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Abstract—In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief

propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for

depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the

binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP)

estimation in the Markov network. Other low-level visual cues (e.g., image segmentation) can also be easily incorporated in our stereo

model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the state-of-the-art stereo

algorithms for many test cases.

Index Terms—Stereoscopic vision, belief propagation, Markov network, Bayesian inference.

�

1 INTRODUCTION

STEREO vision infers 3D scene geometry from two images
with different viewpoints. This fundamental problem

has been investigated for many years not only in computer
vision but also in cognitive science and psychophysiology.
Recent applications such as view synthesis and image-
based rendering make stereo vision again an active research
topic in computer vision.

Classical dense two-frame stereo matching computes a

dense disparity or depth map from a pair of images under

knowncameraconfiguration. Ingeneral, the scene is assumed

Lambertianor intensity-consistent fromdifferentviewpoints,

without specularities, reflective surfaces, or transparency.

The known camera configuration can provide a powerful

epipolar geometry constraint for matching. Stereo matching

remains a difficult vision problem for the following reasons.

. Noise. There are always unavoidable light variations,
image blurring, and sensor noise in image formation.
A practical stereo algorithm must be robust.

. Textureless regions. This is also called the aperture
problem. The intensity-consistency constraint is use-
less in textureless regions. Thus, information from
highly textured regions needs to be propagated into
textureless regions for stereo matching, e.g., by using
spatial smoothness constraint.

. Depth discontinuities. The spatial smoothness con-
straint should be broken at object (depth) bound-
aries. In other words, information propagation
should stop at depth discontinuities.

. Occlusions. Occluded pixels in one view should not
be matched with pixels in the other view.

Clearly, stereo matching is an ill-posed problem with
inherent ambiguities. The Bayesian approach provides a
promisingway for such ill-posed problems because it treats a
task as an inference problem or finding the “best guess”
solution.For stereomatching,wewant to infer scenestructure
S given images I. The output from the Bayesian approach is
not only a single solution but also a posterior probability
distribution P ðSjIÞ. By Bayes law, P ðSjIÞ / P ðIjSÞP ðSÞ,
where P ðIjSÞ is the likelihood that encodes the process of
forward image formation and P ðSÞ is the prior that encodes
our assumptions on scene structure.

The Bayesian approach has many advantages when
applied to stereo vision. It can encode various prior con-
straints, e.g., spatial smoothness, uniqueness, and the order-
ing constraint. It can also deal with uncertainties in stereo
matching. Because the Bayesian approach states explicitly
what assumptions are made, the strengths and the weak-
nesses of the proposed algorithm can be clearly examined. In
addition to stereoscopic vision, people also use other cues to
infer scene structure, e.g., shape from shading, shape from
shadows, shape from focus, shape from silhouette, and shape
from texture. The Bayesian approach provides a natural way
to integrate the information frommultiple sensors.

There are two contributions in this paper. First, we
formulate stereo matching using three MRF’s and subse-
quently estimate the optimal solution by a Bayesian Belief
Propagation algorithm. Second, we propose a probabilistic
framework to integrate additional information (e.g., segmen-
tation) into the stereo algorithm.

The rest of paper is organized as follows: After reviewing
related work in Section 2, we propose in Section 3 a novel
stereomatching approach to explicitlymodel discontinuities,
occlusions, and the disparity field in the Bayesian frame-
work. In Section 4, Bayesian Belief Propagation is applied to
infer the stereo matching. The basic stereo model is then
extended in Section 5 to integrate other cues such as region
similarity. The experimental results shown in Section 6
demonstrate that our model is effective and efficient. In
Section 7, we adapt the stereo model for multiview stereo.
Finally,we discuss in Section 8why our stereomatchingwith
belief propagation canproduce results that are comparable to
the state-of-the-art stereo algorithms.
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2 RELATED wORK

In this section, we review related stereo algorithms,
especially those using the Bayesian approach. We refer
the reader to a more detailed and updated taxonomy of
dense, two-frame stereo correspondence algorithms by
Scharstein and Szeliski [30]. A testbed for quantitative
evaluation of stereo algorithms is also given in [30].

A stereo algorithm is called a global method if there is
a global objective function to be optimized. Otherwise, it
is called a local method. The central problem of local or
window-based stereo matching methods is to determine
the optimal size, shape, and weight distribution of
aggregation support for each pixel. An ideal support
region should be bigger in textureless regions and should
be suspended at depth discontinuities. The central
problem of global algorithms is not only to define a good
objective function but also to provide an effective
computing method to find local or global minimum. In
the taxonomy of Scharstein and Szeliski [30], a local
method consists of matching cost computation, aggrega-
tion of cost, and disparity computation; a global method
consists of matching cost computation and disparity
optimization. From the Bayesian point of view, matching
cost computation is a measurement or observation. The
most common matching costs, e.g., squared intensity
difference(SD), absolute intensity difference [20], normal-
ized-cross correlation [28], [7], binary matching cost [25],
rank transform [35], shifted absolute difference [3], are
ways of computing the likelihood function. Different
aggregation methods reflect different priors assumed on
scene structure. For example, a fixed-window method
implies a frontal-plane scene, and a 3D window method
limits the disparity gradient. Obviously, the fixed window
is invalid at depth discontinuities. Some improved
window-based methods, such as adaptive windows [20]
and shiftable windows [6], [33], [21] try to avoid windows
that span depth discontinuities.

