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Abstract

Proving software free of security bugs is hard. Languages that ensure that programs correctly enforce their security
policies would help, but, to date, no security-typed language has the ability to verify the enforcement of the kinds
of policies used in practice—dynamic, stateful policies which address a range of concerns including forms of access
control and information flow tracking.

This paper presents FINE, a new source-level security-typed language that, through the use of a simple module
system and dependent, refinement, and affine types, checks the enforcement of dynamic security policies applied to
real software. FINE is proven sound. A prototype implementation of the compiler and several example programs are
available from http://research.microsoft.com/fine.

1 Introduction
The security of a well-designed software system often revolves around the concept of a reference monitor, a security-
critical kernel that mediates access to resources while enforcing a suitable policy. Reference monitors are expected
to be compact and implemented in a form amenable to review. However, increasingly, reference monitors are tasked
with enforcing complex policies that simultaneously address various aspects of security, mixing, for example, role-
and history-based access control with information flow tracking. Policies are authored separately from the programs
they govern, they are composed in non-trivial ways, and, as policies change over time, authorization decisions require
reasoning about state. This makes it difficult to establish that a reference monitor enforces a policy correctly.

To illustrate the kinds of security concerns that arise in practice, consider the policy used by CONTINUE [14], a
widely used program for managing academic conferences. CONTINUE’s security policy is defined using Datalog-like
rules in XACML. This policy stands separately from the implementation of the server program, making it hard to
connect the policy to the program objects it governs. The policy is also particularly complex in that it makes extensive
use of stateful features. For example, the conference management process is staged into a number of phases—in each
phase, different policy rules apply. During the submission phase of a conference, authors may submit papers, but this
right is revoked after the submission deadline is passed. In the bidding phase, papers are assigned to reviewers after
accounting for conflicts of interest. During the rebuttal phase, reviews are disclosed to authors, but care must be taken
to ensure that PC-confidential remarks and scores are not revealed. With such a complex policy to enforce, it is not
surprising that the developers of CONTINUE report that almost all the interesting bugs they encountered were related
to authorization in some form [7]. Policies used with other kinds of software, such as systems that manage medical
records, applications that control the outsourcing of software development, and military systems, arguably have even
more complex authorization requirements. Formally verifying that the reference monitors of such systems correctly
enforce their policies would help alleviate concerns of security vulnerabilities.

This paper presents FINE, a new source-level security-typed programming language that can be used to implement
programs like reference monitors and to check that these programs correctly enforce their security policies. FINE
distinguishes itself from prior languages in this line, including FlowCaml [18], Jif [5], Fable [21], Aura [13], and
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RCF [1], primarily in its ability to express a combination of stateful authorization (none of the prior languages model
state) and information flow (which is the focus of FlowCaml and Jif, and can be encoded in Fable and Aura, but not,
as far as we are aware, in RCF). The technical contribution of FINE is a new type system (§3) that uses dependent
and refinement types to express authorization policies by including first-order logical formulas in the types of program
expressions. FINE uses affine types, a weakening of linear types [24], to model changes to the state of an authorization
policy. (Variables with an affine type can be used at most once.) The combination of affine and dependent types
is subtle and can require tracking uses of affine assumptions in both types and terms. Our formulation keeps the
metatheory simple by ensuring that affine variables never appear in types, while still allowing the state of a program
to be refined by logical formulas. We also formalize a module system for FINE that provides a simple but strong
information-hiding property—we exploit this property to model information flow.

Programming with these advanced typing constructs can impose a significant burden on the programmer. For this
reason, languages like Fable and Aura position themselves as intermediate languages because verification depends
on intricate security proofs too cumbersome for programmers to write down. Indeed, checking the 2000 lines of
code in our benchmark programs produces nearly 200 proof obligations, a proof burden that would overwhelm most
programmers. To alleviate this concern, FINE draws on the experience of languages like F7 (an implementation of
RCF) and uses Z3 [6], an SMT solver, to automatically discharge proof obligations. The careful combination of
refinement and affine types in FINE allows us to use a mature classical prover like Z3. Refinement formulas in FINE
only involve the standard logical connectives, avoiding the need for still-experimental linear-logic provers.

We describe our experience using FINE to build several example programs (§4), including a model of the reference
monitor of CONTINUE. The complete semantics of FINE, proofs of theorems, and additional examples appear in a
technical report [20].

2 FINE, by example
We begin by presenting FINE using several examples. Our first example is a simple form of password-based authenti-
cation. Next, we discuss permission-based access control enriched with information flow tracking. Finally, we show
how to enforce stateful authorization policies by presenting code examples from our main case-study, a model of the
CONTINUE conference management server.

2.1 Authentication, access control, and information flow
FINE’s syntax is similar to languages in the ML family. In order to specify and enforce security policies, FINE
programmers define modules that provide mediated access to security-sensitive resources. The module Authentication
shown below mediates access to authentication routines.
Simple password authentication

1 module Authentication
2 type prin = U: string→ prin | Admin: prin
3 private type cred :: prin→ ? = Auth: p:prin→ cred p
4 val login: p:prin→ string→ option (cred p)
5 let login p pw = if (check pwd db p pw) then Some (Auth p) else None

The type prin is a standard variant type that represents principal names as either a string for the user’s name, or the
distinguished constant Admin. The type cred (line 3) is a dependent-type constructor with kind prin→ ? , e.g., (cred Admin)
is a legal type of kind ? (the kind of normal types, distinguished from the kind of affine types, introduced in §2.2) and
represents a credential for the Admin user. Values of the cred p type are constructed using the Auth data constructor. This
constructor is given a dependent function type—the argument p is the name of the principal and is in scope to the right
of the function arrow. By declaring cred private, the Authentication module indicates that its clients cannot directly use the
Auth constructor. Instead, the only way a client module can obtain a credential is by calling the login function (given
a dependent function type on line 4). The implementation of login (line 5) calls an external function (not shown) to
check the password, and, if the password check succeeds, returns a credential for the user p. By indexing cred with the
name of the principal which it authenticates, we can statically detect common security errors. For example, a client
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cannot use login to obtain a credential for U ‘‘Alice’’ and later pass it off as a credential for Admin—the type of the former,
cred (U ‘‘Alice’’), distinguishes it from the latter, which has type cred Admin.

We use Authentication to implement the FileRM module (shown on the next page), a reference monitor that mediates
access to a file system. The policies implemented by reference monitors in FINE have two components: the types
given to values exposed in the module’s interface (e.g., the type of fread on line 7), and policy axioms introduced by
the assume construct (e.g., assume AdminRW on line 6). A security review of a FINE module must confirm that the types
and assumptions adequately capture the intent of a high-level policy. Importantly, client code need not be reviewed—
typing ensures that clients comply with the reference monitor’s security policy.

The FileRM module aims to provide a basic level of access protection on files by ensuring that principals that read
and write to files have the requisite permissions. This basic protection is implemented by lines 1-7 of FileRM. The
remainder of the module enriches the access control mechanism to track information flows so that, for example, users
cannot reveal secrets by copying data from a secret file into a public file.

Permission-based access control and information flow on files
1 module FileRM
2 open Authentication (∗ Use non -private symbols from Authentication’s namespace ∗)
3 (∗ Propositions and assumptions for file permissions ∗)
4 type CanRead:: prin→ Sys.file→ ?
5 type CanWrite:: prin→ Sys.file→ ?
6 assume AdminRW: forall f:Sys.file. CanRead Admin f && CanWrite Admin f
7 val fread simple: p:prin→ cred p→{f:Sys.file | CanRead p f} → string
8 (∗ Types and operators to track information flow ∗)
9 type label = F : Sys.file→ label | J : label→ label→ label

10 private type tracked :: ∗ → label→∗ = L : α→ p:label→ tracked α p
11 val fmap: (α →β )→ l:label→ tracked α l→ tracked β l
12 val tensor: l:label→m:label→ tracked (α →β ) l→ tracked α m→ tracked β (J l m)
13 (∗ Types and axioms for a partial order on labels ∗)
14 type CanFlow:: label→ label→ ?
15 assume Lattice: forall l:label, m1:label, m2:label. (CanFlow l l) &&
16 ((CanFlow l m1 && CanFlow l m2)⇒ CanFlow l (J m1 m2)) &&
17 ((CanFlow m1 l && CanFlow m2 l)⇒ CanFlow (J m1 m2) l)
18 assume Atomicflow: forall f:Sys.file, g:Sys.file.
19 (forall p:prin. CanRead p g⇒ CanRead p f)⇒ CanFlow (F f) (F g)
20 (∗ Secure wrappers for system calls ∗)
21 val fread: p:prin→ cred p→ f:{x:Sys.file | CanRead p x}→ tracked string (F f)
22 let fread p c f = L (Sys.fread f) (F f)
23 val fwrite: p:prin→ cred p→ f:{x:Sys.file | CanWrite p x}→
24 l:{y:label | CanFlow y (F f)} → tracked string l→ unit
25 let fwrite p c f l (L s x) = Sys.fwrite f s

FileRM defines dependent-type constructors CanRead and CanWrite to describe access permissions. Permissions are
granted using assumptions like AdminRW, which states that the Admin user has read- and write-permissions on all files.
Client programs can use axioms like AdminRW to produce evidence of the propositions required to call functions like
fread simple, which wrap the underlying system calls. Client programs are assumed to not have direct access to these
system calls—this can be established using standard systems techniques like sandboxing [25]. The type of fread simple
is used to enforce an access control policy. A caller of fread simple is required to pass in a credential for a user p and a
file handle f, where f has the refined type {x:Sys.file | CanRead p x} indicating that p has permission to read f.

We used fread simple mainly to illustrate how refinement types can express simple authorization policies. When leaks
due to information flows are a concern, FileRM would not include fread simple in the API exposed to client programs.
Clients would have to use fread instead, which augments fread simple with information flow controls.

The encoding of information flow shown in FileRM is based on a model developed with the Fable calculus [21].
Information flow policies are specified and enforced by tagging sensitive data with security labels that record prove-
nance. The type label (line 9) represents the provenance of data derived from one or more files, F x for data from file
x, and J l1 l2 for data derived from the files in both l1 and l2. The dependent-type constructor tracked associates labels
with data. For example, tracked string (F x) represents a string that originated from the file x. Importantly, tracked is defined
as a private type. Client programs can only manipulate tracked values using functions that appear in the interface of
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FileRM, e.g., fmap, a functor that allows functions to be lifted into the tracked type and tensor, a combinator that treats the
tracked type as an indexed applicative functor. Prior work on Fable showed that encodings of this style can be proved
to correctly enforce security properties like noninterference.

Next, we define a type CanFlow and assumptions to describe a partial order on labels. The Lattice assumption states
that the J constructor behaves as the least-upper-bound relation on a join semi-lattice and that flows are permissible
from lower labels to higher ones. The Atomicflow assumption states that data can flow from a file f to a file g only if all
principals that can read g can also read f. The types of fread and fwrite use these constructs to track information flow.
The type of fread shows that the content of f is returned as a string tagged with its provenance, i.e., tracked string (F f). The
type of fwrite requires that the string written to a file f has provenance l, where the refinement CanFlow y (F f) on the type
of l requires it to only contain data visible to the readers of f.

Specific file permissions and a client program
1 open Authentication, FileRM
2 assume R a: CanRead (U ‘‘Alice’’) ‘‘a.txt’’ &&
3 (forall p:prin.CanRead p ‘‘a.txt’’⇒ p=U ‘‘Alice’’ || p=Admin)
4 assume R ab: CanRead (U ‘‘Alice’’) ‘‘ab.txt’’ && CanRead (U ‘‘Bob’’) ‘‘ab.txt’’ &&
5 (forall p:prin.CanRead p ‘‘ab.txt’’⇒ p=U ‘‘Alice’’ || p=U ‘‘Bob’’ || p=Admin)
6 val strcat: string→ string→ string
7 let sudo (c:cred Admin) =
8 let a, ab = fread Admin c ‘‘a.txt’’, fread Admin c ‘‘ab.txt’’ in
9 let a ab = tensor (F ‘‘a.txt’’) (F ‘‘ab.txt’’) (fmap strcat (F ‘‘a.txt’’) a) ab in

10 fwrite Admin c ‘‘a.txt’’ (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)) a ab

Additional policy assumptions and client code. The code sample above includes axioms R a and R ab to define access
permissions for some files. (We assume here that Sys.file and string are synonyms.) We also show a client program,sudo,
which runs with the credentials of Admin, concatenates data from files a.txt and ab.txt, and writes the result to the file
a.txt. In addition to Admin, the file a.txt is readable only by the user Alice and ab.txt only by Alice and Bob. Thus, sudo is
secure since it writes to a.txt data that can be read by Alice and Admin. In contrast, if sudo were to write the result to ab.txt,
the contents of a.txt are leaked to Bob, and this program should be detected as insecure.

At each call to fread, the solver appeals to AdminRW to show that Admin has read permission on the files. To con-
catenate tracked strings, we use the fmap and tensor operators from the FileRM API.1 Here, the type computed for a ab
is tracked string (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)). At line 10, we need to prove CanFlow (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)) (F ‘‘a.txt’’), which is
discharged automatically by Z3. Trying to write a ab to ab.txt instead results in a type error.

