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Abstract

Confusion network decoding has proven to
be one of the most successful approaches
to machine translation system combination.
The hypothesis alignment algorithm is a cru-
cial part of building the confusion networks
and many alternatives have been proposed in
the literature. This paper describes a sys-
tematic comparison of five well known hy-
pothesis alignment algorithms for MT sys-
tem combination via confusion network de-
coding. Controlled experiments using identi-
cal pre-processing, decoding, and weight tun-
ing methods on standard system combina-
tion evaluation sets are presented. Transla-
tion quality is assessed using case insensitive
BLEU scores and bootstrapping is used to es-
tablish statistical significance of the score dif-
ferences. All aligners yield significant BLEU
score gains over the best individual system in-
cluded in the combination. Incremental indi-
rect hidden Markov model and a novel incre-
mental inversion transduction grammar with
flexible matching consistently yield the best
translation quality, though keeping all things
equal, the differences between aligners are rel-
atively small.

∗The work reported in this paper was carried out while the
authors were at Raytheon BBN Technologies and

†RWTH Aachen University.

1 Introduction

Current machine translation (MT) systems are based
on different paradigms, such as rule-based, phrase-
based, hierarchical, and syntax-based. Due to the
complexity of the problem, systems make various
assumptions at different levels of processing and
modeling. Many of these assumptions may be
suboptimal and complementary. The complemen-
tary information in the outputs from multiple MT
systems may be exploited by system combination.
Availability of multiple system outputs within the
DARPA GALE program as well as NIST Open MT
and Workshop on Statistical Machine Translation
evaluations has led to extensive research in combin-
ing the strengths of diverse MT systems, resulting in
significant gains in translation quality.

System combination methods proposed in the lit-
erature can be roughly divided into three categories:
(i) hypothesis selection (Rosti et al., 2007b; Hilde-
brand and Vogel, 2008), (ii) re-decoding (Frederking
and Nirenburg, 1994; Jayaraman and Lavie, 2005;
Rosti et al., 2007b; He and Toutanova, 2009; De-
vlin et al., 2011), and (iii) confusion network de-
coding. Confusion network decoding has proven to
be the most popular as it does not require deep N -
best lists1 and operates on the surface strings. It has

1N -best lists of around N = 10 have been used in confu-
sion network decoding yielding small gains over using 1-best



also been shown to be very successful in combining
speech recognition outputs (Fiscus, 1997; Mangu et
al., 2000). The first application of confusion net-
work decoding in MT system combination appeared
in (Bangalore et al., 2001) where a multiple string
alignment (MSA), made popular in biological se-
quence analysis, was applied to the MT system out-
puts. Matusov et al. (2006) proposed an alignment
based on GIZA++ Toolkit which introduced word
reordering not present in MSA, and Sim et al. (2007)
used the alignments produced by the translation edit
rate (TER) (Snover et al., 2006) scoring. Extensions
of the last two are included in this study together
with alignments based on hidden Markov model
(HMM) (Vogel et al., 1996) and inversion transduc-
tion grammars (ITG) (Wu, 1997).

System combinations produced via confusion net-
work decoding using different hypothesis alignment
algorithms have been entered into open evalua-
tions, most recently in 2011 Workshop on Statistical
Machine Translation (Callison-Burch et al., 2011).
However, there has not been a comparison of the
most popular hypothesis alignment algorithms us-
ing the same sets of MT system outputs and other-
wise identical combination pipelines. This paper at-
tempts to systematically compare the quality of five
hypothesis alignment algorithms. Alignments were
produced for the same system outputs from three
common test sets used in the 2009 NIST Open MT
Evaluation and the 2011 Workshop on Statistical
Machine Translation. Identical pre-processing, de-
coding, and weight tuning algorithms were used to
quantitatively evaluate the alignment quality. Case
insensitive BLEU score (Papineni et al., 2002) was
used as the translation quality metric.

2 Confusion Network Decoding

A confusion network is a linear graph where all
paths visit all nodes. Two consecutive nodes may be
connected by one or more arcs. Given the arcs repre-
sent words in hypotheses, multiple arcs connecting
two consecutive nodes can be viewed as alternative
words in that position of a set of hypotheses encoded
by the network. A special NULL token represents
a skipped word and will not appear in the system
combination output. For example, three hypotheses

outputs (Rosti et al., 2011).

