Supplementary Material for "Quantifying the Uncertainty in Heritability"

Nicholas A. Furlotte^{1,2,*}, Christoph Lippert^{1,*} and David Heckerman^{1,*}

¹ Microsoft Research, Los Angeles, California

 2 University of California Los Angeles, Los Angeles, California

* These authors contributed equally to this work

Figure 1: **PCA plots for Caucasians and African Americans.** Prior to filtering, some individuals deviate significantly from the remainder of the group. After filtering individuals based on genetic relatedness (see Methods), individuals are relatively homogeneous with respect to ancestry.

2 Comparison of Bayesian posterior with frequentist distribution for the full ARIC cohort

3 Comparison of Bayesian posterior with frequentist distribution for African American females

4 Comparison of Bayesian posterior with frequentist distribution for African American males

5 Comparison of Bayesian posterior with frequentist distribution for Caucasian females

6 Comparison of Bayesian posterior with frequentist distribution for Caucasian males

7 A theoretical comparison of the posterior distribution of heritability and the sampling distribution of the maximum-likelihood estimator for heritability

Consider the log-likelihood of a set of data $\mathbf{y} L(\mathbf{y} | \boldsymbol{\Theta})$, where $\boldsymbol{\Theta}$ is a set of parameters. A maximum likelihood estimator for $\boldsymbol{\Theta}$, denoted by $\hat{\boldsymbol{\Theta}}$, is any parameter configuration that satisfies the following equation, where \dot{L} represents the gradient of the likelihood function with respect to $\boldsymbol{\Theta}$

$$\dot{L}(\mathbf{y} \mid \hat{\mathbf{\Theta}}) = 0. \quad (1)$$

As the size of the data, N, increases to infinity, the sampling distribution of the maximum likelihood estimator is known to follow a normal distribution with mean centered at the true Θ and with variance lower-bounded by the inverse of the expected information matrix¹. The Fisher's information matrix is defined as the expected value of the negative Hessian of the loglikelihood (*i.e.*, of the observed information matrix). We denote the Hessian of the log-likelihood as \ddot{L} and define the expected information matrix $F(\Theta)$ as follows¹:

$$F(\mathbf{\Theta}) = -E[\hat{L}(\mathbf{y} \mid \mathbf{\Theta})]. \quad (2)$$

With this we specify the distribution of the maximum-likelihood estimator as

$$N(\hat{\boldsymbol{\Theta}} \mid \boldsymbol{\Theta}, F^{-1}(\boldsymbol{\Theta})).$$
 (3)

Therefore, the sampling variance of the estimate of Θ can be quantified using the distributional properties of this normal distribution.

We now show that the posterior distribution of a parameter set Θ given the data **D** asymptotically follows a normal distribution similar to the one shown in Equation 3. A thorough treatment of this concept may be found in ref² among others, although we follow closely the

proof given by ref³. Let the posterior distribution of Θ be denoted by the following³:

$$p(\mathbf{\Theta} \mid \mathbf{y}) \propto p(\mathbf{\Theta}) p(\mathbf{y} \mid \mathbf{\Theta}), \quad (4)$$

$$= \exp\{\log(p(\boldsymbol{\Theta})) + \log(p(\boldsymbol{D} | \boldsymbol{\Theta}))\}.$$
 (5)

Let θ_0 and θ_1 denote parameter settings that maximize $log(p(\Theta))$ and $log(p(\mathbf{y} | \Theta))$,

respectively. We can write the second order Taylor expansion around these maxima as follows²:

$$\log(p(\boldsymbol{\Theta})) = \log(p(\theta_0)) - \frac{1}{2} (\boldsymbol{\Theta} - \theta_0)^T \mathbf{H}_0 (\boldsymbol{\Theta} - \theta_0) + R_0, \quad (6)$$
$$\log(p(\mathbf{y} | \boldsymbol{\Theta})) = \log(p(\mathbf{y} | \theta_1)) - \frac{1}{2} (\boldsymbol{\Theta} - \theta_1)^T \mathbf{H}_1 (\boldsymbol{\Theta} - \theta_1) + R_1. \quad (7)$$

Here we have let R_0 and R_1 represent the remainders and we have let \mathbf{H}_0 and \mathbf{H}_1 represent the negative of the Hessian matrix for $p(\mathbf{\Theta})$ and $p(\mathbf{y}|\mathbf{\Theta})$, evaluated at their respective maxima. Assuming that, with large sample size, R_0 and R_1 will be small, we ignore them. Additionally, we may disregard the terms $\log(p(\theta_0))$ and $\log(p(\mathbf{y}|\theta_1))$ as they are constants. We then have the following result:

$$p(\mathbf{\Theta} \mid \mathbf{y}) \propto \exp\{-\frac{1}{2}(\mathbf{\Theta} - \theta_0)^T \mathbf{H}_0(\mathbf{\Theta} - \theta_0) - \frac{1}{2}(\mathbf{\Theta} - \theta_1)^T \mathbf{H}_1(\mathbf{\Theta} - \theta_1)\}.$$
 (8)

Combining terms, we can show the following:

$$p(\boldsymbol{\Theta} \mid \mathbf{y}) \propto \exp\{-\frac{1}{2}(\boldsymbol{\Theta} - \hat{\theta})^T \hat{\mathbf{H}}(\boldsymbol{\Theta} - \hat{\theta})\}, \quad (9)$$
$$\hat{\boldsymbol{\theta}} = \mathbf{H}_1^{-1} (\mathbf{H}_0 \boldsymbol{\theta}_0 + \mathbf{H}_1 \boldsymbol{\theta}_1), \quad (10)$$
$$\hat{\mathbf{H}} = \mathbf{H}_0 + \mathbf{H}_1. \quad (11)$$

Therefore, up to a constant of proportionality, the posterior distribution of Θ given the data follows a normal distribution $p(\Theta | \mathbf{y}) = N(\Theta | \hat{\theta}, \hat{\mathbf{H}}^{-1})$, where the mean and variance both have a prior-dependent term and a data-dependent term. The variance term is a combination of the prior precision (inverse variance) and the observed precision. The latter is the observed information matrix. When using a uniform prior, the prior precision will be zero and thus the posterior mean will be the maximum-likelihood solution; and the posterior variance will be determined by the observed information matrix, $N(\Theta | \theta_1, \mathbf{H}_1^{-1})$. By definition, the observed information is an unbiased estimate of the expected information matrix defined in Equation 2. Note that the expected information matrix is defined over the joint multivariate log-likelihood of a dataset of size *N*.

References

- 1. Searle, S. R., Casella, G. & McCulloch, C. Variance Components, Volume 631. (Wiley-Interscience, 2006).
- 2. Bernardo, J. & Smith, A. Bayesian Analysis. (John Wiley, 1994).
- 3. Houlston, R. S. *et al.* Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. *Nature genetics* **40**, 1426–35 (2008).