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Abstract. Abstract interpretation techniques prove properties of pro-
grams by computing abstract fixpoints. All such analyses suffer from the
possibility of false errors. We present three techniques to automatically
refine such abstract interpretations to reduce false errors: (1) a new op-
erator called interpolated widen, which automatically recovers precision
lost due to widen, (2) a new way to handle disjunctions that arise due to
refinement, and (3) a new refinement algorithm, which refines abstract
interpretations that use the join operator to merge abstract states at
join points. We have implemented our techniques in a tool Dagger. Our
experimental results show our techniques are effective and that their
combination is even more effective than any one of them in isolation.
We also show that Dagger is able to prove properties of C programs
that are beyond current abstraction-refinement tools, such as Slam [4],
Blast [15], Armc [19], and our earlier tool [12].

1 Introduction

Abstract interpretation [7] is a general technique to compute sound fixpoints for
programs. Such fixpoint computations have to lose precision in order to guar-
antee termination. However, precision losses can lead to false errors. Over the
past few years, counterexample driven refinement has been successfully used to
automatically refine predicate abstractions (a special kind of abstract interpre-
tation) to reduce false errors [4, 15, 19]. This has spurred significant research
in counterexample guided discovery of “relevant” predicates [14, 17, 8, 20, 5]. A
natural question to ask therefore is whether counterexample guided automatic
refinement can be applied to any abstract interpretation. A first attempt in this
direction was made in [12] where widen was refined by convex hull in the poly-
hedra domain. This was subsequently improved upon in [22] where widen was
refined using extrapolation. This paper improves the earlier efforts in three sig-
nificant ways that combine to give enhanced accuracy and efficiency. First, we
propose an interpolated widen operator that refines widen using interpolants.
Second, we propose a new algorithm to implicitly handle disjunctions that oc-
cur during refinement. Finally, we propose a new algorithm to refine abstract
interpretations that use the join operator to merge abstract states at program
locations where conditional branches merge. We have built a tool Dagger that
implements these ideas. Our empirical results show that Dagger outperforms
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0: int x=0; y=0; z=0; w=0;

1: while (*) {
2: if (*)
3: {x = x+1; y = y+100;}
4: else if (*) {
5: if (x >= 4)
6: {x = x+1; y = y+1;}

}
---------------------------------------
|7: else if (y > 10*w && z >= 100*x) |
|8: {y = -y;} |
|9: w = w+1; z = z+10; |
---------------------------------------

}
10: if (x >= 4 && y <= 2)
11: error();
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Fig. 1. Example program

a number of available tools on a range of benchmarks, and is able to prove
array-bounds properties of several programs that are beyond the reach of cur-
rent abstraction-refinement tools such as Slam [4], Blast [15], Armc [19], and
our earlier tool [12].

The widen operator is typically used in abstract interpreters to generate in-
variants by generalizing from multiple symbolic executions. However, widen is
unaware of the target property that needs to be verified, and may result in
approximations too coarse to prove the property. Interpolants offer a comple-
mentary generalization capability by providing succinct reasons for spuriousness
of counterexamples. However, interpolants are generated with respect to specific
counterexample traces, and are not guaranteed to be fixpoints with respect to all
executions. By combining the strengths of interpolants and widen in an effective
way, interpolated widen gives benefits of both.

To illustrate the benefit of using interpolants in conjunction with invariants
obtained by widening, consider the program in Figure 1 (ignore the boxed code
for now). The error at line 11 is unreachable. The inductive loop invariant x ≤
y ≤ 100x suffices to prove unreachability of the error. However, if we refine widen
using convex hull as in [12], we obtain the weaker invariant 100x ≥ y that does
not help in proving the program correct. The polyhedra obtained after the ith
such refinement iteration is indicated in Figure 1 by the region between the line
y = 100x and the ith dotted boundary. This dotted boundary is then discarded
in subsequent widen operations, and the abstract fixpoint intersects the error.
Therefore the refinement of widen to convex hull continues ad infinitum, giving
the imprecise invariant 100x ≥ y. Note that the extrapolation technique for
polyhedra given in [22] will also face a similar problem. In contrast, an interpolant
generation technique [17] can compute the interpolant y ≥ x easily by analyzing
a counterexample. By using this in conjunction with the invariant obtained by
widen, we obtain the stronger invariant x ≤ y ≤ 100x, which is strong enough
to prove that the error at line 11 is unreachable.

In the above example, y ≥ x is itself a strong enough loop invariant to prove
unreachability of the error. It may therefore appear that interpolation based
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techniques perform better than widen based techniques. However, interpolation
alone does not work in all cases. To illustrate this, consider the same exam-
ple including the boxed code (lines 7-9). In this program line 8 is unreach-
able. The inductive invariant required for proving the error unreachable is now
(x ≤ y ≤ 100x) ∧ (z = 10w). There is no obvious reason why interpolation
techniques like [17,20] will choose 100x ≥ y as part of an interpolant among the
many possible interpolants during counterexample analysis. Experiments show
that Armc, which uses a sophisticated interpolation algorithm [20], does not
terminate on this example in 2000s. Sting [21] does not generate invariants
strong enough to prove the error unreachable either. The refinement engine of
Blast is equipped to generate only difference and bounds predicates, hence
it fails to prove the program correct. Since the coefficient 100 in the required
predicate 100x ≥ y is large, recursively enumerating interpolants, as suggested
in [17], is also unlikely to work well. Widen based techniques like [12] can easily
generate invariants like 100x ≥ y and z = 10w, but not x ≤ y, which can be
easily generated by interpolant based techniques. Thus, by combining invariants
obtained by widen with interpolants obtained during counterexample analysis,
we obtain the right inductive invariant needed to prove the property. Further,
our empirical results (see Section 4) show that interpolated widen is better than
superficially combining widen and interpolation, i.e., by first computing invari-
ants using widen, and then using them to strengthen the transition relation in
interpolation based predicate abstraction frameworks, as suggested in [16].