2.2 Stateful authorization in the CONTINUE conference manager
We now present a more substantial example in FINE: a model of the CONTINUE conference management server. We
first present a reference monitor ConfRM which mediates access to a database of paper submissions and reviews. Next,
we show ConfPolicy, a set of policy axioms used to configure the reference monitor. Finally, we discuss ConfWeb, a web
server processing requests and accessing the database via the reference monitor.
A model of stateful authorization. The design of the ConfRM reference monitor is based on a framework due to
Dougherty et al. [7] for reasoning about the correctness of Datalog-style dynamic policies. This model specifies
policies as inference rules that derive permissions from basic authorization attributes. For example, attributes may
include assertions about a principal’s role membership or the phase of the conference, and inference rules could grant
permissions to principals depending on the current phase and role activations. Over time, whether due to a program’s
actions or due to external events, the set of authorization attributes can change. For example, to access a resource, a
principal may alter the state of the authorization policy by activating a role; or, the PC chair can change the phase of the
conference. In this state, the policy may grant a specific privilege to the principal, but a subsequent role deactivation
revokes the privilege. Dougherty et al. show that this model captures many common policies and can be used to reason
about policy correctness.

1Our implementation currently lacks support for implicit parameters in function calls. Defining all label parameters to be implicit would produce
more terse programs. For example, concatenation of tracked strings would read tensor (fmap strcat a) ab.
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This model of stateful authorization can be represented directly in FINE. The type st represents the set of basic
authorization attributes (line 10 in the listing on the next page). Attributes include values like Role (U ‘‘Alice’’) Author to
represent a role activation, or values like Assigned r p to indicate that a paper p has been assigned to a reviewer r. The
type perm represents permissions (the relations derived using inference rules from the basic authorization attributes).
For example, Permit (U ‘‘Alice’’) (Submit p) represents a permission granted to an author. ConfRM also defines two propo-
sitions for stating invariants about the current state of the policy. Line 12 shows the type In, a proposition about list
membership, e.g., In a s states that a is a member of the list s. We elide standard assumptions that axiomatize list
membership, but show a simple recursive function check that decides list membership (line 13-15). The proposition
Derivable s p (line 16) asserts that a permission p is derivable from the collection of authorization attributes s. We define
two type abbreviations for refinements of the st type: rst<p> are those states in which p is derivable, and inst<a> are
those states that include a.

For a flavor of refinement type checking, consider the check function. The essence of typing this function is proving
that the true sub-expression can be given the type {b:bool | In a l}. We accomplish this by typing the value true in a context
that records equalities between l and hd::tl (induced by the pattern match); an assumption that the expression (equals a hd)
has the type {b:bool | b=true⇔ a=hd} (by a type given to the built-in equals operator); an assumption that (equals a hd) evalu-
ates to true (since we are typing the then-branch); and the axioms for list membership. We determine if the goal (In a l) is
deducible from the assumptions by including the negation of the goal among the assumptions and requiring the solver
to prove the resulting theory unsatisfiable.
Modeling state updates with affine types. The type constructor StateIs (line 19) addresses two concerns. A value of
type StateIs s represents an assertion that s contains the current state of authorization facts. ConfRM uses this assertion
to ensure the integrity of its authorization facts. StateIs is declared private, so untrusted clients cannot use the Sign
constructor to forge StateIs assertions. Moreover, since the authorization state can change over time, FINE’s type
system provides a way to revoke StateIs assertions about stale states. For example, after a reviewer r has submitted a
review for a paper p, we may add the fact Reviewed r p to the set of authorization facts s, revoke the assertion StateIs s, and
use StateIs ((Reviewed r p)::s) instead.
A fragment of a reference monitor for a conference management server

1 module ConfRM
2 open Authentication
3 type role = Author | Reviewer | Chair
4 type phase = Submission | Reviewing |Meeting
5 type paper = {id:int; title:string; author:prin; contents:string}
6 type attr = Role : prin→ role→ attr | Assigned : prin→ paper→ attr
7 | Phase : phase→ attr | Reviewed : prin→ paper→ attr
8 type action = Submit: paper→ action | Review: paper→ action
9 | ReadScore: paper→ action | CloseSub: action

10 type st = list attr
11 type perm = Permit : prin→ action→ perm
12 type In :: attr→ st→ ?
13 val check: a:attr→ l:st→{b:bool | b=true⇒ In a l}
14 let rec check a l = match l with []→ false
15 | hd::tl→ if equals a hd then true else check a tl
16 type Derivable :: st→ perm→ ?
17 type rst<p:perm> = {s:st | Derivable s p}
18 type inst<a:attr> = {s:st | In a s}
19 private type StateIs:: st→ A = Sign: s:st→ StateIs s
20 val submit: q:prin→ cred q→ p:paper→ s:rst<Permit q (Submit p)>→ StateIs s→ StateIs s
21 val review: r:prin→ cred r→ p:paper→ q:string→ s:rst<Permit r (Review p)>→
22 StateIs s→ (s’:inst<Reviewed r p> ∗ StateIs s’)
23 val close sub: c:prin→ cred c→ s:rst<Permit c CloseSub>→
24 StateIs s→ (s’:inst<Phase Reviewing> ∗ StateIs s’)

FINE types are classified into two basic kinds: ? , the kind of normal types, and A, the kind of affine types. By
declaring StateIs :: st→ A we indicate that StateIs constructs an affine type from a value of type st. When the state of the
authorization policy changes from s to t, ConfRM constructs a value Sign t to assert StateIs t, while destructing a StateIs s
value to ensure that the assertion about the stale state s can never be used again.
An external API to the conference DB. Lines 20-24 show the types of functions exposed by ConfRM to clients. Using
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the refined state type rst<p>, the API ensures that each function is only called in states where the permission p is
derivable. The submit function requires Permit q (Submit p) to be derivable in the state s. By returning StateIs s, the type
of submit indicates that it does not change the authorization state. The review function allows a reviewer r to submit
a review and then changes the authorization state to record the submission. The return type of review is a dependent
pair consisting of a new list of authorization attributes s’, and an assertion of type StateIs s’ to indicate that s’ is the new
authorization state. The close sub function has a similar type and allows the program chair to change the phase of the
conference.
An example policy and a main event loop for the server

1 module ConfPolicy : ConfRM
2 let init:(s:st ∗ StateIs s) = let a = [Role (U ‘‘Andy’’) Chair; ...] in (a, Sign a)
3 assume C1: forall (q:prin), (p:paper), (s:st).
4 In (Phase Submission) s && In (Role q Author) s⇒ Derivable s (Permit q (Submit p))
5 assume C2: forall (r:prin), (p:paper), (s:st).
6 In (Phase Reviewing) s && In (Assigned r p) s⇒ Derivable s (Permit r (Review p))
7 assume ...
8 (∗ Main event loop ∗)
9 module ConfWeb

10 open Authentication, ConfRM, ConfPolicy
11 let rec loop s = match get request() with
12 | Submit paper q credq paper→ let (a,tok) = s in
13 if (check (Phase Submission) a) and (check (Role q Author) a) then
14 let s1 = submit q credq paper a tok in
15 let = resp ‘‘Thanks for your submission!’’ in loop (a, s1)
16 else let = resp ‘‘Submissions are closed, or you are not an author.’’ in loop (a,tok)
17 | Submit review r credr paper review→ ...
18 let = loop ConfPolicy.init

A sample policy. The module ConfPolicy above configures the ConfRM reference monitor with policy assumptions. At
line 2, we show init, an initial collection of authorization attributes a, signed to attest that a is the authorization state.
The Sign data constructor requires the privilege of ConfRM—FINE’s module system grants this privilege to ConfPolicy
using the notation module ConfPolicy : ConfRM, which allows ConfPolicy to use the private constructors of ConfRM. The
assumptions C1-C2 show how permissions can be derived from authorization attributes—different conferences can use
the same ConfRM but get different enforcement semantics by using different policy files.
An event loop to handle web requests. Finally, we show fragments from ConfWeb, a program that handles web
requests to the conference management site. The main event loop of ConfWeb waits for a request (type elided). If
principal q wishes to submit a paper, we check that the conference is in the Submission phase, and that q is registered in
the role of an Author. We give the built-in boolean operator and the type x:bool→ y:bool→{z:bool | z=true⇔ x=true && y=true}.
We can use this type, the type of check, and assumption C1, to refine the type of the current state a in the then-branch to
rst<Permit q (Submit paper)>.

2.3 Elements of FINE that enable stateful programming
Before proceeding to a formal semantics for FINE, we discuss a number of elements in the design of FINE that
facilitate, and in some cases simplify, stateful programming.
Non-affine state simplifies programming. Programming with affine types can be difficult, since affine variables can
never be used more than once. Our approach of using an affine assertion StateIs s to track the current authorization state
minimizes the difficulty. Importantly, the collection of authorization facts s is itself not affine and can be freely used
several times, e.g., s is used in several calls to check. Non-affine state also enables writing functions like check, which,
if s was affine, would destroy the state of the program. Only the affine token, tok:StateIs s, must be used with care, to
ensure that it is not duplicated.
Non-affine refinements simplify automated proofs. Even ignoring the inability of prior languages to handle stateful
policies, the proof terms required for our examples in languages like Fable or Aura would be extremely unwieldy.
By ensuring that refinement formulas always apply to non-affine values, our proof system is kept tractable, allowing
us to use Z3 to automatically discharge proof obligations. A naı̈ve combination of dependent and affine types would
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allow refinements to apply to affine values, necessitating an embedding of linear logic in Z3. Our approach avoids this
complication, while retaining the ability to refine the changing state of a program with logical formulas.
Affine types enable flexible mixing of stateful and pure code. Another approach to working with stateful policies
could be to use an abstract monad. FINE’s module system certainly supports programming in this style. However,
affine types afford greater flexibility. For example, rather than monadically threading a monolithic store through the
program, FINE programs can partition the state and pass only the relevant parts of the store to functions that need
it. We use this idiom to good effect in one of our benchmark programs (FileAutomaton in §4), in which a bit of state
representing the current state of a file is associated with the file handle rather than using a monolithic store to maintain
the state of all file handles. Another benchmark, a model of an email client, uses affine types to model capabilities [15]
that grant programs restricted access to certain sensitive stateful operations, such as sending emails.

3 Formalizing FINE

Our compiler translates FINE programs in type-preserving manner to .NET bytecode (CIL) [8]. Although we do not
report on our type-preservation results in this paper, this design plays a significant role in various aspects of FINE’s
type system. This section formalizes FINE, presents a soundness result for the type system, and an information-hiding
property for the module system. We begin by presenting a core syntax for FINE.
3.1 Core syntax
Our formulation of FINE’s module system is based on Grossman et al’s [11] syntactic approach to type abstraction.
In this formulation, module names correspond to “principals” and are ranged over by the meta-variables p, q, and r.
Source expressions are annotated with the names of the modules to which they belong—in the form 〈e〉p, the expres-
sion e delimited within brackets is privileged to use p’s private types concretely. A principal constant is denoted p,
and we include two distinguished principals: > includes the privileges of all other principals, and ⊥ has no privileges.
Values are partitioned into families corresponding to principals. A pre-value for code with p-privilege, up, is a variable
or a fully-applied data constructor D. Values for p are either its pre-values, abstractions, or pre-values uq for some
other principal q, enclosed within brackets to denote that uq carries q-privilege. The dynamic semantics of FINE (§3.3)
tracks the privilege associated with an expression using these brackets and allows us to prove (§3.4) that programs
without p-privilege treat p-values abstractly.

Core syntax of FINE

p, q, r ::= p | > | ⊥ principals
up ::= x | D τ̄ v̄p pre p-values
vp ::= up | λx:τ.e | Λα::κ.e | 〈uq〉q p-values
e ::= vp | let x = e1 in e2 | fix f :τ.e | vp vq | vp τ | 〈e〉p terms

match vp with D τ̄ x̄→ e1 else e2
τ, φ ::= α | x:τ → τ ′ | ∀α::κ.τ | {x:τ |φ} | !τ | T | τ τ ′ | τ vp types
κ ::= ? | A | ?→ κ | A→ κ | τ → κ kinds
S ::= T ::κ | D:(p, τ) | p v q | S, S′ | · signature
Γ ::= α::κ | x:(p, ·, τ) | x:(p,fix, τ) | vp

.= v′
p | Γ,Γ′ | · type env.

Expressions e are standard for a polymorphic lambda calculus. Types τ include dependent function types x:τ → τ ′,
where x names the formal parameter and is bound in τ ′. Polymorphic types ∀α::κ.τ decorate the abstracted type
variable α with its kind κ. Refinement types are written {x:τ |φ}, where φ is a type in which x is bound. An affine
qualifier can be attached to a type using !τ . Type constructors T can be applied to other types using τ τ ′ or terms using
τ vp. Note that type-level terms are always values, not expressions—this restriction explains our use of A-normal
form [10] for the expression language. This form allows every intermediate result to be named and for these names to
appear, potentially, as type indices. Types are partitioned into normal types (kind ?) and affine types (kind A). Type
constructors T construct types of kind κ from normal types (?→ κ), affine types (A→ κ), or τ -typed terms (τ → κ).
Although included in our implementation, for simplicity, our formalization omits dependent pairs.
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Desugaring FINE modules. The type and data constructor declarations in a FINE module are desugared to a signature
S. The type constructors of the Authentication module of §2.1, for example, are desugared to prin::? and cred::prin → ?.
Data constructors D are associated their type, as well as the privilege p required for their use. For example, the
constructors of the prin type are U:(⊥, string → prin) and Admin:(⊥, prin), indicating that these may be used freely
in unprivileged code. In contrast, being declared private, the constructor of the cred type is desugared to Auth :
(Authentication, p:prin→ cred p), indicating that it may only be used in code marked with the privilege of the Authentication
module. Additionally, signatures use p v q to record a partial order among principals, with ⊥ v p v >, for all
p. We use this to represent sharing between modules, as achieved by the ConfPolicy : ConfRM declaration from §2.2.
This is translated to the relation ConfRM v ConfPolicy, to indicate that ConfPolicy holds the privileges of ConfRM (and, in
particular, can use ConfRM’s private data constructors).
Desugaring formulas and assumptions. Refinement formulas and assumptions are represented using type and data
constructors, respectively. For example, we use type constructors like And::?→ ?→ ? to represent the logical connec-
tives. We model equality by specializing it to each type, e.g., Eq bool::bool→ bool→ ? . A polymorphic treatment of
equality poses no fundamental difficulty, but we use a monomorphic treatment here for simplicity. Quantification is
represented using the binders in dependent functions and pairs. For example, the AdminRW assumption from §2.1 is
desugared to AdminRW : (⊥, f:file→And (CanRead Admin f) (CanWrite Admin f)). Note that assumptions are always public—
we leave an exploration of private assumptions to future work.
Well-formedness conditions on data constructors. The soundness of FINE’s type system relies on some restrictions
on the use of data constructorsD. We mention these restrictions briefly here, and elaborate upon these in the Appendix.
First, we disallow partial application of data constructors as this complicates our translation to CIL. Next, we require
the type of each data constructor to be of the form: ∀ᾱ::κ̄.x1:τ1 → . . . → xn:τn → τ , i.e., we require any type
arguments to precede any term arguments, although each term argument xi:τi may itself contain quantifiers. This
restriction is merely a convenience—it simplifies the shape of our pattern matching constructs. Finally, for each data
constructor D with a type as shown above, we require ᾱ ⊆ Free-type-variables(τ), i.e., every type argument must
appear as an index on the constructed type τ . This is a more significant restriction and is necessary for showing that
well-typed programs enjoy a type-erasure property.