Bayesian methods (e.g., [13], [18], [2], [10], [6]) are global
methods that model discontinuities and occlusion. Bayesian
methods can be classified into two categories: dynamic
programming-based or MRFs-based, depending on the
computation model. Geiger et al. [13] and Ishikawa and
Geiger [18] derived an occlusion process and a disparity
field from a matching process. Assuming an “order
constraint” and “uniqueness constraint,” the matching
process becomes a “path-finding” problem where the global
optimum is obtained by dynamic programming. Belhumeur
[2] defined a set of priors from a simple scene to a complex
scene. A simplified relationship between disparity and
occlusion is used to solve scanline matching by dynamic
programming. Unlike Geiger and Belhumeur who enforced
a piecewise-smooth constraint, Cox et al. [10] and Bobick
and Intille [6] did not require the smoothing prior.
Assuming corresponding features are normally distributed
and a fixed cost for occlusion, Cox proposed a dynamic
programming solution using only the occlusion constraint
and ordering constraints. Bobick and Intille incorporated
the Ground Control Points constraint to reduce the
sensitivity to occlusion cost and the computation complex-
ity of Cox’s method. These dynamic programming methods
assume that the occlusion cost is the same in each scanline.

Ignoring the dependence between scanlines results in the

characteristic “streaking” in the disparity maps.
Markov Random Fields (MRF) is a powerful tool to

model spatial interaction. Bayesian stereo matching can be
formulated as a maximum a posteriori MRF (MAP-MRF)
problem. There are several methods to solve the MAP-MRF
problem: simulated annealing [14], Mean-Field annealing
[12], the Graduated Non-Convexity algorithm (GNC) [5],
and Variational approximation [17]. Finding a solution by
simulated annealing can often take an unacceptably long
time although global optimization is achievable in theory.
Mean-Field annealing is a deterministic approximation to
simulated annealing by attempting to average over the
statistics of the annealing process. It reduces execution time
at the expense of solution quality. GNC can only be applied
to some special energy functions. Variational approxima-
tion converges to a local minimum. Recently, the Graph Cut
(GC) method [8] has been proposed based on the max flow
algorithm in graph theory. This method is a fast efficient
algorithm to find a local minimum for a MAP-MRF whose
energy function is Potts or Generalized Potts.

The absence of an efficient stochastic computing method
has made probabilistic models less attractive. In this paper,
we formulate a probabilistic stereo model that can be
efficiently solvedby aBayesianBelief Propagation algorithm.

3 BASIC STEREO MODEL

Wemodel stereo matching by three coupled MRF’s:D is the
smooth disparity field defined on the image lattice of the
referenceview,L is a spatial lineprocess locatedon thedualof
the image lattice and represents explicitly the presence or
absenceofdepthdiscontinuities inthereferenceview,andO is
a spatial binary process to indicate occlusion regions in the
referenceview.Fig. 1 illustrates theseprocesses in the1Dcase.

Using Bayes’ rule, the joint posterior probability overD,L,

andO given a pair of stereo images I ¼ fIL; IRg, where IL, IR
is the left (reference) and right images, respectively, is:

P ðD;L;OjIÞ ¼ P ðIjD;L;OÞP ðD;L;OÞ
P ðIÞ : ð1Þ
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Fig. 1. A scene illustrates the geometric relationship among depth
process D, discontinuity process L, and occlusion process O. Matched
points between IL (the reference view) and the right image IR are
connected by thick lines.



Without occlusion, fD;Lg are coupled MRF’s proposed by
[14] to model a piecewise-smooth surface with two random
fields: one representing the variable required to estimate,
the other representing its discontinuities. Similar models
such as the “weak membrane” model [5] in surface
reconstruction and the “Mumford-Shah” model in image
segmentation [26] have also been studied in computer
vision. However, in image formation of stereo pairs, the
piecewise-smooth scene is projected on a pair of stereo
images. Some regions are only visible in one image. Each
pixel in the occlusion region has no matching pixel in the
other view. For example, in Fig. 1, points b; c; g; h from IL
cannot be matched in IR. Adding occlusion process O into
the piecewise-smooth model fD;Lg is therefore necessary.

3.1 Likelihood

We assume that the likelihood P ðIjD;O;LÞ is independent
of L,

P ðIjD;O;LÞ ¼ P ðIjD;OÞ ð2Þ

because the observation (I) is pixel-based. Assuming that the
observation noise follows an independent identical distribu-
tion (i.i.d.), we can define the likelihood P ðIjD;OÞ as:

P ðIjD;OÞ /
Y
s=2O

expð�F ðs; ds; IÞÞ; ð3Þ

where F ðs; ds; IÞ is the matching cost function of pixel swith
disparity ds given observation I. Our likelihood considers the
pixels only in nonoccluded areas fs =2Og because likelihood
in occluded areas cannot be well defined.

For the matching cost, we use Birchfield and Tomasi’s
pixel dissimilarity, which is provably insensitive to image
sampling [3]:

F ðs; ds; IÞ ¼ minfdðs; s0; IÞ=�f ; dðs0; s; IÞ=�fg;

where

dðs; s0; IÞ ¼
minf ILðsÞ � I�R ðs0Þ

�� ��; ILðsÞ � IRðs0Þj j; ILðsÞ � IþR ðs0Þ
�� ��g;

s0 is thematching pixel of s in the right viewwith disparity ds,
I�R ðs0Þ is the linearly interpolated intensityhalfwaybetween s0

and its neighboring pixel to the left, IþR ðs0Þ is the linearly
interpolated intensity halfwaybetween s0 and its neighboring
pixel to the right, dðs0; s; IÞ is the symmetric version of
dðs; s0; IÞ, and �f is the image noise variance to be estimated.

3.2 Prior

There is no simple statistical relationship between coupled
fields fD;Lg and field O. The ordering constraint [1]
assumes that the order of neighboring correspondences is
always preserved. This ordering allows the construction of
a dynamic programming scheme. However, this constraint
may not always be true. For instance, this constraint is
violated when a thin object is close to the viewer. As shown
in Fig. 1, a thin object fj; kg causes the order of points i and j
in IL to be different from that of their matched points in IR.