Refining widen using specific operations in polyhedral abstract domains has
been used earlier [12,22]. While the widen up-to operator of [22] does not guar-
antee elimination of spurious counterexamples, the intuition behind widen up-to
and extrapolation are useful. In [13] Halbwachs et al. introduced the widen up-to
operator to improve the precision of widen with pre-computed (static) thresh-
olds. The use of dynamically computed interpolants to refine widen is an original
contribution of our work, and can be viewed as a generalization of the widen
up-to operators of [13, 22]. Since interpolants provide succinct reasons for spu-
riousness of counterexamples (by referring only to common variables between a
pair of formulas being interpolated), we enjoy the benefits of ideas in [12,22] while
potentially using simpler/fewer predicates. Unlike [12, 22], we can also leverage
independent advances in widening [10, 3] and interpolation techniques [17, 20, 5]
in a simple framework. In [16], predicate abstraction based analysis is improved
by using weak invariants discovered by widen in an initial pass. However, poten-
tially stronger invariants that may be discovered by widen after few iterations
of refinement are not considered. In contrast, our analysis based on interpolated
widen can benefit from such stronger invariants discovered later, especially if
sophisticated widening techniques [3, 10, 2] are used.

In addition to widen, if the join operator in an abstract domain loses preci-
sion, we need disjunctions to recover precision losses that are necessary to prove
a property. However, this makes us work over a powerset domain, where oper-
ations like interpolation and widen are expensive. We propose a technique that
implicitly uses disjunctions to recover precision as appropriate, while ensuring
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that interpolation and widen are applied only on base abstract domain (and not
powerset domain) elements. This contrasts with other approaches [12, 22] that
use similar base abstract domains but must use powerset widening.

In programs with conditional branches, the tree-based exploration used in
our earlier work [12] can result in traversing an exponential (in size of program)
number of paths. This can be avoided in abstract interpretation by using join
operations when different branches of conditional statements merge, in addition
to performing widen operations at loopheads. This is indeed a DAG-based explo-
ration. Therefore, an interesting question to ask is: can we perform counterexam-
ple driven automatic refinement with a DAG-based exploration? In this paper, we
propose a refinement algorithm that achieves this and also gives progress guaran-
tees. Counterexample-DAG based predicate abstraction has been used earlier for
programs with finite domain variables [8]. In contrast, our DAG based refinement
is used to refine imprecisions that arise due to the join operator at merge nodes.
In [9], Fischer et. al. used predicated dataflow lattices to improve precision lost
by join operation. However, the dataflow lattices considered in [9] are of finite
height and hence do not require a widen operator.

Our approach, like those of [12, 22, 16], benefits from cheap image/preimage
operations of abstract domains like octagons and polyhedra, as opposed to ex-
pensive image/preimage computations in predicate abstraction. In [18], McMil-
lan showed how abstract exploration for predicate abstraction can be performed
by way of computing interpolants, thus eliminating the need for the expensive
image computation. While this is a powerful technique, it does not benefit from
predicates that can be easily discovered as invariants by widen but are more dif-
ficult to obtain as interpolants, and that are also crucial for proving a property.
Beyer et al [5] introduced path programs to help discover such relevant predi-
cates. If we view this as an advanced interpolation technique, our approach, like
other predicate abstraction techniques, can only benefit from the predicates thus
computed. Interestingly, our abstraction refinement algorithm can also be used
to compute relevant predicates by analyzing path programs.

The remainder of the paper is organized as follows. In Section 2 we present the
interpolated widen operation and discuss implicit handling of disjuncts. Section 3
discusses DAG-based refinements. Section 4 presents and analyzes experimental
results from our tool Dagger, and Section 5 concludes the paper.

2 Refinement: Interpolated Widen and Implicit Disjuncts

Let V be a finite set of variables. A state s is a valuation to all variables in V .
Let Σ be the (possibly infinite) set of all possible states. A program PV over
a set of variables V is a six-tuple (L, E, R, l0, Image�), where (i) L is a finite
set of control locations in the program, representing possible valuations to the
program counter, (ii) E ⊆ L × L is a set of control flow edges, (iii) R ⊆ L is a
set of error locations, (iv) l0 is the initial program location, which is not in R,
and cannot be the target of any control flow edge, and (vi) Image� is a function
from 2Σ × L × L to 2Σ, where Image�(σ, l, l′) is the set of states obtained by
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starting at some state in the set of states σ and executing the statements along
the control flow edge (l, l′). The preimage operation Preimage� is defined as the
inverse of the image operation. We overload the Image� and Preimage� operations
to operate over a sequence of edges in the obvious way.

We assume that the control flow graphs of our programs are connected re-
ducible graphs, and that every location has at most two incoming control flow
edges. An edge e ∈ E is a backedge if it closes a cycle during a depth first traver-
sal of the graph 〈L, E〉, starting at location l0. A location l is called a merge
location if it has two incoming edges, neither of which is a backedge. A location
l is called a loophead if it has two incoming edges, and exactly one is a backedge.

