

Extending gNOSIS for System Verilog

HDL Static Analysis

Scott A. Carr, Richard Neil Pittman

Microsoft Research

September 2015

Technical Report

MSR-TR-2015-68

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Extending gNOSIS for System Verilog

HDL Static Analysis

Scott A. Carr, Richard Neil Pittman

Microsoft Research

Abstract

Software engineering tools for Hardware Design
Languages (HDL) lag behind traditional software
development tools by decades. However as
heterogeneous computing becomes more
pervasive, productive programming in HDLs will
become vital. To this end, we have developed
gNOSIS a static analysis platform for Verilog HDL.
In this project we have extended gNOSIS to
support System Verilog. A good analogy is C is to
C++ as Verilog is to System Verilog, that is System
Verilog is a superset of Verilog with more
sophisticated features. This report details the
challenges, approach, and progress we’ve made
towards supporting System Verilog in gNOSIS.

1 Introduction

Using existing tools debugging a hardware
design is much more time consuming than
debugging software. Partly this is due to the long
compilation time inherent in hardware design
synthesis. Changing the set of traced signals
requires recompilation which may take hours or
minutes. To bring HDL programming
productivity up to par with traditional software
programming productivity, we need new tools to
identify bugs without compiling all the way to
hardware.

HDL tools will become increasing valuable as
heterogeneous computing becomes more
pervasive. Computing on devices other than
traditional CPU can accelerate performance,

increase security, and reduce power
consumption. There is a trend now towards
putting GPUs and FPGAs in data centers to tap
into these benefits. The challenge is to allow
HDL developers to quickly design, test, and
debug on heterogeneous platforms.

2 Background

In both academia and industry the creation of
HDL development tools is far behind software
development tools.

2.1 State of the Art in
Industry

Much research and development in industry has
gone into improving programming productivity
in traditional software development. Advances
include automated testing, automatic test
generation, test coverage analysis, symbolic
execution, stronger type systems, time traveling
debuggers, and many others. However, HDL
programmers do not have these tools at their
disposal. In industry tools are tied to a particular
vendor and are very expensive compared to
software development tools. One approach
industry has taken is developing new languages
to replace existing HDLs. Usually these language
are higher level and synthesize to an HDL.
Examples include Bluespec [5] and OpenCL [6].

2.2 State of the Art in
Academia
Compared to software languages, the research

community has largely ignore HDLs.

Bounded model checking has been applied to

System Verilog assertions [3]. However, the

technique only covers a subset of the language.

Reducing the size of debug traces is another

area of past work [4].

In contrast, academia has been intensely

focused on improving software developer

productivity. Much research has gone into high

productivity languages, software engineering

tools, and even empirically studying software

teams. However, benefits of this research has

not crossed the gap from software

development to hardware development.

2.2 gNOSIS Project

The gNOSIS project was created to provide

state-of-the-art development tools to HDL

programmers. Previous gNOSIS projects have

improved automatic board-level debugging of

FPGA designs [1] and assertion mining for

verification [2]. The overall goal is to shorten

the development and testing time of hardware

designs.

2.3 Glossary
Preprocessor: a program that expands define,

include, and other preprocessor directives. The

gNOSIS preprocessor is not part of this

Technical Report.

Lexer: the part of the parser that turns strings

of characters in to a discrete set of token

identifiers.

Grammar: a set of rules that define the

language accepted by the parser. These rules

are comprised of combinations of tokens.

Actions: C# code that executes when a

grammar rule is matched. In the case of

gNOSIS, the actions build the AST

Abstract Syntax Tree (AST): a structured

representation of the parsed System Verilog

code.

Analysis: code that traverses the AST and

extracts information from it. For example, type

checking is an analysis.

2.3 ANTLR
The gNOSIS project uses the ANTLR [7] parser

generator for its parser. The input to ANTLR is

one or more grammar files and it generates

several files. A simplified example of the ANTLR

process is shown in Figure 1.

To build the gNOSIS System Verilog parser, we

invoke ANTLR on our main grammar file

(Verilog.g4) and it produces seven files:

VerilogLexer.cs and VerilogLexer.tokens

VerilogLexer is a class that transforms the string

of input characters into tokens. The .tokens file

is a text file with all the token mappings.

