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Abstract 

Software engineering tools for Hardware Design 
Languages (HDL) lag behind traditional software 
development tools by decades.  However as 
heterogeneous computing becomes more 
pervasive, productive programming in HDLs will 
become vital.  To this end, we have developed 
gNOSIS a static analysis platform for Verilog HDL.  
In this project we have extended gNOSIS to 
support System Verilog.  A good analogy is C is to 
C++ as Verilog is to System Verilog, that is System 
Verilog is a superset of Verilog with more 
sophisticated features.  This report details the 
challenges, approach, and progress we’ve made 
towards supporting System Verilog in gNOSIS. 

1 Introduction 

Using existing tools debugging a hardware 
design is much more time consuming than 
debugging software.  Partly this is due to the long 
compilation time inherent in hardware design 
synthesis.  Changing the set of traced signals 
requires recompilation which may take hours or 
minutes.  To bring HDL programming 
productivity up to par with traditional software 
programming productivity, we need new tools to 
identify bugs without compiling all the way to 
hardware. 

HDL tools will become increasing valuable as 
heterogeneous computing becomes more 
pervasive.  Computing on devices other than 
traditional CPU can accelerate performance, 

increase security, and reduce power 
consumption.  There is a trend now towards 
putting GPUs and FPGAs in data centers to tap 
into these benefits.  The challenge is to allow 
HDL developers to quickly design, test, and 
debug on heterogeneous platforms. 

2 Background 

In both academia and industry the creation of 
HDL development tools is far behind software 
development tools. 

2.1 State of the Art in 
Industry 

Much research and development in industry has 
gone into improving programming productivity 
in traditional software development.  Advances 
include automated testing, automatic test 
generation, test coverage analysis, symbolic 
execution, stronger type systems, time traveling 
debuggers, and many others.  However, HDL 
programmers do not have these tools at their 
disposal.  In industry tools are tied to a particular 
vendor and are very expensive compared to 
software development tools.  One approach 
industry has taken is developing new languages 
to replace existing HDLs.  Usually these language 
are higher level and synthesize to an HDL.  
Examples include Bluespec [5] and OpenCL [6]. 



2.2 State of the Art in 
Academia 
Compared to software languages, the research 

community has largely ignore HDLs.  

Bounded model checking has been applied to 

System Verilog assertions [3].  However, the 

technique only covers a subset of the language.  

Reducing the size of debug traces is another 

area of past work [4].  

In contrast, academia has been intensely 

focused on improving software developer 

productivity.  Much research has gone into high 

productivity languages, software engineering 

tools, and even empirically studying software 

teams.  However, benefits of this research has 

not crossed the gap from software 

development to hardware development. 

2.2 gNOSIS Project 

The gNOSIS project was created to provide 

state-of-the-art development tools to HDL 

programmers.  Previous gNOSIS projects have 

improved automatic board-level debugging of 

FPGA designs [1] and assertion mining for 

verification [2].  The overall goal is to shorten 

the development and testing time of hardware 

designs. 

2.3  Glossary 
Preprocessor: a program that expands define, 

include, and other preprocessor directives.  The 

gNOSIS preprocessor is not part of this 

Technical Report. 

Lexer: the part of the parser that turns strings 

of characters in to a discrete set of token 

identifiers. 

Grammar: a set of rules that define the 

language accepted by the parser.  These rules 

are comprised of combinations of tokens. 

Actions: C# code that executes when a 

grammar rule is matched.  In the case of 

gNOSIS, the actions build the AST 

Abstract Syntax Tree (AST): a structured 

representation of the parsed System Verilog 

code. 

Analysis: code that traverses the AST and 

extracts information from it.  For example, type 

checking is an analysis. 

2.3  ANTLR 
The gNOSIS project uses the ANTLR [7] parser 

generator for its parser.  The input to ANTLR is 

one or more grammar files and it generates 

several files.  A simplified example of the ANTLR 

process is shown in Figure 1.   

To build the gNOSIS System Verilog parser, we 

invoke ANTLR on our main grammar file 

(Verilog.g4) and it produces seven files: 

VerilogLexer.cs and VerilogLexer.tokens 

VerilogLexer is a class that transforms the string 

of input characters into tokens.  The .tokens file 

is a text file with all the token mappings. 

VerilogParser.cs 

Figure 1 - ANTLR Inputs and Outputs 



VerilogParser is the class where the parsing 

logic is implemented.  It matches the tokens 

produced by the lexer to grammar rules. 

VerilogBaseListener.cs and VerilogListerner.cs 

These files are not used. 

VerilogVisitor.cs 

This file declares the interface 

VerilogBaseVisitor implements. 

VerilogBaseVisitor.cs 

Our actions (ParserActions.cs) inherit the base 

class defined in this file, VerilogBaseVisitor. For 

each grammar rule, ANTLR generates a 

VisitRule_name method.  The base visitor will 

visit all the child nodes of a given rule 

automatically but if we want to take some 

action when we visit a particular rule (ex: build 

an AST node) we override that visit method. 