“twelve big cars”, “twelve cars”, and “dozen cars”
may be aligned as follows:

twelve big blue cars
twelve NULL NULL cars
dozen NULL blue cars

This alignment may be represented compactly as the
confusion network in Figure 1 which encodes a total
of eight unique hypotheses.

40 1twelve(2)
dozen(1)

2big(1)
NULL(2)

3blue(2)
NULL(1)

cars(3)

Figure 1: Confusion network from three strings “twelve
big blue cars”, “twelve cars”, and “dozen blue cars” us-
ing the first as the skeleton. The numbers in parentheses
represent counts of words aligned to the corresponding
arc.

Building confusion networks from multiple ma-
chine translation system outputs has two main prob-
lems. First, one output has to be chosen as the skele-
ton hypothesis which defines the final word order of
the system combination output. Second, MT system
outputs may have very different word orders which
complicates the alignment process. For skeleton se-
lection, Sim et al. (2007) proposed choosing the out-
put closest to all other hypotheses when using each
as the reference string in TER. Alternatively, Ma-
tusov et al. (2006) proposed leaving the decision to
decoding time by connecting networks built using
each output as a skeleton into a large lattice. The
subnetworks in the latter approach may be weighted
by prior probabilities estimated from the alignment
statistics (Rosti et al., 2007a). Since different align-
ment algorithm produce different statistics and the
gain from the weights is relatively small (Rosti et al.,
2011), weights for the subnetworks were not used
in this work. The hypothesis alignment algorithms
used in this work are briefly described in the follow-
ing section.

The confusion networks in this work were repre-
sented in a text lattice format shown in Figure 2.
Each line corresponds to an arc, where J is the arc
index, S is the start node index, E is the end node in-
dex, SC is the score vector, and W is the word label.
The score vector has as many elements as there are
input systems. The elements correspond to each sys-
tem and indicate whether a word from a particular



J=0 S=0 E=1 SC=(1,1,0) W=twelve
J=1 S=0 E=1 SC=(0,0,1) W=dozen
J=2 S=1 E=2 SC=(1,0,0) W=big
J=3 S=1 E=2 SC=(0,1,1) W=NULL
J=4 S=2 E=3 SC=(1,0,1) W=blue
J=5 S=2 E=3 SC=(0,1,0) W=NULL
J=6 S=3 E=4 SC=(1,1,1) W=cars

Figure 2: A lattice in text format representing the con-
fusion network in Figure 1. J is the arc index, S and E
are the start and end node indexes, SC is a vector of arc
scores, and W is the word label.

system was aligned to a given link2. These may be
viewed as system specific word confidences, which
are binary when aligning 1-best system outputs. If
no word from a hypothesis is aligned to a given link,
a NULL word token is generated provided one does
not already exist, and the corresponding element in
the NULL word token is set to one. The system
specific word scores are kept separate in order to
exploit system weights in decoding. Given system
weights wn, which sum to one, and system specific
word scores snj for each arc j (the SC elements), the
weighted word scores are defined as:

sj =
Ns∑
n=1

wnsnj (1)

where Ns is the number of input systems. The hy-
pothesis score is defined as the sum of the log-word-
scores along the path, which is linearly interpolated
with a logarithm of the language model (LM) score
and a non-NULL word count:

S(E|F ) =
∑

j∈J (E)

log sj + γSLM (E) + δNw(E)

(2)
where J (E) is the sequence of arcs generating the
hypothesis E for the source sentence F , SLM (E)
is the LM score, and Nw(E) is the number of
non-NULL words. The set of weights θ =
{w1, . . . , wNs , γ, δ} can be tuned so as to optimize
an evaluation metric on a development set.

Decoding with an n-gram language model re-
quires expanding the lattice to distinguish paths with

2A link is used as a synonym to the set of arcs between two
consecutive nodes. The name refers to the confusion network
structure’s resemblance to a sausage.

unique n-gram contexts before LM scores can be as-
signed the arcs. Using long n-gram context may re-
quire pruning to reduce memory usage. Given uni-
form initial system weights, pruning may remove
desirable paths. In this work, the lattices were ex-
panded to bi-gram context and no pruning was per-
formed. A set of bi-gram decoding weights were
tuned directly on the expanded lattices using a dis-
tributed optimizer (Rosti et al., 2010). Since the
score in Equation 2 is not a simple log-linear inter-
polation, the standard minimum error rate training
(Och, 2003) with exact line search cannot be used.
Instead, downhill simplex (Press et al., 2007) was
used in the optimizer client. After bi-gram decod-
ing weight optimization, another set of 5-gram re-
scoring weights were tuned on 300-best lists gener-
ated from the bi-gram expanded lattices.

