
Online Caching with Convex Costs

[Extended Abstract]

Ishai Menache
Microsoft Research

Redmond, WA
ishai@microsoft.com

Mohit Singh
Microsoft Research

Redmond, WA
mohits@microsoft.com

ABSTRACT
Modern software applications and services operate nowadays on
top of large clusters and datacenters. To reduce the underlying in-
frastructure cost and increase utilization, different services share
the same physical resources (e.g., CPU, bandwidth, I/O, memory).
Consequently, the cluster provider often has to decide in real-time
how to allocate resources in overbooked systems, taking into ac-
count the different characteristics and requirements of users. In this
paper, we consider an important problem within this space – how
to share memory between users, whose memory access patterns are
unknown in advance. We assume that the overall performance (or
cost) of each user is a non-linear function of the total number of
misses over a given period of time. We develop an online caching
algorithm for arbitrary cost functions. We further provide theoreti-
cal guarantees for convex functions (which capture plausible prac-
tical scenarios). In particular, our algorithm is ααkα-competitive,
where k is the memory (cache) size, and α is a constant which
depends on the curvature of the cost functions. We also obtain a
bi-criteria result which trades-off the performance and the memory
size. Finally, we give a lower bound on the performance of any on-
line deterministic algorithm which nearly matches the upper bound
of our algorithm.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—sequencing and scheduling;
D.4.2 [Operating Systems]: Storage Management—Main memory

General Terms
Algorithms

Keywords
online caching; resource management; cloud computing; competi-
tive analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright c⃝ 2015 ACM 978-1-4503-3588-1/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2755573.2755585.

1. INTRODUCTION

1.1 Background and Motivation
The cloud computing paradigm builds upon the economy of scale,

where customers utilize compute resources contained in large dat-
acenters. The potential economic gains rely on multi-tenancy –
assigning different users and services into the same physical hard-
ware. Multi-tenancy allows for cost reduction and increased uti-
lization of the infrastructure, as the cloud provider can often exploit
statistical multiplexing for overbooking of physical resources.

Memory is inarguably a crucial resource for many applications
and services operating on the cloud, such as dynamic web applica-
tions and Databases as a Service (DaaS). In some of these systems,
the physical memory is shared between different users, e.g., in Mi-
crosoft Azure SQL Database [13]. In addition, distributed memory
systems have been designed and deployed in order to accelerate the
performance of cloud applications. Examples include Memcached
[10], an open-source in-memory key-value store, and commercial
offerings such as Microsoft Azure Cache [12] and Amazon Elasti-
Cache [2].

An important issue in such shared memory systems is how to
allocate the physical memory between different users and applica-
tions. Static memory allocation are inherently both wasteful (i.e.,
users holding to memory which that do not utilize) and might fail
to meet user requirements (e.g., a performance-sensitive user needs
more memory than expected). Instead, when oversubscription is
in place, the memory allocation problem can be treated as a dy-
namic, online caching problem: the “cache" here is the total avail-
able physical memory, and the provider needs to determine in real-
time which pages of which users should be stored in memory, and
which ones need to be evicted. Variants of the LRU algorithm, such
as LRU-K[16] have been employed for many shared-memory sys-
tems, however they treat all users equally. Weighted caching [20, 3]
generalizes LRU to settings where users may have different weights
(priorities). Under the weighted caching model, each miss of user
i has a fixed cost wi. Unfortunately, this model is not general
enough, since the costs associated with misses could be non-linear,
i.e., each additional miss need not cost the same as previous misses
of the user.

In this paper, we develop a cost-aware, online caching algorithm
for the case where the cost of each user is non-linear in the num-
ber of misses. The objective of the algorithm is to minimize the
sum of tenants’ costs. We further provide performance guarantees
when the costs are convex. The convexity assumption is natural in
practical settings, since each additional miss has often times an in-
creasingly greater impact on tenant performance. For example, a
user can tolerate up to around M misses in a time window of T ,
and any number of misses greater than that will result in substan-

tial degradation in performance. Such scenarios can be captured
through, e.g., piecewise-linear, convex cost functions.

Based on the algorithm developed in this paper, we have re-
cently designed and prototyped a memory replacement mechanism
for SQLVM [15], a multi-tenant DaaS system. In the SQLVM con-
text, the shared memory is the so-called buffer pool memory, which
serves as a cache of database pages and is crucial for the perfor-
mance of user workloads. The Service Level Agreements (SLAs)
between the provider and users is captured via non-linear cost func-
tions, which could correspond, for example, to the refund paid by
a service provider as a function of the total number of misses or
related measures thereof; see [14] for more examples. Experiments
with real workloads demonstrate the merits of our cost-aware ap-
proach [14].

1.2 Our Model and Results
We consider the problem of having multiple tenants sharing a

single cache1 and propose the following model. We have a sin-
gle cache of size k which is shared among set of users U . We let
n = |U | denote the number of users. Each user i ∈ U , owns
a set of pages Pi and we receive a sequence of T page requests
(p1, p2, . . . , pT) where each page pt belongs to a unique user i ∈
U . We assume that the number of requests in unknown to the algo-
rithm designer. At each time 1 ≤ t ≤ T , the page pt is requested
and the algorithm must ensure that page pt must either be in the
cache or be fetched into the cache. If the cache is full, i.e., ex-
actly k pages are already in the cache, we must evict one of the
pages from the cache to make space for the requested page pt. The
algorithm designer does not know the whole sequence of page re-
quests in advance, but it is rather revealed over time. When decid-
ing the action for page pt, only the request sequence till page pt
is known to the algorithm and not the page requests which come
after page pt. Each user i ∈ U is also associated with a cost func-
tion fi : R → R where fi(x) denotes the cost paid if user i has
x misses. For our analysis, we assume each fi is differentiable,
convex, increasing and non-negative function with fi(0) = 0. The
objective is to minimize the sum total cost paid for all users.

Since the problem is online in nature, we appeal to competi-
tive analysis to study the performance of our algorithm, see [6]
for an introduction on online algorithms and competitive analysis.
We compare the performance of our online algorithm to the perfor-
mance of the optimal offline algorithm that knows the sequence of
page requests σ in advance. We prove the following theorem.