In this paper, we ignore the statistical dependence
between O and fD;Lg and assume that:

P ðD;O;LÞ ¼ P ðD;LÞP ðOÞ: ð4Þ

The Markov property asserts that the conditional prob-
ability of a site in the field depends only on its neighboring
sites. AssumingD, L, and O follow the Markov property, by
specifying the first order neighborhood system GðsÞ and
NðsÞ ¼ ftjt > s; t 2 GðsÞg of site s, the prior (4) can be
expanded as:

P ðD;L;OÞ /
Y
s

Y
t2NðsÞ

expð�’cðds; dt; ls;tÞÞ
Y
s

expð��cðosÞÞ;

ð5Þ

where ’cðds; dt; ls;tÞ is the joint clique potential function of
sites ds, dt (neighbor of ds) and ls;t. ls;t is the line variable
between ds and dt, and �cðosÞ is the cliquepotential function of
os. ’cðds; dt; ls;tÞ and �cðosÞ are user-customized functions to
enforce the contextual constraints for stereo matching. To
enforce spatial interactions between ds and ls;t, we define
’cðds; dt; ls;tÞ as follows:

’cðds; dt; ls;tÞ ¼ ’ðds; dtÞð1� ls;tÞ þ �ðls;tÞ; ð6Þ

where ’ðds; dtÞ penalizes the different assignments of
neighboring sites when no discontinuity exists between
them and �ðls;tÞ penalizes the occurrence of a discontinuity
between sites s and t. Typically, �ð0Þ ¼ 0.

By combining (3), (5), and (6), our basic stereo model (1)
becomes:

ðP ðD;O;LjIÞ /
Y
s=2O

expð�F ðs; ds; IÞÞ
Y
s

expð��cðosÞÞ

Y
s

Y
t2NðsÞ

expð�ð’ðds; dtÞð1� ls;tÞ þ �ðls;tÞÞÞ:

ð7Þ

4 APPROXIMATE INFERENCE BY BELIEF

PROPAGATION

To find the MAP solution of (7), we need to:

. determine the forms and parameters of ’ðds; dtÞ,
�ðls;tÞ, and �cðosÞ and

. provide a tractable inference algorithm.

It is, however, nontrivial to specify or to learn appropriate
forms and parameters of ’ðds; dtÞ, �ðls;tÞ, and, especially,
�cðosÞ. Even if the forms and parameters are given, it is still
difficult to find the MAP of a composition of a continuous
MRFsD and twobinaryMRFsL andO. Although theMarkov
Chain Monte Carlo (MCMC) [14], [15] approach provides an
effective way to explore a posterior distribution, the
computational requirement makes MCMC impractical for
stereo matching. The solution space of our model is
� ¼ �d � �l � �o, where �d, �l, and �o are the solution
spaces of depth, discontinuity, and occlusion, respectively.

This iswhyweneed tomake someapproximationsonboth
themodel and algorithm. In Section 4.1, the unification of line
processandrobust statistics [4]providesusaway toeliminate
the binary random variable from our MAP problem. In
Section 4.2, after converting MRFs to the corresponding
Markov network, the approximate inference algorithm, a
loopy belief propagation algorithm can be used to approx-
imate the posterior probability for stereo matching.

SUN ET AL.: STEREO MATCHING USING BELIEF PROPAGATION 3



4.1 Model Approximation: From Line Process to
Outlier Process

Maximization of the posterior (7) can be rewritten as

max
D;L;O

P ðD;L;OjIÞ ¼

max
D

max
O

Y
s

expð�ðF ðs; ds; IÞð1� osÞ þ �cðosÞosÞÞ
(

max
L

Y
s

Y
t2NðsÞ

expð�ð’ðds; dtÞð1� ls;tÞ þ �ðls;tÞÞÞ

9=
;

ð8Þ

because the first two factors on the r.h.s of (7) are independent

of L and the last factor on the r.h.s of (7) is independent ofO.
Now, we relax the binary processes ls;t and os to analog

processes las;t and oas (“outlier process” [4]) by allowing 0 �
las;t � 1 and 0 � oas � 1. For the first term in (8),

max
O

Y
s

expð�ðF ðs; ds; IÞð1� oasÞ þ �cðoasÞoasÞÞ

¼ expð�min
O

X
s
ðF ðs; ds; IÞð1� oasÞ þ �cðoasÞoasÞÞ;

ð9Þ

where min
O

P
s ðF ðs; ds; IÞð1� oasÞ þ �cðoasÞoasÞ is the objective

function of a robust estimator. The robust function of this

robust estimator [4] is

�dðdsÞ ¼ min
oas
ðF ðs; ds; IÞð1� oasÞ þ �cðoasÞoasÞ: ð10Þ

For the second term in (8), we also have a robust

function �pðds; dtÞ:

�pðds; dtÞ ¼ min
las;t

ð’ðds; dtÞð1� las;tÞ þ �ðlas;tÞÞ: ð11Þ

We get the posterior probability over D defined by two

robust functions:

P ðDjIÞ /
Y
s

expð��dðdsÞ
Y
s

Y
t2NðsÞ

expð��pðds; dtÞÞ: ð12Þ

Thus, we not only eliminate two analog line processes

via the outlier process but also model outliers in measure-

ments. We convert the task of modeling the prior terms

f�cðosÞ; ’ðds; dtÞ; �ðls;tÞg explicitly into defining two robust

functions �dðdsÞ and �pðds; dtÞ that model occlusion and

discontinuity implicitly.
In this paper, our robust functions are derived from the

Total Variance (TV) model [23] with the potential function

�ðxÞ ¼ jxj because of its discontinuity preserving property.