Once ANTLR has generated the parser files, an 

execution of our tool looks like Figure 2.  The 

source file is given to the lexer as a string.  The 

string is divided up into tokens and given to the 

parser.  The parser matches the rules in the 

grammar and when a rule is matched invokes 

the asssociated visitor method.  The base class 

for these methods is generated by ANTLR but 

we much override these methods to add our 

own AST functionality.  The we invoke our 

analysis on the AST and give the information we 

have discovered about the code to the user.  In 

the diagram, blue boxes are autogenerated 

code and green boxes are code we wrote. 

 

2.4  Project Structure 
The gNOSIS project currently consists of three 

main pieces: the parser, the AST, and the 

analysis.  The parser consists of the grammar 

files in CombinedAntlr project and the 

generated files described in Section 2.3 ANTLR.  

The AST consists of the astlib_*.cs files in the 

oracle_avlib project and the actions in 

ParserActions.cs in the same project.  The 

analysis consists of several source files in the 

oracle_avlib including symbol_table.cs, 

atlib_clock.cs, and astlib_axiom.cs.  An example 

AST is shown in Figure 3.  The root of the AST is 

a list of nodes.  There is a node class for most 

rules.  Each node class has fields to hold the 

Figure 3 - AST Example 

Figure 2 - Tool Flow Diagram 



parsed text matched by the grammar rules.  In 

most cases the fields of the class nodes are 

strings containing in the input source text. 

The ParserTester project is a basic test harness 

for testing the grammar and actions.  

ParserTester.cs is a batch test harness for 

running the parser/actions over many files.  

RulesTester.cs is for testing the parser/actions 

on a single file or even partial files. 

The FormatConverter project converts a 

grammar in the format of the IEEE System 

Verilog specification into the format of an 

ANTLR grammar.  We had to perform some 

manual steps to prepare the specification 

grammar for FormatConverter.  The 

specification uses red font to denote literals so 

these had to be quoted manually.  ANTLR uses 

the traditional regular expression notation of ‘+’ 

for repeats one or more times and ‘*’ for 

repeats zero or more times but the specification 

uses square and curly braces respectively to 

represent this.  Running Formatconvert again is 

probably unnecessary as the complete 

converted grammar is in the CombinedAntlr 

project.  The System Verilog grammar (from the 

specification) is implement in the .g4 files that 

begin with System_Verilog_*.  Note that these 

are not currently used since we decided to build 

up on the existing Verilog grammar, but they 

can be referenced when expanding the current 

grammar to support more System Verilog 

features. 

2.5  Build Structure 

The project CombinedAntlr is the bottom of the 
project hierarchy.  This project contains the 
grammar files.  When any grammar file changes 
Visual Studio will start a new build of the 
CombinedAntlr project.  However, Visual Studio 
does not know how to compile grammar files, so 

the CombinedAntlr project has a custom build 
step.  The step simply invokes ParserBuilder.exe.  
ParserBuilder is command line C# project in 
oracle.sln. ParserBuilder is a standalone 
executable that invokes ANTLR on the grammar 
files in CombineAntlr and puts the generated 
files in oracle_avlib.  ParserBuilder was originally 
designed to build multiple grammars but this 
behavior was deprecated.  It checks to see if the 
grammar files have a newer “last write” 
timestamp than the generated files and if so, 
invokes ANTLR to generate new parser code. 

The ANTLR generated code is part of the 
oracle_avlib project so as far as Visual Studio can 
tell, this project builds like a normal C# project. 

3 Differences between 
Verilog and System Verilog 
The most significant difference between Verilog 

and System Verilog is user defined types.  To 

convert a Verilog grammar to System Verilog, a 

necessary step is: everywhere a type is used, 

the set of built-in types in Verilog needs to be 

replaced with any valid System Verilog type. 

Other notable differences include: increment 

and decrement operators, return statements, 

arbitrarily dimensioned variables, packages, 

imports, exports, more assignment operators, 

and more built in types. 

Because we took the approach of incrementally 

adding functionality to the existing Verilog 

grammar all the new System Verilog rules 

appear at the bottom of Verilog.g4 in the 

CombinedAntlr project.  

4  Refactoring work 
The existing Verilog grammar had lexer tokens, 

grammar rules, and actions interleaved in a 

single file.  ANTLR supports this by enclosing the 

C# code for the actions in curly braces.  We 



decided to refactor the grammar into three 

separate parts (lexer, grammar, and actions). 

The first reason why we did this was we found 

that including the string literals for the lexer 

tokens was very error prone.  As an example, 

consider the following rule: 

Case_statement : ‘case’ ‘(‘ expr ‘)’ case_body ; 

This grammar rule implicitly defines three lexer 

tokens, namely the case keyword, open 

parenthesis, and close parenthesis.  However if 

we make a small typo in the rule like: 

Case_statement : ‘case’ ‘( ‘ expr ‘)’ case_body ; 

Now we have introduced a new token (open 

parenthesis followed by a space).  Combined 

with another lexer rule that ignores whitespace, 

we now have a parser where an open 

parenthesis followed by a space can only ever 

appear in a case statement.  We made just this 

mistake in the course of the project and this 

bug was very difficult to hunt down. 