THEOREM 1.1. There exists an online deterministic algorithm
for the multiple tenant caching problem which given any request
sequence σ has ai(σ) misses for each user i ∈ U such that∑

i∈U

fi(ai(σ)) ≤
∑
i∈U

fi(αkbi(σ)) (1)

where bi(σ) are the number of misses by the optimal offline algo-
rithm, and α = supx,i

xf ′
i(x)

f(x)
.

Our algorithm is a primal-dual algorithm for a convex program-
ming relaxation for the multiple tenant caching problem. Observe
that when each fi is a linear function, i.e., each miss costs the same,
then α = 1 and we obtain the standard k-competitive algorithm
which is the best possible competitive ratio for any algorithm [19].
The following corollary is useful to illustrate our results when the
convex functions are monomial functions.

1Throughout the paper, we use the terms “cache" and “memory"
interchangeably.

COROLLARY 1.2. Suppose that the cost function fi for each
user i is given by fi(x) = xβ for some β ≥ 1. There exists an
online algorithm which is (ββkβ)-competitive. Thus given any re-
quest sequence σ, the algorithm has ai(σ) misses for each user
i ∈ U such that∑

i∈U

fi(ai(σ)) ≤ ββkβ
∑
i∈U

fi(bi(σ)), (2)

where bi(σ) are the number of misses by the optimal offline algo-
rithm.

We also give a bi-criteria result which trades off the performance
of the algorithm with the cache size. In particular, we compare the
performance of our algorithm with the optimal offline algorithm
where the offline algorithm must work with a cache size of h ≤
k. In such a setting, we give an improved result in Theorem 1.3.
Observe that the algorithm proving the guarantee of Theorem 1.3 is
the same as the algorithm of Theorem 1.1 and is also independent
of h.

THEOREM 1.3. There exists an online deterministic algorithm
for the multiple tenant caching problem which given any request
sequence σ has ai(σ) misses for each user i ∈ U such that∑

i∈U

fi(ai(σ)) ≤
∑
i∈U

fi(α
k

k − h+ 1
bi(σ)), (3)

where bi(σ) are the number of misses by the optimal offline algo-
rithm which is given a cache of size h ≤ k and α = supx,i

xf ′
i(x)

f(x)
.

We also obtain nearly matching lower bounds for our algorithm
in the following theorem.

THEOREM 1.4. For any n and integer β, there exists an in-
stance of the multi-tenancy caching problem with n users and cost
functions fi(x) = xβ for each user i ∈ U , such that any online
deterministic algorithm must pay a cost of at least (Ω(k))β times
the cost of the optimal offline solution.

To compare the result in Theorem 1.4 with the upper bound
in Corollary 1.2, we observe that lower bound and upper bounds
match up to a factor of ββ .

1.3 Related Work
Competitive analysis of the caching problem was introduced by

Sleator and Tarjan [19] who gave a k-competitive algorithm and
also showed that the classical algorithm LRU is k-competitive. In
our setting, the basic caching problem corresponds to the special
case of our problem with a single user. Sleator and Tarjan [19]
also showed that this is the best possible competitive ratio for any
deterministic algorithm. Young [20] generalized this result to the
weighted caching problem, which in our setting corresponds to the
case where each of the functions fi is linear. The algorithm in [20]
uses a primal-dual framework over the corresponding linear pro-
gram. While we also provide a primal-dual algorithm, our convex
program builds on a different linear program which was given by
Bansal, Buchbinder and Naor [3] for the weighted caching prob-
lem; [3] obtains improved competitive algorithms using random-
ization. We also mention that their results also generalize to the
bi-criteria setting; we refer the reader to the survey by Buchbinder
and Naor [8] for more details.

Caching algorithms have been widely applied for over half a cen-
tury to divide memory in various computer systems, including op-
erating systems (e.g., [9]), multi-core processors (e.g., [11]) and
databases (e.g., [21] and references therein). Accordingly, much

(ICP) min
∑m

i=1 fi
(∑

p∈Pi

∑r(p,T)
j=1 x(p, j)

)
(CP) min

∑m
i=1 fi

(∑
p∈Pi

∑r(p,T)
j=1 x(p, j)

)
s.t. s.t.

∀1 ≤ t ≤ T
∑

p∈B(t)\{pt} x(p, j(p, t)) ≥ |B(t)| − k ∀1 ≤ t ≤ T
∑

p∈B(t)\{pt} x(p, j(p, t)) ≥ |B(t)| − k

∀p ∈ P,∀j x(p, j) ∈ {0, 1} ∀p ∈ P,∀j x(p, j) ≤ 1
∀p ∈ P,∀j x(p, j) ≥ 0

Figure 1: Integer Convex Program and its Convex Programming Relaxation

research has been devoted to understand and analyze caching al-
gorithms that work well in practice [4, 1, 17]. Recently, there has
been some interest in developing caching algorithms for cloud com-
puting scenarios [18, 5]. The latter references consider scenarios
where the memory available to an algorithm can vary over time.
Our work is different in the sense that we consider systems with
fixed memory size with more complicated user cost models.

The rest of the paper is organized as follows. In Section 2 we
give our online algorithm and prove Theorem 1.1. In Section 3,
we prove the bi-criteria result (Theorem 1.3). The lower bound in
Theorem 1.4 is proven in Section 4.

2. ALGORITHM
Before we describe the algorithm, we first give a convex pro-

gramming formulation for the multiple tenant caching problem. We
remark that the algorithm does not solve this convex program but
uses it as a tool to guide the algorithm, in the spirit of primal-dual
algorithms. As mentioned above, the algorithm can actually be
used for general non-linear cost functions (see Section 2.5 for de-
tails), yet our performance guarantees require convexity.