3 Hypothesis Alignment Algorithms

Two different methods have been proposed for
building confusion networks: pairwise and incre-
mental alignment. In pairwise alignment, each
hypothesis corresponding to a source sentence is
aligned independently with the skeleton hypothe-
sis. This set of alignments is consolidated using the
skeleton words as anchors to form the confusion net-
work (Matusov et al., 2006; Sim et al., 2007). The
same word in two hypotheses may be aligned with a
different word in the skeleton resulting in repetition
in the network. A two-pass alignment algorithm to
improve pairwise TER alignments was introduced in
(Ayan et al., 2008). In incremental alignment (Rosti
et al., 2008), the confusion network is initialized by
forming a simple graph with one word per link from
the skeleton hypothesis. Each remaining hypothesis
is aligned with the partial confusion network, which
allows words from all previous hypotheses be con-
sidered as matches. The order in which the hypothe-
ses are aligned may influence the alignment qual-
ity. Rosti et al. (2009) proposed a sentence specific
alignment order by choosing the unaligned hypoth-
esis closest to the partial confusion network accord-
ing to TER. The following five alignment algorithms
were used in this study.



3.1 Pairwise GIZA++ Enhanced Hypothesis
Alignment

Matusov et al. (2006) proposed using the GIZA++
Toolkit (Och and Ney, 2003) to align a set of tar-
get language translations. A parallel corpus where
each system output acting as a skeleton appears as
a translation of all system outputs corresponding to
the same source sentence. The IBM Model 1 (Brown
et al., 1993) and hidden Markov model (HMM) (Vo-
gel et al., 1996) are used to estimate the alignment.
Alignments from both “translation” directions are
used to obtain symmetrized alignments by interpo-
lating the HMM occupation statistics (Matusov et
al., 2004). The algorithm may benefit from the fact
that it considers the entire test set when estimating
the alignment model parameters; i.e., word align-
ment links from all output sentences influence the
estimation, whereas other alignment algorithms only
consider words within a pair of sentences (pairwise
alignment) or all outputs corresponding to a single
source sentence (incremental alignment). However,
it does not naturally extend to incremental align-
ment. The monotone one-to-one alignments are then
transformed into a confusion network. This aligner
is referred to as GIZA later in this paper.

3.2 Incremental Indirect Hidden Markov
Model Alignment

He et al. (2008) proposed using an indirect hidden
Markov model (IHMM) for pairwise alignment of
system outputs. The parameters of the IHMM are
estimated indirectly from a variety of sources in-
cluding semantic word similarity, surface word sim-
ilarity, and a distance-based distortion penalty. The
alignment between two target language outputs are
treated as the hidden states. A standard Viterbi al-
gorithm is used to infer the alignment. The pair-
wise IHMM was extended to operate incrementally
in (Li et al., 2009). Sentence specific alignment or-
der is not used by this aligner, which is referred to
as iIHMM later in this paper.

3.3 Incremental Inversion Transduction
Grammar Alignment with Flexible
Matching

Karakos et al. (2008) proposed using inversion trans-
duction grammars (ITG) (Wu, 1997) for pairwise

alignment of system outputs. ITGs form an edit
distance, invWER (Leusch et al., 2003), that per-
mits properly nested block movements of substrings.
For well-formed sentences, this may be more nat-
ural than allowing arbitrary shifts. The ITG algo-
rithm is very expensive due to its O(n6) complexity.
The search algorithm for the best ITG alignment, a
best-first chart parsing (Charniak et al., 1998), was
augmented with an A∗ search heuristic of quadratic
complexity (Klein and Manning, 2003), resulting in
significant reduction in computational complexity.
The finite state-machine heuristic computes a lower
bound to the alignment cost of two strings by allow-
ing arbitrary word re-orderings. The ITG hypothesis
alignment algorithm was extended to operate incre-
mentally in (Karakos et al., 2010) and a novel ver-
sion where the cost function is computed based on
the stem/synonym similarity of (Snover et al., 2009)
was used in this work. Also, a sentence specific
alignment order was used. This aligner is referred
to as iITGp later in this paper.