We truncate this potential function as our robust function:

�dðdsÞ ¼ � ln ð1� edÞ exp �
F ðs; ds; IÞj j

�d

� �
þ ed

� �
; ð13Þ

�pðds; dtÞ ¼ � ln ð1� epÞ exp �
ds � dtj j
�p

� �
þ ep

� �
: ð14Þ

Fig. 2 shows different shapes of our robust functions. By

varying parameters e and �, we control the shape of the

robust function and, therefore, the posterior probability.
After approximating the model, the next task is to

provide an effective and efficient inference algorithm. We

describe below how the belief propagation algorithm is

used to compute the MAP of the posterior distribution (12).

4.2 Algorithm Approximation: Loopy Belief
Propagation

In the literature of probabilistic graph models [19], a Markov

network is an undirected graph as shown in Fig. 3. Nodes

fxsg are hidden variables and nodes fysg are observed

variables. By denoting X ¼ fxsg and Y ¼ fysg, the posterior
P ðXjY Þ can be factorized as:

P ðXjY Þ /
Y
s

 sðxs; ysÞ
Y
s

Y
t2NðsÞ

 stðxs; xtÞ; ð15Þ

where  stðxs; xtÞ is called the compatibility matrix between

nodes xs and xt, and  sðxs; ytÞ is called the local evidence

for node xs. In fact,  sðxs; ysÞ is the observation probability

pðysjxsÞ. If the number of discrete states of xs is L,  stðxs; xtÞ
is an L� Lmatrix and  sðxs; ysÞ is a vector with L elements.

It can be observed that the form of our posterior (12) is

same as the form of (15). If we define

 stðxs; xtÞ ¼ expð��pðxs; xtÞÞ; ð16Þ
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Fig. 2. (a) e ¼ 0:01; � ¼ 1:0. (b) e ¼ 0:01; � ¼ 2:0. (c) e ¼ 0:1; � ¼ 2:0. Robust function �ðxÞ ¼ � lnðð1� eÞ expð� xj j
� Þ þ eÞ derived from TV model.

Parameters � and e, respectively, control the sharpness and the upper-bound of the function.

Fig. 3. Local message passing in a Markov Network. Gray nodes are
hidden variables. White nodes are observable variables. In the “max-
product” algorithm, the new message sent from node x1 to x2 is:
mnew

1;2  �maxx1 12ðx1; x2Þm1m3;1m4;1m5;1. The belief at node x1 is
computed as: b1  �m1m2;1m3;1m4;1m5;1.



 sðxs; ysÞ / expð��dðxsÞÞ; ð17Þ

our posterior (12) is exactly the posterior of a Markov
network. Fig. 4 gives an illustration of  stðxs; xtÞ for our
stereo model. Thus, finding the MAP of (12) is equal to
finding the MAP of a Markov network.

For this Markov network, exact inference such as variable

elimination is obviously intractable due to the large state

space of D. Approximation methods include variational

methods, sampling methods, bounded cutset conditioning,

and parametric approximation methods [19]. In particular,

loopy belief propagation is a linear time algorithm propor-

tional to the number of hidden nodes. Loopy belief propaga-

tion applies Pearl’s algorithm [27] to the graph that has loops.

For graphs without loops, Pearl’s algorithm is an exact

inference method. For graph with loops, such as our Markov

network for stereo matching, the belief propagation algo-

rithm cannot guarantee the global optimal solution. Despite

loops in the network, however, belief propagation has been

applied successfully to some vision [11] and communication

[34] problems recently.
Belief propagation (BP) is an iterative inference algorithm

that propagates messages in the network. Let mstðxs; xtÞ be
the message that node xs sends to xt, msðxs; ysÞ be the
message that observed node ys sends to node xs (in fact,
msðxs; ysÞ ¼  sðxs; ysÞ), and bsðxsÞ be the belief at node xs.
Note that mstðxs; xtÞ, msðxs; ysÞ, and bsðxsÞ are all vectors
with L elements. We simplify mstðxs; xtÞ as mstðxtÞ, and
msðxs; ysÞ as msðxsÞ. There are two kinds of BP algorithms
with different message update rules: “max-product” and
“sum-product” which maximize the joint posterior P ðXjY Þ
of the network and the marginal posterior of each node
P ðxsjY Þ, respectively. The standard “max-product” algo-
rithm is shown below:

1. Initialize all messages mstðxtÞ as uniform distribu-
tions and messages msðxsÞ ¼  sðxs; ysÞ.

2. Update messages mstðxtÞ iteratively for i = 1:T

miþ1
st ðxtÞ  �max

xs
 stðxs; xtÞmi

sðxsÞ
Y

xk2NðxsÞnxk
mi
ksðxsÞ:

3. Compute beliefs

bsðxsÞ  �msðxsÞ
Y

xk2NðxsÞ
mksðxsÞ

xMAP
s ¼ argmax

xk

bsðxkÞ:

For example, in Fig. 3, the newmessage sent from node x1
to x2 is updated as: mnew

1;2  �maxx1 12ðx1; x2Þm1m3;1m4;1

m5;1. The belief at node x1 is computed as: b1  �m1

m2;1m3;1m4;1m5;1 (the product of two messages is the
component-wise product); � is the normalization constant.

The computational complexity of a standard “max-

product” BP algorithm is OðTNL2Þ, where N is the number

of pixels and T is the number of iterations. Most of the

computation focuses on the multiplication of matrix

 stðxs; xtÞ and vector msðxsÞ
Q

xk2NðxsÞnxs mksðxsÞ. However,

in our experiments, some statistical properties of messages

can be used to speed up belief propagation.
Propagation Speedup. It can be observed that each row

of  stðxs; xtÞ is a unique peak distribution in our stereo

model. In our experiments, most messages have unique

peaks. We can exploit this property to identify unnecessary

computation during iterations. We simplify matrix

 stðxs; xtÞ as ½aT1 ; � � � ; aTL�
T , msðxsÞ

Q
xk2NðxsÞnxs mksðxsÞ as b

and miþ1
st ðxtÞ as c. The message update at one iteration is:

cðiÞ ¼ argmax
j

aiðjÞ � bðjÞ: ð18Þ
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Fig. 4. Compatibility matrix  stðxs; xtÞ. The range of disparity is
½dmin; dmax�. A larger box represents a bigger value.