We begin with some notation. We let P = ∪iPi denote the set of
all pages. For any page p, we let i(p) ∈ U denote the user owning
that page. Given any sequence σ of requests of pages which comes
online, we index the sequence with time. Hence at time t, we obtain
the tth request in sequence σ and let pt be the page requested at
time t. We let r(p, t) denote the number of requests of page p till
time t. We also denote T to be length of σ. Let B(t) denote the
number of distinct pages requested up to time t. For any page p,
the time between its two consecutive requests is an interval. We let
j(p, t) denotes the interval index corresponding to page p at time
t (notice that j(p, t) does not depend on the algorithm but only on
the sequence σ).

2.1 Convex Programming Formulation
We now formulate the following integer convex programming

formulation for our problem assuming that we have knowledge of
the sequence of requests σ. Relaxing the integer constraints, we
obtain a convex programming relaxation for our problem. We have
a variable x(p, j) for each page p and each 1 ≤ j ≤ r(p, T) where
x(p, j) will be set to 1 if the page p is evicted between its jth and
(j + 1)th request. We assume that the cost paid by the algorithm
is for evicting a page and not when bringing it in. We remedy this
by assuming that the algorithm needs to return an empty cache,
therefore each page is evicted exactly equal number of times it is
brought in the cache. This is implemented by a dummy user who
owns k pages and all these k pages are appended at the end of
sequence σ. The cost of evicting any page for this dummy user is
assumed to be infinite. Then the overall cost for user i is given by
fi(
∑

p∈Pi

∑r(p,T)
j=1 x(p, j)).

The integer convex program (ICP) is formalized in Figure 1. The
constraints for the convex program are indexed by time t. For each
time t, we must have all but k pages outside the cache. Moreover,
page pt which is requested at time t must not be counted in the ex-

cluded pages. We first observe that every algorithm must imply a
feasible solution to (ICP) by simply setting x(p, j) = 1 if page p
is evicted between its jth and (j+1)th-request. Moreover, the cost
of the objective function is also the same as the cost of the solution
given by the algorithm. Our aim will be to construct a feasible so-
lution to (ICP) in an online fashion as the sequence σ is revealed.
We emphasize that we do not solve the convex program in the al-
gorithm. Nonetheless, as the sequence σ is revealed, we extend the
convex program to include the relevant set of variables and con-
straints. We will use convex duality to guide the algorithm as well
as for the analysis which we describe in the following sections.

2.2 Optimality Conditions
Our algorithm will aim to maintain an approximately optimal

primal solution along with a Lagrangian dual solution certifying the
approximate optimality. First, we describe the Lagrangian dual of
the convex program (CP) and the optimality conditions. We then
also list the approximate optimality conditions that will be main-
tained by our algorithm.

Let yt, z(p, j) and µ(p, j) denote the Lagrange multipliers cor-
responding to first, second and third set of constraints in the convex
program (CP), respectively. Then the Lagrangian L(x, y, z, µ) is
given by

min

m∑
i=1

fi

∑
p∈Pi

r(p,T)∑
j=1

x(p, j)

+
∑
p,j

z(p, j) (x(p, j)− 1)+

+
∑
t

yt

|B(t)| − k −
∑

p∈B(t)\{pt}

x(p, j(p, t))

−∑
p,j

µ(p, j)x(p, j)

Now, the KKT optimality conditions [7] imply that (x, y, z, µ)
will be optimal if we satisfy the following conditions.

1. Primal and Dual Feasibility

(a)
∑

p∈B(t)\{pt} x(p, j(p, t)) ≥ |B(t)| − k ∀t

(b) 0 ≤ x(p, j) ≤ 1 for all p, j

(c) 0 ≤ y, z, µ

2. Complementary Slackness

(a) yt
(∑

p∈B(t)\{pt} x(p, j(p, t))− |B(t)|+ k
)
= 0 ∀t

(b) z(p, j) (x(p, j)− 1) = 0 ∀p, j
(c) µ(p, j)x(p, j) = 0 ∀p, j

3. Gradient conditions.

(a) f ′
i(p)

(∑
p′∈Pi(p)

∑r(p,T)
r=1 x(p′, r)

)
−
∑t(p,j+1)−1

t=t(p,j)+1 yt+

z(p, j)− µ(p, j) = 0 for all p, j

where t(p, j) is the time when the j-th request to page p. The
primal and dual feasibility conditions are natural. The complemen-
tary conditions ensure the dual variable is non-zero only if the pri-
mal constraints are tight. Moreover, the partial derivative of the
Lagrangian objective must be non-negative for all primal variables,
and if the primal variable is strictly positive then the gradient must
be zero. Of course all these conditions will not be satisfied exactly
by our algorithm as that would imply solving the problem exactly
but we would aim to satisfy most of them. The exact invariants of
the algorithm are described later.

Eliminating the dual variables µ, we obtain the following opti-
mality conditions.

1. Primal and Dual Feasibility

(a)
∑

p∈B(t)\{pt} x(p, j(p, t)) ≥ |B(t)| − k ∀t

(b) 0 ≤ x(p, j) ≤ 1 for all p, j

(c) 0 ≤ y, z

2. Complementary Slackness

(a) z(p, j) (x(p, j)− 1) = 0 ∀p, j,

(b) yt
(∑

p∈B(t)\{pt} x(p, j(p, t))− |B(t)|+ k
)
= 0 ∀t,

(c) f ′
i(p)

(∑
p′∈Pi(p)

∑r(p,T)
r=1 x(p′, r)

)
−
∑t=t(p,j+1)−1

t=t(p,j)+1 yt+

z(p, j) = 0 if x(p, j) > 0

3. Gradient conditions.

(a) f ′
i(p)

(∑
p′∈Pi(p)

∑r(p,T)
r=1 x(p′, r)

)
−
∑t=t(p,j+1)−1

t=t(p,j)+1 yt+

z(p, j) ≥ 0 for all p, j

2.3 Primal-Dual Online Algorithm
We describe the continuous version of the algorithm in Figure 2.

A discrete version of the algorithm can be simply implemented by
observing that all continuous changes boil down to discrete amounts.
We shall present the discrete version and discuss some implemen-
tation details in Section 2.5.