3.4 Incremental Translation Edit Rate
Alignment with Flexible Matching

Sim et al. (2007) proposed using translation edit rate
scorer3 to obtain pairwise alignment of system out-
puts. The TER scorer tries to find shifts of blocks
of words that minimize the edit distance between
the shifted reference and a hypothesis. Due to the
computational complexity, a set of heuristics is used
to reduce the run time (Snover et al., 2006). The
pairwise TER hypothesis alignment algorithm was
extended to operate incrementally in (Rosti et al.,
2008) and also extended to consider synonym and
stem matches in (Rosti et al., 2009). The shift
heuristics were relaxed for flexible matching to al-
low shifts of blocks of words as long as the edit dis-
tance is decreased even if there is no exact match in
the new position. A sentence specific alignment or-
der was used by this aligner, which is referred to as
iTER later in this paper.

3.5 Incremental Translation Edit Rate Plus
Alignment

Snover et al. (2009) extended TER scoring to con-
sider synonyms and paraphrase matches, called

3http://www.cs.umd.edu/˜snover/tercom/



TER-plus (TERp). The shift heuristics in TERp
were also relaxed relative to TER. Shifts are allowed
if the words being shifted are: (i) exactly the same,
(ii) synonyms, stems or paraphrases of the corre-
sponding reference words, or (iii) any such combina-
tion. Xu et al. (2011) proposed using an incremental
version of TERp for building consensus networks. A
sentence specific alignment order was used by this
aligner, which is referred to as iTERp later in this
paper.

4 Experimental Evaluation

Combination experiments were performed on (i)
Arabic-English, from the informal system combi-
nation track of the 2009 NIST Open MT Evalua-
tion4; (ii) German-English from the system com-
bination evaluation of the 2011 Workshop on Sta-
tistical Machine Translation (Callison-Burch et al.,
2011) (WMT11) and (iii) Spanish-English, again
from WMT11. Eight top-performing systems (as
evaluated using case-insensitive BLEU) were used
in each language pair. Case insensitive BLEU scores
for the individual system outputs on the tuning and
test sets are shown in Table 1. About 300 and
800 sentences with four reference translations were
available for Arabic-English tune and test sets, re-
spectively, and about 500 and 2500 sentences with a
single reference translation were available for both
German-English and Spanish-English tune and test
sets. The system outputs were lower-cased and to-
kenized before building confusion networks using
the five hypothesis alignment algorithms described
above. Unpruned English bi-gram and 5-gram lan-
guage models were trained with about 6 billion
words available for these evaluations. Multiple com-
ponent language models were trained after dividing
the monolingual corpora by source. Separate sets
of interpolation weights were tuned for the NIST
and WMT experiments to minimize perplexity on
the English reference translations of the previous
evaluations, NIST MT08 and WMT10. The sys-
tem combination weights, both bi-gram lattice de-
coding and 5-gram 300-best list re-scoring weights,
were tuned separately for lattices build with each hy-
pothesis alignment algorithm. The final re-scoring

4http://www.itl.nist.gov/iad/mig/tests/
mt/2009/ResultsRelease/indexISC.html

outputs were detokenized before computing case in-
sensitive BLEU scores. Statistical significance was
computed for each pairwise comparison using boot-
strapping (Koehn, 2004).

Decode Oracle
Aligner tune test tune test
GIZA 60.06 57.95 75.06 74.47
iTER 59.74 58.63† 73.84 73.20
iTERp 60.18 59.05† 76.43 75.58
iIHMM 60.51 59.27†‡ 76.50 76.17
iITGp 60.65 59.37†‡ 76.53 76.05

Table 2: Case insensitive BLEU scores for NIST MT09
Arabic-English system combination outputs. Note, four
reference translations were available. Decode corre-
sponds to results after weight tuning and Oracle corre-
sponds to graph TER oracle. Dagger (†) denotes statisti-
cally significant difference compared to GIZA and double
dagger (‡) compared to iTERp and the aligners above it.

The BLEU scores for Arabic-English system
combination outputs are shown in Table 2. The first
column (Decode) shows the scores on tune and test
sets for the decoding outputs. The second column
(Oracle) shows the scores for oracle hypotheses ob-
tained by aligning the reference translations with the
confusion networks and choosing the path with low-
est graph TER (Rosti et al., 2008). The rows rep-
resenting different aligners are sorted according to
the test set decoding scores. The order of the BLEU
scores for the oracle translations do not always fol-
low the order for the decoding outputs. This may be
due to differences in the compactness of the confu-
sion networks. A more compact network has fewer
paths and is therefore less likely to contain signif-
icant parts of the reference translation, whereas a
reference translation may be generated from a less
compact network. On Arabic-English, all incremen-
tal alignment algorithms are significantly better than
the pairwise GIZA, incremental IHMM and ITG
with flexible matching are significantly better than
all other algorithms, but not significantly different
from each other. The incremental TER and TERp
were statistically indistinguishable. Without flexi-
ble matching, iITG yields a BLEU score of 58.85 on
test. The absolute BLEU gain over the best individ-
ual system was between 6.2 and 7.6 points on the
test set.