3.2 Static semantics
The static semantics makes use of a typing environment Γ, which binds type and term variables, and records the
results of pattern matching tests using vp

.= v′
p. Variables x, like data constructors, are associated with a principal p

representing the privilege required for their use. Additionally, variable bindings are tagged with a marker µ ::= · | fix
that serves to distinguish fixpoint variables from other variables—the former cannot be used at the type level. We write
x : (p, τ) as a shorthand for x : (p, ·, τ).

Well-formedness of kinds: S `i k, and kinding of types: S; Γ ` τ :: κ
Where, i ::= · | 1, and ? ≤ ?, A ≤ A, ? ≤ A

S `· ? S `i A

S `i κ

S `i ?→ κ

S `1 κ
S `i A→ κ

S; · ` τ :: ? S `i κ

S `i τ → κ

S; Γ ` α :: Γ(α)
(K-Var)

S; Γ ` T :: S(T )
(K-TC)

S; Γ ` τ :: ?

S; Γ `!τ :: A
(K-Afn)

S; Γ, α:κ ` τ :: κ′

κ, κ′ ∈ {?, A}
S; Γ ` ∀α::κ.τ :: ?

(K-Univ)

S; Γ ` τ1 :: κ κ ≤ κ′
S; Γ, x:(p, τ1) ` τ2 :: κ′

S; Γ ` x:τ1 → τ2 :: ?
(K-Arrow)

S; Γ ` τ1 :: κ′ → κ
S; Γ ` τ2 :: κ′

S; Γ ` τ1 τ2 :: κ
(K-App)

S; Γ ` τ1 :: τ → κ S; Γ; · `> vp : τ
x ∈ FV (vp)⇒ (x, τ ′) ∈ Γ

S; Γ ` τ1 vp :: κ
(K-Dep)

S; Γ ` τ :: ? S; Γ, x:(p, τ) ` φ :: ?

S; Γ ` {x:τ |φ} :: ?
(K-Refine)

The first judgment S `i κ, shown above, defines a well-formedness relation on kinds. This judgment establishes two
properties. First, types constructed from affine types must themselves be affine—this is standard [24]. Without this
restriction, an affine value can be stored in a non-affine value and be used more than once. To enforce this property,
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we index the judgment using i ::= · | 1, and when checking a kind A → κ, we require κ to finally produce an
A-kinded type. The second restriction, enforced by the first premise (S; · ` τ :: ?) of the last rule, ensures that only
non-affine values appear in a dependent type. Note that we omit higher kinds (e.g., (? → ?) → ?) as these are not
easily translated to CIL.

The judgment S; Γ ` τ :: κ states that τ has kind κ. Types inhabited by terms always have kind ? or A. (K-Afn)

rules out “doubly-affine” types (!!τ ). (K-Univ) allows abstraction only over ? and A-kinded types. (K-Arrow) requires that
the type τ1 of a function’s parameter always have kind ? or A and that functions with affine arguments produce affine
results, both captured by an auxiliary relation on kinds, κ ≤ κ′. (K-Dep) checks the well-formedness of dependent types.
As in Aura and RCF, we restrict type-level terms to values e.g., Eq bool (true && false) false is not a well-formed type.
This restriction reduces expressiveness by ruling out type-level computations, but greatly simplifies the compilation to
CIL. The second premise of (K-Dep) uses the typing judgment—we describe it shortly. (K-Refine) only allows non-affine
types τ to be refined by non-affine formulas φ.

Expression typing: S; Γ;X `p e : τ
Where, µ = fix | ·, X ::= · | x,X; Q(X, τ) =!τ , Q(·, τ) = τ ; and ?τ denotes τ or !τ

S(D) = (p, τ)

S; Γ; · `p D : τ
(T-Data)

Γ(x) = (p, µ, τ) S; Γ ` τ :: ?

S; Γ; · `p x : τ
(T-Var)

Γ(x) = (p, µ, τ)

S; Γ;x `p x : τ
(T-VarA)

q v p ∈ S S; Γ;X `q e : τ

S; Γ;X,X′ `p e : τ
(T-Drop)

S; Γ ` τ :: ? S; Γ, f :(p, fix, τ); · `p vp : τ

S; Γ; · `p fix f :τ.vp : τ
(T-Fix)

S; Γ ` τ1 :: κ κ ∈ {?, A}
S; Γ, x:(p, τ1);X,x `p e : τ2

S; Γ;X `p λx:τ1.e : Q(X,x:τ1 → τ2)
(T-Abs)

κ ∈ {?, A}
S; Γ, α::κ;X `p e : τ ′

S; Γ;X `p Λα::κ.e : Q(X, ∀α::κ.τ ′)
(T-TAbs)

S; Γ;X `p e1 : τ1 S; Γ ` τ2 :: κ
S; Γ, x:(p, τ1);X′, x `p e2 : τ2

S; Γ;X,X′ `p let x = e1 in e2 : τ2
(T-Let)

S; Γ;X `p vp :?x:τ1 → τ2
S; Γ;X′ `p v′p : τ1 S; Γ ` τ2[v′p/x] :: κ

S; Γ;X,X′ `p vp v′p : τ2[v′p/x]
(T-App)

S; Γ;X `p vp :?∀α::κ.τ S; Γ ` τ ′ :: κ

S; Γ;X `p vp τ ′ : τ [τ ′/α]
(T-TApp)

S; Γ;X `q e : τ

S; Γ;X `p 〈e〉q : τ
(T-Bracket)

S; Γ;X `p vp : τ ′ S; Γ, x̄:(p̄, τ̄x); x̄ `p D τ̄ x̄ : τ ′′ S; Γ ` unify(τ ′, τ ′′) : x̄
.
= v̄

S; Γ, x̄:(p̄, τ̄x), x̄
.
= v̄, vp

.
= D τ̄ x̄;X′, x̄ `p e1 : τ S; Γ;X′ `p e2 : τ

S; Γ;X,X′ `p match vp with D τ̄ x̄→ e1 else e2 : τ
(T-Match)

S; Γ;X `p vp : τ S; Γ ` {x:τ |x = vp} :: ?

S; Γ;X `p vp : {x:τ |x = vp}
(T-Val)

S; Γ;X `q e : τ ′ S; Γ ` τ ′ <: τ

S; Γ;X,X′ `p e : τ
(T-Sub)

The typing judgment S; Γ;X `p e : τ above states that an expression e, when typed with the privilege of principal
p in an environment Γ and signature S, has type τ . The set X records a subset of the variables in Γ, and each element
of X represents a capability to use an assumption in Γ. The rule (T-Data) requires data constructors to be used only in
code granted the appropriate privilege. In the second premise of (T-Match), we type check a pattern D τ̄ x̄ to ensure that
data constructors are also destructed in a context with the appropriate privilege.

In (T-Var) we type a non-affine variable x by looking up its type in the environment and checking that the privilege
of the context matches that of the variable. (T-VarA) is similar, but additionally allows an affine variable to be used only
when a capability for its use appears in X . Unlike linear typing, affine assumptions need not always be used. (T-Drop)

allows an arbitrary number of assumptions X ′ to be forgotten, and for e to be checked with a privilege q that is not
greater than privilege p that it has been granted. An expression is granted privilege by enclosing it in angle brackets,
as shown in (T-Bracket).

Returning to the second premise of (K-Dep), we check a type-level term vp with the privilege of >. The intuition is
that in well-typed programs, type-level terms have no operational significance and, as such, cannot violate information-
hiding. We also check vp in (K-Dep) with an empty set of capabilities X . According to the well-formedness rule of kind
τ → κ, no well-formed type constructors can be applied to an affine value, so a type-level term like vp never uses an
affine assumption.
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In (T-Fix), we require fixed variables f to be given a non-affine type, and for the recursive expression to not capture
any affine assumptions. Note that the variable f is bound in the environment with the tag µ = fix. In the last premise
of (K-Dep), we rule out the use of fix-bound variables in type-level values. In (T-Abs), we check that the type of the formal
parameter is well-formed, and type check the body in an extended context. We record the privilege p of the program
point at which the variable x was introduced to ensure that x is not destructed in unprivileged code in the function-
body e. In the conclusion of (T-Abs), we use the auxiliary relation Q(X, τ), which attaches an affine qualifier to τ if the
function captures any affine assumptions from its environment. (T-TAbs) is similar. Typing let-expressions is standard,
with the addition that the second premise of (T-Let) ensures that the let-bound variable x does not escape its scope in the
type τ2. When typing an application vq vr in (T-App), we split the affine assumptions among the sub-terms. We allow
vq to be a possibly affine function type—the shorthand ?τ captures this, and we use the same notation in (T-TApp).

We illustrate pattern-matching using an example from FileRM. Consider matching a value vq of type tracked string (F file)
against a pattern L string x y. When checking the true-branch, we record several term equalities that capture the runtime
behavior of pattern matching. These assumptions will be used by our theorem prover in discharging proofs of refine-
ment formulas (via the type conversion relation, discussed shortly). In our example, one such equality assumption
is, clearly, vq

.= L string x y. However, with FINE’s value-indexed types, we can also infer equalities for some of the
pattern-bound variables. In particular, by unifying the type of the scrutinee, tracked string (F file), with the type of the
pattern, tracked string y, we can infer y .= F file.

In (T-Match), we split the affine assumptions between vq and the branches. In the second premise, we type the pattern
and in the third premise, unify the type of the scrutinee with the type of the pattern to compute equalities among
the term indices—the definition of the unification judgment is standard and we omit it from our presentation. The
fourth premise checks e1 with the computed equality assumptions. The last premise checks e2 with no additional
assumptions. A variation in which e2 is checked with a disequality forall x̄.vq 6= D τ̄ x̄ is also feasible. However, in
practice, we use n-way exhaustive pattern matching (match x with P1→ e1 ... Pn→ en) and derive disequalities by relying
on axioms that discriminate data constructors, e.g., forall D1, D2, x̄1, x̄2, τ̄1, τ̄2.D1 6= D2 ⇒ D1τ̄1x̄1 6= D2τ̄2x̄2.

We use (T-Val) to give values a precise singleton type using an equality refinement. This is useful in bootstrapping
the type conversion relation, used in the second premise of (T-Sub), and defined below. Type conversion S; Γ ` τ <: τ ′

is a reflexive, transitive relation without any structural rules, e.g., contra- and co-variant subtyping in function types.
The type system of CIL uses nominal subtyping, and structural rules of this form are not easily translated. The rule
(S-Refine) is our interface to the solver—we discuss this with an example shortly. The rule (S-Sub) treats a refined type as
a subtype of the underlying type. Type conversion includes an equivalence relation on types S; Γ ` τ ∼= τ ′. In this
judgment, (E-Sub) allows a type-level term vp to be equated with v′

p when an assumption vp
.= v′

p appears in the context.

Type conversion: S; Γ ` τ <: τ ′, S; Γ ` τ ∼= τ ′ and S; Γ ` e ∼= e′

Where S; Γ |= φ is the first-order logic entailment relation

S; Γ ` τ1 ∼= τ2
S; Γ ` τ1 <: τ2

(S-Eq)
S; Γ ` τ1 <: τ2 S; Γ ` τ2 <: τ3

S; Γ ` τ1 <: τ3
(S-Trans)

S; Γ ` τ <: τ ′ S; Γ, x:(p, τ) |= φ

S; Γ ` τ <: {x:τ ′ |φ}
(S-Refine)

S; Γ ` {x:τ |φ} <: τ
(S-Sub)

S; Γ ` τ ∼= τ
(E-IdT)

S; Γ ` vp
∼= vp

(E-IdV)
S; Γ ` τ1 ∼= τ ′1 S; Γ ` τ2 ∼= τ ′2

S; Γ ` τ1 τ2 ∼= τ ′1 τ
′
2

(E-App)

S; Γ ` τ1 ∼= τ ′1 S; Γ ` vp
∼= v′p

S; Γ ` τ1 vp
∼= τ ′1 v

′
p

(E-Dep)
vp

.
= v′p ∈ Γ ∨ v′p

.
= vp ∈ Γ

S; Γ ` vp
∼= v′p

(E-Subst)
∀i, j S; Γ ` τi ∼= τ ′i S; Γ ` vj

∼= v′j

S; Γ ` D τ̄ v̄ ∼= D τ̄ ′ v̄′
(E-D)

The key rule in type conversion related to refinement typing is (S-Refine). This rule allows a type τ to be promoted to a re-
fined type {x:τ ′ |φ} when τ is a subtype of τ ′, and when our solver can deduce the formula φ from the typing context.
The entailment relation S; Γ |= φ is standard—we illustrate its behavior using an example from §2.2. When typing
the main loop of ConfWeb, we are required to construct a derivation of the form S; Γ ` s : {x:st | In a x}, where (dropping
principals for clarity) Γ= s:st, a:attr, b:{x:bool | x=true⇒ In a s}, b

.= true. We construct this derivation by using (T-Sub) with
(T-Val) in the first premise to derive S; Γ ` s : {x:st | x=s}, and a derivation of S; Γ ` {x:st | x=s} <: {x:st | In a x} in the
second premise. This latter derivation proceeds by using (S-Sub), where we deduce S; Γ, x:{x:st | x=s} |= In a x by using
Z3 to show that the theory (s:st, a:attr, b:bool, b=true⇒ In a s, b=true, x:st, x=s, not(In a x)) is unsatisfiable. Importantly, FINE’s
type system ensures that the theories we generate never contain any affine assumptions, thus eliminating the need for
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a linear logic prover.