For every time 1 ≤ t ≤ T , let pt be the requested page. Do

• Initialize x◦(pt, jt)← 0, z◦(pt, jt)← 0, y◦
t ← 0

• If (CP) remains feasible, do nothing.
We do need to remove any page from the cache. Either the
requested page pt is already in the cache or we have space for
the new page in the cache.

• Else

– Increase y◦
t continuously.

– For each page p outside cache (i.e., x◦(p, j(p, t)) = 1),
increase z◦(p, j(t)) at same rate of y◦

t

– Let p′ be the first page in the cache for which

f ′
i(p′)

(
m(i(p′), t− 1) + 1

)
−

t(p′,j+1)−1∑
t=t(p′,j)+1

y◦t +z◦(p′, j) = 0

is satisfied; set x◦(p′, j(p′, t))← 1
We remove page p′ from the cache and bring in page pt.

Figure 2: Algorithm ALG-CONT

Invariant of Algorithm ALG-CONT. Our algorithm will maintain
primal solution x◦ and dual solution (y◦, z◦) such that we satisfy
primal and dual feasibility, i.e. conditions(1a)-(1c). While the al-
gorithm can be described in terms of the primal solution alone, we
need the dual solution to guide the algorithm and prove the guar-
antee as claimed in Theorem 1.1. For ease of notation, for any
user i ∈ U and 1 ≤ t ≤ T , we let m(i, t) be the total number
of evictions of pages owned by user i till time t by our algorithm,
i.e., m(i, t) =

∑
p∈Pi

∑r(p,t)
j=1 x◦(p, j). We let m(i, T) to be the

total misses for pages owned by user i. We maintain the following
invariants:

1. Primal and Dual Feasibility

(a)
∑

p∈B(t)\{pt} x
◦(p, j(p, t)) ≥ |B(t)| − k ∀t

(b) 0 ≤ x◦(p, j) ≤ 1 for all p, j

(c) 0 ≤ y◦, z◦

2. Complementary Slackness

(a) z◦(p, j) (x◦(p, j)− 1) = 0 ∀p, j,

(b) f ′
i(p)

(∑
p′∈Pi(p)

∑r(p,t̂)
r=1 x◦(p′, r)

)
−
∑t=t(p,j+1)−1

t=t(p,j)+1 y◦
t+

z◦(p, j) = 0 if x◦(p, j) is set to 1 at time t̂.

3. Gradient conditions.

(a) f ′
i(p)

(∑
p′∈Pi(p)

∑r(p,T)
r=1 x◦(p′, r)

)
−
∑t=t(p,j+1)−1

t=t(p,j)+1 y◦
t+

z◦(p, j) ≥ 0 for all p, j

The main difference from the optimality conditions (after elimi-
nating the dual variables µ) is the complemenatry slackness condi-
tion (2b) in the invariant as compared to condition (2c) in the opti-
mality conditions. The algorithm tries to maintain condition (2c) as
if the derivative of the lagrangian is evaluated at the current primal
and dual solution and not at the final solution. At a later time t,∑r(p,t)

r=1 x◦(p′, r) ≥
∑r(p,t̂)

r=1 x◦(p′, r) and therefore, the gradient
of f at the former sum might be larger than the gradient at the latter
term due to convexity of f . While this does not affect feasibility
of primal and dual solutions, we will violate the complementary
slackness conditions. The technical heart of the analysis will be to
show that we can still bound the violation in terms of the degree of
f .

2.4 Proof of Theorem 1.1
The proof of Theorem 1.1 follows from the following two lem-

mas which we prove in this section. Lemma 2.1 states that the algo-
rithm ALG-CONT satisfies the invariants as stated above. Then in
Lemma 2.2, we show that any algorithm which satisfies the invari-
ant conditions must satisfy the claimed guarantee in Theorem 1.1.

LEMMA 2.1. At all times t, ALG-CONT satisfies the invariant
conditions as claimed.

PROOF. We check each of the invariants.

Primal and Dual Feasibility. Clearly conditions (1b) and dual fea-
sibility (1c) are satisfied by construction. Variable x◦(p, j) takes
values from {0, 1} and y◦(t) and z◦(p, j) are initialized to 0 and
only increase as the algorithm progresses. To see that we satisfy
the condition (1a), a simple induction suffices. At t = 0, we have
|B(t)| = 0 and therefore, x◦(p, j) and (y◦(t), z◦(t)) are feasible.
In any other step, as we go from time t−1 to time t, one of the fol-
lowing happens. If after setting x◦(pt, jt) = 0, z◦(pt, jt) = 0 and
y◦(t) = 0, we obtain a feasible solution then induction holds. Else,

this initialization of x◦(pt, jt) = 0, z◦(pt, jt) = 0 and y◦(t) = 0
must violate the primal feasibility constraint for time t. Observe
that this can only happen in the following two scenarios. In the
first case, we see the page pt for the first time and we increase
B(t) by one and therefore the RHS of constraint (1a) increases by
one. Otherwise, it must be the case that x◦(pt, jt − 1) = 1 and
the term

∑
p∈B(t)\{pt} x

◦(p, j(p, t)) in the feasibility constraint
reduces by one since we set x◦(pt, jt) = 0. In either of the cases,
the page pt was not in the cache and the cache already had k pages.
Thus bringing in page pt violates the cache size constraint. But
observe that the algorithm finds a page p′ in the cache and sets its
x◦(p′, j(p′, t)) to one, hence the LHS increases by one again giv-
ing us feasibility.

Complementary Slackness. To observe that we maintain condi-
tion (2a), observe that we increase z◦(p, j) only if x◦(p, j) = 1.
Since we never decrease the x◦ for any variable, we maintain the
complementary slackness till the end.