Arabic German Spanish
System tune test tune test tune test
A 48.84 48.54 21.96 21.41 27.71 27.13
B 49.15 48.97 22.61 21.80 28.42 27.90
C 49.30 49.50 22.77 21.99 28.57 28.23
D 49.38 49.59 22.90 22.41 29.00 28.41
E 49.42 49.75 22.90 22.65 29.15 28.50
F 50.28 50.69 22.98 22.65 29.53 28.61
G 51.49 50.81 23.41 23.06 29.89 29.82
H 51.72 51.74 24.28 24.16 30.55 30.14

Table 1: Case insensitive BLEU scores for the individual system outputs on the tune and test sets for all three source
languages.

Decode Oracle
Aligner tune test tune test
GIZA 25.93 26.02 37.32 38.22
iTERp 26.46 26.10 38.16 38.76
iTER 26.27 26.39† 37.00 37.66
iIHMM 26.34 26.40† 37.87 38.48
iITGp 26.47 26.50† 37.99 38.60

Table 3: Case insensitive BLEU scores for WMT11
German-English system combination outputs. Note, only
a single reference translation per segment was available.
Decode corresponds to results after weight tuning and
Oracle corresponds to graph TER oracle. Dagger (†)
denotes statistically significant difference compared to
iTERp and GIZA.

The BLEU scores for German-English system
combination outputs are shown in Table 3. Again,
the graph TER oracle scores do not follow the same
order as the decoding scores. The scores for GIZA
and iTERp are statistically indistinguishable, and
iTER, iIHMM, and iITGp are significantly better
than the first two. However, they are not statistically
different from each other. Without flexible match-
ing, iITG yields a BLEU score of 26.47 on test. The
absolute BLEU gain over the best individual system
was between 1.9 and 2.3 points on the test set.

The BLEU scores for Spanish-English system
combination outputs are shown in Table 4. All align-
ers but iIHMM are statistically indistinguishable and
iIHMM is significantly better than all other align-
ers. Without flexible matching, iITG yields a BLEU
score of 33.62 on test. The absolute BLEU gain over
the best individual system was between 3.5 and 3.9

Decode Oracle
Aligner tune test tune test
iTERp 34.20 33.61 50.45 51.28
GIZA 34.02 33.62 50.23 51.20
iTER 34.44 33.79 50.39 50.39
iITGp 34.41 33.85 50.55 51.33
iIHMM 34.61 34.05† 50.48 51.27

Table 4: Case insensitive BLEU scores for WMT11
Spanish-English system combination outputs. Note, only
a single reference translation per segment was available.
Decode corresponds to results after weight tuning and
Oracle corresponds to graph TER oracle. Dagger (†)
denotes statistically significant difference compared to
aligners above iIHMM.

points on the test set.

5 Error Analysis

Error analysis was performed to better understand
the gains from system combination. Specifically, (i)
how the different types of translation errors are af-
fected by system combination was investigated; and
(ii) an attempt to quantify the correlation between
the word agreement that results from the different
aligners and the translation error, as measured by
TER (Snover et al., 2006), was made.

5.1 Influence on Error Types

For each one of the individual systems, and for each
one of the three language pairs, the per-sentence er-
rors that resulted from that system, as well as from
each one of the the different aligners studied in this
paper, were computed. The errors were broken



down into insertions/deletions/substitutions/shifts
based on the TER scorer.

The error counts at the document level were ag-
gregated. For each document in each collection, the
number of errors of each type that resulted from each
individual system as well as each system combina-
tion were measured, and their difference was com-
puted. If the differences are mostly positive, then
it can be said (with some confidence) that system
combination has a significant impact in reducing the
error of that type. A paired Wilcoxon test was per-
formed and the p-value that quantifies the probabil-
ity that the measured error reduction was achieved
under the null hypothesis that the system combina-
tion performs as well as the best system was com-
puted.