A control location l is said to be reachable if there exists a path
(l0, l1, . . . , ln, l) in the control flow graph and a state σ0 ∈ Σ, such that
Image�({σ0}, (l0, l1, . . . , ln, l)) is not ∅. Our goal is to check if any error loca-
tion le ∈ R is reachable. A true counterexample is a sequence of control flow
locations (l0, l1, . . . , ln, le) such that le ∈ R and there exists σ0 ∈ Σ satisfy-
ing Image�({σ0}, (l0, l1, . . . , ln, le)) 
= ∅. The counterexample is called spurious if
Image�({σ0}, l0, l1, . . . , ln, le) = ∅ for every σ0 ∈ Σ. The length of a counterexam-
ple (l0, l1, . . . , ln, le) is one less than the length of the sequence (l0, l1, . . . , ln, le).

Following [7], we use abstract interpretation of a program PV over an abstract
domain 〈Σ�, �, �, ⊥, �, �〉, which is a complete lattice. In particular, we consider
abstract domains where elements of Σ� are formulas over V in a fragment of first
order logic closed under Craig interpolation [14]. Every formula represents a set
of states. The abstract image operation Image(s, l, l′) takes an abstract element
s and the control flow edge (l, l′) and returns the abstract element s′ obtained
by abstractly executing the statements along the control flow edge (l, l′). The
abstract Preimage operation is analogously defined. In the following discussion,
we will assume that the Image and Preimage operations are exact. The effects of
overapproximating Image and Preimage operations are briefly discussed later.

Widen. The widen [7] operator ∇ : Σ� × Σ� → Σ� is a binary operator such
that for all A, B ∈ Σ�, we have (i) A � A∇B, (ii) B � A∇B, and (iii) for any
strictly increasing sequence A0 � A1 � . . ., if we define B0 = A0, B1 = B0∇A1,
B2 = B1∇A2, . . ., then there exists i ≥ 0 such that Bj = Bi for all j > i.

The bounded widen or widen up-to [13] operator with respect to a set T of
abstract elements, ∇T : Σ� × Σ� → Σ�, is a widen operator such that for any
C ∈ T , if A � C and B � C then A∇T B � C.

Interpolant. For any two elements A, E ∈ Σ� such that A � E = ⊥, I ∈ Σ�

is said to be an interpolant [14] of A and E if (i) A � I, (ii) I � E = ⊥, and
(ii) the formula representing I has only those variables that are common to the
formulae representing A and E.

The widen operator A∇B is used to guarantee termination when computing
an abstract fixpoint. However, the imprecision introduced by widen may lead to
false errors. This can happen if, for an abstract error state E, (A � B) � E = ⊥,
but (A∇B) � E 
= ⊥. In this case, we propose to pick an interpolant I of A � B
and E, and use a bounded widen operator A∇{I}B to compute the abstract
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/* Global: program PV , interpolant set T ,
abstract computation tree */
1. AbstractTREE
1: n0 ← 〈l0,�〉; T ← ∅; i← 0;
2: loop
3: for all n = 〈l, s〉 such that Depth(n) = i
4: for all edges (l, l′) in cfg
5: img ← Image(s, l, l′)
6: if ¬Covered(l′, img)
7: if l′ is loophead
8: s′′ ← Sel(l′, n)
9: img ← s′′∇T (s′′ 
 img)

10: Add 〈l′, img〉 as child of n
11: if ∃ne = 〈le, se〉 such that le ∈ R
12: i← RefineTREE(ne)
13: else if ¬∃ node at depth i + 1
14: “program correct”; exit
15: else
16: i← i + 1
17: end loop

2. RefineTREE (ne)
1: ψ ← �; curr ← ne; i← Depth(ne)
2: while i > 0
3: Let 〈l′, s′〉 = curr and 〈l, s〉 = Parent(curr)
4: if Image(s, l, l′)  ψ = ⊥
5: /* curr is a refinement node */
6: s′ ← ApplyRefinement(l′, 〈l, s〉, ψ)
7: DeleteDescendents(curr)
8: return i− 1
9: ψ ← Preimage(ψ, l, l′)

10: curr ← Parent(curr); i← i− 1
11: end while
12: “program incorrect”; exit

3. ApplyRefinement (l′, 〈l, s〉, ψ)
1: Let n = 〈l, s〉; s′′ ← Sel(Sl′,n);
2: img ← Image(s, l, l′)
3: if (s′′ 
 img)  ψ = ⊥ then
4: T ← T ∪ Interpolate(s′′ 
 img, ψ)
5: return s′′∇T (s′′ 
 img)
6: else
7: return img

Fig. 2. Refinement using Interpolated Widen

fixpoint. Such a bounded widen operator that uses interpolants as bounds is
called interpolated widen. A primary insight of this paper is that if the parameter
T of a bounded widen operator contains an interpolant, then a false error that
occurs due to the imprecision of widen can be avoided.

Lemma 1. Let A, B, E ∈ Σ� be such that (A � B) � E = ⊥. Let I ∈ Σ� be an
interpolant of (A � B) and E, and let T ⊆ Σ� be any set such that I ∈ T . Then
(A � B) � (A∇T B) � I and (A∇T B) � E = ⊥.

In the polyhedra abstract domain, bounding widen with constraints from the
convex hull has been used in earlier work [12,22]. Although such constraints sep-
arate the forward reachable states from the error, they may not be interpolants.
Since interpolants often give succinct reasons for eliminating counterexamples,
we choose to use them to bound widen.

For several abstract domains like polyhedra and octagons, the � operation is
inexact, in addition to having inexact ∇. Powerset extensions of these domains
however have exact �. A primary drawback of powerset domains is the increased
complexity of interpolation and other abstract domain operations. We therefore
propose ways to avoid these operations on powerset domains, while using base
abstract domains with inexact � operator. The abstraction refinement algorithm
using interpolated widen and tree based exploration is shown in Figure 2.