Fig. 5. (a) segðsÞ ¼ segðtÞ. The left shows the first row of  stðxs; xtÞ when
node xs and xt are in the same region. (b) segðsÞ 6¼ segðtÞ. The right
shows the first row of  stðxs; xtÞ when node xs and xt are in different
regions. ({ep ¼ 0:01; �p ¼ 1:0; �seg ¼ 0:05).

TABLE 1
Quantitative Statistics Based on Known Ground Truth Data

�d ¼ 1 in all our experiments.



We denote the peak positions of ai and b by jmaxai
and jmaxb

separately. If both ai and b are unique peak distributions,

the position of c’s peak jmaxc must lie between jmaxai
and

jmaxb . Thus, we can avoid unnecessary multiplications for

the messages with unique peaks. This simple accelerating

technique can improve the efficiency about 30-60 percent

in our experiments.

5 INTEGRATING MULTIPLE CUES

More low-level visual cues (e.g., segmentation, edges,
corners) can be incorporated into the intensity constraint to
improve stereo matching. Recently, a segmentation-based
stereo algorithm [32] has been proposed based on the
assumption that the depth discontinuities occur on the
boundary of the segmented regions. In [32], the segmentation

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 7, JULY 2003

TABLE 2
The Performance of Different Stereo Algorithms with Fixed Parameters on Four Test Image Pairs

The underlined number is the best in its category.

Fig. 6. The results on the Tsukuba data set. (a) Ground truth. (b) Image segmentation result. (c) Textureless regions. (d) Max-product result without
segmentation. (e) Discontinuity (white) and occlusion (black) regions. (e) Max-product result with segmentation.



results are used as hard constraints. In our work, we
incorporate segmentation results into our basic stereo model
as soft constraints (priors) under a probabilistic framework.

With additional cues, we extend the basic stereo model
(12) to:

P ðD;O;LjIÞ /
Y
s

expð��dðdsÞÞY
s

Y
t2NðsÞ

expð�’cðds; dt; ls;tÞÞ expð��pcueðds; dtÞÞ;

ð19Þ

where �pcueðds; dtÞ encodes some constraints between sites.
To integrate region similarities from image segmentation,
we define �pcueðds; dtÞ as:

�pcueðds; dtÞ ¼ �segðds; dtÞ ¼
0 segðsÞ ¼ segðtÞ
�seg segðsÞ 6¼ segðtÞ;

�
ð20Þ

where segðsÞ is the label of the segmentation result at site s.
The larger the �seg, the more difficult passing the message

between neighbor sites becomes. In other words, the

influence from neighbors becomes smaller as �seg increases.

In our experiments, the segmentation labels are produced

by the Mean-Shift algorithm [9]. It takes just a few seconds

for each image used in our experiments.
With the introduction of �pcueðds; dtÞ, the compatibility

matrix  stðxs; xtÞ becomes:

 stðxs; xtÞ ¼ expð��pðxs; xtÞÞÞ expð��pcueðxs; xtÞÞÞ: ð21Þ

Fig. 5 shows the first row of  stðxs; xtÞwhen xs and xt are in

the same region and in different regions.
When the scene consists of several 3D planes, layers

extracted can also be treated as a cue. We can define

�pcueðds; dtÞ as:

�pcueðds; dtÞ¼ �layerðds; dtÞ ¼
0 layerðsÞ ¼ layerðtÞ

�layer layerðsÞ 6¼ layerðtÞ:

�
ð22Þ
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Fig. 7. (a) Sawtooth: image. (b) Ground truth. (c) Max-product result. (d) Venus: image. (e) Ground truth. (f) Max-product result. (g) Map: image.
(h) Ground truth. (i) Max-product result. (j) Graph cut result. (k) Bayes diffusion result. (l) Sum-product result. The results of Sawtooth, Venus, and
Map based on the “max-product” algorithm are shown in (c), (f), and (i). Graph Cut (B �OO ¼ 0:31, BD ¼ 3:88) and Bayesian diffusion results (B �OO ¼ 0:20,
BD ¼ 2:49) are shown in (j) and (k), while the “sum-product” result (B �OO ¼ 0:16, BD ¼ 2:11) is shown in (l).



6 EXPERIMENTAL RESULTS

In this paper, we evaluate the performance of our stereo
algorithm using the quality measures proposed in [30] based
on known ground truth data listed in Table 1. In particular,
B �OO represents the overall performance of a stereo algorithm.

The test data set consists of four pairs of images: “Map,”
“Tsukuba,” “Sawtooth,” and “Venus” [30]. “Tsukuba” is a
complicated indoor environment with frontal surfaces and
contains a number of integer-valued disparities. Other pairs
consist of mainly slanted planes.

Table 2 shows the results of applying our BP algorithm to
all four pairs of images. It also lists the results of other stereo
algorithms. This table is courtesy of Scharstein and Szeliski
(see http://www.middlebury.edu/stereo/results.html for
more details). Our results with andwithout image segmenta-
tion incorporated into stereo matching are shown in the first
and the second row, respectively.