3.3 Dynamic semantics
The operational semantics of FINE is instrumented to account for two program properties. First, our semantics places
affinely typed values in a memory M . Reads from the memory are destructive—this allows us to prove that in well-
typed programs, affine values are never used more than once. The semantics also tracks the privilege of expressions by
propagating brackets through reductions, which is useful in showing an information-hiding property for our module
system. The main judgment is written (M, e)

p
 (M ′, e′), and states that given an initial memory M an expression

e steps to e′ and updates the memory to M ′. The p-superscript indicates that e steps while using the privilege of the
principal p.

Dynamic semantics
Where a memory M ::= (x, vp),M | ·

p-Destruct ctxt. Ep ::= • | Ep e | EP τ | match Ep with D τ̄ x̄→ e1 else e2

(M, e1)
p
 (M ′, e′1)

(M, let x = e1 in e2)
p
 (M ′, let x = e′1 in e2)

(R-Ctx) e
p
 e′

(M, e)
p
 (M, e′)

(R-Pure) let x = vp in e
p
 e[vp/x] (R-Let)

〈vp〉p
p
 vp (R-Strip) 〈〈vq〉q〉r

p
 〈vq〉q (R-Nest) 〈λx:τ.e〉q

p
 λy:τ.〈e[〈y〉p/x]〉q (R-Extl) 〈Λα::κ.e〉q

p
 Λα::κ.〈e〉q (R-ExtL)

e
q
 e′

〈e〉q
p
 〈e′〉q

(R-Br) λx:t.e vp
p
 e[vp/x] (R-Beta) Λα::κ.e τ

p
 e[τ/α] (R-TBeta) fix f :t.vp

p
 vp[fix f :t.vp/f ] (R-Fix)

S; ·; · ` vp : τ S; · ` τ :: A M ′ = M, (x, vq) x fresh

M, vp
p
 M ′, x

(R-Alloc)
M = M1, (x, vq),M2

M,Ep[x]
p
 (M1,M2), Ep[vq ]

(R-Destruct)

vp 6= x unify(vp, D τ̄ x̄) : θ

match vp with D τ̄ x̄→ e1 else e2
p
 θ(e1)

(R-Then)
vp 6= x ∀θ.¬ unify(vp, D τ̄ x̄) : θ

match vp with D τ̄ x̄→ e1 else e2
p
 ee

(R-Else)

Reduction rules that do not involve reading from or writing to memory are written e
p
 e′. All the interesting rules

that manage privileges and brackets fall into this fragment. Redundant brackets around p-values can be removed using
(R-Strip). However, not all nested brackets can be removed, as (R-Nest) shows. In (R-Extl), a λ-binder is extruded from a
function with q-privilege so that it can be applied to a p-value. We have to be careful to enclose occurrences of the
bound variable in e within p-brackets, to ensure that e treats its argument abstractly. Finally, (R-Br) allows evaluation
to proceed under a bracket 〈·〉q with q-privilege. The rules (R-Alloc) and (R-Destruct) model memory operations. The rule
(R-Alloc) is applicable non-deterministically. It allocates a new location x for an affine value vp into the memory M and
replaces vp with x. When a location x is in destruct position, (R-Destruct) reads a value vp from M and deletes x.

Theorem 1 establishes the soundness of FINE through the standard progress and preservation lemmas. In the
statement below, all free variables are implicitly universally quantified. Additionally, we say that a memory M is
typeable with an environment S; Γ, if S; ·; · `p M(x) : Γ(x), for each location x ∈ dom(M). In addition to showing
that well-typed programs do not go wrong, our soundness result guarantees that affine values are destructed at most
once—a result that shows that state changes are modeled accurately. The proof appears in the appendix.
Theorem 1 (Soundness): For all well-formed signatures S; environments Γ; non-values e; and memoriesM typeable
with S; Γ, the following statements are true:

1) If S; Γ; dom(M) `p e : τ then there exists M ′, e′ such that M, e
p
 M ′, e′.

2) If S; Γ;X `p e : τ and M, e
p
 M ′, e′ for some p,M ′, e′, and X ⊆ dom(M);

then, there exists Γ′, X ′such that S; Γ′;X ′ `p e
′ : τ and M ′ is typeable with

S; Γ′. Furthermore, for ∆X = (dom(M) ∪ dom(M ′)) \ (dom(M) ∩ dom(M ′))
if dom(M ′) ⊇ dom(M) then X ′ = X ∪∆X ; otherwise X ′ = X \∆X .
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3.4 Reasoning about the security of FINE programs
FINE allows programmers to specify conditions for correct policy enforcement and the type system checks that these
conditions are satisfied. But, the onus is on the programmer to get these specifications right. For example, in the FileRM
module of §2.1, wrongly assuming (forall p:prin. CanRead p f⇒ CanRead p g)⇒ CanFlow (F f) (F g) (instead of the Atomicflow
assumption) would destroy any meaningful confidentiality property intended for FileRM to enforce. Similarly, in the
Authentication module, forgetting to declare the cred type private would allow adversaries to forge credentials. In neither
case would FINE’s type checker complain. However, the metatheory of FINE provides a useful set of primitives
using which an expert can prove high-level security properties. In prior work on the Fable calculus, we adopted
a similar approach and showed how the metatheory of Fable could be used to prove high-level security properties
(e.g., noninterference) for encodings of information flow, provenance tracking, and role-based access control. We
anticipate a similar strategy being effective for FINE. Additionally, in §4, we discuss how tools like model checkers
can complement FINE and be used to establish that FINE programs correctly enforce high-level security goals.

In addition to type soundness, the metatheory of FINE yields two general purpose security properties—proofs
appear in the appendix. The first, corresponding to a secrecy property, is value abstraction. The theorem below states
that a program e without p-privilege cannot distinguish p-values. As a corollary, we can also derive an integrity
property, namely that a program without p-privilege cannot manufacture a p-value to influence the behavior of code
with p-privilege. Note that this theorem appeals only to the pure fragment of our reduction rules—affine typing plays
no special role in value abstraction. Additionally, observe that this result applies to selective information sharing/hiding
between multiple principals, as FINE’s module system includes a lattice of principals ordered by the p v q relation.
Finally, although this theorem applies to the abstraction of a single value from the p module exported at type τ , the
program e can contain code from several principals.
Theorem 2 (Value abstraction): For well-formed signatures S and non-values e, if e uses a p-value x but is well-
typed without p-privilege, (i.e., S;x:(p, τ);x `q e : τ ′ and p v q 6∈ S) and, except for 〈x〉p, e is free of r-brackets
〈·〉r, for any r where p v r ∈ S; then, for any pair of τ -typed values v1

p and v2
p, (i.e., S; ·; · `p v

i
p : τ , i∈{1, 2}) such

that e[v1
p/x]

q
 e1, there exists e′ such that e1 = e′[v1

p/x] and e[v2
p/x]

q
 e′[v2

p/x].

4 Compiler implementation and application experience
We have implemented a prototype compiler, currently approximately 20,000 lines of F# code extending a front-end and
IL generation libraries derived from the F# compiler [23]. The type-preserving translation of FINE to CIL accounts for
a significant fraction of the complexity. Our compiler currently generates .NET assemblies that allow FINE programs
to easily interface with modules defined in F#. Interoperability with the rest of .NET allows us to write only security
critical parts of an application in FINE, leaving the rest to other, more commonly used languages.

The table below shows several small reference monitors in FINE, their size, the number of proof obligations
generated during type checking, and parsing and type checking time (on 3.2 GHz Pentium Core Duo desktop running
Windows Vista). Most benchmarks contain dense security critical code, where nearly every function call demands
proving refinement formulas. Our results show that using an external solver to discharge these proofs (as opposed to
constructing them by hand as in Fable or Aura) is critical for practical programming. We expect the checking time
to improve significantly as we move from naı̈ve representations of typing environments (currently association lists) to
more efficient data structures.

Name LOC # pf. obl. parsing/type checker time (s)
AuthAC 34 1 0.28
FileRM 120 36 1.64
FileAutomaton 121 3 0.45
IFlow 127 22 0.84
HealthWeb 318 19 6.41
DynDKAL 336 34 1.26
Lookout 519 23 2.73
ConfRM and ConfWeb 647 57 4.01
ProofLib 9943 0 19.28
Total 2222 (+ 9943) 195 17.62 (+ 19.28)
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4.1 Modeling CONTINUE

Our most substantial example is the modeling of the security policy of CONTINUE. CONTINUE’s authors provided
us with a specification of its policy, partly in natural language and partly as specification in the Alloy modeling
language [12]. Starting from this specification, we implemented ConfRM to enforce a policy that contains 9 phases and
12 actions. Policy assumptions in ConfPolicy describe when each action is permissible, and a function exposed in the
external interface of ConfRM (with a suitable refinement type on the state) mediates access to this action. In addition,
each action corresponds to a particular web request handled by ConfWeb.

A significant fragment of the Alloy specification for CONTINUE is devoted to specifying validity conditions on
the authorization state. For example, in any given state, validity requires the assignment of papers to reviewers to
respect the conflict of interest constraints. We found it relatively straightforward to express several of these validity
constraints, although our implementation has yet to cover all the features of CONTINUE’s specification. One simplify-
ing assumption we make is that there is a unique phase for the entire conference. In contrast, the Alloy specification
associates a phase with each paper, and different papers can be in different phases at any given time. Extending our
attr type to account for this complexity is possible, though we have yet to implement this.

Our experience with CONTINUE illustrates an important aspect of FINE. Tools like Alloy are useful for reasoning
abstractly about policies and establishing that these correctly specify high-level security goals. However, the abstract
analysis of policies in Alloy is disconnected from system implementations that are expected to enforce these policies.
FINE, in contrast, does not attempt to validate policies, but provides assurance that system implementations properly
enforce their policy specifications. We view these two approaches as complementary and expect their combination
to be a potent tool for security analysis of system implementations. For example, the Alloy specification includes
assertions to check that no sequence of actions allows a principal to read or write a review when there is a conflict of
interest. We plan to investigate using the metatheory of FINE and the types of ConfRM, in conjunction with a tool like
Alloy, to prove such facts of our implementation.

4.2 Other benchmarks
The benchmark FileRM extends the example from §2.1 to account for confidentiality and integrity concerns when
tracking information flow. Recall that in FileRM the lattice of security labels was derived from a specification of
access control permissions using the Atomicflow assumption. To type check FileRM using Z3, we needed to rewrite the
AtomicFlow assumption to the form shown below. To reason about formulas that use nested quantifiers, Z3 relies on a
pattern-based instantiation mechanism that requires all bound variables (p in Atomicflow) to be guarded by non-equality
predicates. Note that this is not a fundamental limitation of FINE. We are currently investigating the use of first-order
solvers to reason directly about quantified formulas without this restriction. For example, a customized version of
Coq’s firstorder tactic can discharge proofs of the CanFlow proposition using the assumption AtomicFlow as shown
in §2.1.

assume CW:IsPrin Admin && IsPrin (U ‘‘Alice’’) && IsPrin (U ‘‘Bob’’) && ...
assume AtomicFlow: forall f:file, g:file.

(forall p:prin. (IsPrin p && CanRead p g)⇒ CanRead p f)⇒ CanFlow (F f) (F g)

Of the other benchmarks, AuthAC is a small purely permission-based access control monitor for files combined with
password-based authentication. FileAutomaton is a reference monitor that implements an automaton-like policy on files,
where, through the use of dependent and affine types, a file handle is indexed with a value indicating its current state,
e.g., Open, Closed etc. A similar idiom could be used in ConfRM to associate phases with papers, instead of a global phase
for the entire conference. IFlow is an implementation of a traditional information flow policy using a three-point lattice
of labels which does not require the nested quantifiers of FileRM. HealthWeb is a reference monitor for an application that
manages a database of electronic medical records. It enforces a stateful authorization policy. DynDKAL is an interpreter
for an authorization logic; it uses refinement types to ensure that instantiations of quantified assumptions in policies is
performed correctly. Lookout is the core reference monitor of a plugin-based email client we have started to build. This
program mixes stateful authorization in the style of ConfRM with information flow tracking in the style of FileRM.

Finally, ProofLib is an automatically generated program, our largest test case by far. This program makes no use of
refinement types and is used as a utility by our type-preserving compiler to represent proof terms. We include it here
to give the reader a sense of the cost of dependent type checking for larger programs.
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5 Related work and conclusions
Several programming languages and proof assistants use dependent types, including Agda [17], Coq [2], and Epi-
gram [16]. All of these systems can be used to verify full functional correctness of programs. However, to ensure
logical consistency of the type system, these languages exclude arbitrary recursion, making them less applicable for
general-purpose programming. Projects like YNot [4] and Guru [19] aim to mix effects like non-termination with
dependently typed functional programming; YNot also supports programming with state in an imperative style. Re-
strictions in both languages ensure that proofs are pure, ensuring that logical consistency is preserved. All of these
systems include automation and tactic languages, but programmers still need to construct interactive proofs for their
code. In contrast, FINE targets weaker, security properties; forgoes logical consistency in favor of practical program-
ming by including recursion; and automatically synthesizes proof terms using an SMT solver. FINE also provides
affine types to allow the enforcement of state-modifying policies, which could be expressed in YNot, but not easily in
the other languages.