During the abstract fixpoint computation, procedure AbstractTREE stores the
intermediate states as a tree (N, A, n0) where N is the set of nodes, A is the set of
edges and n0 is the root node. Each node in N represents an abstract state during
the computation, stored as a pair 〈l, d〉 ∈ L×Σ�. The tree thus constructed gives
a model to perform counterexample driven refinement whenever an error location
is reached during the abstract computation.

Let the function Parent : N \ {n0} → N give for each node n ∈ N \ {n0}
its unique parent n′ in the tree. Let the function Depth : N → N give for each
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node n the number of edges along the path from n0 to n. Let Covered(l, s) be
a predicate that returns True iff either s = ⊥ or there exists a node n = 〈l, s′〉
in the tree such that s � s′. Let Sl,n denote the set of maximal abstract states
among the abstract states at the predecessors of node n with location l. Note
that there can be more than one node with maximal abstract state among the
predecessors of node n with location l because of refinements as explained later.
Given a set of abstract states S, the function Sel(S) deterministically returns
one element from S (using heuristics mentioned in [12]).

Since every node in the abstract tree stores a single abstract state, the image
computation in each step of forward exploration along a path in the tree gives a
single abstract state. Therefore, when we reach loopheads, we need to widen a set
S of abstract states with the set S ∪{s}, where s is the newly computed abstract
state. Given this special requirement, we define an operator ∇p

T : ℘(Σ�)× Σ� →
℘(Σ�) that takes a set S ⊆ Σ� and an element s ∈ Σ�, and returns the set of
maximal elements in S ∪ {Sel(S)∇T (Sel(S) � s)}.

Lemma 2. Let S0 ⊆ Σ� be a finite set. Consider the sequence S1 = S0 ∇p
T s0,

S2 = S1 ∇p
T s1, . . ., where si ∈ Σ� for all i ≥ 0. There exists u ≥ 0 such that

Sv = Su for all v ≥ u.

The computation of AbstractTREE starts with an abstract tree having a sin-
gle node n0 = 〈l0, �〉. Consider a node n = 〈l, s〉 and control flow edge (l, l′).
If Covered(l′, Image(s, l, l′)) returns False, a new node n′ = 〈l′, s′〉 is added as
a child of n in the tree; otherwise a new node is not added. If (l, l′) is not a
backedge then s′ is obtained as Image(s, l, l′). Otherwise s′ is computed using an
interpolated widen operation as s′′∇T (s′′ � Image(s, l, l′)), where s′′ = Sel(Sl′,n).
In computing s′, we must also ensure that the invariant computation for the
current path eventually terminates if no refinements are done in between.
Lemma 2 gives this guarantee. If a node ne = 〈le, se〉 with le ∈ R gets added to
the tree, then an error location is reached, and RefineTREE(ne) is invoked. The
abstraction refinement procedure terminates when either a fixpoint is reached
or refinement finds a true counterexample.

An important property of procedure AbstractTREE, that stems from its depth-
wise exploration of nodes is: if the loop at line 3 gets executed with i = k, the
program being analyzed has no true counterexamples of length ≤ k. This can be
proved by induction on k (refer [11]).

Procedure RefineTREE takes an error node ne as input and analyzes the coun-
terexample represented by the path from n0 to ne in the abstract computation
tree. It either confirms the counterexample as true or finds a node for refinement.
It initializes the error state at ne to � and then uses the abstract Preimage op-
eration to propagate this error state backward. At a node n′ = 〈l′, s′〉 with
parent n = 〈l, s〉, if ψ denotes the backward propagated error state at n′, and if
ψ � s′ 
= ⊥, the procedure proceeds in one of the following ways:

(1) Suppose the exact image of the parent, i.e. Image(s, l, l′), does not in-
tersect ψ. Then l′ must be a loophead and s′ must have been computed as
s′′∇T (s′′ � Image(s, l, l′)), where s′′ is Sel(Sl′,n). Furthermore, abstract state
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s′′ cannot intersect ψ, as otherwise, a true counterexample shorter than the
current one can be found – an impossibility by the above mentioned prop-
erty of AbstractTREE. If s′′ � Image(s, l, l′) doesn’t intersect ψ, neither s′′ nor
Image(s, l, l′) intersects ψ. We refine ∇T by computing an interpolant between
s′′� Image(s, l, l′) and ψ, and including it in T , to make ∇T precise enough. The
abstract state s′ is refined by using the refined ∇T operation. Lemma 1 ensures
that this refined state does not intersect ψ. If s′′ � Image(s, l, l′) intersects ψ we
simply refine the abstract state to Image(s, l, l′). This is a valid refinement as
the image does not intersect ψ (checked in line 4 of RefineTREE). Note also that
this refinement implicitly converts s′′∇T (s′′ � img) to a disjunction of s′′ and
img, with the disjuncts stored at distinct nodes (with location l′) in the tree.
This differs from [12] where a set of base abstract domain elements is stored
at each node to represent their disjunction. Note that our way of representing
disjunctions may result in a node n with location l′ having multiple maximal
nodes among its predecessors with location l′. After refining node n′, we delete
its descendents since the abstract states at these nodes may change because of
this refinement.

(2) If the exact image Image(s, l, l′) intersects ψ, the abstract error ψ at node n′

is propagated backward by the Preimage operation until either a refinement node
is identified or n0 is reached. Since Image and Preimage are exact, Image(s, l, l′)
intersects ψ if and only if s intersects Preimage(ψ, l, l′). Therefore it is not nec-
essary to intersect Image(s, l, l′) with ψ before propagating the error backwards.
If n0 is reached during backward propagation we report a true counterexample.