Now consider the condition (2b). Again consider any page p
and request j. If x◦(p, j) remains zero, there is nothing to prove.
Suppose x◦(p, j) is set to one say at time t̂. Then at time t̂, we
must have

f ′
i(p)

(
m(i(p), t̂− 1) + 1

)
−

t̂∑
t=t(p,j)+1

y◦
t + z◦(p, j) = 0

which implies that

f ′
i(p)

(
m(i(p), t̂)

)
−

t̂∑
t=t(p,j)+1

y◦
t + z◦(p, j) = 0

since m(i(p), t̂− 1) + 1 = m(i(p), t̂).
At any later time t ∈ (t̂, t(p, j + 1)), if we increase yt we in-

crease z◦ at the same rate maintaining equality. After time t >
t(p, j + 1) none of the variables in the term change proving the
lemma. Thus we obtain that

f ′
i(p)

(
m(i(p), t̂)

)
−

t(p,j+1)−1∑
t=t(p,j)+1

y◦
t + z◦(p, j) = 0,

as required.

Gradient Conditions. We show condition (3a). Consider any page
p and its jth request. Suppose the variable x◦(p, j) is set to one at
t ∈ (t(p, j), t(p, j + 1)). Then the primal and dual solution at that
time must satisfy

f ′
i(p) (m(i(p), t− 1) + 1)−

t(p,j+1)−1∑
t=t(p,j)+1

y◦
t + z◦(p, j) = 0

Now consider how the LHS changes as the algorithm proceeds,
if we increase y◦

t for any t̂ < t < t(p, j+1), then we also increase
z◦(p, j) at the same rate and we maintain equality. Now, we must
have

m(i(p), T) ≥ m(i(p), t− 1) + 1

since the LHS at least counts the eviction of page p at time t and is
not counted in RHS. Using the fact that f ′ is an increasing function,
we obtain that

f ′
i(p) (m(i(p), T)−

t(p,j+1)−1∑
t=t(p,j)+1

y◦
t + z◦(p, j) ≥ 0.

Now, consider the case when page p is not evicted between its
jth and (j + 1)th request. Thus x◦(p, j) remains zero till the end.
Firstly, this implies that page j is not the last request since we evict
every page in the last request. Then, consider the expression

f ′
i(p)

(
m(i(p), t′) + 1

)
−

t(p,j+1)−1∑
t=t(p,j)+1

y◦
t + z◦(p, j)

evaluated with values of primal and dual variables at time t′ =
t(p, j). Since only the first term is non-zero, the expression is non-
negative. As we proceed with the algorithm and increase t′ from
t(p, j) to t(p, j + 1)− 1, the expression will never go below zero,
otherwise, we would have set x◦(p, j) to one. Since there is another
request of page p where it is evicted (in particular the last one), we
have m(i(p), T) ≥ m(i(p), t(p, j + 1)− 1) + 1 and therefore

f ′
i(p) (m(i(p), T))−

t(p,j+1)−1∑
t=t(p,j)+1

y◦
t + z◦(p, j) ≥ 0

and we obtain feasibility of condition (3a).

We now prove the following lemma which will complete the
proof of Theorem 1.1.

LEMMA 2.2. Let x⋆ be an optimal solution to the convex pro-
gram and x◦ denote any solution satisfying the invariant condi-
tions. Then we must have∑

i∈U

fi (m(i, T)) ≤
∑
i∈U

fi (αkm̄(i, T)))

where α = supx,i
xf ′

i(x)

f(x)
and m̄(i, T) is the number misses for

user i by the optimal solution x⋆.

PROOF. The following auxiliary claim will be required in the
sequel. This claim will help us bridge the gap introduced by viola-
tion of the complementary slackness conditions by the algorithm.

CLAIM 2.3. Let f be a convex increasing function with f(0) =
0. Then

f ′(

n∑
j=1

xj)

n∑
j=1

xj ≤ α

n∑
j=1

xjf
′(

j∑
i=1

xi), (4)

where

α = max
x

f ′(x)x

f(x)
. (5)

As special case, note that when f is a polynomial with positive
coefficients and degree β, we have α = β.

PROOF. Note that it suffices to show that
n∑

j=1

xjf
′(

j∑
i=1

xi) ≥ f(

n∑
j=1

xj). (6)

Indeed if (6) holds, then we have that the RHS of (4) satisfies

RHS ≥ αf(

n∑
j=1

xj) ≥
∑n

j=1 xjf
′(
∑n

j=1 xj)

f(
∑n

j=1 xj)
f(

n∑
j=1

xj) = LHS.

To prove (6), we use the first order condition for convex functions,
which implies the following set of inequalities: f(0) − f(x1) ≥
−x1f

′(x1), f(x1)−f(x1+x2) ≥ −x2f
′(x1+x2), . . . ,f(x1+

. . . xn−1) − f(
∑n

j=1 xj) ≥ −xnf(
∑n

j=1 xj). Summing this set
and recalling that f(0) = 0 immediately yields (6).

By definition, we have m(i, T) =
∑

p∈Pi

∑r(p,T)
j=1 x◦(p, j) and

m̄(i, T) =
∑

p∈Pi

∑r(p,T)
j=1 x⋆(p, j). For any convex function f ,

we have f(y)−f(x) ≥ f ′(x)(y−x) and therefore we obtain that

∑
i∈U

fi (αkm̄(i, T))−
∑
i∈U

fi (m(i, T))

=
∑
i∈U

fi

αk
∑
p∈Pi

r(p,T)∑
j=1

x⋆(p, j)

−∑
i∈U

fi

 ∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j)

≥

∑
i∈U

f ′
i (m(i, T)) · (αkm̄(i, T)−m(i, T))

=
∑
i∈U

∑
p∈Pi

r(p,T)∑
j=1

f ′
i (m(i, T)) · (αk · x⋆(p, j)− x◦(p, j))

=
∑
p∈P

r(p,T)∑
j=1

αk · x⋆(p, j) · f ′
i(p) (m(i(p), T))−

∑
i∈U

∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j) · f ′
i

 ∑
p′∈Pi

r(p,T)∑
j=1

x◦(p′, j)

We now have the following claim.

CLAIM 2.4. For any i,

∑
p∈Pi

r(p.T)∑
j=1

x◦(p, j) · f ′
i

∑
p′∈Pi

r(p′,T)∑
j=1

x◦(p′, j)

≤ α

∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j) · f ′
i (m(i, s(p, j)))

where s(p, j) is the time at which x◦(p, j) is set to 1 and T if
x◦(p, j) remains 0.

