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Abstract

A number of recent papers in the networking community study the distance matrix defined by the
node-to-node latencies in the Internet and, in particular, provide a number of quite successful distributed
approaches that embed this distance into a low-dimensional Euclidean space. In such algorithms it is
feasible to measure distances among only a linear or near-linear number of node pairs; the rest of the
distances are simply not available. Moreover, for applications it is desirable to spread the load evenly
among the participating nodes. Indeed, several recent studies use this 'fully distributed’ approach and
achieve, empirically, a low distortion for all but a small fraction of node pairs.

This is concurrent with the large body of theoretical work on metric embeddings, but there is a fun-
damental distinction: in the theoretical approaches to metric embeddings, full and centralized access to
the distance matrix is assumed and heavily used. In this paper we present the first fully distributed em-
bedding algorithm with provable distortion guarantees for doubling metrics (which have been proposed
as a reasonable abstraction of Internet latencies), thus providing some insight into the empirical success
of the recentvivaldi algorithm [7]. The main ingredient of our embedding algorithm is an improved
fully distributed algorithm for a more basic problem wiangulation, where the triangle inequality is
used to infer the distances that have not been measured; this problem received a considerable attention
in the networking community, and has also been studied theoretically in [19].

We use our techniques to extendelaxed embeddings and triangulations to infinite metrics and
arbitrary measures, and to improve on the approximate distance labeling scheme of Talwar [36].

1 Introduction

A number of recent papers in the networking community study the distance matrix defined by the node-to-
node latencies in the Interrdde.g. [9, 13, 8, 20, 37]) and, in particular, provide a number of quite successful
distributed approaches that embed this distance into a low-dimensional Euclidean space [30, 7, 32, 5, 25].
In such algorithms it is feasible to measure distances among only a linear or near-linear number of node
pairs; the rest of the distances are simply not available. For instance, the Global Network Posit&iRg (
algorithm of Ng and Zhang [30] uses theacon-basedpproach where a small number of nodes ('beacons’)

are selected uniformly at random in the network so that every node only measures distances to the beacons.
Using only these measurements (and allowing some processing at the be@biiejnpirically achieves

low distortion for all but a small fraction of node pairs.

*Preliminary version of this paper has appearetléth ACM-SIAM SODA2005
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For Internet latencies the triangle inequality is not always observed; however, recent networking research indicates that severe
triangle inequality violations are not widespread enough so that the node-to-node latencies can be usefully modeled by metrics.



The drawback of the beacon-based approach is the high load placed on the beacons. Ind&eaidihe
algorithm [7] and other works [32, 5, 25] that follow&NP provide embedding algorithms with similar
empirical performance where the load everynode is small; here the load includes computation, commu-
nication, storage and the completion time. Informally, we call such algorittuthsdistributed It is an
important challenge to find provable guarantees for these fully distributed embedding algorithms.

Distributed metric embeddings As pointed out by Kleinberg et al. [19], the above Internet-related setting
gives rise to a new set of theoretical questions not covered by the existing rich theory of algorithmic metric
embeddings (e.g. [18]) where a full access to the distance matrix is assumed and heavily used. In particular,
in the embedding algorithm of Bourgain [3] and Linial et al. [26], the coordinates are formed by measuring
the distance from a point to set these sets can be as large as a constant fraction of nodes in a way that
would not be feasible to implement for all nodes in the context of Internet.

Itis easy to see that a beacon-based embedding cannot guarantee good dista@tiomda pairs [19].
Accordingly, [19] formulated the notion of-relaxed embeddinghere for each node there are at least
(1 — e)n node pairsuv such that the.v-distance is embedded with the given distortion. To provide some
theoretical insight into the empirical successaIP, [19] came up with beacon-based algorithms that (for
any fixede > 0) use a small number of beacons and provably compute a low-distertiglaxed embedding
into low-dimensional,,, p > 1 as long as theoubling dimensiomf the metric is small.

Here the doubling dimension of a metric is defined as the smallesth that every ball can be covered
by 2% other balls of half the radius (see [2, 12]); a metric with this property is also cafletbublingor just
doublingif % is a constant. Doubling metrics, which generalize the distance matrices of low-dimensional
point sets inL,,, have been studied recently in the context of metric embeddings, nearest neighbour search
and other problems [12, 24, 36, 23, 22, 19, 28, 4]. At the same time, several recent studies suggest the
bounded growth rate of balls as a useful way to capture the structural properties of the Internet distance
matrix (see e.g. [34, 8, 30, 31, 41, 15]).

Our contributions: In this paper we settle a question left open by [19]: we show that there exists a
fully distributed algorithm that embeds a doubling metric into a low-dimensional Euclidean space with
low distortion, thus providing the first provable guarantees for the fully distributed embedding problem
introduced in the networking community. Specifically, givensatioubling metric, our algorithm computes
ane-relaxed embedding into anfy,, p > 1 with distortion and dimensiotfi(e, s), so that the per-node load
is at mostf (e, s)(logn)?*, wheren is the number of nodes. The main technical ingredient of our algorithm is
a fully distributed triangulation algorithm that improves upon the one in [19] and is of independent interest;
we discuss it next.

We assume that the network provides the following functionality. Firstly, every node can, at unit cost,
communicate with (and, in particular, measure distance to) any other node given its ID. Secondly, every
node can select a node ID independently and uniformly at random among all nodes in the network [21, 38].
Such operation induces load on multiple nodes; to account for it, let us assume that when each node selects
one random node ID, this induces a per-node load®fn). We call such networksar-addressable

Distributed triangulation  Predating th&sNPalgorithm, in the networking literature there were the IDMaps [9]
of Francis et al., and several other beacon-based approaches [17, 13, 20] that used the triangle inequality to
infer the distances that have not been measured. In particular, in [17, 18)tdistanced,,, is estimated
by min(d,; + du»), Where the minimum is taken over all beacéns
With this motivation in mind we define iangulation of orderk as a labeling of the nodes such that a
label of a given node consists of upper and lower bounds on distances ftidimeach node in a s&t, of
at mostk other nodes; for eache S,, we denote these bounds m/:b andD_, respectively [19]. Then any
two nodesuv can exchange their labels and use the triangle inequality to upper-bouna-tthistance by



Dy, = min(D}, + D},), and lower-bound it byD,;,, = max(D_, — D/,, D,, — D), where themax and
min are taken over ah € S,,NS,. An (¢, §)-triangulationis a triangulation such thd®;!, /D, < 1+ for
all but ane-fraction of node pairswv. Note that either bound can be seen &s$ a §)-approximate estimate
on theuv-distance, and, moreover, these bounds provide a "quality certificate” for the estimate.

An (e, d)-triangulation of ans-doubling metric can be achieved if each node measures distances to
f(e, 0, s) beacons selected in advance uniformly at random in the network [19]. Moreover, for a uar-
addressable network the same paper obtains such triangulation by a fully distributed algorithm with a per-
node load at most e, 4, s)(logn)?1°2%) Actually, this algorithm provides somewhat stronger guarantees:
for each node: the desired triangulation property holds for at le@st- ¢)n node pairsuv; we call it a
strong(e, d)-triangulation.

Our contributions:we improve the per-node load for a stroftgd)-triangulation tof (e, d, s) (logn)?.