Note that if the Preimage operation is overapproximating, a counterexam-
ple reported by RefineTREE may not be a true counterexample. However, if a
program is reported to be correct, it is indeed correct. If the Image operation
is overapproximating, then a spurious counterexample may not be eliminated
because RefineTREE only refines join and widen operations. Consequently Ab-
stractTREE may loop indefinitely, a problem typical of all counterexample guided
abstraction refinement tools. This can be rectified by letting RefineTREE improve
the precision of Image as well.

3 DAG Refinement

The tree based abstraction refinement technique discussed in the previous section
potentially suffers from explosion of paths during forward exploration. Yet an-
other drawback of tree based exploration is that every invocation of RefineTREE
analyzes a single counterexample. We propose to address both these drawbacks
by adapting the tree based technique of the previous section to work with a
DAG. In such a scheme, the abstract computation joins states computed along
different paths to the same merge location. It then represents the merged state
at a single node in the DAG, instead of creating separate nodes as in a tree
based scheme. Subsequently, if it is discovered that merging led to an impreci-
sion that generated a spurious counterexample, the refinement procedure splits
the merged node, so that abstract states computed along different paths are
represented separately.
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The use of a DAG G to represent the abstract computation implies that when
an error location is reached at a node ne, there are potentially multiple paths
from the root n0 to ne in G. Let the subgraph of G containing all paths from n0
to ne be called the counterexample-DAG Ge. Unlike in a tree based procedure, we
must now analyze all paths in Ge to determine if ne is reachable. The refinement
procedure either finds a true counterexample in Ge, or if all counterexamples
are spurious, it replaces a set of imprecise operations by more precise ones along
every path in Ge. Refinement proceeds by first computing a set of abstract error
preimages, err(n), at each node n in Ge. For a node n, err(n) is computed as
the set union of the preimage of every element in err(n′), for every successor n′

of n in Ge.
Unlike in a tree based procedure, a node n′ = 〈l′, s′〉 may not have a unique

predecessor in the counterexample DAG Ge. We say that node n′ is a refinement
node with respect to predecessor n = 〈l, s〉 if ∃e′ ∈ err(n′), s′ � e′ 
= ⊥ and
∀e ∈ err(n), s � e = ⊥. The goal of refinement at such a node n′ is to improve
the precision of computation of s′ from s, so that the new abstract state at
n′ does not intersect err(n′). However, the abstract states already computed
at descendents of n′ in G may be rendered inexact by this refinement, and may
continue to intersect the corresponding abstract error preimages. Hence we delete
all descendents of n′ in G.

Refinement is done at node n′ = 〈l′, s′〉 in one of the following ways: (i) If l′

is a merge location and n′ has predecessors n1 = 〈l1, s1〉, . . . , nk = 〈lk, sk〉, then
refinement first deletes deletes n′ and all its incoming edges. Then it creates k
new nodes m1, . . . , mk, where mi = 〈l′, ti〉 and ti = Image(si, li, l

′). (ii) If l′ is a
loophead, then as done in Algorithm RefineTREE, refinement either introduces
disjunctions (implicitly) or does interpolated widen with a refined set of inter-
polants. An interpolant is computed between the joined result at n′ and each
of the abstract error states from the set err(n′). The result of the interpolated
widen is guaranteed not to intersect err(n′).

Consider a merge node n′ that is a refinement node with respect to predecessor
n but not with respect to predecessor m. Suppose no ancestor of n is a refinement
node while m has an ancestor p that is a refinement node. In this case if we apply
refinement at p before n′, then node n′ will be deleted and no counterexample
corresponding to a path through n and n′ would have any of its nodes refined.
To prevent this, nodes are refined in reverse topological order. This ensures that
at least one node along each path in the counterexample-DAG is refined.

Lemma 3. Let ne = 〈le, se〉 be a node in a counterexample-DAG Ge correspond-
ing to error location le. Every invocation of refinement with Ge either finds a true
counterexample or reduces the number of imprecise operations on each spurious
counterexample ending at ne in Ge.

As discussed above, the abstraction procedure aggressively merges paths at
merge locations, and refinement procedure aggressively splits paths at merge
locations. One could, however, implement alternative strategies, where we se-
lectively merge paths during abstraction and selectively split them during re-
finement. For example, whenever refinement splits a merge node n into nodes
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n1, . . . nk, it may be useful to remember that descendents of ni should not be
merged with those of nj where i 
= j during forward exploration. This infor-
mation can then be used during abstraction to selectively merge paths leading
to the same merge location. Our implementation uses this simple heuristic to
prevent aggressive merging of paths. Note also that as an optimization, we store
and propagate back only those abstract error preimages s′e at node n′ = 〈l′, s′〉
that satisfy s′e � s′ 
= ⊥. This potentially helps in avoiding an exponential blow
up of error preimages during refinement.

Progress Guarantees. It would be desirable to prove that our DAG-based
abstraction refinement scheme has the following progress property: Once a coun-
terexample is eliminated it remains eliminated forever. There are two reasons
why the abstraction refinement procedure may not ensure this. Firstly, it does
not keep track of refinements performed earlier, and secondly, the interpolated
widen operation is in general non monotone, i.e., A′ � A and B′ � B does not
necessarily imply (A′∇T B′) � (A∇T B). Progress can be ensured by keeping
track of all earlier refinements and by using monotone operations. We propose
addressing both these issues by using a Hint DAG H , which is a generalization
of the list based hints used in [12]. Monotonicity of interpolated widen is ensured
by intersection with the corresponding widened result in the previous abstrac-
tion iteration. The details of using Hint DAG can be found in [11]. Lemma
3 along with the use of Hint DAG ensures the following: a counterexample c
having k imprecise operations is eliminated in at most k refinement iterations
with counterexample-DAGs containing c. The Hint DAG also ensures that once a
counterexample is eliminated, it remains eliminated in all subsequent iterations
of abstraction.

