is represented by a uniquedlog ne-bit id, and each distance is encoded with
O(log 1

δ + log log ∆) bits, where∆ is the aspect ratio of the metric. Indeed, if following the literature on
distance labeling (e.g. [10, 36]) we assume that the smallest distance is 1, then it suffices to useO(log 1

δ )
bits for the mantissa, andO(log log∆) bits for the exponent. Since∆ can be arbitrarily large with respect
to n, we improve over the labeling scheme of Talwar [36] that usesO(log∆) bits per label.

In fact, we can show that theO(log log∆) worst-case dependence of the label length on∆ is optimal.
Indeed, consider a metricd on three nodes{u, v, w}. Assume the smallest distance isduw = 1, and the
largest distance isdvw = ∆. We need to encodeduv with the node labels ofu andv. Fix the encoding
and suppose the two labels together take up at mostk bits in the worst case. Then, obviously, at most2k+1

different values ofduv can be encoded. On the other hand, lettingc = (1 + δ)2, the set of all values ofduv

that can be encoded must include a number in each interval[ci−1, ci) such thatc ≤ ci ≤ ∆. Since there are
at leastlog∆ such intervals,k ≥ Ω(log log∆), claim proved.

It has come to our attention that very recently Mendel and Har-Peled [28] further sharpened the label
length to(1

δ )O(logs)(log2 n + logn log log∆) bits. Their technique is different; in particular, it does not
apply to(0, δ)-triangulations.
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A Tools from Probability

We use the standard Chernoff bounds for bounded independent random variables, e.g. see [29].

Theorem A.1 (Chernoff bounds, folklore). Let X be the sum of finitely many independent random vari-
ablesXi ∈ [0, y], for somey > 0. Letε ∈ (0, 1) andβ ≥ 1. Then:

(a) Pr[X < (1− ε)µ] ≤ e−ε2µ/2y, for anyµ ≤ E(X).

(b) Pr[X > βµ] ≤
[

1
e ( e

β )β
]µ/y

, for anyµ ≥ E(X).

We also derive and use a version of Chernoff bounds that applies to near-independent random variables.
While it is possible that this result appears in the literature, we have not been able to find a reference.

Theorem A.2. Consider the sumX =
∑n

i=0 Xi whereXi are positive integer-valued random variables
upper-bounded by fork ∈ N. Letε ∈ (0, 1) andβ ≥ 1. LetFi = σ(X0, X1 , . . . , Xi) andF−1 = ∅. Then:

(a) If E(Xi|Fi−1) ≥ µi for all i, thenPr[X < (1− ε)µ/k] ≤ e−ε2µ/2k for anyµ ≤
∑

i µi.

(b) If E(Xi|Fi−1) ≤ µi ≤ 1 for all i, thenPr[X > βµk] ≤
[

1
e(

e
β )β

]µ
for anyµ ≥

∑
i µi.

Proof. For part (a) we construct a family of independent 0-1 random variables{Y0, Y1 , . . . , Yn} such that
Yi ≤ Xi andE(Yi) = µi/k for all i. Then by part (a) of Chernoff bounds for anyµ ≤

∑
i µi we have

Pr[X < (1− ε)µ/k] ≤ Pr[
∑

Yi < (1 − ε)µ/k] ≤ e−ε2µ/2k.

Similarly, for part (b) we construct a family of independent 0-1 random variables{Y0, Y1 , . . . , Yn} such
thatk Yi ≥ Xi andE(Yi) = µi for all i. Then by part (b) of Chernoff bounds for anyµ ≥

∑
i µi we have

Pr[X > βµk] ≤ Pr[
∑

Yi > βµ] ≤
[

1
e ( e

β )β
]µ

.

Let us start with part (b). For eachi-vectorx = (x0, x1 , . . . , xi−1) ∈ [k + 1]i let us define the event

Ax := {ω ∈ Ω : X0(ω) = x0, X1(ω) = x1, . . . , Xi−1(ω) = xi−1}. (3)

Let us defineZx to be a 0-1 valued independent random variable with expectation

E(Zx) = (µi − px)/(1− px), wherepx := Pr[Xi > 0|Ax]. (4)

This is well-defined becauseµi ≥ E(Xi|Ax) ≥ px. Now let us defineYi as a 0-1 valued random variable

Yi := Yi(X0, X1 , . . . , Xi−1), whereYi(x) := 1{Xi>0} ∨ Zx.