Distance labeling We extend our techniques to obtain approximate distance labeling schemes [10] for
doubling metrics. Specifically, for any fixedl > 0 we obtain a(0, §)-triangulation of orderO(log? n)
(which is of independent interest) and convert it tola+ §)-approximate distance labeling scheme with
O(log® n)(logn +loglog A) bits per label, wher@\ is the aspect ratio of the metfcWe show that it is the

best possible dependence An SinceA can be arbitrarily large with respect tq this improves over the
labeling scheme of Talwar [36] that us€glog A) bits per label. Moreover, in our labeling scheme, unlike
the one in [36], given the labels far andv we can not only estimate thev-distance but also verify the
guality of this estimate.

Our techniques In a fully distributed triangulation algorithm each nodeonly measures distances to a
small set of other nodes, called theighboursof u. In [19] these neighbours are simply selected uniformly

at random in the entire network, whereas in this paper the neighbour selection is much more elaborate and,
in fact, is the key ingredient of our algorithm. In particular, we make sure that in any ball of sufficiently
large cardinality and radius any two points are connected by a neighbour-to-neighbour path that has at
mostO(logn) hops and metric lengt®(r).

Since the set of neighbor pairs can be seen as an overlay network, our construction is similar in spirit to
the overlay topologies constructed for locality-aware distributed hash tables and distributed nearest neighbor
selection (e.qg. [34, 16, 15, 41]), most notably to the topology constructed in [39]. However, our construction
is quite different on the technical level since it is designed to yield provable guarantees on doubling metrics,
and is tailored to the specific problem of triangulation.

After the neighbours are selected, some nodes elect themselves as virtual beacons and propagate this
information using a neighbour-to-neighbour gossiping. The gossiping protocol ensuresitti@it any
new distance measurememi@ch node gets bounds on distances to beacons that are sufficient to simulate a
beacon-based triangulation of the desired quality. This protocol is more complicated than the one in [19];
its performance relies on the "quality” of the set of neighbour pairs produced by our algorithm.

To extend our triangulation to an embedding we simulate a beacon-based algorithm which builds on the
techniques of Bourgain [3] and Linial et al. [26]. The analysis is considerably more difficult since instead of
the actual distance function we use the upper balrdfrom the triangulation, which is not necessarily a
metric. In particular, in our prooD™ cannot be replaced by an arbitrary function that approximately obeys
the triangle inequality: it will be essential that" is close to the specific metric. Moreover, our embedding
algorithm has to use the same set of virtual beacons as our triangulation algorithm.

2The conference version of this paper erroneously clai@éag?® n)(log log A) bits per label.



Extensions and related work For infinite metrics the notion of-relaxed embedding is not well-defined;
we redefine it with respect to an arbitrary measurand call it an(e, p)-relaxed embeddingso that an
e-relaxed embedding i&, p1)-relaxed with respect to a uniform metrig. We show that for any infinite
complete doubling metric space with an arbitrary meagutieere exists arfe, 11)-relaxed embedding into
anyL,, p > 1 with finite dimension and distortion. We also obtain similar guarantees for triangulations.

We have already discussed the connection of our work to distance labeling. It is also related to the work
on property testing in metric spaces (see [35] for a survey); however, this work considers problems quite
different from what we study here, and makes use of different sampling models and objective functions. Fi-
nally, our use of triangulation corresponds to the notiotriaihgle inequality bounds smoothirig distance
geometry [6], but our setting is different.

Preliminaries Denote theuwv-distance byd,,,. Letn be the number of nodes. Call a set of node pairs a
e-densdf for each nodeu it contains at leastl — ¢)n pairsuv. Let B, (r) be a ball of radius- aroundu;

by default all balls are closed. Lef,(¢) be the smallest radiussuch thatB,, () contains at leastn points.

For everyr > 0 denote the s€tr] := {0,1,2...[z] — 1}.

Letn be the cardinality oi/, and letonis be the uniform distribution of¥'. Say a distributiorr onV is
near-uniformif ||oynit — 7|jco < % We can define near-uniform distributions on any given subset of nodes
in a similar fashion.

Some of our guarantees aréth high probability, which in this paper means that the failure probability
is at mostl /n¢, for a sufficiently high constarnt

Organization of the paper. in Sections 2 we present our triangulation algorithm; we extend it to embed-
ding in Section 3. The neighbour selection scheme is deferred to Section 4. Extentions to infinite metrics
and distance labeling are described in Sections 5 and 6, respectively. Some relevant facts on tail inequalities
and expander graphs are placed in Appendix A and Appendix B, respectively. A useful theorem on random
node selection in a network is stated in Appendix C.2.

2 Fully distributed triangulation

Throughout the paper we will assume that the distance function is a metric. For simplicity we define a
per-node load in terms of computation, communication and storage; communication includes pings used for
latency measurements. Specifically, say a distributed algorithm impose$ loac given node if during
the execution this node stores, sends and receives atknitst, and computes for at moktcycles.

We start with a fully distributed algorithm for strorig, ¢)-triangulation.

Theorem 2.1. Consider a uar-addressable network with ardoubling distance metric of aspect rati.
There is a fully distributed algorithm that for any givefa, J, s) with high probability constructs a strong
(e, §)-triangulation of order at mosO(xz logz), z = 1s9U°s1/9) For this algorithm, the per-node load is
at mostO(z log? n + T'), whereT = s°(1) 10g® n. The total running time i$)(z log? n + T'log A).

Each node: stores the addresses of, and distances to (a small number of) other nodes, which are called
the neighboursf «. A pair of neighbours can be treated as an undirected edge. We call agigtibour-
only if each edge in the path corresponds to a pair of neighbours. A path is eallddscopingf its i-th
hop has length at mo&t-/2? (so that the total metric length of the path is at mdst. A uv-path is called
(r, k)-zoomingif for some intermediate node the subpathsw andvw arer-telescoping and consist of at
mostk hops each. The séf of edges is ar-frameif for any ball of size at leasin and radiug- any two
points in this ball are connected by(&r, logn)-zooming path inE. The crux of our algorithm is a fully
distributed way to select neighbours so that the neighbour pairs for¥frame.
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Theorem 2.2. Consider a uar-addressable network with ardoubling distance metric of aspect rati.
There is fully distributed algorithm that for any > 0 selects neighbours so that with high probability the
set of pairs of neighbours is anframe, and each node has at mast!) O(log? n + L logn) neighbours.
The per-node load is mo&(L s°M log? n +T'), whereT = s°(1) 1og® n. The total running time is at most
O(L s9%Wlog?n + T'log A).

We defer the proof of this theorem to Section 4 and proceed with the rest of the algorithm. Once
the neighbours are selected, some nodes elect themselves as beacons, and use broadcasting to announce
themselves to the network. This is our basic broadcasting protocol.

Lemma 2.3. There is a broadcasting protocol such that any nadean broadcast a messagdé,., which
reaches a given node via gm, k)-zooming neighbour-only path whenever such path exists. During such
broadcast every node storé¥ k) bits, and every pair of neighbours exchanges at nid&t) messages.

Proof: First let's specify the protocol. Node sends a messadé,,, (1) to all neighbours within distance

r. If some node # u receives a messagdé,,« (i), it does the following:

e If i > 0 andv does not store any/,,,.(-) then for eacly, 0 < j < k it forwards M, (1 — j) to all
neighbours that lie within distaneg/2/.

e If 0 < |i| < k andv does not storéd/,, (i), v saves it and then, if the inequality is strictforwards
M1 (i + 1) to all neighbours that lie within distaneg’2/’l from v.