PROOF. Order the variables x◦(p, j) for all p ∈ Pi and all j
in increasing order of s(p, j) and apply Claim 2.3 on this order.
Observe that ∑

(p′,j′):s(p,j)≥s(p′,j′)

x(p′, j′) = m(i, s(p, j)).

Thus we obtain the inequality.

Thus we obtain that∑
i∈U

fi (αkm̄(i, T))−
∑
i∈U

fi (m(i, T))

≥
∑
p∈P

r(p,T)∑
j=1

αk · x⋆(p, j) · f ′
i(p) (m(i(p), T))

−
∑
i∈U

α
∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j) · f ′
i (m(i, s(p, j)))

≥
∑
p∈P

r(p,T)∑
j=1

αk · x⋆(p, j) ·

t=t(p,j+1)−1∑
t=t(p,j)+1

y◦t − z◦(p, j)

−

∑
i∈U

α
∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j) ·

t(p,j+1)−1∑
t=t(p,j)+1

y◦t − z◦(p, j)

where we have used condition (3a) in the first term and condi-

tion (2b) in the second term.
Thus we have∑

i∈U

fi (αkm̄(i, T))−
∑
i∈U

fi (m(i, T))

≥α

k
∑
t=1

y◦t
∑

p∈B(t)\pt

x⋆(p, j(p, t))− k
∑
p,j

x⋆(p, j)z◦(p, j)

− α

∑
t=1

y◦t
∑

p∈B(t)\pt

x◦(p, j(p, t))−
∑
p,j

x◦(p, j)z◦(p, j)

We now claim that the RHS is non-negative. Fix x⋆ and x◦ to

their final values. We now see how the RHS changes as the al-
gorithm changes the dual solution (y◦, z◦). We show that every
change only increases the RHS. Initially y◦ = 0 and z◦ = 0 and
therefore the RHS is 0. Now consider any step of the algorithm
where we increase y◦

t by ϵ for some t. Simultaneously, we would
have increased z◦(p, j) by ϵ for all pages outside the cache except
for page pt, page requested at time t. Let Q be the of pages not
in the cache at this time. Thus z◦(p, j(p, t)) increases for exactly
|B(t)| − k − 1 pages, all pages in Q except pt.

∆

α

k
∑
t=1

y◦t
∑

p∈B(t)\pt

x⋆(p, j(p, t))− k
∑
p,j

x⋆(p, j)z◦(p, j)

=αkϵ

 ∑
p∈B(t)\pt

x⋆(p, j(p, t))−
∑
Q\pt

x⋆(p, j(p, t))

≥αkϵ (|B(t)| − k − 1 · (|Q| − 1))

=αkϵ

Thus the first term increases by at least αkϵ. Now consider the
change in the second term.

∆

α

∑
t=1

y◦
t

∑
p∈B(t)\pt

x◦(p, j(p, t))−
∑
p,j

x◦(p, j)z◦(p, j)

=αϵ

 ∑
p∈B(t)\pt

x◦(p, j(p, t))−
∑
Q\pt

x◦(p, j(p, t))

≤αϵ

 ∑
p∈B(t)\{Q∪{pt}}

1

=αkϵ

For every time t, let pt be the required page at time t. Do

• If the cache is not full or page pt is already in cache then bring
in page pt in cache and update

B(pt)← f ′
i(pt) (m(i(pt), t− 1) + 1) .

• Else

– Let p be the page in the cache with smallest B(p). Re-
move page p from the cache and bring in pt.

– Set B(pt)← f ′
i(pt)

(m(i(pt), t− 1) + 1).

– For each p′ /∈ {p, pt} in the cache, let B(p′)← B(p′)−
B(p).

– For each page p′ in the cache such that i(p′) = i(p), set

B(p′)←B(p′) + f ′
i(p′)

(
m(i(p′), t− 1) + 2

)
− f ′

i(p′)

(
m(i(p′), t− 1) + 1

)
Figure 3: Algorithm ALG-DISCRETE

where we use the fact that |B(t) \ {Q∪{pt}}| ≤ k since |Q| ≥
|B(t)| − k − 1. Thus we must have that

∑
i∈U

fi (αkm̄(i, T))−
∑
i∈U

fi (m(i, T)) ≥ 0

proving the lemma and Theorem 1.1.

2.5 Implementation of Algorithm ALG-CONT

We now give an implementation of ALG-CONT that does dis-
crete updates. The algorithm, termed ALG-DISCRETE is summa-
rized in Figure 3. The algorithm maintains a budget B(p) for each
page p in the cache and updates them in each iteration. A simple
check shows that the ALG-CONT will be the same algorithm by ob-
serving that yt increases in iteration t by the current value of B(p)
when page p is evicted.

We note that while the guarantee in Theorem 1.1 relies on the
assumption that each of the cost functions fi are convex, the algo-
rithm ALG-CONT or its discrete implementation ALG-DISCRETE
do not require the convexity assumption, and can in fact be applied
for arbitrary cost functions. In fact, the cost functions fi need not
even be continuous; the derivatives in the algorithms can be re-
placed by their discrete versions. We indeed demonstrate in [14]
that variants of our algorithms perform well in settings where the
assumptions of Theorem 1.1 do not necessarily hold.

3. BI-CRITERIA APPROXIMATION
In this section, we prove Theorem 1.3. As mentioned above,

we again analyze ALG-CONT. To compare the performance of our
algorithm with the offline algorithm with a smaller cache size of h,
we consider the convex program where the cache size is h.

We prove the following lemma which generalizes Lemma 2.2
and will prove Theorem 1.3. Observe that x⋆ is an optimal solution
to (CP-h) (cf. Figure 4) while x◦ is feasible for (CP) and might not
feasible for (CP-h) due to stronger constraints for smaller cache
size.