VerilogParser.cs

Figure 1 - ANTLR Inputs and Outputs

VerilogParser is the class where the parsing

logic is implemented. It matches the tokens

produced by the lexer to grammar rules.

VerilogBaseListener.cs and VerilogListerner.cs

These files are not used.

VerilogVisitor.cs

This file declares the interface

VerilogBaseVisitor implements.

VerilogBaseVisitor.cs

Our actions (ParserActions.cs) inherit the base

class defined in this file, VerilogBaseVisitor. For

each grammar rule, ANTLR generates a

VisitRule_name method. The base visitor will

visit all the child nodes of a given rule

automatically but if we want to take some

action when we visit a particular rule (ex: build

an AST node) we override that visit method.

Once ANTLR has generated the parser files, an

execution of our tool looks like Figure 2. The

source file is given to the lexer as a string. The

string is divided up into tokens and given to the

parser. The parser matches the rules in the

grammar and when a rule is matched invokes

the asssociated visitor method. The base class

for these methods is generated by ANTLR but

we much override these methods to add our

own AST functionality. The we invoke our

analysis on the AST and give the information we

have discovered about the code to the user. In

the diagram, blue boxes are autogenerated

code and green boxes are code we wrote.

2.4 Project Structure
The gNOSIS project currently consists of three

main pieces: the parser, the AST, and the

analysis. The parser consists of the grammar

files in CombinedAntlr project and the

generated files described in Section 2.3 ANTLR.

The AST consists of the astlib_*.cs files in the

oracle_avlib project and the actions in

ParserActions.cs in the same project. The

analysis consists of several source files in the

oracle_avlib including symbol_table.cs,

atlib_clock.cs, and astlib_axiom.cs. An example

AST is shown in Figure 3. The root of the AST is

a list of nodes. There is a node class for most

rules. Each node class has fields to hold the

Figure 3 - AST Example

Figure 2 - Tool Flow Diagram

parsed text matched by the grammar rules. In

most cases the fields of the class nodes are

strings containing in the input source text.

The ParserTester project is a basic test harness

for testing the grammar and actions.

ParserTester.cs is a batch test harness for

running the parser/actions over many files.

RulesTester.cs is for testing the parser/actions

on a single file or even partial files.

The FormatConverter project converts a

grammar in the format of the IEEE System

Verilog specification into the format of an

ANTLR grammar. We had to perform some

manual steps to prepare the specification

grammar for FormatConverter. The

specification uses red font to denote literals so

these had to be quoted manually. ANTLR uses

the traditional regular expression notation of ‘+’

for repeats one or more times and ‘*’ for

repeats zero or more times but the specification

uses square and curly braces respectively to

represent this. Running Formatconvert again is

probably unnecessary as the complete

converted grammar is in the CombinedAntlr

project. The System Verilog grammar (from the

specification) is implement in the .g4 files that

begin with System_Verilog_*. Note that these

are not currently used since we decided to build

up on the existing Verilog grammar, but they

can be referenced when expanding the current

grammar to support more System Verilog

features.

2.5 Build Structure

The project CombinedAntlr is the bottom of the
project hierarchy. This project contains the
grammar files. When any grammar file changes
Visual Studio will start a new build of the
CombinedAntlr project. However, Visual Studio
does not know how to compile grammar files, so

the CombinedAntlr project has a custom build
step. The step simply invokes ParserBuilder.exe.
ParserBuilder is command line C# project in
oracle.sln. ParserBuilder is a standalone
executable that invokes ANTLR on the grammar
files in CombineAntlr and puts the generated
files in oracle_avlib. ParserBuilder was originally
designed to build multiple grammars but this
behavior was deprecated. It checks to see if the
grammar files have a newer “last write”
timestamp than the generated files and if so,
invokes ANTLR to generate new parser code.

The ANTLR generated code is part of the
oracle_avlib project so as far as Visual Studio can
tell, this project builds like a normal C# project.