This completes the specification. Itis easy to see that the storage and the number of messages exchanged are
as required, and that the messages propagate &ohiyzooming paths. If. andv are connected by such a

path, then by definition there exists aftelescoping.w path P, and an--telescopingw path P, of length

at mostk each. Then using induction @rone shows that theth node ofP; will receive M, (1 + i), and

then similarly that the-th node of P, will receive M., (1 — ). O

Recall that we are given arbitrafy, 6) and we'd like to construct a strong, J)-triangulation. Letting
¢ = €521°8% /(25), we select neighbours using the algorithmin Theorem 2.2 so that the set of neighbour pairs
is ane’ /2-frame. In particular, every nodewill have N = ©(logn) /¢’ neighbours selected uar in the entire
network, call them thelesignated neighbours af. Then every node elects itself aba@aconndependently
at random with probabilityVpead/ 7, Where Npeacis the desired number of beacons which we will specify
later. Once self-elected, each beadamnounces itself by broadcasting the mess&gé, r;, logn) as in
Lemma 2.3, where, is the(¢’N/+/2)-th smallest distance fromito its designated neighbours.

Whenever a node receives a messagdy,. from a beacorb via a path of lengthe, this message
certifies thath lies within distancer from «; accordingly, node: updatesD:b if necessary. Moreover, it
sends a messag¥l/’(b, x) to every nodev such thatu is a designated neighbour of For nodev such
message certifies thdly, lies within d,,, + x; accordingly,v updatesD;'Eb if necessary. This completes the
algorithm.

During the broadcasting phase of this algorithm, every pair of neighbours exchanges & (ugst)
messages per each beacon. Lettipg= r,(€¢'), the quality of the boundﬁfb is as follows.

Claim 2.4. Whp every node forms, for every beacoh boundsD;tb that lie withind,;, == O(ry).

Proof: Fix a nodeu. Since the ballB,(r,(¢'/2)) has size at leastn/2, with high probabilityu has a
neighbour in it, call itv. Since by Chernoff bounds with high probability(¢’/2) < r; < ry, by definition
of e-frame there exists afr;, logn)-zoomingbv-path. By Lemma 2.3 a message frémwill reachv by
traversing such a path (call#), and therv will send M’ (b, x) directly tow, wherez is the metric length of
p. Upon receiving this message will bound d,;, by d,, + x. The claim follows since: is at mostO(r}),
andd,, lies withind,, £ . O



Let Npeac= (logn) /€. In [19] it was proved that for ae-dense set of node paita there is a ballB
of radiusdd,,,, either around: or aroundv which has cardinality at leastn; say this is a ball around. In
particular, with high probability this ball contains a beacon, cabl iThenB;,(2r,) containsB, hence has
size at leastn, sor, < 2r, < 2dd,,. Therefore (omitting some details) by Claim 2.4 nodesndv can
used:, andd, to boundd,,, by d,, + O(éd,,) as desired.

This gives an stronge, J)-triangulation of ordei®( Npead. With some more work we can makéyeac
independent of:: setNyeac= O(s3/¢') log(s/€’) and use Lemma 5.2 to guarantee that with high probability
every ballB,(6r,) contains a beacon. Then, as before, foeatense set of node paita, nodesu andv
can boundi,, by d,, = O(dd,,) as desired. This completes the proof of Theorem 2.1.

3 Fully distributed embeddings

In this section we extend the algorithm from Section 2 to a fully distributed algorithm that computes an
e-relaxed embedding into ank,,, p > 1 with dimension and distortion that depend only @ns), not onn.

Theorem 3.1. For a uar-addressable network with andoubling distance metric there is a fully distributed
algorithm that for any giver(e, s) with high probability constructs ar-relaxed embedding into ang,,

p > 1 with distortionO(log k) and dimensiot© (k log k), wherek = (£)©O(loglos(s/9) n this algorithm the
per-node load and the total completion time are at mO$k? log® n).

Fix (e, s), and fix a constant to be specified later. Note that there exists: (£)©(°glos(s/<)) such that
for 6 = ¢/ logk the algorithm in Section 2 with high probability computes @nd)-triangulation with at
mostk and at leasf)(k) beacons; the proof is a simple but tedious computation which we will omit.

The high-level algorithm is simple. First we lét= ¢/ logk and compute afe, J)-triangulation using
the algorithm from Section 2. Then the beacons measure distances to one another and broadcast them to the
entire network using a uniform gossip [33]; in this phase each beacon broadcasts one message(éf size
the total per-node load being at m@3tk? log n). Upon receiving this information nodes update the bounds
D™ on their distances to beacons accordingly, by running a shortest-paths algorithm. (Note that in this step
D can only decrease, but not below the true distance; in particular, Claim 2.4 still holds.) Finally, run the
embedding algorithm in Theorem 3.3 of [18h the same beacon seising the upper bounds™ instead of
the latent true distances to the beacons.

Our proof outline follows that of Theorem 3.3 of [19]: first we bound the distortion on node-to-beacon
distances, then use those to bound distances between other node pairs. The details are very different, though,
since we are embedding™ which is not necessarily a metric. In particular, in our préf is more than
just a function that approximately obeys the triangle inequality: it it will be essentialHais close to a
specific metric, as expressed by Lemma 2.4. we will use this lemma to reason about the embedded distances
to beacons, which is why we use the same set of beacons for both triangulation and embedding.

For completeness let's restate the embedding algorithm (which is adapted from [19] and is closely re-
lated to the algorithms of Bourgain [3] and Linial et al. [26]). L&.acbe the beacon set from the, §)-
triangulation; for simplicity assume there are exadtlpeacons. For eache [log k] choose© (k) random
subsets 0fSpeac Of Size 2! each; letS;; be thej-th of those. These subsets are broadcasted to the entire
network using a uniform gossip [33]: one message of §i&?) is broadcasted, incurring a per-node load
at mostO(k?logn). Then every node: embeds itself intal, so that each dimensioiy is defined as
D*(u, Sij)/O(k), whereD* (u, S) is the smallesD;f, such that € S.

Note the differences with the algorithm of [26]. Firstly, the beacon Sgtaire sampled fronSheao NOt
from the entire network. Essentially, we emb$d,cusing the algorithm of [26], and then embed the rest of
the nodes using the same beacon sets. While embedgingwe useO (k) beacon sets of each size scale,
notO(log k) as [26] does. This is necessary to guarantee the following claim from [19]:
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Claim 3.2. with high probability for any: € [log k] and any pair of disjoint subsetS, S’ C SpeacOf Size at
leastk/2¢ and at mosRk /2%, respectively, it is the case that at leddtk) setsS;; hit S and missS’.

Then, lettingd,,, be the embeddedv-distance, we can bound the embedded node-to-beacon distances:
Claim 3.3. Whp for each node and every beacohwe havel,, < d,, < O(logk)D,.

Now, as we saw in the proof of Theorem 2.1, with high probability foreadense set of node paits
there is a beacoh within distance6dd,,,, from u or v (say, fromv) such that, < 12dd,,. Therefore by
Claims 2.4 and 3.3 we have

(1 —66)dy, < d., < O(logk)dy,

andd!, < O(logk)dd,, so it follows that
duw/2 < dyyy — dyy, <y < iy + dyy, < O(log )y

as long as the constanthat defines is small enough.

To complete the proof of Theorem 3.1 it remains to prove Claim 3.3. For simplicity consider the case
p = 1 first. For a node sef and any painwv of nodes defined}!, (S) = |D* (u, S) — Dt (v, S)|. Then the
embedded.v-distancel,,, is equal to the sunY_ D/, (.S;;) over all beacon setS;;. In order to establish the
desired upper bound afj, it suffices to prove that if. is a node} is a beacon and is a set of beacons then
D,(S) < 2D, 1twill follow by a standard argument from the following claimb;,, — D}, | < 2D, for
any two beacons, b'.