Dependent types have also been used for security verification. Jif [5] uses a limited form of dependent typing
to express dynamic information flow policies. Aura [13] is specialized for the enforcement of policies specified in
a policy language based on an intuitionistic modal logic. This makes Aura less applicable to policies specified in
other logics, e.g., the Datalog-based policy language of Dougherty et al. [7], and Aura cannot model stateful policies.
Aura provides logical consistency by separating types from propositions and excluding arbitrary recursion in proof
terms. However, proof terms in Aura are always programmer-provided. As such, Aura is positioned as an intermediate
language, rather than a source-level language. Fable [21], is another intermediate language for security verification
that uses dependent types. Fable uses a two-principal module system. FINE’s module system generalizes Fable’s, with
support for a lattice of multiple principals. FINE is also related to λAIR [22], a calculus that targets the enforcement of
declassification policies. λAIR’s combination of affine and dependent types does not lend itself to integration with a
solver and it was never implemented.

Refinement types in FINE are related to a similar construct in RCF [1]. Refinement formulas in RCF are drawn from
an unsorted logic, rather than using dependent-type constructors, as we do. The lack of dependent type constructors
in RCF makes it difficult to derive typeable proof terms, crucial to our goal of a type-preserving compiler for FINE.
Additionally, without dependent type constructors, it appears impossible to enforce information flow policies in RCF,
although RCF’s implementation, F7, does include dependent type constructors. RCF also lacks support for stateful
authorization policies, although recent work shows how stateful policies can be modeled in F7 using a refined state
monad [3]. However, the soundness of this encoding relies on a trusted compilation of the program in a linear, store-
passing style. FINE’s type system also allows the use of refined state monads, but, as discussed in §2.3, affine types in
FINE also admit other stateful programming idioms.

FINE is also related to hybrid-typed languages that use refinement types, like Sage [9]. Sage uses a trusted external
solver to discharge proofs; we extract typeable proof terms from Z3 rather than trusting it. Another difference is that
Sage automatically insert runtime checks when the solver fails to discharge a proof obligation. Failed runtime checks
can cause subtle leaks of information, so automatic insertion of runtime checks is not yet a feature of FINE, where
security is the primary concern—we plan to investigate adding support for automatic policy checking in the future.
Conclusions. This paper has presented FINE, a language for enforcing rich, stateful authorization and information
flow policies. Our experience constructing several reference monitors provides initial evidence that programming in
FINE is practical, due in part to the use of an automated solver to ease the proof burden, and that FINE can be used to
check the enforcement of security policies commonly applied to software.
Acknowledgments. Thanks to Shriram Krishnamurthi for providing us with a specification of CONTINUE’s policy;
to Nikolaj Bjørner and Leonardo de Moura for help with Z3; to Karthik Bhargavan, Johannes Borgstroem, Cédric
Fournet, and Andy Gordon for numerous discussions about this work.

A Additional judgments
In this section, we define three judgments omitted from the main body of the paper. The first judgment is of the form
S; Γ ` unify(τ, τ ′) : x̄ .= v̄ and stands for unification of the types τ and τ ′ using the substitution of value variables x̄
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in τ ′. This judgment is used among the premises of the typing rule for pattern matching to compute induced equalities
among pattern bound variables and the value indices in the type of a scrutinee.

The second judgment is of the form vp
.= θ(D τ̄ x̄) and states that a value vp matches a pattern D τ̄ x̄ producing

the substitution θ of pattern-bound variables. This judgment is used in the dynamic semantics to determine which
branch of a pattern match should be taken.

The final judgment models the first-order entailment relation S; Γ |= φ as a typing derivation of a proof term of
type proof φ that witnesses the validity of φ, where proof :: ? → ? is a type constructor. This judgment makes use of
an auxiliary function refinements(Γ) which collects assumptions in Γ given refinement types as additional assumptions
of proof terms.
Unification and formula entailment
Where θ = x

.= v, θ | ·
unify(v̄p, x̄) : θ

S; Γ ` unify(T τ̄ v̄p, T τ̄ x̄) : θ

unify(v, v′) : θ1 unify(v̄, θ1(x̄)) : θ2

unify((v, v̄), (v′, x̄)) : θ1, θ2 unify(v, x) : x
.
= v

unify(v̄p, x̄) : θ

unify(D τ̄ v̄,D τ̄ x̄) : θ

Γ′ = refinements(Γ) S; Γ,Γ′; · `p vp : proof φ

S; Γ |= φ
(T-Entail)

where
refinements(y:(p, {x:τ |φ})) = z:(p, proof(φ[y/x])) z fresh
refinements(y:(p, τ)) = · when τ 6= {x:τ ′ |φ}
refinements(v1

.
= v2) = ·

refinements(α::κ) = ·
refinements(Γ,Γ′) = refinements(Γ), refinements(Γ′)
refinements(·) = ·

B Soundness of FINE

Definition 1 (Well-formed data constructors). A data constructor D: (p, t) is well-formed iff the following is true:

The type t is of the form
forall a1::k1, ... an::kn. x1:t1 -> ... xn:tn -> t’

That is, all type arguments precede all term arguments.
We call t’ the constructed type of D.

The constructed type t’ of D is of the form T a1..an v1’..vm’,
for some type constructor T. I.e., D is injective in its type arguments,
and always constructs a constructed type T.

Additionally, a program e has well-formed data constructors if every
data constructor D in the text of e is fully applied.

Definition 2 (Well-formed signature). Well-formedness of a signature S is defined inductively as

1. S = S’, T::k =>
S’ is well-formed
and S’ |- k

2. S= S’, D:(p,t) =>
S’ is well-formed
and S’;- |- t :: k
and k in {*, A}
and p in S’
and D:(p,t) is well-formed

3. S=FOL,p1<p2,...,p<p’, S’ where FOL is the basic signature for first-order logic with equality
specialized to a set of ground types TT={T1 .. Tn} and all the principal names p_i are
distinct, and the relation p < p’ forms a partial order.
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FOL=
T1::*, ..., Tn::*
Eq_1::T1 -> T1 -> *
...
Eq_n::Tn -> Tn -> *
ReflT1: x:T1 -> Eq_1 x x
...
ReflTn: x:Tn -> Eq_n x x
And::* -> * -> *
Or::* -> * -> *
Not::* -> *
True::*
proof::* -> *
tt: True

Definition 3 (Well-formed environment). An environment Env=S;G;X is well-formed iff S;G bind distinct names
and all of the following are true

1. Env=S;G;X,x => x in dom(G) and
x not in X and
and S;G;X is well-formed

2. Env=S;G,x:(p,t);- => FreeVariables(t) <= dom(G) and
p in S and
S;G;- is well-formed

3. Env=S;G,e1=e2;- => FreeVariables(e1) <= dom(G) and
FreeVariables(e2) <= dom(G) and
and S;G;- is well-formed

4. Env=S;G,’a::k;- => k in {*, A} and
S;G;- is well-formed

5. Env=S;-;- => S is a well-formed signature

Definition 4 (Well-formed memory). Given a signature S, and a memory M, the environment corresponding to
M is written S;G(M), where G(M) is defined inductively as:

G(.) = .
G(M,(x,v_p)) = G(M),x:(p,t) where S;-;- |-_p v_p:t and S;- |- t :: A

A memory M is well-formed when G(M) exists

Lemma 5 (Canonical forms). Forall S, G, X, p, t, v_p, Phi,
(A1) S;G;X well-formed
(A2) S;G;X |-_p v_p : ?(x:t1) -> t2 => exists y. v_p=y or exists e, v_p = \x:t.e
(A3) S;G;X |-_p v_p : ?(\/’a::k.e) => exists y. exists e, v_p = /\’a::k.e
(A4) S;G;- |-_p v_p : {x:t | Phi}

=> exists v’, S;G,refinements(G);- |-_bot v’ : proof Phi[v/x]

Proof. By induction on the structure of the typing derivation, appealing to fully-applied data constructors to exclude (Dv1 : t1 → t2) etc. and
well-formedness of data constructors to ensure that data constructors do not introduce refined types.

Theorem 6 (Progress). For all S M e t p,
(A1) S;G(M);dom(M) well-formed and
(A2) S;G(M);dom(M) |-_p e : t
=> exists v_p, e=v_p or exists M’ e’, (M,e) ˜p˜> (M’,e’)

Proof. Proof: By induction on the structure of (A2). (We rely on implicit applications of R-Pure in the proof below.)

Case (T-Var):

Impossible. From premises of (T-Var) we have x in dom(M) and
S;G(M) |- t :: *. From well-formedness of memory M, we have that
for all x in dom(M), the type of x has kind A.
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Case (T-VarA):

From the premises of (T-VarA) we have x in dom(M), satisfying the
premise of (R-Destruct) and allowing a step to be taken.

Case (T-Val, T-Data, T-Abs, T-Univ):

v_p, \x:t.e, /\’a::k.e are all values for p.

Case (T-Fix):

fix f:t.e ˜p˜> e [fix f:t.e/f] using [R-Fix]

Case (T-App):

(e = v_p v_p’): From the first antecedent of (T-App), we have
S;-;- |-_p v_p : ?(x:t1) -> t2.
From Lemma (Canonical forms), we can conclude that either

Sub-case (exists e’, v_p = \x:t1.e’.)

For the conclusion, we apply [R-Beta] producing e’[v_p/x] as the the witness for the right-side
of the goal.

Sub-case (exists y in dom(G(M))=dom(M). v_p=y).

Step using (R-Destruct).

Case (T-TApp):

(e = v_p t): From the first antecedent of (T-TApp) and Lemma (Canonical forms), we can
conclude that either

Sub-case (exists e’, v_p = /\’a::k.)

For the conclusion we apply [R-TBeta] produces e’[t/’a] as the witness on the right-side of the
goal.

Sub-case (exists y in dom(G(M))=dom(M). v_p = y)

Step using (R-Destruct)

Case (T-Bracket):

a. (e=<e’>_q): [R-Br] is applicable.

b. (e=<v_q>_q), where p<>q: We enumerate sub-cases on v_q.

i. (v_q=u_q):

<u_q>_q is a p-value, satisfying the left-side of the goal disjunction.

ii. (v_q=\x:t.e):

<\x:t.e>_q ˜p˜> \y:t.<e[<y>_p/x]>_q using R-Extl satisfying the right side of the goal.

iii. (v_q=/\’a::k.e):

</\’a::k.e>_q ˜p˜> /\’a::k.<e>_q using R-ExtL satisfying the right side of the goal.

iv. (v_q=<u_r>_r):

<<u_r>_r>_q ˜p˜> <u_r>_r using R-Nest, satisying the right-side of the goal.
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c. (e=<v_p>_p):

<v_p>_p ˜p˜> v_p using [R-Strip], satisfying the right-side of the goal.

Case (T-Match):

(e=match v_p with ...): The second premises of [R-Then] and
[R-Else] form a tautology. So, as long as v_p is not a variable, we
can satisfy the right-side of the goal using one of the two rules. If
v_p is a variable, then we can step using [R-Destruct].

Cases (T-Sub, T-Drop):

The goal follows directly from the induction hypothesis.

Case (T-Let):

a. (e = let x = e1 in e2): Step using (R-Ctx)
b. (e = let x = v_p in e2): Step using (R-Let)

(Note: the rule (R-Alloc) is unnecessary for progress)

Lemma 7 (Weakening). Lemma (Weakening for typing judgment):

For all S G1 G2 G X1 X2 X e t p,
(A1) S;G1,G2;X1,X2 well-formed
(A2) S;G1,G2;X1,X2 |-_p e : t
(A3) S;G1,G,G2;X1,X,X2 well-formed
=> S;G1,G,G2;X1,X,X2 |-_p e : t

Lemma (Weakening for kinding judgment):

For all S G1 G2 G t k p,
(B1) S;G1,G2;- well-formed
(B2) S;G1,G2 |-_p t :: k
(B3) S;G1,G,G2;- well-formed
=> S;G1,G,G2;- |- t :: k

Proof. By mutual induction on the structure of (A2) and (B2), generalizing on G2.
The interesting cases of (A2)

Case (T-Var), (T-VarA):

In both cases, we can establish the conclusion by using (T-Var/T-Var-A) in the premise of
(T-Drop-A), to drop the additional affine assumptions in X, and note that G1,G,G2
binds x iff G1,G2 binds x.

Case (T-Abs):

For the first premise of (A2), we use the mutual induction hypothesis to show that the kinding
derivation can be weakened to

(A2.1’) S;G1,G,G2 |- t::k

The third premise of (A2) in this case is of the form

(A2.3) S;G1,G2,x:t; X1,X2 |-_p e : t’

In this case, we can use the induction hypothesis since we have been careful to generalize on the
extended environment G2, since the induction hypothesis specifically allows weakening by inserting
assumptions in the "middle" of a context. Thus, we can then establish
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(A2.3.broken) S;G1,G,G2,x:t; X1,X,X2,X’ |-_p e : t’

However, this derivation is not always of the right shape, since when X1,X2 is empty and X is not
empty, then when constructing

S;G1,G,G2;X1,X,X2 |-_p \x:t.e : ?(x:t) -> t’

with (A2.3.broken) in the premise, the qualifier on the introduced type ?(x:t) -> t’ may differ from
the qualifier on tf, the type introduced in (A2).