3 Differences between
Verilog and System Verilog
The most significant difference between Verilog

and System Verilog is user defined types. To

convert a Verilog grammar to System Verilog, a

necessary step is: everywhere a type is used,

the set of built-in types in Verilog needs to be

replaced with any valid System Verilog type.

Other notable differences include: increment

and decrement operators, return statements,

arbitrarily dimensioned variables, packages,

imports, exports, more assignment operators,

and more built in types.

Because we took the approach of incrementally

adding functionality to the existing Verilog

grammar all the new System Verilog rules

appear at the bottom of Verilog.g4 in the

CombinedAntlr project.

4 Refactoring work
The existing Verilog grammar had lexer tokens,

grammar rules, and actions interleaved in a

single file. ANTLR supports this by enclosing the

C# code for the actions in curly braces. We

decided to refactor the grammar into three

separate parts (lexer, grammar, and actions).

The first reason why we did this was we found

that including the string literals for the lexer

tokens was very error prone. As an example,

consider the following rule:

Case_statement : ‘case’ ‘(‘ expr ‘)’ case_body ;

This grammar rule implicitly defines three lexer

tokens, namely the case keyword, open

parenthesis, and close parenthesis. However if

we make a small typo in the rule like:

Case_statement : ‘case’ ‘(‘ expr ‘)’ case_body ;

Now we have introduced a new token (open

parenthesis followed by a space). Combined

with another lexer rule that ignores whitespace,

we now have a parser where an open

parenthesis followed by a space can only ever

appear in a case statement. We made just this

mistake in the course of the project and this

bug was very difficult to hunt down.

To mitigate this problem we (by convention)

forbid the definition of new tokens in grammar

rules. This way ANTLR will return an error if we

make a typo in a grammar rules (using the

name of the token rather than the token

literal).

Separating the grammar rules from the actions

also has several benefits. First, having the

actions in line with the rules adds visual/mental

clutter. Mixing the two made comparing

System Verilog rules to Verilog rules even more

difficult. Determining if two rules are the same

means comparing all elements of the rule and

then recursively descending into the elements.

Merging rules while also maintaining the rule

actions is too many things to keep in mind at

once. Second, separating rules and actions

allows them to be tested and developed

separately.

In fact, the biggest benefit to separating the

lexer, rules, and actions is now they can be

tested, debugged, and developed

independently (or at least hierarchically).

5 AST and Extensions
The AST is a structured representation of the

source code built by the parser actions. At a

high level, there is an AST node type for most

grammar rules and the job of the actions is to

build up this tree. The fields of the nodes are

typically strings containing the parsed source

code.

It was one of our goals to remain as backwards

compatible as possible, so whenever a

construct in System Verilog easily mapped to a

Verilog construct we reused the existing Verilog

node. However there are some features of

System Verilog that have no equivalent in

Verilog. In particular new AST nodes were

added for imports, packages, and user defined

types. In System Verilog the program can

define arbitrarily many types whereas there are

a finite number of types in Verilog. The AST

nodes that can be produced by System Verilog

rules have a pointer to a type node. The

original Verilog nodes had an enumeration for

the type but it is not possible to enumerate all

the types in System Verilog.

6 Challenges
Translating the IEEE System Verilog

Specification’s grammar into the format ANTLR

accepts posed some challenges. The IEEE

grammar is written as a description of the

language, not as a parser generator input.

More specifically, the specification grammar is

left recursive which is problematic for recursive

decent parser generators such as ANTLR. A left

recursive grammar is essentially one where a

grammar rule can match itself in an infinite

loop, or it can match itself through a series of

intermediate rules. The specification grammar

is textually ambiguous. It is only made

unambiguous by differentiating text in different

color fonts as either being literals or symbols.

For example, curly braces in red font denote

literal curly braces (meaning the curly braces

appear in the actual source code that is part of

the rule) whereas curly braces in black font

denote repetition of a rule zero or more times.

We also observed an instance of a rule

containing an apparent typographical error.

Similar to the left recursion problem, the

specification grammar has rules that can match

an empty string. This is a problem for a

generated parser because a rule that can match

an empty string can be matched infinitely many

times. To address this issue, the rule must be

expanded to make it match at least character.