Let's prove this claim. Consider the beadgnthat is closest ta with respect taD™; letx = D™ (u, b,)
andy = d(¥', b,). The beacons measure distances to each othéd,'so= d;y. Nodeu has updated,
according to these measurements, so it is at masy; obviously, it is at least;;, which is lower-bounded
byy —z. ThereforqD:, — y| < z, so, completing the proof,

|D:b/ - D;E)/| < |y - dbb’| + |D:b’ - y| < d(b7 bu) +x < dbu + 2z < BDII)

It remains to establish the lower bound in Claim 3.3, which we will accomplish by a version of Bour-
gain’s telescoping sum argument. L&t(r) be the set of beacorissuch thatD:b < r. For a fixed node;
and beacom, let p; = min(p,(7), pu(7), du/2), Wherep, (i) is the smallest such thatS, () contains at
leastk/2° beacons.

We claim that for each giventhe sumX; = 3. D, (S;;) is atleast2(k)(p;—1 — p;). Indeed, fixi and
without loss of generality assume thai(i) < p,(z). Note that the set§ = S, (p;) and the interiorS’ of
Sy(pi—1) are disjoint since if a node belongs to botts and.S’ then

dub < duv + dbv < D;_v + D;;) < pi+ pi-1 < duba

contradiction. Therefore by Claim 3.2 with high probability for eacit least(k) setsS;; hit S and miss
S’, thus contributing at leagt,_; — p; each toX;. This proves the claim.

Let¢ = [log k] and note that by definitiop,(t) = 0 (sinceS,(0) contains at one beacon, namély
itself), sop; = 0. Summing up theX;’s we getd,, > Q(k)(p1 — pt) = Q(k)d,, as desired, as long as
p1 > dyy/4. Now suppose, < d,;/4 and assume that, (1) < py(1) (the casep, (1) > py(1) is treated
similarly). Then the set§ = S,(dw/4) andS” = Speac\ S are disjoint and have size at least2 and at
mostn /2, respectively. Therefore by Claim 3.2 with high probability at le@gk) setsS,; hit S and miss
S’, thus contributing at lead?;!, /2 = Q(d,,;) each toX;, so thatd!, > Q(k)d,, as desired. This completes
the proof of Claim 3.3 fop = 1. We can extend it to general > 1 following [26]; we omit the details.
This completes the proof of Theorem 3.1.



4 Finding good neighbours

In this section we discuss our neighbour selection algorithm and prove Theorem 2.2. We start with an
overview. On the very basic level our algorithm will only guarantee properties that are local to every given
node; we call theninvariants. To prove that we indeed construct aframe we will need to "connect” these
invariants via certain global structures. First for every lialwe establish such a structure — essentially, a
nesting sequence of balls with lots of nice properties. Then we will define the invariants and show that if they
hold andB is large enough then every node in every ball in the sequence will have a neighbour in the next
ball of the sequence; this (denoting the radiugiby r) will guarantee the requirer, logn)-zooming
neighbour-only path connecting every pair of node®inFinally, we will specify the algorithm and prove
that it satisfies the invariants.

Now we will describe the proof in detail. Assume the metrigigdoubling.

Definition 4.1. A subset of a balB,,(r) that contains the corresponding open ball and at least one boundary
point is called d&uzzy ball For any such balB and a scalax > 0, define a shorthandB := B, (ar). A
fuzzy ball B is called(«, 5)-paddedaB| < s°|B].

Lemma 4.2. For any fuzzy ballB there exists 416, 5)-padded fuzzy balB* such that
32B* C 2{: B and |B*| = [ |B|/8s" . (1)

Proof. Suppose not. Let = |B| and letu be the center oBB. Consider the smallest ball aroundthat
has cardinality at least/8, call it B, (). By the doubling property of the metrid3,(r) can be covered
by s° balls of radius-/32. At least one of them, centered at (say)has cardinality at least/(2s°); note
thatd,,, < g—gr. A fuzzy ball around’ of cardinality exactly[=/(8s°)] (call it B’) has radius at most/32;
obviously, B, (r) lies within Bu(211—6r). ThereforeB, (r/2) has cardinality at least/8, since otherwises’
is (16, 5)-padded, contradiction.

Iterating this argumenttimes, we come up with a nodesuch that/,,, < g—gr@ —27%) and either there
is a (16, 5)-padded fuzzy(v, r/2¢+4)-ball which is zooming with respect tB, or B, (r/2¢) has cardinality
at leastz/8. However, the latter cannot be true wheis large enough, e.g. whery2 is less than the
minimal distance. O

If two fuzzy balls B and B* satisfy (1), let us say tha®* is zooming with respect t&. The constan®
in (1) is tailored to the forthcoming arguments.

A sequence of fuzzy balls is callembomingif each ball is zooming with respect to the previous one,
and the last ball consists of only one node. By the above lemma, for anjglih#ire is a zooming sequence
o(B) of (16, 5)-padded fuzzy balls starting with a balt* which is zooming with respect t&. Every
nodew will select enough neighbours independently and uniformly at random from the entire network so
that if B contains at leastn nodes then with high probability has a neighbour iB*. Our neighbour
selection algorithm will make sure that for every sughevery node in every ball in the sequenod3) has
a neighbour in the next ball of the sequence. Since the last ball#) consists of a single node, for any
nodesu, v € B this gives (letting- be the radius o) an—Gr-teIescopinng- andvw-paths of length at
mostlog n each, as required.

We distinguishout-neighborsaandin-neighbors nodew is an out-neighbor of node if and only if v is
an in-neighbor ofu. Two nodes are neighbors if and only if one is an out-neighbor of another. Each node
u selectss’k /e global out-neighbours independently and uniformly at random from the entire network,
incurring a per-node load aP(2 s log?n). Moreover, node: will have local out-neighbors that are
distributed on smaller balls around Let us say that node is a global/local in-neighbor of nodeif v is a



global/local out-neighbor of.. Note that by Chernoff Bounds with high probability every node has at most
O(1s°®M logn) global in-neighbours.

Local neighbors of node are partitioned into some numbgr < logn levelsnumbered), 1,2, .. .,
so that for eachi € [l,] there are exactly: level- neighbours; heré = c s'® logn, where the constant
is large enough to use the Union Bound where appropriate. All lemeighbors of node: are contained
in some ballB,; := B,(pu.:), Wherep,; is thecharacteristic radiusspecified by the algorithm. By abuse
of notation we will also callB,; the i-th level of nodeu. Level) neighbors of each node are selected
independently and uniformly at random from the entire network; accordingly, we,get A. We will
maintain the following invariant:

Invariant 1. For every levelB,;, ball By; is (2, 5)-padded andBy;| < 3|B(, ;—1)|-

Our construction is highly randomized. To analyze it, we consider the probability space induced by the
random choices in the construction. In particular, intuitively we would like all lewveighbours of a given
nodew to be distributed independently and uniformly (or near-uniformly) in the correspondingfhall
What we actually ensure is a somewhat weaker condition, which however suffices for our purposes.

Essentially, we condition on levels with larger characteristic radius. We treat each leeigjhbor of a
given nodeu as a random variable distributed on the corresponding®gll For eachy € [log A] let us say
that thestage; levelsare those with characteristic radii in the interyal/27, 2 x A/27). Let F*"Sbe the
family of all random variables corresponding to neighbors in sta@gsels. For convenience let us define
Fers — ),

Invariant 2. For eachj € [log A], the familyF7*"sis conditionally independent giver;; F/'°'. More-

over, if random variableX ¢ ]-";.‘brs corresponds to a levelneighbor of nodes, then givenJ, ; 71" this
X has a near-uniform distribution on the corresponding ba&|;.