To defineY0, for notational convenience setx = ∅, let Zx be an independent 0-1 random variable with
expectation defined by (3) withAx = ∅, and defineY0 = 1{X0>0} ∨ Zx. This completes the definition of
theYi’s. It remains to establish that these random variables have the desired properties.

Claim A.3. For all i we have (a)k Yi ≥ Xi and (b)E[Yi] = µi.

Proof. For part (a) note that ifXi > 0 then by definition ofYi we haveYi = 1 ≥ Xi/k. For part (b) note
that for anyi-vectorx = (x0, x1 , . . . , xi−1) ∈ [k + 1]i if the eventAx happens thenYi = 1 if and only if
Xi > 0 or Zx = 1. ThereforePr[Yi = 1|Ax] = px + (1 − px) Pr[Zx = 1] = µi.
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Claim A.4. Random variables{Y0, Y1 , . . . , Yn} are independent.

Proof. Fix some vectory = (y0 , . . . , yn) ∈ {0, 1}n+1. For eachi let us define

Bi = {ω ∈ Ω : Y0(ω) = y0, Y1(ω) = y1, . . . , Yi(ω) = yi},
αi = µiyi + (1− µi)(1− yi).

To prove the lemma we need to show thatPr[Bn] =
∏n

i=0 αi. To this end we will prove by induction oni
thatPr[Bi] =

∏i
j=0 αj for all i ≤ n. Indeed, fori = 0 this just follows from the definition ofY0. Suppose

the induction hypothesis is true for somei. Define the eventC = {Yi+1 = yi+1} and the set of vectors

{x = (x0 , . . . , xi) ∈ [k + 1]i+1 : Bi ∩ Ax 6= ∅}.

Note thatPr[C|Ax ∩ Bi] = αi+1 by the proof of the Claim A.3. Therefore

Pr[Bi+1] = Pr[Bi ∩ C] =
∑

x∈S

Pr[Ax ∩ Bi]× Pr[C|Ax ∩ Bi] = Pr[Bi]× αi+1,

and the induction step follows.

This completes the proof of part (b). For part (a), we proceed in a similar fashion; we borrow the
definitions of eventsAx and probabilitiespx. For eachi-vectorx = (x0, x1 , . . . , xi−1) ∈ [k + 1]i let us
defineZ∗

x as a 0-1 valued independent random variable with expectationE(Z∗
x) = 1 − µi/k px. This is

well-defined becauseµi ≤ E(Xi|Ax) ≤ k px. Now for i ≥ 1 we defineY ∗
i as a 0-1 valued random variable

Y ∗
i := Y ∗

i (X0, X1 , . . . , Xi−1), whereY ∗
i (x) := 1{Xi=0} ∧ Z∗

x,

and we letY ∗
0 = 1{X0>0} ∨ Z∗

∅ . This completes the definition of theY ∗
i ’s. It remains to prove the suitable

analogs of Claims A.3 and A.4, namely thatYi ≤ Xi andE(Yi) = µi/k for all i and that theY ∗
i ’s are

independent. The proofs are similar to those in part (b); we omit them here.

B Constructing high-expansion graphs

For an undirected graph, theexpansionis defined asmin |∂(S)|
|S| , where the minimum is over all nonempty

setsS of at mostn/2 vertices, and∂(S) stands for the set of edges with exactly one endpoint inS. We
can generalize this definition toweightedundirected graphs, or, equivalently, to symmetric non-negative
matrices: we just define∂(S) to be the total weight of all edges with exactly one endpoint inS. We can
further extend this definition to directed graphs (non-symmetric matrices) by considering the weight of all
edges leavingS.

For a pre-defined absolute constant,expanderis an undirected graph whose expansion is at least this
constant. Expanders are well-studied and have rich applications, see [27, 1, 29, 40] for more background.

The following is a standard result on expanders, e.g. see p. 10 of [11] for a proof.