To remedy this, we establish the conclusion by first showing that S;G1,G,G2;X1,X2 is
well-formed. Next, we use the induction hypothesis to construct

(A2.3’) S;G1,G,G2,x:t; X1,X2,X’ |-_p e : t’

Finally, we use an application of (T-Drop-A) in the context (S;G1,G,G2; X1,X,X2) to discard the
affine assumptions X. In the premises of (T-Drop-A), we use (T-Abs) with (A2.1’) and (A2.3’). The
other premises are unchanged.

Case (T-Fix): Similar to (T-Abs), always using (T-Drop-A) in the conclusion to discard the affine
assumptions in X.

Case (T-Tabs): Similar to (T-Abs).

The interesting cases of (B2)

Case (K-Arrow): Similar to (T-Abs), where generalization of G2 and allowing weakening in the middle
of the context is key.

Case (K-Univ): Similar to (K-Arrow).

Case (K-App): The mutual induction hypothesis allows us to establish a weakening for the typing
derivation in the second premise.

Lemma 8 (Well-kinded typings). Lemma (Well-kinded typings):

For all S G X e t p,
(A1) S;G;X |-_p e : t
=> exists k, S;G |- t :: k and k in {*, A}

Lemma 6.2 (Well-formed kindings):

For all S G t k,
(B1) S;G |- t :: k
=> S |- k

Lemma 6.3 (Well-formed type conversions):

For all S G t t’ k,
(C1) S;G |- t :: k
(C2) S;G |- t <: t’
=> S;G |- t’ :: k

Proof. Straightforward from mutual induction on the structure of (A1) and (B1).
The interesting cases in (A1)

Case (T-Match):

From the last premise, we ensure that the result type t does not contain any pattern-bound
variables.

Case (T-App):
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The last premise ensures the result by construction. This ensures that non-values do not escape into
types.

Case (T-Abs):

The first two premises ensure that the ascribed type is well-formed.

The cases of (B1) and (C1) are all straightforward.

Lemma 9 (Substitution for type unification). Given S;G,x:(p,t),G’ |- unify(t’, t’’) : xi=vi,
and a substitution s=[v/x];
then, S;G,G’ |- unify(s(t’), s(t’’)) : xi=s(vi)

Lemma 10 (Substitution). Lemma (Substitution for typing judgment):

For all S G1 G2 X X’ X’’ x tx e t v p q tx’ Phi,
(A0) X’=x or X’={}
(A1) S;G1,x:(p,tx),G2;X,X’,X’’ well-formed
(A2) S;G1,x:(p,tx),G2;X,X’,X’’ |-_q e : t
(A3) S;G1;- |-_p v_p : tx
(A4) substitution s=[v_p/x]
=> S;G1,s(G2);X,X’’ |-_q s(e) : s(t)

Lemma (Substitution for kinding judgment):

For all S G1 G2 x tx t k v p tx’ Phi,
(B1) S;G1,x:(p,tx),G2;- well-formed
(B2) S;G1,x:(p,tx),G2 |- t :: k
(B3) S;G1;- |-_p v_p : tx
(B4) substitution s=[v_p/x]
=> S;G1,s(G2) |- s(t) :: k

Lemma (Substitution for type conversion):

For all S G1 G2 x tx t v p tx’ Phi,
(C1) S;G1,x:(p,tx),G2;- well-formed
(C2) S;G1,x:(p,tx),G2 |- t <: t’
(C3) S;G1;- |-_p v_p : tx
(C4) substitution s=[v_p/x]
=> S;G1,s(G2) |- s(t) <: s(t’)

Lemma (Substitution for type equivalence):

For all S G1 G2 x tx t v p tx’ Phi,
(D1) S;G1,x:(p,tx),G2;- well-formed
(D2) S;G1,x:(p,tx),G2 |- t ˜ t’
(D3) S;G1;- |-_p v_p : tx
(D4) substitution s=[v_p/x]
=> S;G1,s(G2) |- s(t) ˜ s(t’)

Proof. By mutual induction on the structure of (A2), (B2), (C2), (D2), generalizing on q, the tail of the environment G2, and the set of affine
assumptions X,X’,X”.
Cases of (A2)

Case (T-Var):

G=G1,x:(p,tx),G2 (A2.1)
G(y) = (q,ty) (A2.2)
S; G |- ty :: * (A2.3)

------------------------------------------ [T-Var]
S; G; - |-_q y : ty

We consider two sub-cases, depending on whether x=y.

Sub-case (x<>y):
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In this case, we have s(y)=y. We have two further sub-cases, depending on whether y in dom(G1)
or y in dom(G2).

Sub-sub-case (y in dom(G1)):

From the well-formedness of S;G1,x:(p,tx);- and G1(y)=(q,ty), we can conclude that x not in
FV(ty). Thus, s(ty)=ty, and we have, as required:

S;G1,s(G2);- |-_q s(y) : s(ty)

Sub-sub-case (y in dom(G2)):

We have y in dom(G2) and
G2(y)=(q,ty) => s(G2(y))=(q, s(ty)).

The conclusion is immediate.

Sub-case (x=y):

In this case, G(y) = G(x) = (p, tx) = (q, ty), and s(y)=v_p.

For the conclusion, we apply Lemma (weakening). In order to do this, we must first show that

(WF) S;G1,s(G2);X is well-formed

This is easily accomplished by induction on the length of G2, noting that x not in FV(s(G2)),
and x not in X.

Now, using Lemma (weakening), WF and assumption (A3), we conclude

(Goal.0) S;G1,s(G2);X |-_p v_p : tx

Finally, for the goal, we note that p=q, we use Lemma (Well-kinded typings) on assumption
(A3) to establish that (S;G1;- |- tx :: k) and hence that x not in FV(tx), and finally that
s(tx) = tx to get:

(Goal) S;G1,s(G2);X |-_q v_p : s(tx)

Case (T-Var-A):

Identical to (T-Var)

Case (T-Abs):

G=G1,x:(p,tx),G2 (A2.1)
k in {*, A} (A2.2)
S; G |- t :: k (A2.3)
S; G,y:(q,t); X,X’,X’’,y |-_q e : t’ (A2.4)
X=. => tf = ?(y:t) -> t’ (A2.5)
X<>. => tf = !((y:t) -> t’) (A2.6)

-------------------------------------- [T-Abs]
S; G; X,X’,X’’ |-_q \y:t.e : tf

We begin by applying the mutual induction hypothesis for substitution on the kinding judgment to
(A2.3) to establish

(A2.3’) S;G1,s(G2) |- s(t) :: k

Next, we apply the induction hypothesis (having generalized on the tail of the environment G2, and
X,X’X’’) to obtain

(A2.4’) S; G1,s(G2),y:(q,s(t)); X,X’’,y |-_q s(e) : s(t’)
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We can now construct

(A2’) S;G1,s(G2);X,X’’ |-_q s(\y:t.e) : ?(y:s(t)) -> s(t’)

using (T-Abs) with (A2.3’) and (A2.4’) in the premises.

We now consider four sub-cases

Sub-case (X’=x and X,X’’=.):

In this case, we are required to construct a derivation with:
s(tf) = !(y:s(t)) -> s(t’)

The fifth premise of A2’, gives us the freedom to chose
?(y:s(t)) -> s(t’) = !(y:s(t)) -> s(t’)

as required.

Sub-case (X’=x and X, X’’ <> .):
Sub-case (X’=. and X, X’’ <> .):

In these case, since X, X’, X’’ <> {}, A2 concludes with,
tf = !y:t -> t’

And from the last premise of A2’, we have
s(tf) = !y:s(t) -> s(t’)

as required.

Sub-cases (X’=. and X,X’=.):

In this case, the fifth premise of A2 allows
tf = y:t -> t’

or
tf = !y:t -> t’

In the the fifth premise of A2’, we still have X,X’’=. and we
can chose the qualifier on s(tf) to match the qualifier on tf,
as needed.

Case (T-Univ):

G=G1,x:(p,tx),G2 (A2.1)
k in {*, A} (A2.2)
S; G, ’a::k; X |-_q e : t (A2.3)
X=. => tf = ?\/’a::k.t (A2.4)
X<>. => tf = !(\/’a::k.t) (A2.5)

-------------------------------- [T-Univ]
S; G; X |-_q /\’a::k.e : tf

Similar to (T-Abs):

We begin by applying the induction hypothesis (having generalized on the tail of the environment
G2, and X,X’,X’’) to obtain

(A2.3’) S; G1,s(G2),’a::k; X,X’’ |-_q s(e) : s(t)

We can now construct

(A2’) S;G1,s(G2);X,X’’ |-_q s(/\’a::k.e) : ?(\/’a::k.t)

using (T-Univ) with (A2.3’) in the premises.

We now consider four sub-cases, similar to (T-Abs), and establish
the affinity qualifier using the flexibility of (A2.4) as needed.
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Case (T-Fix):

G=G1,x:(p,tx),G2 (A2.1)
S; G |- t :: * (A2.2)
S; G, f:(q,t); - |-_q e : t (A2.3)

--------------------------------- [T-Fix]
S; G; - |-_q fix f:t.e : t

Similar to T-Abs.

Case (T-App):

X1,X2 = X,X’,X’’
G=G1,x:(p,tx),G2 (A2.1)
S; G; X1 |-_q v_q : ?(y:t1) -> t2 (A2.2)
S; G; X2 |-_q v_q’ : t1 (A2.3)
S; G |- t2[v_q’/y] :: k (A2.4)

--------------------------------------------- [T-App]
S; G; X,X’,X’’ |-_q v_q v_q’ : t2[v_q’/y]

Induction hypothesis on (A2.2) and (A2.3) gives us

(A2.2’) S; G1,s(G2); X1 |-_q s(v_q) : ?(y:s(t1)) -> s(t2)
(A2.3’) S; G1,s(G2); X2 |-_q s(v_q’) : s(t1)

and by the mutual induction hypothesis we have

(A2.3’) S; G1,s(G2) |- s(t2[v_q’/y]) :: s(k)

Note that on splitting X,X’,X’’ into X1,X2, the assumption x in X’ (if present) goes either in X1
or in X2, or in neither (if it is absent). In each case, we can use the induction hypothesis with
either the left side of premise (A0) or the right side of (A0).

For the conclusion, we require a derivation with the type s(t2[v_q’/y])

Using (T-App) with (A2.2’) and (A2.3’) gives us the type

s(t2) [s(v_q’)/y]

We need to show

s(t2[v_q’/y]) = s(t2)[s(v_q’)/y])

which following from the observation that x<>y (y is a bound variable and can be alpha renamed
appropriately), and furthermore that y not in FV(range(s)).

Case (T-TApp):

S; G; X,X’,X’’ |-_q e : ?(\/’a::k.t’)
S; G |- t :: k

------------------------------------ [T-TApp]
S; G; X,X’ |-_q e t : t’ [t/’a]

Similar to (T-App), except there is no need for any special management of the affine assumptions.

Case (T-Bracket):

G=G1,x:(p,tx),G2 (A2.1)
S; G; X,X’,X’’ |-_r e : t (A2.2)
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---------------------------------- [T-Bracket]
S; G; X,X’,X’’ |-_q <e>_r : t

Having generalized on the index q on the turnstile of (A2), we can apply the induction hypothesis
to (A2.2) to obtain

(A2.2’) S; G1,s(G2); X,X’’ |-_r s(e) : s(t)

The conclusion follows from an application of (T-Bracket) with (A2.2’) in the premise.

Case (T-Match):

G=G1,x:(p,tx),G2 (A2.1)
X1,X2 = X,X’,X’’ (A2.2)
X3 < x1..xn (A2.3)
S; G; X1 |-_q v_q : t’ (A2.4)
S; G, xi:(q,ti); X3 |-_q D t1..tn x1..xn : t’’ (A2.5)
S; G |- unify (t’, t’’) : xi=vi (A2.6)
S; G, xi:(q,ti), xi=vi, v_q=D t1..tn x1..xn; X2,X3 |-_q e1 : t (A2.7)
S; G; X2 |-_q e2 : t (A2.8)

---------------------------------------------------------------- [T-Match]
S;G;X1,X2 |-_q match v_q with

D t1..tn x1..xn -> e1 : t
else e2

As in (T-App), the affine assumption in X’, if present, either goes to X1 or X2. When using the
induction hypothesis, we satisfy premise (A0) by using either side of the disjunct, depending on
whether x in X1, X2 or neither.

We use the induction hypothesis to establish

(A2.4’) S; G1,s(G2); X1 |-_q s(v_q) : s(t’)
(A2.5’) S; G1,s(G2); X3 |-_q s(D t1..tn x1..xn) : s(t’’)

Next, we use (A2.6) and appeal to substitution for type unification to show that:

(A2.6’) S;G1,s(G2) |- unify(s(t’), s(t’’)) : xi=s(vi)

The induction hypothesis on (A2.7) gives us:

(A2.6’) S; G1,s(G2),s(xi:(q,ti)),s(xi=vi); s(v_q=D t1..tn x1..xn); X2,X3 |-_q s(e1) : s(t)
(A2.7’) S; G1,s(G2); X2 |-_q s(e2) : s(t)

and use each of these in the premises of (T-Match) for the goal.

Case (T-Sub):

G=G1,x:(p,tx),G2 (A2.1)
S; G; X,X’,X’’ |-_q e : t’ (A2.2)
S; G |- t’ <: t (A2.3)

------------------------------ [T-Sub]
S; G; X,X’,X’’ |-_q e : t

From the induction hypothesis we get

(A2.2’) S; G1,s(G2); X,X’’ |-_q s(e) : s(t’)

From the mutual induction hypothesis with Lemma (substition for type conversion), we get

(A2.3’) S;G1,s(G2) |- s(t’) <: s(t)
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The conclusion follows from an application of (T-Sub) with (A2.2’) and (A2.3’) in the premises.