Let us bound the number of local in-neighbors using the above invariants.

Claim 4.3. If Invariants (1-2) hold then with high probability every node has at mo$s°(!) log? n) local
in-neighbours.

Proof. Fix a nodeu and define the family of levels
Fu:={alllevelsB,; : i’ > 0,w € V,u € By }.

Let us treat the levels itF,, as balls. For each € [logn] let F,; be the family of balls fromF,, that have
cardinality in the interva(2?, 2¢*!]. Let B* be a ball inF,,; with the largest radius. Thel3* contains the
centers of all balls itfF,,;. SinceB* is (2, 5)-padded andF,,; contains at most one ball with a given center,
it follows that| F,;| < s°2¢L. Therefore

>oyIBI=Y > 1/|Bl <Y [ Fuil /2 < 25 logn. (2)

BeF, i BeFui i

So the expected number of non-global reverse neighboutsisfat most2ks®logn. Using generalized
Chernoff bounds (Theorem A.2) we get the desired high probability result. O

While Invariants (1-2) specify the properties of the levels once they exist, we also need guarantees as to
when they actually exist. To formulate those, we need a few definitions.

Definition 4.4. Call level B,; healthyif for any v € B,,; the smallest balB,,; such thap,; > min(2p,;, A)
has cardinality at mosis'® times that ofB,,;.



Definition 4.5. Say a ballB centered at node is friendly for a ball B" if /8 < |B| < z, wherez is the
cardinality of the smallest ball aroundthat contains3’.

Invariant 3. If level B,; is healthy then for any2, 5)-padded ballB C B,,; aroundu of cardinality at least
1/(2s') that of B,; there is a friendly leveB,,, .,.

Before fully specifying the algorithm, we will show that if the invariants are satisfied then the required
neighbour-only paths exist. As we have seen, it suffices to prove that with high probability for aryyball
of size at leastn, every node in every fuzzy ball in the sequergd3,) has a neighbour in the next fuzzy
ball. Note that although there can be exponentially many fuzzy balls, only a polynomial number of them is
used in sequences By), SO we can achieve a high-probability result just by increasing the constant in the
definition of k.

Leto(By) = (Bj, B3, B, ...) and letB; = 24 B; for all i. Note that each balB; is (7, 5)-padded and
the sequenceBy, B, Bs, . . .) is nesting; the latter can be seen by induction on the length of the sequence.

Claim 4.6. If Invariants (1-3) hold then with high probability for eachand every € B; there is a healthy
level B, .y which is friendly forB;.

Proof: we will use induction on. For the base case consider some B;. By Invariant (3) there exists a
level B, ., friendly for B;. This level is healthy sinc&,; has cardinality at least,. For the induction step,
assume the claim holds for sontg, and letv € B; . Then by induction hypothesis there is a levg);
which is healthy and friendly foB;. Note that, letting: = | B}|, the cardinality ofB,; is at mostzs°.

The smallest balB aroundv that containsB;; is (2, 5)-padded. (Indeed, letting; .1 = B,(p) and
B = B,(r), we haver < 2p and thereforeB,(2r) C B, (5p) is small enough.) SincgB| > |B;y1| >
%x/s5, applying Invariant (3) ta3,; shows that ifB C B,; then (sinceB,; is healthy) there is a leveb,,
friendly for B. If B ¢ B,; thenB,; C B and (since it is easy to see thatC B;) level B,; itself is friendly
for B. So there is a leveB,;, [ > j that is friendly forB, and hence friendly foB; ;.

It remains to show thaB,; is healthy. Fixw € B,;. SinceB,; is contained inB; 1 and has cardinality
atleastz/(8s”), it suffices to find a leveB|,, ., of cardinality at most:s® such thap,,; > 2r. Sincew € B;,
applying induction hypothesis yields a lev8),; which is friendly for B;, hence has cardinality at most®
and at least:/2. Now, sinceB; 1 = By (p) is (7,5)-padded and,,(2r) C B,(3r) C B,(7p), it follows
that|B,,(2r)| < s°|Bf 1| = 2/2 < |But|, SOput > 2r. ThereforeB,, is the required level. O

Claim 4.7. If Invariants (1-3) hold then with high probability in each bal; every nodev € B; has a
neighbour in the ballB;, ;.

Proof. Fix v € B;. Recall thatB; C B;_;. By Claim 4.6 sinces € B;_; there exists a leveB,; which is
friendly for B;_;. We claimthatB; | C B,;.

Indeed, letB be the smallest ball aroundthat containg3;. SinceB;.1 C B; C B, it suffices to prove
that B C B,;. First, note thatB C 2B; C 4% B;. Since fuzzy ballB; is (16, 5)-padded, it follows that
|B| < s5|B}|. SinceB; is zooming with respect td;_;, we have| Bf| < |B}_,|/8s°. Since ballB,; is
friendly for ball B;,_;, we have|B'|/8 < |B,;| < |B'|, whereB' is the smallest ball around containing
B;_1. Putting it all together,

|B| < 5° |Bf| < |Bi_1|/8 < |B'|/8 < | Byl.

SinceB andB,; are balls around the same node, it follows tBat_ B,;, claim proved.
Moreover, it turns out thab;; is a sufficiently large subset @,,;:

|Buj| < |B'| < [2Bi1| < 5°|Bia| < O(s') [Bisal.

Now by Chernoff Bounds with high probabilit§3; 1 contains a level neighbour ofv. O
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4.1 Finding good neighbors: the construction

We specify the neighbour selection algorithm and show that it is load-balanced and satisfies the invariants.
After a given levelB,; is constructed, node eventuallyexploresit by calling procedurdxplore(B,;).

This procedure uses the leviaheighbors of node to find possible smaller characteristic radii, and attempts

to construct levels with these candidate characteristic radii via Theorem C.2withB,;. Call a given

level B,; unexploredf procedureExplore(B,;) has not been called yet.
For simplicity assume that the aspect ratiois an exact power of two. The construction proceeds

in globally synchronized stages numbefed , ... ,log A. Recall that thestages levelsare those with

characteristic radii in the interval\ /27, 2 x A/27). We maintain the following invariant:

Invariant 4. Each stagey level is explored in stagg, no stagej levels are explored outside stage

Note that by Invariant (4) all staggtevels are constructed before the end of stage

For a given node; and stagej, the pseudocode is quite simple: while there are unexplored gtage-
levels, callExplore(B,;), whereB,; is the unexplored staggievel with the largest characteristic radius.
Note that this pseudocode trivially satisfies Invariant (4).

Now let us specify procedurexplore( B,;).

Definition 4.8. For a setS of numbers, let us definelamedianof S as the[¢|S|]-th number in the ascending
ordering ofS. Ford < 1, let ¢,,;(9) be thed-median of distances from to its i-level neighbours. To define
a similar quantityg,,; (9) for § > 1, let us choose the smallest bal,; such thatp,; = ¢,,;(d’) for some
§' < 3, and definepy; (8) = ¢u;(55).

Among the IeveIsB(%_) constructed so far, let us choose the one with the smallest characteristic radius,
call this radiusg. Choose¥, such thatp,;(6y) = ro. We consider alb € [6y/4; s~19] such thaty = §y/4!
for somel € N. For each suclkh we check whetheRe¢,;(5) < ¢.;(4s°5). If this is the case, we call
r 1= ¢y;(9) acandidate radiusaand attempt to select neighbors for tt@ndidate levelvith characteristic
radiusr. Note that by Chernoff Bounds Invariant (1) is satisfied.