For a complicated environment like “Tsukuba,” incor-
porating image segmentation improves stereo matching
significantly, with a 40 percent error reduction in B �OO. In
fact, our algorithm ranks as the best for “Tsukuba” and
outperforms Graph Cut (with occlusion) [22] which was
widely regarded as one of the best current stereo matching
algorithms. Our algorithm compares well with other stereo
algorithms for the three other data sets, “Sawtooth,”

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 7, JULY 2003

Fig. 8. (a) Iteration (0). (b) Iteration (1). (c) Iteration (8). (d) Iteration (16). (e) Iteration (32). (f) Iteration (64). Intermediate results on Tsukuba data at
different iterations.

TABLE 3
Running Time of BP Algorithm on Tsukuba Data



“Venus,” and “Map.” It is interesting to note that, for these

three data sets with simple slanted surfaces, incorporating

image segmentation does not necessarily improve stereo

matching, as seen from the first and second rows.
Figs. 6 and 7 show the results obtained by our algorithm.

The segmentation map is obtained by the Mean-Shift

algorithm with default parameters suggested by [9]. Note

that a fixed set of parameters fed ¼ 0:01; �d ¼ 8; ep ¼
0:05; �p ¼ 0:6g is used in our BP algorithm for all four

image pairs. Obviously, this set of parameters is not the

optimal for “Map” because the disparity range of this data

is almost twice that of “Tsukuba.”
In our experiments on the “sum-product” BP algorithm,

most results are overly smooth because the objective function

of the “sum-product” BP algorithm is the marginal posterior

of each node. However, the best result (Fig. 7l) is obtained for

“Map” data by “sum-product” BP algorithm. Figs. 7j and 7k

are the best two results given by Graph-cut and Bayesian

Diffusion.

To evaluate the efficiency of the BP algorithm, we present

inFig. 8 andTable 3 the intermediate results and running time

for “Tsukuba” data on a Pentium IV 1.7GHz PC at different

iterations. Two characteristics of our BP algorithm can be

observed from this experiment. First, most disparity compu-

tation is completed in the first several iterations. Second, the

speedup method becomes more effective in later iterations.
The BP algorithm is very suitable for hardware imple-

mentation because the message update at each iteration of

BP algorithm is parallelizable. The last row of Table 3 is the

running time of a parallel version of the BP algorithm on a

dual CPU Pentium IV 1.7GHz PC. The parallel efficiency

EP ¼ 82:8
2�43:1 � 1 demonstrates potential for real-time high-

performance stereo.
The local oscillation phenomena of the BP algorithm

also occurred in our experiments. A time average opera-

tion is executed after a fixed number of iterations:

mt
stðxtÞ ¼ mt�1

st ðxtÞ þmt
stðxtÞ. This heuristic worked well

in our experiments.

7 MULTIVIEW STEREO

In multiview stereo, the observation is a collection of images
fIk; k ¼ 0. . .Kg with camera intrinsic parameters fAkg and
camera extrinsic parameters fRk; tkg. The likelihood (3) in
our basic stereo model is modified as follows:

P ðIjD;OÞ /
Y
s =2O

exp �
XK
k

wðs; ds; kÞF ðs; ds; Ir; IkÞ
 !

; ð23Þ

where r is an index of the reference view, F ðs; ds; Ir; IkÞ is the
matching cost function of pixel swith disparity ds between Ir
and Ik, andwðs; ds; kÞ is the convolution kernel. In multiview
stereo, wðs; ds; kÞ plays a role for visible view selecton.

7.1 Matching Cost Function

We define sk as the matching point of s in image Ik with
disparity ds. In generalized multiview stereo, the image
coordinate of sk is:

skx
sky
1

2
4

3
5 ffi Ak 0½ � Rk tk

0 1

� �
Rr tr
0 1

� ��1
A�1r 0
0 1

� � sx
sy
1
ds

2
664

3
775: ð24Þ

This mapping can be represented by a forward warp
function: sk ¼ Hkðs; dsÞ. For an arbitrary camera configura-
tion, we generalized Birchfield and Tomasi’s [3] shift
absolute difference along the epipolar line:

F ðs; ds; Ir; IkÞ ¼ minfd1ðs; sk; Ir; IkÞ=�f ; d2ðs; sk; Ir; IkÞ=�fg

d1ðs; sk; Ir; IkÞ ¼
minf IrðsÞ � I�k ðskÞ

�� ��; IrðsÞ � IkðskÞ�� ��; IrðsÞ � Iþk ðskÞ�� ��g
d2ðs; sk; Ir; IkÞ ¼
minf I�r ðsÞ � IkðskÞ

�� ��; IrðsÞ � IkðskÞ�� ��; Iþr ðsÞ � IkðskÞ�� ��g;
where I�k ðskÞ is the linearly interpolated intensity halfway

between sk and Hkðs; ds � 1Þ. Similarly, Iþk ðskÞ is between sk

and Hkðs; ds þ 1Þ, I�r ðsÞ is between s and H�1k ðsk; ds � 1Þ,
and Iþr ðsÞ is between s and H�1k ðsk; ds þ 1Þ.
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Fig. 9. Local evidence with different convolution kernels. (a) Four points
(A, B, C, and D) in the sixth frame of the “garden” sequence (11 frames)
are semiocclusion points. (b) Each column corresponds A, B, C, and D,
respectively. The first row shows local evidence �sðxs; ysÞ using
convolution kernel wdðs; ds; kÞ. The horizonal and vertical coordinates
are disparity and matching probabilities, respectively. The second row
shows local evidence �sðxs; ysÞ using convolution kernel wF ðs; ds; kÞ.
The last row shows F� (black) and Fþ (gray). The evidences marked
with a black rectangle at the top right corner are computed by our
convolution kernel waðs; ds; kÞ.