4 Implementation

We have implemented our algorithm in a tool, Dagger, for proving assertions in
C programs. Dagger is written in ocaml and uses the CIL [6] infrastructure for
parsing our input programs. Dagger uses the octagon and polyhedra abstract
domains as implemented in the Apron library [1]. We use flow insensitive pointer
analysis provided by CIL to resolve pointer aliases in a sound manner.

We have implemented several algorithms for abstract computation which in-
clude the TREE and DAG based exploration with and without interpolated widen.
This is done to compare the enhancements provided by each of these techniques.
Dagger keeps track of a separate interpolant set for each program location as
opposed to having a single monolithic set of interpolants for all program loca-
tions. We outline the interpolation algorithms for the octagon and polyhedra
abstract domains, and then explain an optimization of caching abstract error
preimages.

Interpolation for the octagon domain. In the octagon abstract domain
every non-⊥ abstract element is represented by a set of constraints of the form
l �� e �� u, where �� ∈ {<, ≤}, l and u are real or rational constants and e is an
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expression that is either a single variable, difference of two variables or sum of
two variables. We will assume that the set of constraints is in canonical form,
i.e., l and u are tight bounds for the expression e. InterpolateOct computes an
interpolant I of two non-⊥ canonical octagons A and B such that A � B = ⊥.
This takes time quadratic in the number of program variables. Note that in
Algorithm ApplyRefinement (Figure 2) canonicalization would already have been
done at line 3 when checking the emptiness of intersection, before InterpolateOct
is invoked at line 4.

Interpolation for the polyhedra domain. In this domain, each non-⊥
abstract element is represented by a set of non redundant constraints. For
an abstract element A, let var(A) be the set of variables occurring in the
constraints of A. Function Project(A, V ), computes the projection of polyhedra
A on a set of variables V , i.e., it existentially quantifies the variables not in V .
Given two non-⊥ polyhedra A and B such that A � B = ⊥, the interpolant can
be computed as below.
InterpolateOct (A,B)
1: I ← ∅
2: for all expressions e do
3: Let al : la �� e and au : e �� ua be constraints in A
4: Let bl : lb �� e and bu : e �� ub be constraints in B
5: if au � {¬bl} then
6: I ← I ∪ {¬bl}
7: if al � {¬bu} then
8: I ← I ∪ {¬bu}

InterpolatePoly1 (A,B)
1: I ← ∅
3: for all constraints c in B do
4: if A � {¬c}
5: I ← I ∪ {¬c}
InterpolatePoly2 (A,B)
1: V ← var(A) ∩ var(B)
2: I ← Project(A, V )

InterpolatePoly1 computes an interpolant from the constraints of B. Any i ∈ I
computed by InterpolatePoly1 is implied by A and does not intersect B. It has
variables common to the constraints of A and B. Note that there may not be
any constraint c in B whose negation is implied by A. In such a case, we obtain
interpolants by algorithm InterpolatePoly2. In our implementation, we first try
to get an interpolant by InterpolatePoly1 algorithm. If no interpolant is found,
then we use InterpolatePoly2. As part of future work, we wish to incorporate
interpolation techniques from [17,20] in our tool Dagger. The correctness proofs
and complexity analysis of InterpolatePoly1 and InterpolatePoly2 algorithms can
be found in [11].

In each of the above mentioned abstract domains, a non-⊥ abstract element
is represented as a set of constraints (conjoined implicitly). For any two abstract
elements A and B, a simple interpolated widen operator can be defined as:
A∇T B = B if A = ⊥. Otherwise A∇T B = {c ∈ T | γ(A) ⊆ γ({c}) ∧ γ(B) ⊆
γ({c})} ∪ {c ∈ A | γ(B) ⊆ γ({c})}.

Caching error states. Our implementation also uses an additional optimiza-
tion of caching abstract error preimages at refinement points. This optimization
has been empirically found to be useful in early detection of imprecisions that
lead to errors in future explorations. Compared to [12] where widen is refined
by join, the use of interpolated widen can potentially increase the total num-
ber of image and preimage computations in the overall abstraction refinement
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Table 1. Experimental results. Column I: time (seconds), Column II: number of re-
finement iterations. ‘*’ denotes non-termination in 2000 sec, ‘!’ denotes inability of tool
to discover new predicates, and ‘-’ denotes tool crash.