Case (T-Let):

Straightforward application of induction hypothesis to each of the premises.

Cases (T-Drop, T-Data, T-Val):

Trivial, from the induction hypothesis.

Cases of (B2)

Case (K-Var):

Trivial, since G1,G2 binds ’a and kinds have no free variables.

Case (K-TC):

Trivial, since type constructors are bound in S and S is unchanged.

Case (K-Afn):

Follows from the induction hypothesis.

Case (K-Arrow):

G=G1,x:(p,tx),G2 (B2.1)
k,k’ in {*, A} (B2.2)
S; G |- t1 :: k (B2.3)
S;G,x:t1 |- t2 :: k’ (B2.4)

---------------------------- [K-Arrow]
S; G |- (x:t1) -> t2

From the induction hypothesis, we have

(B2.3’) S;G1,s(G2) |- s(t1) :: k

From the induction hypothesis, having generalized on the tail of the environment G2, we have

(B2.4’) S;G1,s(G2),x:s(t1) |- s(t2) :: k’

For the conclusion, we can use (K-Arrow) with (B2.3’) and (B2.4’) in the premises.

Case (K-Univ):

Similar to (K-Arrow), relies on generalization over G2.

Case (K-App):

Straightforward, from induction hypothesis applied to each premise.

Case (K-Dep):

G=G1,x:(p,tx),G2 (B2.1)
S; G |- t :: t’ -> k (B2.2)
S; G; . |-_q v_q : t’ (B2.3)

---------------------------- [K-Dep]
S; G |- t v_q : k

From the induction hypothesis on (B2.2) we get
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(B2.2’) S; G1,s(G2) |- s(t) :: t’ -> k

From Lemma (Well-formed kindings), we have that

S |- t’ -> k

from which we can conclude that FreeVars(t’ -> k) = {}, and hence s(t’) = t’.

Next, we apply the mutual induction hypothesis on the typing judgment to (B2.3) to produce

(B2.3.1) S’; G1,s(G2); - |-_q s(v_q) : s(t’)

Or,

(B2.3’) S’; G1,s(G2); - |-_q s(v_q) : t’

Finally, we require showing that for all v_q and s of the form
(x -> v_p), if v_q is a q-value, then s(v_q) is a r-value, for some
r. This is straightforward.

For the conclusion, we apply (K-Dep) with (B2.2’) and (B2.3’) in the premises.

Case (K-Refine):

Similar to (K-Arrow), since Phi is simply a type.

Cases of (C2)

Case (S-Eq):

By the mutual induction hypothesis on substitution for the type-equivalence judgement.

Case (S-Trans):

By the induction hypothesis on each premise.

Case (S-Refine)

G=G1,x:(p,tx),G2 (C2.1)
S; G |- t :: * (C2.2)
S; G |- t <: t’ (C2.3)
G’=refinements(G, y:(p,t)) (C2.4)
S; G, y:(p,t), G’;_ |-_q v_q : proof Phi’ (C2.5)

---------------------------------------------- [S-Refine]
S; G |- t <: {y:t’ | Phi’}

Where G’ = refinements(G1), refinements(x:(p,tx)), refinements(G2,y:t)

Our goal is to show that

S; G1,s(G2) |- s(t) <: {y:s(t’) | s(Phi’)}

From the mutual induction hypothesis, we have

(C2.2’) S; G1,s(G2) |- s(t) :: *

From the induction hypothesis we have

(C2.3’) S; G1,s(G2) |- s(t) <: s(t’)

From the definition of refinements, we have
refinements(G1, s(G2)) = refinements(G1), refinements(s(G2))

= refinements(G1), s(refinements(G2))
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We consider two subcases. Here, we write ref(G) as a shorthand for refinements(G)

Subcase (tx <> {z:tx’ | Phi}):

In this case, ref(x:(p, tx)) = . and we have C2.5

C2.5 S;G1, x:(p,tx), G2, y:(p, t), ref(G1), ref(G2); - |- v_q : proof Phi’

We use the mutual induction hypothesis to show that

C2.5.1
S;G1, s(G2), s(ref(G1)), s(ref(G2)); - |- s(v_q) : proof s(Phi’)

From the well-formedness of G1, we have that x not in FV(G1) and
s(ref(G1)) = ref(G1), and so

C2.5
S;G1, s(G2), ref(G1), s(ref(G2)); - |- s(v_q) : proof s(Phi’)

We can now construct the goal uusing C2.2’, C2.3’ and C2.5’

Subcase (tx = {z:tx’ | Phi}):

In this case, ref(x:(p, tx)) = x’:proof Phi and
we have

C2.5 S;G1,x:(p,tx),G2,y:(p,t),ref(G1), x’:proof Phi,ref(G2); - |- v_q : proof Phi’

We first apply (T-Sub) with (S-Sub) to (C3) to produce

(C3’) S;G1;- |-_p v_p : tx’

And apply the mutual induction hypothesis to construct

C2.5.1
S;G1,s(G2),s(ref(G1)), s(x’:(p, proof Phi)),s(ref(G2)); - |- s(v_q) : proof s(Phi’)

Next, we appeal to Lemma (canonical forms) for values of refined types
and weakening to construct

PPhi S;G1, s(G2), ref (G1);- |-_p v_p’ : proof Phi

And apply the mutual induction hypothesis to C2.5.1 and PPhi to construct

C2.5.2
S;G1,s(G2),s(ref(G1)), s’(s(ref(G2))); - |- s’(s(v_q)) : proof s’(s(Phi’))

where s’ = (x’, v_p’)

However, since x’ is fresh (from definition of ref),
we have the composition of s’ with s to be the identity. (s’.s = s)

So, we have:
C2.5’ S;G1,s(G2),s(ref(G1)), s(ref(G2)); - |- s(v_q) : proof s(Phi’)

And we can construct the goal using C2.2’, C2.3’ and C2.5’.

Case (S-Sub):

Immediate.

Cases of (D2)
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Case (E-Id, E-App, E-Dep, E-D):

Straightforward from induction hypotheses.

Case (E-Subst):

We consider two sub-cases depending on whether the used match assumption appears in G1 or G2.

Sub-case (match assumption in G1):

----------------------------------------- [E-Subst]
S; G1’,v=v’,x:(p,tx),G2 |- v ˜ v’

From the well-formedness of the environment, the x not in FreeVars(e, e’). Thus s(v) = v,
s(v’)=v’ and the goal follows.

(Goal) S;G1’,v=v’, s(G2) |- s(v) ˜ s(v)’

Sub-case (match assumption in G2):

----------------------------------------- [E-Subst]
S; G1,x:(p,tx),v=v’G2 G’ |- v ˜ v’

The goal follows immediately.

(Goal) S;G1’,s(v)=s(v’), s(G2) |- s(v) ˜ s(v)’

Lemma 11 (Type substitution). Lemma (Type substitution for typing judgment):

For all S G1 G2 X e t t1 k ’a p,
(A1) S;G1,’a::k,G2;X well-formed
(A2) S;G1,’a::k,G2;X |-_p e : t
(A3) S;G1 |- t’ :: k
(A4) substitution s=[t1/’a]
=> S;G1,s(G2);X |-_p s(e) : s(t)

Lemma (Type substitution for kinding judgment):

For all S G1 G2 t1 k1 t2 k2 ’a p,
(B1) S;G1,’a::k2,G2;- well-formed
(B2) S;G1,’a::k2,G2 |- t :: k1
(B3) S;G1 |- t2 :: k2
(B4) substitution s=[t2/’a]
=> S;G1,s(G2) |-_p s(t) :: k1

Lemma (Type substitution for type conversion):

For all S G1 G2 t t’ t2 k2 ’a p,
(B1) S;G1,’a::k2,G2;- well-formed
(B2) S;G1,’a::k2,G2 |- t <: t’
(B3) S;G1 |- t2 :: k2
(B4) substitution s=[t2/’a]
=> S;G1,s(G2) |- s(t) <: s(t’)

Lemma (Type substitution for type equivalence):

For all S G1 G2 t t’ t2 k2 ’a p,
(B1) S;G1,’a::k2,G2;- well-formed
(B2) S;G1,’a::k2,G2 |- t ˜ t’
(B3) S;G1 |- t2 :: k2
(B4) substitution s=[t2/’a]
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=> S;G1,s(G2) |- s(t) ˜ s(t’)

Proof. Straightforward mutual induction on the structure of (A2), (B2), (C2), (D2).

Lemma 12 (Strengthening for inaccessible affine assumptions). For all S G G’ X x p t e q t’,
(A1) S;G,x:(p,t),G’; X |-_q e : t’
(A2) x not in X
(A3) S;G;- |- t :: A
=> S;G,G’;X |-_q e : t’

Proof. Observation 1: S;G,G’;X is well-formed, since
-- x not in FV(G), by well-formedness of S;G;-

-- x not in FV(G’), since form (A2), x is affine
And, from well-formedness of kinds,
forall S,G,t,k. S;G |- t :: k => x \notin FV(t)

By induction on the structure of (A1), noting that (T-VarA) requires x in X.

Corollary 13 (Strengthening for affine assumptions in kinding). For all S G G’ t t’ k,
(A1) S;G,x:(p,t),G’ |- t’ :: k
(A2) S;G |- t :: A
=> S;G,G’;|- t’ :: k

Lemma 14 (Destruction of affine assumption). For all S M p e t M’ x,
(A1) S;G(M);X |-_p e : t
(A2) (M,e) ˜p˜-> (M’,e’)
(A3) x in dom(M) /\ x notin dom(M’)
=> x in X

Lemma 15 (Construction of affine assumption). For all S M p e t M’ x,
(A1) S;G(M);X |-_p e : t
(A2) (M,e) ˜p˜-> (M’,e’)
(A3) x in dom(M’) /\ x notin dom(M)
=> FV(e’) \subseteq X,x

Proof. Simple induction on the structure of (A2), noting from well-formed memory that values in the store are always closed.

Lemma 16 (Redundant match assumptions). For all S M X p e t v,
(A1) S;G, v=v, G’;X |-_p e : t
=> S;G,G’;X |-_p e : t

Proof. Straightforward by noting that every application of (E-Subst) can be replaced by (E-Id).

Lemma 17 (Unrolling fixed points). For all S G G’ f t t’ p e e’,
(A1) S;G, f:(p, fix, t), G’;X |-_p e : t’
(A2) S;G;. |-_p e’ : t
=> S;G,f:(p, fix, t), G’;X |-_p e[e’/f] : t’

Proof. A simpler version of the substitution lemma, without need for mutual recursion at the type-level, since (K-Dep) rules out f from being used
in types.

Theorem 18 (Subject reduction). For all S M M’ X e t p,
(A0) S;G(M);X well-formed
(A1) S;G(M);X |-_p e : t
(A2) (M,e) ˜p˜> (M’,e’)
=> exists X’. S;G(M’);X’ |-_p e’ : t /\

X’ = X U (dom M’ \ dom M) if dom M’ >= dom M
X’ = X \ (dom M \ dom M’) otherwise

Proof. By induction on the structure of the typing derivation (A1).
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Cases (T-Sub, T-Drop):

Induction hypothesis.

Case (T-Var):

Impossible, from the definition of well-formed memory, x is of kind A.

Case (T-VarA):

x steps using (R-Destruct) to v_q and, from the well-formedness of memory M, we have the result.

Case (T-Val):

v has kind * and is thus irreducible. I.e, we cannot step via (R-Alloc).

Case (T-Data, T-Abs, T-Univ):

If v has kind * then it is irreducible.

Otherwise, a step via (R-Alloc) is possible producing a fresh
location x and memory M’=(M,(x,v)). And x is well-typed in G(M’)
using T-VarA.

Case (T-Fix):

unrefined t
S; G |- t :: * (A1.1)
S; G, f:(p,t); - |-_p v_p : t (A1.2)

----------------------------------- [T-Fix]
S; G; - |-_p fix f:t.v_p : t

Inversion of (A2) gives an application of (R-Fix):

-------------------------------------------------- [R-Fix]
fix f:t.v_p ˜p˜> (v_p[fix f:t.v_p / f])

From an application of the unrolling lemma, we get

S;G;- |-_p v_p [fix f:t.v_p / f] : s(t)

Incidentally, from well-kinding of typing, we have that f not in
dom(t). Thus, s(t) = t

Case (T-App):

S; G; X1 |-_p v1 : ?(x:t1) -> t2 (A1.1)
S; G; X2 |-_p v2 : t1 (A1.2)
S; G |- t2[v2/x] :: k (A1.3)

------------------------------------ [T-App]
S; G; X1,X2 |-_p v1 v2 : t2[v2/x]

We first use the canonical forms lemma to establish either

Sub-case (v1 = \x:t1.e): Then, inversion of (A2) gives us an application of (R-Beta).

----------------------------- [R-Beta]
\x:t1.e v2 ˜p˜> e[v2/x]
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From an inversion of (A1.1), we get an application of (T-Abs) with

(A1.1.1) S;G,x:t1;X,x |-_p e : t2

Now, using (A1.1.1) and (A1.2), we apply the substitution lemma, to derive the goal

S;G;X |-_p e[v2/x] : t2[v2/x]

Sub-case (v1=y, y in dom(M)): Then, inversion of (A2) gives us an application of (R-Destruct)

-------------------------------------------------- [R-Destruct]
(M, (y, v’), M’), (y v2) ˜p˜> (M,M’), v’ v2

We appeal to well-formed environments to construct:

(A1.1’) S;G(M,M’);X1\{y} |-_p v’ : !(x:t1) -> t2

From splitting of affine assumptions, we have y not in X2.
Applying Lemma (strengthening for inaccessible affine assumptions) to (A1.2) we construct

(A1.2’) S;G(M,M’); X2 |-_p v2 : t1

Similarly, we use strengthening on affine assumptions in the kinding judgment to construct

(A1.3’) S;G(M,M’) |- t2[v2/x] :: k

For the conclusion, we use (T-App) with (A1.1’) and (A1.2’) and (A1.3’).