7.2 Convolution Kernel

The crux of multiview stereo is to find an optimal

convolution kernel wðs; ds; kÞ. To handle occlusion,

wðs; ds; kÞ should be zero when the 3D point ðs; dsÞ cannot
be seen in Ik. In [21], a temporal selection method is based

on the assumption that the occlusion region in the reference

view will be seen in the left views fIk; k ¼ 0; � � �; r� 1g or

the right views fIk; k ¼ rþ 1; � � �; Kg . Under this assump-

tion, we define two kinds of convolution kernels as:

wdðs; ds; kÞ ¼

�ðF�ds � F
þ
ds
Þ

r� 1 k < r
0 k ¼ r

�ðF�ds � F
þ
ds
Þ

K � r k > r;

8>><
>>: ð25Þ

where F�ds=
Pr�1

k¼0 F ðs; ds; Ir; IkÞ and Fþds ¼
PK

k¼rþ1 F ðs; ds;
Ir; IkÞ, and

wF ðs; ds; kÞ ¼
�ðF� � FþÞ

r� 1 k < r
0 k ¼ r

�ðF� � FþÞ
K � r k > r

;

8>><
>>: ð26Þ

where F�=
Pr�1

k¼0
P

ds
F ðs; ds; Ir; IkÞ and Fþ ¼

PK
k¼rþ1

P
ds

F ðs; ds; Ir; IkÞ.
The convolution kernel wdðs; ds; kÞ is dependent on the

disparity ds. It keeps more information in measurements

than wF ðs; ds; kÞ. However, wdðs; ds; kÞ contains more ambi-

guities. To reach a balance, an adaptive convolution kernel

is defined as follows:

waðs; ds; kÞ ¼
wdðs; ds; kÞ minfF�; Fþg � mmaxfF�; Fþg
wF ðs; ds; kÞ minfF�; Fþg < mmaxfF�; Fþg;

� ð27Þ

wherem ð0 < m < 1Þ is a winner threshold.When there is an
obvious winner between F� and Fþ, we take wF ðs; ds; kÞ to
reduce ambiguity. Otherwise, we take wdðs; ds; kÞ to keep
more information.

The advantage of our adaptive convolution kernel can be
illustrated by considering the local evidence distribution
�sðxs; ysÞ depicted in Fig. 9. Points A, B, C, and D are all
semiocclusion points. For A and B, we prefer kernel
wF ðs; ds; kÞ to kernel wdðs; ds; kÞ for less ambiguity because
of the big difference between F� and Fþ. For C and D,
wF ðs; ds; kÞ is a more risky choice than wdðs; ds; kÞ because
there is no obvious winner between F� and Fþ.

7.3 Multiview Stereo Experiments

For multiview stereo, three sequences “Tsukuba” (5 frames),
“Garden” (11 frames) and“Dayton” (5 frames) areusedasour
test data, as shown in Fig. 10. Fig. 11 shows the results of
applying our BP algorithm. Figs. 11a, 11c, and 11e are depth
mapsof thethirdframein“Tsukuba,”sixthframein“Garden”
and third frame in “Dayton,” respectively. Table 4 gives the
quantitative performance improvement on “Tsukuba” data.
Obviously, thedepths of occlusion regions in two-view stereo
are recovered very well. Because there is no ground truth for
“Garden” and “Dayton,” we present results of new view
synthesis shown in Figs. 11b, 12d, and 13f. The reference view
is forward warped to a new viewpoint using a computed
depth map by a two-pass algorithm [31]. Some large
textureless regions, such as the sky in “Garden” and “Day-
ton,” are still hard to handle.

8 DISCUSSION

8.1 Assumptions

In Bayesian approaches, all assumptions must be made
explicitly. In order to apply the BP algorithm, the assumption
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Fig. 10. “Tsukuba” (1st, 3rd, 5th frame), “Garden” (1st, 6th, 11th frame), and “Dayton” (1st, 3rd, 5th frame) data.



made in our priors is (2): occlusion is independent of
discontinuity. In fact, an occlusion region doesn’t need to
exist given a discontinuity.

However,modeling the conditional probabilityP ðOjD;LÞ
needs longer distance pixel interaction that is beyond the
ability of our first-order MRF system. On the other hand, the
shortage of efficient inference algorithms prevents us from
using higher order MRFs.

Although good experimental results are obtainedwith the
independence assumption, further investigations on this

issuewouldbeuseful.Onepossible approach is to enforce the
uniqueness constraint, such as the method in [22]. However,
the uniqueness constraint is hard to impose as in [22] because
we use a probabilistic distribution as the final solution.
Another possible approach is to resort to a region-based
method, such as neighborhood depth hypothesis [32] to infer
occlusions. A more promising approach to handle occlusion
for two-frame stereomatching is Left Right Check(LRC) [24].

In Section 4.2, we simplify the basic stereo model from (7)
to (12) by introducing two robust functions. The model that
is most similar to our posterior probability (12) is Scharstein
and Szeliski’s [29]. Unlike Scharstein and Szeliski’s con-
taminated Gaussian cost function, we used an absolute
difference cost in the robust functions �dðdsÞ and �pðds; dtÞ.
The energy function corresponding to our prior of D is a
Total Variance (TV) energy. In many applications, such as
image restoration and denoising, it has been shown that the
TV model is more successful than the Gaussian model for
edge preservation. To illustrate the intrinsic characteristics
of the TVmodel, Fig. 12a gives the result using the TVmodel
�pðds; dtÞ ¼ ds�dtj j

�p
and Fig. 12b gives the result using the
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Fig. 11. The results of multiview stereo. (a), (c), and (e) are depth maps. (b), (d), and (f) are novel views rendered. (a) Our result (3rd frame). (b) Novel
view. (c) Our result (6th frame). (d) Novel view. (e) Our result (3rd frame). (f) Novel view. (Yellow regions are disocclusion regions. Please refer to the
electronic version for better quality viewing.)