Dagger TREE + ∇ TREE + ∇I DAG + ∇ DAG + ∇I Blast Slam GR06 Armc

Pgm I II I II I II I II I II I II I II I II I II
Sendmail

p1-ok 4.64 9 1940 18408 11.2 16 131.5 412 5.76 9 * * * * * * - -
p2-ok 0.27 4 35.8 3996 0.77 4 64.23 1332 0.39 4 * * * * * * * *
p3-ok 0.15 0 18.4 1 18.3 1 0.15 0 0.14 0 2.2 4 * * * * - -
p1-bad 3.31 11 2.81 33 8 17 3.53 19 21.7 38 1368 46 * * 12 33 - -
p2-bad 0.06 1 0.08 1 0.08 1 0.06 1 0.06 1 1.1 7 9.9 12 0.1 1 0.12 1
p3-bad 4.91 49 1735 2402 252 203 30.85 64 101 53 * * * * * * - -

StInG

seesaw 0.04 2 * * 0.05 2 * * 0.05 2 ! ! 1.0 1 0.82 6 * *
bkley 0.04 1 0.04 0 0.04 0 0.05 1 0.04 1 ! ! 2.90 5 0.10 2 4 16
bk-nat 0.06 2 0.09 2 0.06 1 0.11 4 0.07 2 ! ! ! ! 0.43 3 3.25 18
hsort 0.14 3 * * 0.16 3 * * 0.14 3 ! ! 1.10 1 0.72 3 22.5 40
efm 0.09 1 0.09 1 0.09 1 0.08 1 0.09 1 ! ! 1.40 1 0.06 0 16.9 35
lifo 0.31 2 0.57 2 0.55 2 0.38 3 0.32 2 ! ! 7.50 9 3.3 6 75.3 88
lifnat 0.49 3 * * 1.46 5 * * 0.48 3 ! ! 6.60 9 29.55 12 ! !
cars 19.5 8 * * 17.6 8 * * 19.5 8 ! ! 1.80 3 * * 107 27
barbr 3.46 8 * * 4.80 7 * * 3.44 8 ! ! 43.9 22 10.5 6 674 205
swim 0.60 2 2.46 13 0.60 2 1.49 9 0.60 2 ! ! ! ! 11.1 6 579 137
swim1 0.72 3 2.57 13 0.79 3 1.54 9 0.72 3 ! ! ! ! 11.2 6 767 144
hsort1 0.07 1 * * 0.08 1 * * 0.15 1 ! ! 1.3 1 * * 0.15 1
barbr1 0.63 2 * * 1.15 2 * * 0.62 2 ! ! 16.1 11 * * 570 109
lifnat1 0.59 6 * * 8.71 23 * * 0.74 5 ! ! ! ! * * ! !

Miscellaneous
f1a 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 1.07 12 * * 0.01 0 * *
ex1 0.04 1 * * 0.06 1 * * 0.04 1 ! ! ! ! * * 0.62 3
f2 0.07 1 * * 0.06 1 * * 0.07 1 ! ! ! ! 0.42 2 * *
ex2 0.03 0 5.4 0 5.4 0 0.03 0 0.03 0 506 132 * * 5.4 0 1.7 12
JM06 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 * * * * 0.02 0 * *

Programs Strengthened with loop invariants obtained by initial widen pass
p1-ok’ 4.64 9 1948 18413 8.2 13 121 411 4.76 9 200 24 * * * * - -
p2-ok’ 0.27 4 35.8 3996 0.77 4 64.23 1332 0.39 4 * * * * * * * *
JM06’ 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.07 2 * * 0.02 0 0.17 1
barbr’ 3.46 8 * * 4.80 7 * * 3.44 8 ! ! 4.7 14 10.5 6 890 153
barbr1’ 0.63 2 * * 1.15 2 * * 0.62 2 ! ! 1.7 5 * * 767 104
lifnat1’ 0.59 6 * * 6.71 10 * * 0.74 5 ! ! ! ! * * 205 71

loop. Caching abstract error preimages helps in mitigating this effect (see [11]
for further discussion of this optimization technique).

Experimental Evaluation. We have evaluated our implementation on the
suite of buffer overflow programs (adapted from Sendmail) developed by Zitser et
al. [23], the set of StInG benchmarks [21], and a miscellaneous set of programs.
All programs can be obtained from [11]. Our current implementation is intra
procedural and we handle multiple procedures by providing procedure summaries
by way of annotations. The experiments are performed on an Intel(R) Xeon 3.00
GHz processor with 4GB RAM. The experimental results are given in Table 1.

Benchmark programs. The Sendmail programs have nested while loops with
branching structures within the loops. The assertions in these programs check
bounds on array accesses. Programs with ‘ok’ suffix are correct and those with
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‘bad’ suffix have array bound errors. The programs p1-bad and p3-bad have
deep counterexamples whose lengths depend on the size of the array. The StInG

programs have a single while loop with nondeterministic branching in the loop
body. We modified the examples to assert for the invariants computed by StInG.
For the programs hsort1, barbr1 and lifnat1, we dropped some conjuncts in the
invariants computed by StInG while writing the assertion. Program ex2 has a
sequence of if-then-else statements, leading to an exponential explosion of paths.
Program JM06 is the benchmark program in [17] that could not be analyzed by
Blast. The programs with primed names in the last six rows were obtained
by annotating the corresponding unprimed programs with location invariants
obtained from an initial widen based analysis (using “assume” statements) as
suggested in [16] suggests. All Sendmail programs and JM06 were analyzed in
Dagger using the octagon abstract domain. All StInG programs and f1a, f2,
ex1 and ex2 were analyzed in Dagger using the polyhedra abstract domain.

Description of columns. In Table 1 we compare Dagger with other abstrac-
tion refinement tools (Slam, Blast, Armc), with our earlier tool GR06 [12],
and with combinations of Dagger’s constituent optimizations. We could not
compare with Impact and with the tools mentioned in [22, 16] due to their un-
availability. The column Dagger gives results for a DAG based exploration, as
described in Section 3, with the additional optimization of caching abstract error
preimages at refinement points. The column TREE + ∇ is for a TREE based ex-
ploration with widen refined by � instead of by interpolated widen. The column
TREE + ∇I gives results for a TREE based exploration, as discussed in Section
2. Similarly, the column DAG + ∇ gives results for a DAG based exploration
with widen refined by � instead of by interpolated widen. The column DAG +
∇I gives results for a DAG based exploration, as discussed in Section 3.