Case (T-TApp):

Similar to (T-App) using canonical forms to split into two sub-cases, appealing to the
type-substitution lemma in the first case. In the second case, we appeal to well-formed
memories for the first premise, and observe that affine assumptions are unused in the kinding
judgment for the type in the second premise.

Case (T-Bracket):

By inversion on (A2), we have one of several cases.

---Subcase (A2 is R-Br): Straightforward from induction hypothesis.

---Subcase (A2 is R-Strip): Use the premise of A1 for the conclusion.

---Subcase (A2 is R-Nest): Use T-Bracket with the nested premise of (A1) for the conclusion.

---Subcase (A2 is R-Extl):

From inversion of (A1), we get:

S;G,x:(q,t);X,x |-_q e : t’ (A1.1)

By weakening (A1.1), we get

S;G,y:(p,t),x:(q,t);X,y,x |-_q e : t’ (A1.2)

We have that

S;G,y:(p,t);X,y |-_q <y>_p : t (A1.3)
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And <y>_p is a q-value.

So, from the substitution lemma, we get

S;G,y:(p,t);X,y |-_q e [<y>_p/x] : t’ (G1.1)

For the conclusion, we apply (T-Fun) with (G1.1) in the premise.

---Subcase (A2 is E-ExtL):

We use (T-Tabs), with (T-Bracket) with the nested premise of (A1) for the conclusion.

Case (T-Match):

Sub-case (scrutinee v_p is a variable): We step using
(R-Destruct). The conclusion follows from well-formedness of
memories, splitting of affine assumptions, and strengthening of
unused affine assumptions, as in (T-App).

Sub-case (v_p is a non-variable): Inversion of (A2) gives us two further sub-cases.

Sub-sub-case (A2 is R-Else):

If a step is taken to the false branch via (E-Match), then, the conclusion follows using the
last premise of (A1), with (T-Drop) to introduce unused affine assumptions, if any.

Sub-sub-case (A2 is R-Then):

We have unify (v_p, D t1..tn x1..xn) and inversion gives us

v_p = D t1..tn v1..vn

with the substitution Theta = ([v1/x1], ..., [vn/xn])

The fourth premise of A1 is:

(A1.4) S;G, x1:t1’..xn:tn’, xi=vi...xk=vk, (D t1..tn x1..xn = D t1..tn v1..vn); X |- e1: t

where the equalities (xi=vi...xk=vk) is computed by unifying the types of v_p and the pattern.

Then, from the repeated application of the substitution lemma, we get

S;G, vi=vi, ..., vk=vk, (D t1..tn v1..vn = D t1..tn v1..vn); X |- e1: Theta(t),

From repeated use of the redundant match assumptions lemma, we arrive at

S;G; X |- e1: Theta(t)

Finally, from well-kinded typings lemma applied to the last premise, we get that Theta(t) = t,
since FV(t) does not include any of the pattern variables.

Case (T-Let):

----------------------------------- [T-Let]
S;G;X |-_p let x = e1 in e2 : t

Sub-case (e1 is a value):

Inversion of (A2) gives either (R-Alloc) or (R-Let).

Sub-sub-case (R-Alloc): The resulting memory is well-formed from the first
premise of (R-Alloc). The conclusion follows immediately.
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Sub-sub-case (R-Let): We apply the substitution lemma to e2.

Sub-case (e1 is a non-value):

Inversion of (A2) gives (R-Ctx). Conclusion follows from the induction hypothesis.

Case (T-Val):

If this is a non-variable, then it is irreducible.
If it is a variable, then a reduction via (R-Destruct) is possible. The conclusion follows from
well-formed memories.

C Value abstraction for FINE

Theorem 19 (Value abstraction). forall S e t x p q tx v1_p v2_p.
(A0) S;x:(p,tx);x well-formed
(A1) S;x:(p,tx);x |-_q e : t
(A2) q not >= p and e is a non-value free of <.>_r brackets, forall r where r >= p, except <x>_p
(A3) forall i. S;-;- |-_p vi_p : tx
(A4) (., e[v1_p/x]) ˜q˜> (., e1)

=> exists e2. e2[v1_p/x] = e1 /\ (., e[v2_p/x]) ˜q˜> (., e2[v2_p/x])

Proof. Note the restriction to the pure fragment. We write e ˜q˜> e’ as a shorthand for (., e) ˜q˜> (., e’).
Proof by induction on the structure of (A4).

In each case, we appeal to well-typing (A1) to ensure that e[v1_p/x] <> v1_p,
since by (T-Var), x can only be used when enclosed in p-brackets. Likewise, for v2_p.

Case (R-Br):

e[v1_p/x] ˜r˜> e’
--------------------------------------- [R-Br]

(<e>_r)[v1_p/x] ˜q˜> <e’>_r

e is free of <.>_r brackets, for all r >= p. So, either

Sub-case 1: (r not >= p): From the premise, and from the IH, we get exists e2

(FromIH) e2[v1_p/x] = e’ and e[v2_p/x] ˜r˜> e2[v2_p/x]

For the conclusion, we construct <e2>_r as the witness and use
R-Br with FromIH in the premise.

Sub-case 2: (r=p and e=x):
Impossible, since e[v1_p/x]=v1_p, and v1_p is a p-value and is irreducible.

Case (R-Extl):

By the definition of substitution, after a suitable alpha-conversion, we have

<\y:t.e>_q’ [v1_p/x] = <\y:t. e[v1_p/x]>_q’

fresh z
------------------------------------------------------------ [R-Extl]

<\y:t. e[v1_p/x]>_q’ ˜q˜> \z:t.<e[v1_p/x][<z>_q/y]>_q’

For the conlusion, choose e2 = \z:t.<e [<z>_q/y]>_q’

We have e2[v1_p/x] = \z:t<e [<z>_q/y] [v1_p/x]>_q’.
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From z <> x, the substitutions commute, yielding the left conjunct of the goal.

For the right conjunct, we use R-Extl

<\y:t. e[v2_p/x]>_q’ ˜q˜> \z:t.<e [v2_p/x] [<z>_q/y]>_q’

Again, observing that z<>x, we have commuting substitutions and have that

e2[v2_p/x] = (\z:t.<e [<z>_q/y]>_q’) [v2_p/x]
= (\z:t.<e [<z>_q/y] [v2_p/x]>_q’)
= \z:t.<e [v2_p/x] [<z>_q/y]>_q’ (by commutation)

Case (R-ExtL): Similar, but simpler since the type variable ’a is not
wrapped and no commutation is involved.

Case (R-Strip):

-------------------------------------- (E-Strip)
<v_q>_q [v1_p/x] ˜q˜> v_q[v1_p/x]

Sub-case q=p.

From our assumption of p-bracket freedom, we have that v_q must be x. Thus, we have

<x>_p [v1_p/x] ˜p˜> v1_p

So, we pick e2=x, and the conclusion is immediate.

Sub-case q<>p.

Pick e2 = v_q.

Case (R-Nest): As in the previous case.

Case (R-Ctx, R-Let): Straightforward from IH and definitions of substitution.

Case (R-Beta):

From the definition of substitution, and alpha-converting the left-subterm to
ensure that y is distinct, we get:

----------------------------------------------------------- [R-Beta]
(\y:t.e v_q)[v1_p/x] ˜q˜> (e[v1_p/x]) [v_q [v1_p/x]/y]

For the conclusion, we pick e2 = e [v_q/y] and

For the left conjunct:

e2[v1_p/x] = e [v_q/y] [v1_p/x]
= e [v1_p/x] [v_q[v1_p/x] / y] (by def of subst. and y not in FV(v1_p))

For the right conjunct, first, we have from R-Beta:

(\y:t.e v_q)[v2_p/x] ˜q˜> e [v2_p/x] [v_q[v2_p/x] / y]

Then, we observe:

e2[v2_p/x] = e [v_q/y] [v2_p/x]
= e [v2_p/x] [v_q[v2_p/x] / y] (by def of subst. and y not in FV(v2_p))

Which suffices for the goal.

Case (R-TBeta, R-Fix):
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Similar to the previous case.

Case (R-Then):

v_q <> y
unify (v_q[v1_p/x], D t1..tn x1..xm [v1_p/x]) = Theta

------------------------------------------------------------------------------------ [R-Then]
match v_q[v1_p/x] with D t1..tn x1..xm [v1_p/x] -> e_t [v1_p/x] else e_f [v1_p/x]
˜q˜>
Theta(e_t[v1_p/x])

Inverting the second premise of (R-Then), we get

v_q[v1_p/x] = D t1’[v1_p/x] .. tn’[v1_p/x] v1[v1_p/x] ... vm[v1_p/x]

t1[v1_p/x] = t1’[v1_p/x] ...
tn[v1_p/x] = tn’[v1_p/x]

Theta = [v1[v1_p/x]/x1, ... vm[v1_p/x]/xm]

and

match .... ˜q˜> Theta (e_t[v1_p/x])

(Note that v_q cannot be <x>_p, since bracketed terms do not match any pattern.)

Factoring out the substitution [v1_p/x], we get

Theta’ = [v1/x1 ... vm/xm] and match ... ˜q˜> Theta’(e_t) [v1_p/x]

For the conclusion, we pick e2 = Theta’(e_t)

For the left side of the conjunct in the goal, we need to show

e2[v1_p/x] = Theta’(e_t) [v1_p/x], which follows by construction.

For the right side of the conjunct, we need to show

match v_q[v2_p/x] with D t1..tn x1..xm [v2_p/x] then e_t[v2_p/x] else e_f[v2_p/x]
˜q˜>
e2[v2_p/x]

To apply R-Then, we need to derive:

(G) unify (D t1’[v2_p/x] .. tn’[v2_p/x] v1[v2_p/x] .. vm[v2_p/x],
D t1[v2_p/x] .. tn[v2_p/x] x1 .. xm) : Theta’[v2_p/x]

For this, we must first show that

(G1) forall i. ti[v2_p/x] = ti’[v2_p/x]

To show (G1), we appeal first to the well-typing premise (A1), where, by inversion
we have an application of (T-Match).

S;x:(p,tx);x |- v_q : t (A1.1)
S;x:(p,tx),x1..xm;x,x1..xm |- D t1..tn x1..xm : t’ (A1.2)
unify(t,t’) : Theta’’ (A1.3)

...
------------------------------------------------------------------------ [T-Match (A1)]

S;x:(p,tx);x |-_q match v_q with D t1..tn x1..xm then e_t else e_f
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Next, we appeal to well-formedness of data constructors to note that each of the
t1..tn appear as indices on t’, i.e.,

(G1.1) t’ is of the form T t1 .. tn v1’..vl’, for some T and v1’,...,vl’

Now, inverting (A1.3) and using (G1.1) we find that

(G1.2.1) t is of the form T t1 .. tn v1’’..vl’’, for some v1’’,...,vl’’

But, we know that v_q = D t1’ .. tn’ v1 .. vm is well-typed at type t and from the well-formedness of
data constructors, we have that

(G1.2.2) t is of the form T t1’ .. tn’ v1’’ .. vl’’

Hence,

(G1.3) t1=t1’, ..., tn=tn’,

which is sufficient for establishing (G1).

(I.e., in well-typed programs, the branch taken in a pattern match does not
depend on the type-arguments of the pattern)

Rewriting G using (G1.3), we now have as our goal:

(G) unify (D t1[v2_p/x] .. tn[v2_p/x] v1[v2_p/x] .. vm[v2_p/x],
D t1[v2_p/x] .. tn[v2_p/x] x1 .. xm) : Theta’[v2_p/x]

Refactoring substitutions, we have

(G) unify (D t1 .. tn v1 .. vm)[v2_p/x], D t1..tn x1..xm [v2_p/x]) : Theta’[v2_p/x]

Which is immediate from the definition of unify.

Case (R-Else):

v_q <> y
forall Theta. not (unify (v_q[v1_p/x], D t1..tn x1..xm [v1_p/x]) : Theta) (A4.1)

------------------------------------------------------------------------------------ [R-Else]
match v_q[v1_p/x] with D t1..tn x1..xm [v1_p/x] -> e_t [v1_p/x] else e_f [v1_p/x]
˜q˜>
e_f[v1_p/x])

For the conclusion, we pick e2 = e_f, and proceed by inversion on v_q t show that
forall Theta. not (unify (v_q[v2_p/x], D t1..tn x1..xm [v2_p/x]) : Theta)

Sub-case (v_q = x): impossible, by (A1)

Sub-case (v_q = <v’>_p): Then v_q[v2_p/x] = <v’[v2_p/x]>_p and bracketed terms match no patterns.

Sub-case (v_q = \x:t.e, /\’a::k.e): Abstractions do not match any patterns.

Sub-case (v_q = D’ t1’..tn’ v1..vn):

We have from (A4.1) that not(unify (D’ t1’..tn’ v1 ..vm[v1_p/x], D t1..tn x1..xm[v1_p/x].

Suppose, for contradiction, we have

(ForContra) unify (D’ t1’..tn’ v1 ..vm[v2_p/x], D t1..tn x1..xm[v2_p/x]

Then, we have D=D’, and following an argument identical to the R-Then case,
relying on well-typed programs, we have t1’..tn’ = t1..tn.

Rewriting (A4.1) using these equalities, we reach
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not(unify (D t1..tn v1..vm[v1_p/x], D t1..tn x1..xm[v1_p/x]))

But also, from the definition of unify, we can construct:a

unify (D t1..tn v1..vm[v1_p/x], D t1..tn x1..xm[v1_p/x]) : [v1/x1..vm/xm][v1_p/x]

A contradiction, as required.
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