Table 5 shows all conditions under consideration.
All cases where the p-value is below 10−2 are con-
sidered statistically significant. Two observations
are in order: (i) all alignment schemes significantly
reduce the number of substitution/shift errors; (ii)
in the case of insertions/deletions, there is no clear
trend; there are cases where the system combination
increases the number of insertions/deletions, com-
pared to the individual systems.

5.2 Relationship between Word Agreement
and Translation Error

This set of experiments aimed to quantify the rela-
tionship between the translation error rate and the
amount of agreement that resulted from each align-
ment scheme. The amount of system agreement at
a level x is measured by the number of cases (con-
fusion network arcs) where x system outputs con-
tribute the same word in a confusion network bin.
For example, the agreement at level 2 is equal to 2
in Figure 1 because there are exactly 2 arcs (with
words “twelve” and “blue”) that resulted from the
agreement of 2 systems. Similarly, the agreement at
level 3 is 1, because there is only 1 arc (with word
“cars”) that resulted from the agreement of 3 sys-
tems. It is hypothesized that a sufficiently high level
of agreement should be indicative of the correctness
of a word (and thus indicative of lower TER). The
agreement statistics were grouped into two values:
the “weak” agreement statistic, where at most half
of the combined systems contribute a word, and the
“strong” agreement statistic, where more than half

non-NULL words NULL words
weak strong weak strong

Arabic 0.087 -0.068 0.192 0.094
German 0.117 -0.067 0.206 0.147
Spanish 0.085 -0.134 0.323 0.102

Table 6: Regression coefficients of the “strong” and
”weak” agreement features, as computed with a gener-
alized linear model, using TER as the target variable.

of the combined systems contribute a word. To sig-
nify the fact that real words and “NULL” tokens
have different roles and should be treated separately,
two sets of agreement statistics were computed.

A regression with a generalized linear model
(glm) that computed the coefficients of the agree-
ment quantities (as explained above) for each align-
ment scheme, using TER as the target variable, was
performed. Table 6 shows the regression coeffi-
cients; they are all significant at p-value < 0.001.
As is clear from this table, the negative coefficient of
the “strong” agreement quantity for the non-NULL
words points to the fact that good aligners tend to
result in reductions in translation error. Further-
more, increasing agreements on NULL tokens does
not seem to reduce TER.

6 Conclusions

This paper presented a systematic comparison of
five different hypothesis alignment algorithms for
MT system combination via confusion network de-
coding. Pre-processing, decoding, and weight tun-
ing were controlled and only the alignment algo-
rithm was varied. Translation quality was compared
qualitatively using case insensitive BLEU scores.
The results showed that confusion network decod-
ing yields a significant gain over the best individ-
ual system irrespective of the alignment algorithm.
Differences between the combination output using
different alignment algorithms were relatively small,
but incremental alignment consistently yielded bet-
ter translation quality compared to pairwise align-
ment based on these experiments and previously
published literature. Incremental IHMM and a novel
incremental ITG with flexible matching consistently
yield highest quality combination outputs. Further-
more, an error analysis shows that most of the per-



Language Aligner ins del sub shft
GIZA 2.2e-16 0.9999 2.2e-16 2.2e-16
iHMM 2.2e-16 0.433 2.2e-16 2.2e-16

Arabic iITGp 0.8279 2.2e-16 2.2e-16 2.2e-16
iTER 4.994e-07 3.424e-11 2.2e-16 2.2e-16
iTERp 2.2e-16 1 2.2e-16 2.2e-16
GIZA 7.017e-12 2.588e-06 2.2e-16 2.2e-16
iHMM 6.858e-07 0.4208 2.2e-16 2.2e-16

German iITGp 0.8551 0.2848 2.2e-16 2.2e-16
iTER 0.2491 1.233e-07 2.2e-16 2.2e-16
iTERp 0.9997 0.007489 2.2e-16 2.2e-16
GIZA 2.2e-16 0.8804 2.2e-16 2.2e-16
iHMM 2.2e-16 1 2.2e-16 2.2e-16

Spanish iITGp 2.2e-16 0.9999 2.2e-16 2.2e-16
iTER 2.2e-16 1 2.2e-16 2.2e-16
iTERp 3.335e-16 1 2.2e-16 2.2e-16

Table 5: p-values which show which error types are statistically significantly improved for each language and aligner.

formance gains from system combination can be at-
tributed to reductions in substitution errors and word
re-ordering errors. Finally, better alignments of sys-
tem outputs, which tend to cause higher agreement
rates on words, correlate with reductions in transla-
tion error.
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