Advantages of interpolated widen. To understand the effect of interpolated
widen, we compare the columns TREE + ∇ and DAG + ∇, where interpolated
widen is not used, with the corresponding columns TREE + ∇I and DAG +
∇I , where interpolated widen is used. The programs seesaw, hsort, lifnat, cars,
barbr, hsort1, barbr1, lifnat1, ex1 and f2 require interpolated widen to compute
inductive invariants strong enough to prove the desired properties. For p1-ok
and p2-ok, exploration without interpolated widen performs a large number of
refinement iterations proportional to the size of the array being processed, as
seen in columns TREE + ∇ and DAG + ∇. Interpolated widen eliminates the
dependence on array size, as seen in columns TREE + ∇I and DAG + ∇I .

Advantages of DAG exploration. For programs p3-ok and ex2, TREE based
exploration explores exponentially many paths. However, DAG based exploration
avoids this blow up by merging abstract states along different paths at each
merge location. DAG based exploration is also effective in detecting true coun-
terexamples. In p3-bad, the TREE based technique explores several spurious
counterexamples before discovering a true error. The DAG based technique re-
duces this effort significantly. It also does not blow up while analyzing multiple
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counterexamples by backward propagation of error. Interestingly, in p1-bad, the
TREE based exploration got lucky and found a true counterexample quickly.
The StInG benchmarks do not have significant branching structure. Thus, the
DAG + ∇ and TREE + ∇ techniques, and also DAG + ∇I and TREE + ∇I

explorations perform similarly for these examples.

Advantages of caching. For programs p1-bad and p3-bad, the number of
image and preimage computations using TREE + ∇I and DAG + ∇I grows
quadratically with the length of the counterexample. This contrasts with TREE
+ ∇ and DAG + ∇, where this number grows linearly with the length of the
counterexample, leading to much lesser computation times. This discrepancy
arises because in TREE + ∇ and DAG + ∇, widens are refined to joins that are
more precise than interpolated widens. Thus, once a widen is refined, it does
not need to be refined further. By caching error preimages at refinement points,
the above drawback can be significantly addressed in interpolated widen based
techniques. This can be seen by comparing the Dagger column with the DAG
+ ∇I column for programs p1-bad and p3-bad.

Comparison with other refinement tools. For the Sendmail examples p1-
ok, p2-ok, p3-bad and for JM06, none of Slam, Blast, GR06 and Armc are
able to find the right predicates. Dagger’s interpolated widen however finds the
right predicates in a few iterations. On most of Sendmail examples, GR06 does
not terminate due to an explosion in the number of disjuncts. When location
invariants obtained from an initial widen based analysis are added to the original
program, the performance of other tools does not always improve. The last six
rows of Table 1 illustrate this. For Blast and Slam, the performance improves
for some programs by way of either terminating within 2000s (where it did
not terminate earlier), or faster convergence. However for other programs (p2-
ok’ for Blast, and p1-ok’, p2-ok’, JM06’ for Slam) these tools still do not
terminate in 2000s. For Armc the performance improves on some examples
(lifnat’, JM06’) and degrades on others (barbr’, barbr1’). For GR06 and Dagger

the performance does not significantly change after adding invariants since these
tools can easily discover these invariants. This illustrates that invariants obtained
from an initial widen based analysis may be too weak to help refinement, and
that interaction between widen and interpolation as implemented in Dagger is
useful.

The refinement engine of Blast fails for StInG programs as it is equipped to
generate only difference and bounds constraints, while the StInG programs need
more expressive invariants. Slam is unable to make progress on bk-nat, swim,
swim1 and lifnat1, as it cannot discover the correct predicates. Armc takes
several more iterations (and longer execution times) compared to Dagger to
generate the right predicates on most of the StInG examples. However for the
programs seesaw, lifnat and lifnat1, it is unable to generate the right predicates,
and hence does not terminate. GR06 is able to compute the correct inductive
invariants for many programs in the StInG benchmarks. But the programs cars,
hsort1, barbr1, and lifnat1 fail with this technique. Dagger and the constituents
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of Dagger that use interpolated widen (namely TREE + ∇I and DAG + ∇I)
are able to prove these programs correct in a small number of iterations.

Finally, looking at the miscellaneous benchmarks, we find that Slam fails
on all these examples. Blast fails on ex1, f2 and JM06. GR06 fails on ex1,
and Armc fails on f1a, f2 and JM06. Again, Dagger and the constituents of
Dagger that use interpolated widen (namely TREE + ∇I and DAG + ∇I) are
able to prove these programs correct in a small number of iterations.

Tools like Blast, Slam, and Armc use techniques beyond what we have
discussed for widen and interpolants. For example, Blast uses recursive enu-
meration of predicates, Slam uses several heuristics to determine a good set of
predicates, and both Blast and Armc use several sophisticated algorithms to
compute interpolants. In contrast, Dagger uses very simple widen and inter-
polation operators, and by combining these appropriately (and dynamically), it
outperforms these other tools.

5 Conclusion

We presented three new techniques to automatically refine abstract interpre-
tations to tune the precision of fixpoint computations dynamically and reduce
the number of false errors produced by abstract interpretation. We have proved
that our refinements guarantee progress in a formal sense. However, since asser-
tion checking is undecidable, our procedure is not guaranteed to terminate. In
practice, we find that our procedure terminates and outperforms tools available
to us on a variety of benchmarks. Though our implementation Dagger uses
polyhedra and octagons, our techniques can be used with any choice of abstract
domain, widen, join and interpolation operators.
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