We select neighbors for the candidate levels via Theorem C.2, so we need to tailor our setting to this
theorem. Firstly, each node partitions its neighbors in every given level into two equal-size gwalgs:
neighborsand seed-neighborsThe former are used for random walks in this theorem, and the latter are
used for random seeds.

Let @ be the ball corresponding to levBl,;. For eachy € @, consider the levels constructed for node
v in stagesl throughj with characteristic radii at leagt. Among these levels, I8, be the one with the
smallest characteristic radii. Lét be the directed graph (possibly with loops and multiple edges) induced
by the walk-neighbors in levelB,,, v € Q. Specifically, whenever node € ) has a walk-neighbow in
level B,, we add a directed edde, w) to the graphG. Let G* be the undirected version 6f.

We will use Theorem C.2 for grapfi and subse). Note that by Theorem A.2eg(G*) < O(k) with
high probability. Accordingly, in Theorem C.2 we will takle= dg = O(k).

Since for this theorem each node needs to knowGitsneighbors (which are a subset of its reverse
neighbors), each node contacts all its neighbors so that each neightoof v learns (a) that node is
its reverse neighbor, (b) what are the the characteristic radii of all levels afd (c) in which level ofy
nodew is a neighbor. To bound the per-node overhead of this operation, recall that by Claim 4.3 each node
has at mosO(%sO(l) log® n) reverse neighbours. Note that for our purpoces each nodeQ should not
only know all its reverse neighbors, but know which of them aré&itsneighbors. In other words, for each
reverse neighbor of w we need to know whether nodeis one of the neighbors if,. However, nodev
can determine this knowingand the information that he receives from nade

By Theorem A.2 if levelB,; is healthy then with high probabilityeg(G|Q) > 3 logn for eachv € Q.

In this case by Theorem B.3(b) the grati|@ is an expander with high probability. Let = 3logn.
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Moreover, as required in Theorem C.2, the grégly is a(dy, v)-quasi-expander, for some constanthis
is by Theorem B.3(a).

By Theorem A.1 with high probability at least one seed-neighbor in I&gllies in ; we choose any
such neighbor at random and designate it to be the random seed. Let algaritBsn) be the construction
in Theorem C.2 (for grapld’ and subse®) with this random seed ankh = O(s'? k). Either algorithm
A(By;) aborts, or node: acquiresk, nodes selected independently from a near-uniform distributio@ on
In particular, the latter happens if levBl,; is healthy, thus satisfying Invariant (3)

Suppose algorithmi(B,,;) does not abort. Let;, ro, . .. be the candidate radii in the decreasing order,
and letr; = ¢,;(8;). Recall that;'s are exponentially decreasing and lower-boundedby. We randomly
partition thek, neighbors returned byl(B,;) into sets of©(k/d;) nodes, one for each candidate level
In each such set by Theorem A.1 at leastodes will land inB,,(r;) with high probability. We select of
those at random as the neighbors in the corresponding level. Note that Invariant (2) is satisfied since graph
G depends only ot ; F's,

This completes the description of the procedirplore(B,;).

Load-balancing. Fix nodev. Let Z,(B,;) is 1 if nodeuw is visited by algorithmA(B,;), and0 otherwise;
i.e. this is precisely the random variabite from Theorem C.2. Define the family of levels containitg

F:={alllevelsBy; : i > 0,u € V,v € By}.
Recall that by Theorem C.2 for each stagkevel B € F we haveZ,(B) < 1 and
E(Zy(B)|Ui<j Fi) < pp := O(kot/|B]),

wheret = O(k?logn). Moreover, by (2) we have

pi= > pup=O0(ket) Y 1/|B| < O(kotslogn) = O(s7Mlog* n).
BeF BeF

By Theorem A.2 with high probability, := > 5. - Z,(B) < O(p).

Let us consider the load induced on a given nadby the construction of local neighbors. Let us
partition this load intonative loadinduced by algorithms4,, (-), andforeign loadinduced by algorithms
A, (+), v # u. Native load is at mosD(kqdt) for each of at moslog n instances of algorithnt,,(-), for a
total of O(s°() log® n). To bound the foreign load, le¥ be the set of all local neighbors of recall that
|S| is upper-bounded by Claim 4.3. By Theorem C.2 the foreign load sn

O (Xpes Zo) < O(p|S]) < O(s°Wlogtn).

Total running time. Note that in a given stage each message can be processed (in, essentially, a unit
time) as soon as it is received. The only possible delay occurs due to contention, when a given node
receives messages faster than it can process them. However, we assume that our construction happens in the
backgroung, at a sufficiently slow pace so that such contention is negligeable. Specifically, we assume that
before sending each message we wait for a random time interval, drawn from (say) a Gaussian with mean
T. Then the total running time in a given stage is upper-bound€d tignes the per-node load.

5 Triangulation and embedding for infinite doubling metrics

The beacon-based triangulations and embeddings of [19] are for finite metdesse sets are defined with
respect to the uniform measure. Here we extend them to infinite metrics and arbitrary probability measures.
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Specifically, given a probability measurewe define(e, 4, 11)-triangulation and (¢, 1)-relaxed embedding
here the desired properties hold for all node pairsv € S, whereu(S,) > 1 — e. We aim for(e, d, p)-
triangulations of finite order, an@, )-relaxed embeddings with finite distortion and dimension.

Theorem 5.1. Consider a (possibly infinite) completedoubling metric spacéV, d). Then for any proba-
bility measurex, on V' and any positive parametetsd there exists:

(@) an(e, 6, p)-triangulation of orderk = O(s'%)(2)(3)2!¢%, and

(b) an(e, p)-relaxed embedding intéf, p > 1 with distortionO(log k), wherek = (£)0(cglog(s/9)),
Suppose we can take independent random samples from distriutibnen after taking) (k) such samples
we can construct respectively node labels in (a) or node coordinates in (b), inditk¢ per node.

SaysS is an(e, p)-hitting set for the metric if it hits a ball of radiug-,(¢) around every node, where
r.(€) is the radius of the smallest ball aroundf measure at least The crux of the proof of Theorem 5.1 is
a lemma on the existence of finite (and smafl) ..)-hitting sets, which we derive using a suitable analogue
of Lemma 4.2.

Lemma 5.2. Consider a complete-doubling metric. Then for any probability measuseand anye > 0
there is an(e, p1)-hitting set of sizek = 2s%/e. Moreover, with probability at least — + a set ofk log(k/v)
points sampled independently at random with respegt te (e, 11)-hitting.
Proof: Letr, = ru(e). First we claim that for every node either there is a nodé, € B,(2r,) of
measure at least/2, or there is a ballB, C B,(3r,) of measure at least/(2s®) such that the balB,
with the same center and four times the radius has measure atejf2ostndeed, following the proof of
Lemma 4.2 we can show that for a fixackither suchB,, exists, or there is an infinite nesting sequence of
balls(S; D S2 D S3 D ...) of exponentially decreasing raglij and measure at least2 each, starting with
B,(2r,). Consider the sequence of centers of these balls. This is a Cauchy sequence, so (since the metric
is complete) it has a limit, call it. Thenw lies in eachS;, so for each the ball B, (2p;) containsS;, hence
has measure at least2. Thereforev has measure at least2 as required. Claim proved.
For convenience definB, = {b,} if suchb, exists. LetF be a maximal collection of disjoint ballB,,.
We claim that for every node some ballB, € F lies within B, (6r,). Suppose not. TheB, ¢ F, so it
overlaps with some baB, € F. If B, = {b,} then we are done. Otherwise note that the Bal(r,) has
measure and hence cannot lie withiB!,. Then sinceB, (3r,) overlaps withB, it follows that4r, > 3r,
wherer is the radius of3,. We come to a contradiction sinég, lies in B, (3r, + 2r). Claim proved.
Lemma follows since any hitting set fof is an(e, 11)-hitting set for the metric. O

Proof Sketch of Theorem 5.1:Fix e. First we note that the proof of Theorem 2.2 of [19] actually shows
that for each node there exists a sef,, of measure at leadt— e that has the following property: for every
v € S, a ball aroundu or v of radiusédd,,,, has measure at least = %eézlogs/s. By Lemma 5.2 there
exists an(es, 1)-hitting setH; of size©(s* /es). Now usingHj  as the beacon set, the algorithm in Section
2 of [19] gives the desirede, ¢)-triangulation; we omit the details. Similarly, the desired embedding is
obtained using the algorithm from Section 3 of [19], with beaconfetor small enoughy; again, we omit
the details.