This problem pops up in situations like:

function_declaration :

function_type function_name

‘(‘ list_of_arguments ‘)’

‘endfunction’ ;

list_of_arugments: argument*

In the above example, list_of_arguments can

match an empty string (it can match argument

zero times). The fix is simple. We refactor the

example to be:

function_declaration :

function_type function_name

list_of_arguments ‘endfunction’ ;

list_of_arugments : ‘(‘ argument*

‘)’ ;

The refactored version cannot match an empty

string. The shortest string list_of_arguments

can match is “()” or an empty list of arguments.

Different design decisions might be made when

writing a specification grammar versus a

grammar that is input to a parser generator. A

person designing a grammar for parsing might

try to keep the number of rules as small as

possible. This is because the parser ends up

needing code specific to each rule. We did not

investigate reducing the number of grammar

rules in-depth but some of the rules in the

specification grammar are redundant, meaning

multiple rules can match the same input source

text. System Verilog suffers from the ambiguity

problem particularly because of implicit data

types. According to the specification grammar

the source string:

x = 5;

is ambiguous. The statement could be an

assignment to a previously declared variable

named x or it could be a declaration of an

implicitly type variable named x.

The second major challenge after the

specification grammar was converted to ANTLR

format, was merging the new System Verilog

grammar with the existing framework. We did

not want to have to have two separate

implementations for System Verilog and

Verilog. This was the most significant design

decision of the project. Theoretically, a System

Verilog grammar should be backwards

compatible with almost all Verilog code. The

exceptions are when a Verilog file uses System

Verilog keywords to name variables or modules.

For example, it is valid in Verilog to name a

module class but class is a reserved keyword in

System Verilog. One of the main benefits of a

single grammar is it will be easier to maintain

and we only observed one instance of a

reserved System Verilog keyword being used as

a variable name in a Verilog file in our test set.

Merging the grammars into one meant

determining what could be reused and what

could not, and writing new AST nodes and

analysis for the incompatible pieces. The new

grammar is a single grammar that parses

System Verilog and is a superset of the original

grammar. This meant that the original AST and

analysis would be preserved for input source

files that were pure Verilog. However, this also

meant adding to the original grammar rather

than creating a new one from scratch. To avoid

having duplicate rules we had to find the

common subset between the Verilog and

System Verilog grammars. Unfortunately, to

compare two rules we must recursively

compare all their children so this was time

consuming. It also lead to a problem where a

construct in Verilog is very similar to a concept

in System Verilog but with a slight difference.

This meant it would be easiest in the grammar

to just add to the existing rule but this has

cascading ramifications in the AST node and

analysis. If for example, System Verilog’s

grammar leads to adding a new field to an

original Verilog class all the code that handles

this type of node should be updated to reflect

the change. The strategy we employed was to

extend the base Verilog class to a new class

whenever possible. This way the base class

methods would probably be sufficient for most

System Verilog nodes even if some fields were

ignored.

7 Progress and
Unfinished Work
The current version can parse and build an AST

for all the System Verilog and Verilog files in our

test set. Analysis (symbol mining, clock mining,

and type checking) is still under development.

The parser actions throw a

NotImplementedException when it visits a node

for which we have not implemented an action.

Users can try/catch this exception if desired.

Symbol mining is a bit more complicated than

building the AST because the base class symbol

miner may or may not work for new nodes on a

case by case basis. Manual testing is needed to

verify symbol mining works on new nodes.

8 Future Work

Extending existing analysis to all System Verilog

node types and building an analysis on top of

these types is future work.

Some of the new features of System Verilog do

not have a clear analog in Verilog so how to

handle them requires some thought and

potentially requires new analysis functionality.

These include:

 Enums

 Imports, exports, and packages

 Casts

 Forward Typedefs

 Implicit types

Take for example importing and exporting

packages. In Verilog the way to import

Figure 4 - Conceptual Diagram of Project Subsets

something was with an include preprocessor

directive so the preprocessor did the work of

resolving includes before the static analyzer

even saw the source code. In System Verilog

we would need to build a mechanism for

resolving imports that includes importing a

whole package and only importing selected

items.