LEMMA 3.1. Let x⋆ be an optimal solution to the convex pro-
gram (CP-h) and x◦ denote any solution satisfying the invariant

conditions. Then we must have∑
i∈U

fi (m(i, T)) ≤
∑
i∈U

fi

(
α

k

k − h+ 1
m̄(i, T))

)
where α = supx,i

xf ′
i(x)

f(x)
and m̄(i, T) is the number misses for

user i by the optimal solution x⋆.

PROOF. The proof follows along the same lines as proof of Lemma 2.2
and we highlight the differences. First, following the same argu-
ment as in proof of Lemma 2.2, we obtain that

∑
i∈U

fi

(
α

k

k − h+ 1
m̄(i, T)

)
−

∑
i∈U

fi (m(i, T))

≥
∑
i∈U

∑
p∈Pi

r(p,T)∑
j=1

f ′
i (m(i, T)) ·

(
α

k

k − h+ 1
· x⋆(p, j)− x◦(p, j)

)

=
∑
p∈P

r(p,T)∑
j=1

α
k

k − h+ 1
· x⋆(p, j) · f ′

i(p) (m(i(p), T))−

∑
i∈U

∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j) · f ′
i

 ∑
p′∈Pi

r(p,T)∑
j=1

x◦(p′, j)

where we have again used that a convex function f satisfies f(y)−
f(x) ≥ f ′(x)(y − x) for all x, y. Now applying Claim 2.3, we
obtain that

∑
i∈U

fi

(
α

k

k − h+ 1
m̄(i, T)

)
−
∑
i∈U

fi (m(i, T))

≥
∑
p∈P

r(p,T)∑
j=1

α
k

k − h+ 1
· x⋆(p, j) · f ′

i(p) (m(i(p), T))−

∑
i∈U

α
∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j) · f ′
i (m(i, s(p, j)))

≥
∑
p∈P

r(p,T)∑
j=1

α
k

k − h+ 1
· x⋆(p, j) ·

t=t(p,j+1)−1∑
t=t(p,j)+1

y◦
t − z◦(p, j)

−
∑
i∈U

α
∑
p∈Pi

r(p,T)∑
j=1

x◦(p, j) ·

t(p,j+1)−1∑
t=t(p,j)+1

y◦
t − z◦(p, j)

where we have used condition (3a) in the first term and condi-
tion (2b) in the second term. Rearranging, we obtain that

∑
i∈U

fi

(
α

k

k − h+ 1
m̄(i, T)

)
−
∑
i∈U

fi (m(i, T))

≥α

 k

k − h+ 1

∑
t=1

y◦
t

∑
p∈B(t)\pt

x⋆(p, j(p, t))

−

(
α

k

k − h+ 1

∑
p,j

x⋆(p, j)z◦(p, j)

)

− α

∑
t=1

y◦
t

∑
p∈B(t)\pt

x◦(p, j(p, t))−
∑
p,j

x◦(p, j)z◦(p, j)

We now claim that the RHS is non-negative. Fix x⋆ and x◦ to

their final values. We now see how the RHS changes as the al-
gorithm changes the dual solution (y◦, z◦). We show that every

(ICP-h) min
∑m

i=1 fi
(∑

p∈Pi

∑r(p,T)
j=1 x(p, j)

)
(CP-h) min

∑m
i=1 fi

(∑
p∈Pi

∑r(p,T)
j=1 x(p, j)

)
s.t. s.t.

∀1 ≤ t ≤ T
∑

p∈B(t)\{pt} x(p, j(p, t)) ≥ |B(t)| − h ∀1 ≤ t ≤ T
∑

p∈B(t)\{pt} x(p, j(p, t)) ≥ |B(t)| − h

∀p ∈ P,∀j x(p, j) ∈ {0, 1} ∀p ∈ P, ∀j x(p, j) ≤ 1
∀p ∈ P, ∀j x(p, j) ≥ 0

Figure 4: Integer Convex Program and its Convex Programming Relaxation for Cache Size h

change only increases the RHS. Initially y◦ = 0 and z◦ = 0 and
therefore the RHS is 0. Now consider any step of the algorithm
where we increase y◦

t by ϵ for some t. Simultaneously, we would
have increased z◦(p, j) by ϵ for all pages outside the cache except
for page pt, page requested at time t. Let Q be the of pages not
in the cache at this time. Thus z◦(p, j(p, t)) increases for exactly
|B(t)| − k − 1 pages, all pages in Q except pt.

∆

α

 k

k − h+ 1

∑
t=1

y◦
t

∑
p∈B(t)\pt

x⋆(p, j(p, t))

−∆

((
k

k − h+ 1

∑
p,j

x⋆(p, j)z◦(p, j)

))

=α
k

k − h+ 1
ϵ

 ∑
p∈B(t)\pt

x⋆(p, j(p, t))−
∑
Q\pt

x⋆(p, j(p, t))

≥α k

k − h+ 1
ϵ (|B(t)| − h− 1 · (|Q| − 1))

=α
k

k − h+ 1
ϵ · (k − h+ 1)

=αkϵ

where we have the used the fact x⋆ satisfies the stronger con-
straints

∑
p∈B(t)\pt x

⋆(p, j(p, t)) ≥ |B(t)| − h.
Thus the first term increases by at least αkϵ. Now consider the

change in the second term.

∆

α

∑
t=1

y◦t
∑

p∈B(t)\pt

x◦(p, j(p, t))−
∑
p,j

x◦(p, j)z◦(p, j)

=αϵ

 ∑
p∈B(t)\pt

x◦(p, j(p, t))−
∑
Q\pt

x◦(p, j(p, t))

≤αϵ

 ∑
p∈B(t)\{Q∪{pt}}

1

=αkϵ

where we use the fact that |B(t) \ {Q ∪ {pt}}| ≤ k since |Q| ≥
|B(t)| − k − 1. Thus we must have that

∑
i∈U

fi

(
α

k

k − h+ 1
m̄(i, T)

)
−
∑
i∈U

fi (m(i, T)) ≥ 0

proving Lemma 3.1 and Theorem 1.3.