Theorem B.1 (Folklore). Fix node setV . Suppose for each nodeu we choose three nodes idependently
and uniformly at random fromV , and create undirected links betweenu and these three nodes. Then the
resulting graph is an expander with high probability.

In a slightly stronger version of this theorem we select nodes from (and construct an expander on) any
given subsetQ of nodes, whereas we need the failure probability to be low in terms ofn, not the size ofQ.
Hence we createO(logn) links per node instead of just three.
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Theorem B.2. Fix node setV of n nodes, and a subsetQ ⊂ V . Suppose for each nodeu ∈ Q we choose at
least3 logn nodes idependently from a near-uniform distribution onQ, and create undirected links between
u and these nodes. Then the induced graph onQ is an expander with high probability.

For this paper we need a somewhat more complicated version of Theorem B.2 where the edge selection
is not quite independent:

Theorem B.3. Fix a setV of n nodes, and a subsetQ ⊂ V where the nodes are numbered from1 to |Q|.
Suppose for each nodei ∈ Q we choose at leastk = 3 logn nodes at random from a setQi containingQ,
and create directed links betweenu and these nodes. Let us denote thesek nodes byXi = (Xij : j ∈ [k]),
where we treat theXij ’s asQi-valued random variables. LetGQ be the induced directed graph onQ. We
characterize the joint distribution ofXij ’s as follows:

• for every fixed nodei, random variablesXij , j ∈ [k] are independent.
• each random variableX1j, j ∈ [k] has a near-uniform distribution onQi.
• for eachi ≥ 2 each random variableXij , j ∈ [k] has a near-uniform distribution onQi conditional
on any given values of the random vectors(Xl : l < i).

Then:
(a) with high probability graphGQ is a (k, γ)-quasi-expander, for a constantγ.
(b) if Qi = Q for all i, then with high probability the undirected version ofGQ is an expander.

The proof of Theorem B.3(b) follows that of Theorem B.1, except we use Theorem A.2 instead of the
standard Chernoff bounds.

C Random node selection in a network

An undirected versionof a directed graphG is an undirected graph on the same node set, possibly with
multiple edges, where each directed edgeuv ∈ G is replaced by an undirected edgeuv.

Definition C.1. A directed graphG = (V, E) is a(d0, γ)-quasi-expanderif it has the following property.
Take any subsetS ⊂ V such that each node inS has out-degree at leastd0. Let ES be the set of edges
entering or leaving the nodes inS. Then there exists a constant-degree expander on node setV \ S, with
edge setE∗, such that the undirected versionGS of the graph(V, ES ∪ E∗) has expansion at mostγ. Call
this undirected graphGS an(d0, γ, S)-extensionof G.

Theorem C.2. LetG be a directed graph on ann-node setV ; let G∗ be its undirected version. Fix nodeu
and consider a subsetQ ⊂ V Suppose that:

• for some(d0, γ) graphG|Q is a (d0, γ)-quasi-expander,
• after pinging any nodev ∈ V , nodeu can, at unit cost, determine whetherv ∈ Q.
• nodeu knows numbersd ≥ deg(G∗), dQ ≥ deg(G∗|Q), t ≥ (dQ/γ)2 (logn) andd0.
• nodeu is given arandom seed: an address of some node.

Then for anyk0 ∈ N there exists a randomized(u, G, G∗)-distributed algorithm such that:

(a) if deg(G|Q) ≥ d0 then nodeu acquires addresses ofk0 nodesXi ∈ Q, where theXi’s are indepen-
dent random variables with a near-uniform distribution onQ; we say that the algorithmsucceeds.
Else the algorithm either succeeds or aborts.

(b) The total running time and the load on nodeu are O(k0dt). The load on ry other nodew is at most
O

(∑
wv∈G Zv

)
, whereZv is 1 if nodev is ”visited” by algorithm, and0 otherwise,3 in particular it

3For each nodev, the algorithm either does not touch the list ofG-neighbors ofv, or reads the entire list at once. In the latter
case we say that the algorithmvisitsnodev.
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is 0 for all v 6∈ Q. If the random seed was selected independently from a near-uniform distributionτ
on Q, then in the probability space induced by the algorithm andτ , E(Zv) = O(k0t/|Q|) for each
v ∈ Q.

We omit the proof from this version of the paper.
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