Casting suggests a potentially interesting static

analysis where we may be able to statically

determine if a cast is valid or not. In some cases

it is not decidable, but C# compilers will try to

perform this check and will report an error to

the user if the compiler is sure the cast will

never succeed.

8.1 Edge cases and
language coverage
As Figure 4 depicts, neither the original

grammar nor the new grammar cover the entire

language specification. We decided to prioritize

parsing and analyzing the parts of the language

that actually appear in our set of examples.

Edge cases and complete language coverage

could be addressed in future work. For

example, UDP declarations and instantiations

are not currently supported by our tool.

9 Discussion
Parsing is a difficult problem that will never be

solved because it comes up in many different

contexts and use cases. The parser for a

compiler and the parser for a static analyzer

might target the same language but be

completely different. For example, maybe I

want my static analyzer’s parser to accept

programs with syntax errors so I can help the

user fix them. Or maybe my static analyzer

should be stricter than the compiler and not

accept programs with implicit casts to help the

programmer find casts they might not be aware

of.

The idea of looking for implicit casts and doing

type checking in general is one interesting area

of future work for this project. A program can

be type checked much faster than the full

synthesis process. Ideally the HDL

programmer’s IDE would be constantly

performing lightweight static checking in the

background as the type to catch errors as

quickly as possible.

An interesting area of recent work in parsing is

incremental parsing. Traditional compilers

worked in batch mode. They read the source

files, generated the code, wrote the code to

disk and stopped. The compiler started from

scratch every time even when recompiling code

it had already seen. In IDEs and bug finding

tools this is not the desired behavior. When a

program is small recompiling/reanalyzing

everything is fine, but when programs grow to

thousands or millions of lines of code we do not

want to have to reanalyze the whole program

when one line changes. This is an interesting

direction for static analyzers that are integrated

into IDEs because they can quickly and

incrementally analyze the code in the

background to give the programmer real time

feedback. Integrating gNOSIS into Visual Studio

in this way could be one direction for future

work.

10 Summary

In this project we extended the gNOSIS
framework to support parsing and analyzing
System Verilog source code. The main
challenges of this project were maintaining
backwards compatibility with existing code and
supporting both Verilog and System Verilog with
a single grammar through adding new rules to
the existing grammar. We have begun work on

a type checker for the new types introduced by
System Verilog that will add System Verilog
programmers in quickly finding errors in their
code.

11 References

1. Md. Ashfaquzzman Khan, Richard Neil
Pittman, Alessandro Forin. “gNOSIS: A
Board-Level Debugging and Verification
Tool.” Proceedings of the IEEE
Conference on ReConFigurable
Computing and FPGAs (ReConFig). pp.
43-48. 2010.

2. Mehrdad Majzoobi, Richard Neil
Pittman, and Alessandro Forin. gNOSIS:
Mining FPGAs for Verification. MSR-TR-
2011-141

3. Wille, Robert, et al. "Identifying a Subset
of System Verilog Assertions for Efficient
Bounded Model Checking." Digital
System Design Architectures, Methods
and Tools, 2008. DSD'08. 11th
EUROMICRO Conference on. IEEE, 2008.

4. B.Keng and A.Veneris, “Path Directed
Abstraction and Refinement in SAT-
based Design Debugging,” in IEEE/ACM
Design Automation Conference (DAC),
2012.

5. Nikhil, Rishiyur, "Bluespec System
Verilog: efficient, correct RTL from high
level specifications," in Formal Methods
and Models for Co-Design, 2004.
MEMOCODE '04. Proceedings. Second
ACM and IEEE International Conference
on , vol., no., pp.69-70, 23-25 June 2004

6. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing
Systems Stone, John E. and Gohara,
David and Shi, Guochun, Computing in
Science & Engineering, 12, 66-73 (2010),
DOI:http://dx.doi.org/10.1109/MCSE.20
10.69

7. Parr, Terence. "The definitive ANTLR
reference: building domain-specific
languages." (2007).