Note that the(e, u)-hitting set Hs can be chosen at random according to Lemma 5.2. Therefore, the
proof is algorithmic as long as one can sample at random with respgct to O

6 Approximate distance labeling via triangulation

In this section we show that for any fixéd> 0 any finite doubling metric has@, ¢)-triangulation of order
O(log®n). This leads to &1 + §)-approximate distance labeling scheme wittlog? n log log A) bits per
label, whereA is the aspect ratio of the metric. we will use the notiordofibling measur§l4].
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Theorem 6.1. For any > 0 any s-doubling metric has g0, §)-triangulation of orderO(4)21°¢* log? n.
Moreover, such triangulation can be computed by an efficient centralized algorithm.

Proof: As proved in [14], there exists a measuresuch that the measure of any bal),(r) is at mosts
times the measure of the ball, (r/2); moreover, such measure can be efficiently computed. Using this
measure we select a set of 'beacons’ (call thefheacons), partitioned intlevels Specifically, letting

K = 1/min, p(u) andk = clogn wherec is a constant to be adjusted later, for egch [log K] select

a set of levels u-beacons as follows: add each nadédependently with probabilit@’ k.(u). Moreover,

we select another set of beacons (called-beacons), also partitioned into levels: for each [log n| select

a set of level: uar-beaconsadd each node independently with probabifity /.

Now we will use beacons to define the distance labels of nodes. For eachurattbeach level €
[logn|, define leveli uar-neighbourof u as all levels uar-beacons that lie within the ball,; = B, (7.),
wherer,; = r,(27%). Define levels u-neighboursof u as all levels p-beacons that lie within the ball
B!. = Bu(2ry/9), for eachj such thatu(B!,) < 2'77. Finally, the label ofu consists of distances to
all its neighbours. Using Chernoff bounds it is easy to see that with high probability each no@ has
neighbors on each level, for the total©f % log n) neighbors.

Fix a node pairuv and letd = d,,. We need to show that a ball of radidd around eithemn or v
contains a beacon that is a neighbour of bethindv. Suppose there is no such beacon. ket (1 + ¢)d
and choosé such that,; < r +d < r(,;_1). This "u-centric” choice yields some bounds og’s as well.
Specifically,r(, ;1) > r sinceB,(r) is contained inB,, (d+r). Also, sinceB, (r +2d) containsB,, (r +d),
it has at least,/2* nodes, so,; < r + 2d.

Whp the ball B,; contains a levels — 1) uar-beacon which is, by definition, a neighbourof If
Byi C By,i-1) then this beacon is also a levgl—- 1) neighbour ofu, contradiction. Therefore we can
assume-,; > dd. Similarly, we can assume,; > dd. Therefore, in particular, the balb = B, (dd) is
contained in bothB!, and B!,. Since the radii of the two bigger balls af¥d), their measure is at most
du(B) whered = O(%)?1°85. Choose the largegtsuch that bothu(B,,) andu(B,;) are at mosg/27.
Then for a sufficiently large = O(c¢’) with high probability B contains a level u-beacon, which is (by
definition of au-neighbour) a levei-u-neighbour of both, andw. O

It is easy to see that the above triangulation can be extende(ltg-a)-approximate distance labeling
scheme so that each neighbor is represented by a unigge |-bit id, and each distance is encoded with
O(log% + loglog A) bits, whereA is the aspect ratio of the metric. Indeed, if following the literature on
distance labeling (e.g. [10, 36]) we assume that the smallest distance is 1, then it suffices?l(dags?)
bits for the mantissa, an@(loglog A) bits for the exponent. SincA can be arbitrarily large with respect
to n, we improve over the labeling scheme of Talwar [36] that uSéleg A) bits per label.

In fact, we can show that th@(log log A) worst-case dependence of the label lengthors optimal.
Indeed, consider a metri¢ on three nodegu, v, w}. Assume the smallest distanceds, = 1, and the
largest distance id,,, = A. We need to encodé,, with the node labels of. andv. Fix the encoding
and suppose the two labels together take up at bdts in the worst case. Then, obviously, at mfst!
different values ofi,, can be encoded. On the other hand, letting (1 + )2, the set of all values of,,,,
that can be encoded must include a number in each intéfvdl, ¢) such that < ¢' < A. Since there are
at leastog A such intervalsk > Q(loglog A), claim proved.

It has come to our attention that very recently Mendel and Har-Peled [28] further sharpened the label
length to(1)?1°8%) (log? n + lognloglog A) bits. Their technique is different; in particular, it does not
apply to(0, §)-triangulations.
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A Tools from Probability

We use the standard Chernoff bounds for bounded independent random variables, e.g. see [29].

Theorem A.1 (Chernoff bounds, folklore). Let X be the sum of finitely many independent random vari-
ablesX; € [0, y], for somey > 0. Lete € (0,1) and > 1. Then:

(@) Pr[X < (1 — )] < e <#2 foranyu < E(X).

(0) Prix > 3] < [1(5)7] ", foranyp > B(x).

We also derive and use a version of Chernoff bounds that applies to near-independent random variables.
While it is possible that this result appears in the literature, we have not been able to find a reference.

Theorem A.2. Consider the sunX = Y7 ; X; whereX; are positive integer-valued random variables
upper-bounded by for € N. Lete € (0,1)andj3 > 1. LetF; = (X, X1, ..., X;)andF_; = (. Then:

@) If B(X|Fi_1) > p; forall i, thenPr[X < (1 — e)u/k] < e=<#/ 2k foranyu < 3, .
(b) If E(Xi|F;_1) < p; < 1forall i, thenPr[X > Buk] < [%(%)gr foranyp > 37, ;.

Proof. For part (a) we construct a family of independent 0-1 random variglitgsy: , ... ,Y,} such that
Y; < X, andE(Y;) = u;/k for all 7. Then by part (a) of Chernoff bounds for apy< > . 1; we have

Pr[X < (1—e)p/k] <Pr[SY; < (1 — e)u/k] < e=<'n/2k,

Similarly, for part (b) we construct a family of independent 0-1 random variaplgsY; , ... ,Y,} such
thatkY; > X; andE(Y;) = p; for all i. Then by part (b) of Chernoff bounds for apy> > . 11; we have

Pr[X > Buk] < PV > o) < [1(5)]"

Let us start with part (b). For eackvectorx = (zg, z1, ... ,x;—1) € [k + 1]° let us define the event
Ay ={weQ: Xo(w) =29, X1j(w) =21, ..., Xis1(w) =21} 3
Let us defineZ,, to be a 0-1 valued independent random variable with expectation
E(Z,) = (u; — pz)/(1 — ps), wherep, := Pr[X; > 0|A,]. 4)
This is well-defined becaugse > F(X;|A,) > p,. Now let us defind’; as a 0-1 valued random variable
Y =Y (Xo, X1, ..., X;—1), WwhereYj(x) := Lix,; >0 V Za-

To defineYj, for notational convenience set = (), let Z, be an independent 0-1 random variable with
expectation defined by (3) witH, = (), and definery, = Lix,>01 V Zz. This completes the definition of
theY;'s. It remains to establish that these random variables have the desired properties.