TABLE 4
The Performance of Our BP Multiview Stereo Algorithm on

“Tsukuba” Sequence



Gaussian model �pðds; dtÞ ¼ ds�dtj j2
�p

. We observe that the

result using the Gaussian model is overly smooth. This

experiment also demonstrates that the TV model is more

robust with regard to the robust parameter ed than the

Gaussian model.
The eliminated discontinuity process L can be recovered

from the depth map through the robust function �pðds; dtÞ.
We identify a discontinuity between nodes s and t when

�pðds; dtÞ reaches an upper bound. Fig. 13a shows the

recovered discontinuity map for the Tsukuba data. For the

occlusion process O, the pixels that do not have a low

matching cost can also be recovered from �sðdsÞ similarly.

But, our model cannot identify occluded pixels that have a

low matching cost. This shows the ability and limitation of

our robust function for occlusion handling.

8.2 Why Does BP Work?

The magic of the BP algorithm lies in its powerful message

passing. Amessage presents the probability that the receiver

should be at a disparity according to all information from the

sender up to the current iteration. Message passing has two

important properties. First, it is asymmetric. The entropy of

the messages from high-confidence nodes to low-confidence

nodes is smaller than the entropy of the messages from low-

confidence nodes to high-confidence nodes. Second, it is

adaptive. The influence of amessage between a pair of nodes
with larger divergence would be weakened more.

Therefore, BP’s message passing provides a time-varying

adaptive support region for stereo matching to deal with

textureless regions and depth discontinuities elegantly. In

textureless regions, for example, the influence of a message

can be passed far away. On the other hand, the influence in

discontinuous regions will fall off quickly. Fig. 14 shows an

example of this adaptive smoothing procedure. In Fig. 14, the

imagepair ismodified from thatused in [20] and [29].A linear

ramp in the direction of the baseline is used as the underlying

intensity pattern. The disparities of the background and the

foreground are 2 and 5, respectively. Unlike [20] or [29], a

smaller pure textureless square is overlapped in the center of

the foreground of original stereo pair. This modification

makes the original example harder.
We use entropy HðbÞ ¼ �

P
i bilogbi to measure the

confidence of the belief, and the symmetric version of

the Kullback-Leiber (KL) divergence KLsðb1kb2Þ ¼
P

i

ðb1i � b2i Þ logð
b1i
b2i
Þ to measure the difference between belief

b1 and b2. Smaller entropy represents higher confidence of

a belief. Larger divergence represents larger dissimilarity

between beliefs. As shown in the Fig. 14, the entropy

map of a belief represents the confidence of disparity

estimation for each node. Clearly, the confidence of each
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Fig. 12. (a) Result of TV model (B �OO ¼ 2:16, B �TT ¼ 1:01, BDD ¼ 11:67). (b) Result of Gaussian model (B �OO ¼ 2:82, B �TT ¼ 1:58, BDD ¼ 15:14). The results

obtained by TV model �pðds; dtÞ ¼ ds�dtj j
�p

and Gaussian model �pðds; dtÞ ¼ ds�dtj j2
�p

. The parameter �p is chosen experimentally to produce the best

result for each model.

Fig. 13. (a) Recovered discontinuity map. (b) White regions A, B, C, and D are incorrect segments.



node increases with each iteration. Note that the con-

fidence in occlusion regions and corners is lower than

that of other regions. The probabilistic method outputs

not only a solution, but also its certainty. The divergence

map of a belief shows where message-passing is stopped.

The divergence map after convergence illustrates the

ideal support regions.

8.3 Image Segmentation and Multiview Stereo

A segmentation-based method like [32] assumes the depth
discontinuities must appear at the boundaries of segmenta-
tion. There are two differences on the use of image
segmentation between our method and [32]. First, segmenta-
tion results are treatedasapriorbutnot ahard constraint.Our
method is more robust to incorrect oversegmentation results
because there is still message passing between regions.
Second, discontinuity is preserved in the interior of a
segment. In [32], the depth representation of each segment
is a frontal plane, or a 3Dplane, or a plane-plus-parallax. This

prohibits depth discontinuity in a segment. Oversegmenta-
tion cannot guarantee that there must be a boundary
corresponding to a discontinuity, such as a low texture
sphere surface. Our method can still identify a discontinuity
in an undersegmented segment. Fig. 13b gives the illustra-
tions. In segments A, B, C, and D, our method finds correct
depth discontinuities.

In our experiments, the larger textureless regions require

more BP iterations that propagate belief from outside to

inside. This inspires a two-step method. First, we estimate a

3D model parameter for large segments and compute the

initial depth for the pixels in these segments. Second, we

prune the evidenceof thepixels in these segments and run the

BP algorithm. One possible pruning method is to convolute

the evidence distribution  sðxs; ysÞ with a Gaussian kernel

centered at the initial depth for each pixel. The key is that the

results obtained in Step 1 are again used as a soft constraint.

This reduces the chance of falling into a local minimum

introduced in Step 1.
In multiview stereo, most occlusions can be handled well

by a temporal support region. In Figs. 11a, 11c, 11e, sharp

depth discontinuities nearby occlusion regions are recov-

ered. There is some performance improvement on the

Tsukuba data obtained frommultiview stereo in comparison

to two-view stereo (see Table 4). This demonstrates that

degradation of performance caused by our simplified model

(12) is small in two-frame stereo. In other words, the

posterior distribution P ðOjIÞ is approximated well by our

simplified model (12).

9 SUMMARY

In this paper, stereo matching is formulated as a Bayesian
inference problem with three coupled MRF’s that is solved
efficiently by the Belief Propagation algorithm. Image
segmentation is also integrated into our basic stereo model
as a soft constraint. We further extend the two-view stereo
model to multiview stereo. Excellent experimental results
demonstrate the power of probabilistic models and approx-
imate inference algorithms. For future work, we plan to
investigate how to improve stereo matching using General-
ized Belief Propagation [34].
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