4. LOWER BOUND
In this section, we prove Theorem 1.4 by giving a worst case

instance. For any n and β, we construct an instance with n users,

each with cost function given by fi(x) = xβ . Each user will own a
single page and the cache size will be n−1. Let A be any algorithm.
We now describe the input sequence σ which will depend on the
algorithm. At any time t ≥ n − 1, the cache of the algorithm will
contain exactly n − 1 pages and therefore one of the page out of
n must be missing. In sequence σ, we request exactly this missing
page. Observe that this implies that the algorithm must evict a page
on each request except for the first n − 1 requests. We run this
sequence for large time T and ignore the error due to the first n−1
page requests. Let there be ri requests for page owned by user
i. Then we have

∑n
i=1 ri ≥ T and the cost of the algorithm A

is at least
∑n

i=1 r
β
i . Now we show that the optimal solution is

much smaller by giving an offline algorithm that costs much less.
Of course, the cost of the optimal solution must be smaller than the
cost achieved by this offline algorithm. First we divide the sequence
of requests in batches of length n−1

2
. At the start of the each batch,

there are n − 1 pages in the cache. We choose one page to evict
making sure that it is not one of the pages in the next n−1

2
page

requests. This ensures that we do not have any other eviction in
the next n−1

2
page requests. Observe that there are n+1

2
different

choices for which page to evict. We choose the one which has had
fewest number of evictions so far. We now make two observations.
First that the number of total evictions is no more than T

n−1
2

since

we make at most one eviction per batch. Second observation is that
the maximum eviction for any page is bounded by 1

n+1
2

T
n−1
2

+ 1.

The last bound follows since there must be at least n+1
2

other pages
which have nearly the same number, up to an additive factor of
one, as the page with maximum number of evictions due to the
rule for choosing the evictions. Thus the cost of the algorithm is
bounded by (4T

n2)
βn. While the cost of the algorithm A is at least∑n

i=1 r
β
i ≥ (T

n
)βn where the last inequality follows since β ≥ 1

and the sum
∑n

i=1 r
β
i is minimized when each of ri is equal to T

n
.

Thus we obtain that cost of the algorithm A is at least (n
4
)β times

the cost of the optimal solution on request σ proving Theorem 1.4
since we have k = n− 1.

5. CONCLUSION
Multi-tenancy poses substantial challenges for modern compute

systems, and sharing physical memory stands out as an important
problem in this space. Modeling the user performance as a non-
linear (cost) function of the total number of memory misses allows
to capture practical considerations of the provider, and automate
memory allocation via cost-aware algorithms. In this paper, we
design algorithms to solve the respective online optimization prob-
lem. We provide performance guarantees under convexity assump-
tions – we prove that our algorithm is ααkα-competitive, where k
is the memory (cache) size, and α is a constant which depends on
the curvature of the cost functions. We also obtain a bi-criteria re-
sult which trades the performance to the memory size, and give a
nearly matching lower bound on performance. Based on the algo-
rithm developed in this paper, we have recently designed and pro-

totyped a memory replacement mechanism for SQLVM, a multi-
tenant DaaS system, see [14].

In this paper, we assume that a single pool of memory has to be
shared between tenants. An interesting direction for future work
is to consider the case of multiple memory pools (e.g., each pool
corresponds to a single physical server), where each user has to be
assigned to a single pool, with potentially switching cost incurred
for migrating users between servers.

Acknowledgements
We thank the reviewers for their thoughtful comments. We also
thank Vivek Narasayya for helpful discussions.

6. REFERENCES
[1] S. Albers. Competitive online algorithms. Lecture Notes,

Aarhus University, 1996.
[2] Amazon ElastiCache.

http://aws.amazon.com/elasticache/.
[3] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual

randomized algorithm for weighted paging. J. ACM,
59(4):19, 2012.

[4] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems journal, 5(2):78–101,
1966.

[5] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh,
R. Johnson, and S. McCauley. Cache-adaptive algorithms. In
SODA, pages 958–971. SIAM, 2014.

[6] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press, 1998.

[7] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[8] N. Buchbinder and J. Naor. The design of competitive online
algorithms via a primal: dual approach. Foundations and
Trends R⃝ in Theoretical Computer Science, 3(2–3):93–263,
2009.

[9] F. J. Corbato. A paging experiment with the Multics system.
Technical report, DTIC Document, 1968.

[10] B. Fitzpatrick. Distributed caching with memcached. Linux
journal, 2004(124):5, 2004.

[11] A. Hassidim. Cache replacement policies for multicore
processors. In ICS, pages 501–509, 2010.

[12] Microsoft Azure Cache. http://azure.microsoft.
com/en-us/services/cache/.

[13] Microsoft Azure SQL Database (formerly SQL Azure).
http://www.windowsazure.com/en-us/
services/sql-database/.

[14] V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala, and
S. Chaudhuri. Sharing Buffer Pool Memory in Multi-Tenant
Relational Database-as-a-Service. Proceedings of the VLDB
Endowment, 8(7), 2015. Available from http://www.
vldb.org/pvldb/vol8/p726-narasayya.pdf.

[15] V. R. Narasayya, S. Das, M. Syamala, B. Chandramouli, and
S. Chaudhuri. SQLVM: Performance Isolation in
Multi-Tenant Relational Database-as-a-Service. In CIDR,
2013.

[16] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In ACM
SIGMOD Record, volume 22, pages 297–306. ACM, 1993.

[17] E. J. O’Neil, P. E. O’Neil, and G. Weikum. An optimality
proof of the LRU-K page replacement algorithm. Journal of
the ACM (JACM), 46(1):92–112, 1999.

[18] E. Peserico. Elastic paging. In Proceedings of the ACM
SIGMETRICS/international conference on Measurement and
modeling of computer systems, pages 349–350. ACM, 2013.

[19] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

[20] N. Young. The k-server dual and loose competitiveness for
paging. Algorithmica, 11(6):525–541, 1994.

[21] W. Zhang and P.-A. Larson. Dynamic memory adjustment
for external mergesort. In VLDB, volume 97, pages 25–29,
1997.