Claim A.3. For all i we have (akY; > X; and (b)E[Y;] = p;.

Proof. For part (a) note that iX; > 0 then by definition ofY; we haveY; = 1 > X;/k. For part (b) note
that for anyi-vectorz = (zg,z1, ... ,x;_1) € [k + 1] if the eventA, happens thei; = 1 if and only if
X; >0o0rZ, =1. ThereforePr[Y; = 1|A;] = p, + (1 — p,) Pr[Z, = 1] = p;. O
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Claim A.4. Random variable$Y;, Yy, ... ,Y,} are independent.

Proof. Fix some vectoy = (o, ... ,yn) € {0,1}"*. For each let us define
B = {we:Y(w) =yo, Vi(w)=w1, ..., Yi(w) =y},
i = iy + (1= p)(1—yi).

To prove the lemma we need to show tifafB,,] = [, a;. To this end we will prove by induction oh
thatPr[B;| = Hé':o a; forall 7 < n. Indeed, fori = 0 this just follows from the definition o¥;. Suppose
the induction hypothesis is true for someDefine the event’ = {Y; 1 = y;11} and the set of vectors

{z= (20, ...,2)) €[k+1]":B;NA, #0}.
Note thatPr[C| A, N B;] = «;41 by the proof of the Claim A.3. Therefore

Pr[Bi11] = Pr[BinC] = > Pr[A, N Bi] x Pr[C|4, N Bj] = Pr[Bi] x a1,
zeS

and the induction step follows. O

This completes the proof of part (b). For part (a), we proceed in a similar fashion; we borrow the
definitions of eventsi, and probabilitieg,. For each-vectors = (xg,x1, ... ,7;_1) € [k + 1]’ let us
defineZ} as a 0-1 valued independent random variable with expectdfiofi!) = 1 — u;/kp,. This is
well-defined because; < E(X;|A;) < kp,. Now fori > 1 we defineY;* as a 0-1 valued random variable

Y=Y (X0, X1, ..., X;—1), WhereY;"(z) := 1{Xi=0} NZ7,

and we letY" = 1,y o) V Z;. This completes the definition of tHg*'s. It remains to prove the suitable
analogs of Claims A.3 and A.4, namely thgt < X, and E(Y;) = u,/k for all i and that theY;*’s are
independent. The proofs are similar to those in part (b); we omit them here. O

B Constructing high-expansion graphs

For an undirected graph, tlexpansioris defined asnin '%R', where the minimum is over all nonempty
setsS of at mostn /2 vertices, and)(S) stands for the set of edges with exactly one endpoiri.inVe
can generalize this definition wweightedundirected graphs, or, equivalently, to symmetric non-negative
matrices: we just defin@(.S) to be the total weight of all edges with exactly one endpoinfinWe can
further extend this definition to directed graphs (non-symmetric matrices) by considering the weight of all
edges leaving.

For a pre-defined absolute constae®panderis an undirected graph whose expansion is at least this
constant. Expanders are well-studied and have rich applications, see [27, 1, 29, 40] for more background.

The following is a standard result on expanders, e.g. see p. 10 of [11] for a proof.

Theorem B.1 (Folklore). Fix node setl’. Suppose for each nodewe choose three nodes idependently
and uniformly at random fronV, and create undirected links betweerand these three nodes. Then the
resulting graph is an expander with high probability.

In a slightly stronger version of this theorem we select nodes from (and construct an expander on) any
given subsef) of nodes, whereas we need the failure probability to be low in terms obt the size of).
Hence we creat®(log n) links per node instead of just three.
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Theorem B.2. Fix node sel” of n nodes, and a subsél C V. Suppose for each nodec @ we choose at
least3 log n nodes idependently from a near-uniform distribution@nand create undirected links between
u and these nodes. Then the induced graphtbis an expander with high probability.

For this paper we need a somewhat more complicated version of Theorem B.2 where the edge selection
is not quite independent:

Theorem B.3. Fix a setV of n nodes, and a subsé C V where the nodes are numbered frano |Q)|.
Suppose for each node= @ we choose at leagt = 3 logn nodes at random from a s€}; containing@),
and create directed links betweerand these nodes. Let us denote thes®des byX; = (X;; : j € [k]),
where we treat theX;;'s as @;-valued random variables. L&t be the induced directed graph ap. We
characterize the joint distribution of’;;’s as follows:

o for every fixed nodé random variablesX;;, j € [k| are independent.

e each random variableX;, j € [k] has a near-uniform distribution o);.

e for eachi > 2 each random variableX;;, j € [k] has a near-uniform distribution o); conditional

on any given values of the random vect¢ss; : [ < ).

Then:

(a) with high probability graphGg is a (k, v)-quasi-expander, for a constant

(b) if Q; = Q for all ¢, then with high probability the undirected version Gf, is an expander.

The proof of Theorem B.3(b) follows that of Theorem B.1, except we use Theorem A.2 instead of the
standard Chernoff bounds.

C Random node selection in a network

An undirected versiorof a directed graplt; is an undirected graph on the same node set, possibly with
multiple edges, where each directed edge= G is replaced by an undirected edge.

Definition C.1. A directed graphG = (V, E) is a(dy, v)-quasi-expandeif it has the following property.
Take any subse$ C V such that each node ifi has out-degree at leag§. Let Fs be the set of edges
entering or leaving the nodes # Then there exists a constant-degree expander on nodé ‘sét, with
edge setr*, such that the undirected versi6ty of the graph(V, Es U E*) has expansion at most Call
this undirected grapt¥s an(dy, v, S)-extensiorof G.

Theorem C.2. Let G be a directed graph on an-node sel’; let G* be its undirected version. Fix node
and consider a subsé) C V' Suppose that:

e for some(dy, v) graphG|Q is a(dy, v)-quasi-expander,

¢ after pinging any node € V, nodeu can, at unit cost, determine whetherc Q.

e nodeu knows numberd > deg(G*), dg > deg(G*|Q), t > (dg/v)? (logn) anddp.

e nodeu is given arandom seedan address of some node.
Then for anyk, € N there exists a randomizgad, G, G*)-distributed algorithm such that:

(@) if deg(G|Q) > dy then nodeu acquires addresses &f, nodesX; € @, where theX;'s are indepen-
dent random variables with a near-uniform distribution @py we say that the algorithnsucceeds
Else the algorithm either succeeds or aborts.

(b) The total running time and the load on nodeare O(kqdt). The load on ry other node is at most

O (Y pvec Zv), WhereZ, is 1 if nodew is "visited” by algorithm, and0 otherwise? in particular it

3For each node, the algorithm either does not touch the list@fneighbors ofv, or reads the entire list at once. In the latter
case we say that the algorithwisitsnodev.
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is0forall v ¢ Q. If the random seed was selected independently from a near-uniform distribution
on @, then in the probability space induced by the algorithm and2(Z,) = O(kot/|Q]) for each

v E Q.

We omit the proof from this version of the paper.
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