To mitigate this problem we (by convention) 

forbid the definition of new tokens in grammar 

rules.  This way ANTLR will return an error if we 

make a typo in a grammar rules (using the 

name of the token rather than the token 

literal). 

Separating the grammar rules from the actions 

also has several benefits.  First, having the 

actions in line with the rules adds visual/mental 

clutter.  Mixing the two made comparing 

System Verilog rules to Verilog rules even more 

difficult.  Determining if two rules are the same 

means comparing all elements of the rule and 

then recursively descending into the elements.  

Merging rules while also maintaining the rule 

actions is too many things to keep in mind at 

once.  Second, separating rules and actions 

allows them to be tested and developed 

separately.   

In fact, the biggest benefit to separating the 

lexer, rules, and actions is now they can be 

tested, debugged, and developed 

independently (or at least hierarchically). 

5 AST and Extensions 
The AST is a structured representation of the 

source code built by the parser actions.  At a 

high level, there is an AST node type for most 

grammar rules and the job of the actions is to 

build up this tree.  The fields of the nodes are 

typically strings containing the parsed source 

code. 

It was one of our goals to remain as backwards 

compatible as possible, so whenever a 

construct in System Verilog easily mapped to a 

Verilog construct we reused the existing Verilog 

node.  However there are some features of 

System Verilog that have no equivalent in 

Verilog.  In particular new AST nodes were 

added for imports, packages, and user defined 

types.   In System Verilog the program can 

define arbitrarily many types whereas there are 

a finite number of types in Verilog.  The AST 

nodes that can be produced by System Verilog 

rules have a pointer to a type node.  The 

original Verilog nodes had an enumeration for 

the type but it is not possible to enumerate all 

the types in System Verilog. 

6  Challenges 
Translating the IEEE System Verilog 

Specification’s grammar into the format ANTLR 

accepts posed some challenges.  The IEEE 

grammar is written as a description of the 

language, not as a parser generator input.  

More specifically, the specification grammar is 

left recursive which is problematic for recursive 



decent parser generators such as ANTLR.  A left 

recursive grammar is essentially one where a 

grammar rule can match itself in an infinite 

loop, or it can match itself through a series of 

intermediate rules.  The specification grammar 

is textually ambiguous.  It is only made 

unambiguous by differentiating text in different 

color fonts as either being literals or symbols. 

For example, curly braces in red font denote 

literal curly braces (meaning the curly braces 

appear in the actual source code that is part of 

the rule) whereas curly braces in black font 

denote repetition of a rule zero or more times.  

We also observed an instance of a rule 

containing an apparent typographical error.   

Similar to the left recursion problem, the 

specification grammar has rules that can match 

an empty string.  This is a problem for a 

generated parser because a rule that can match 

an empty string can be matched infinitely many 

times.  To address this issue, the rule must be 

expanded to make it match at least character.  

This problem pops up in situations like: 

function_declaration : 

function_type function_name 

‘(‘ list_of_arguments ‘)’ 

‘endfunction’ ; 

list_of_arugments: argument* 

In the above example, list_of_arguments can 

match an empty string (it can match argument 

zero times).  The fix is simple.  We refactor the 

example to be: 

function_declaration : 

function_type function_name 

list_of_arguments ‘endfunction’ ; 

list_of_arugments : ‘(‘ argument* 

‘)’ ; 

The refactored version cannot match an empty 

string.  The shortest string list_of_arguments 

can match is “()” or an empty list of arguments. 

Different design decisions might be made when 

writing a specification grammar versus a 

grammar that is input to a parser generator.  A 

person designing a grammar for parsing might 

try to keep the number of rules as small as 

possible.  This is because the parser ends up 

needing code specific to each rule.  We did not 

investigate reducing the number of grammar 

rules in-depth but some of the rules in the 

specification grammar are redundant, meaning 

multiple rules can match the same input source 

text.  System Verilog suffers from the ambiguity 

problem particularly because of implicit data 

types.  According to the specification grammar 

the source string: 

x = 5; 

is ambiguous.  The statement could be an 

assignment to a previously declared variable 

named x or it could be a declaration of an 

implicitly type variable named x. 

The second major challenge after the 

specification grammar was converted to ANTLR 

format, was merging the new System Verilog 

grammar with the existing framework.  We did 

not want to have to have two separate 

implementations for System Verilog and 

Verilog.  This was the most significant design 

decision of the project.  Theoretically, a System 

Verilog grammar should be backwards 

compatible with almost all Verilog code.  The 

exceptions are when a Verilog file uses System 

Verilog keywords to name variables or modules.  

For example, it is valid in Verilog to name a 

module class but class is a reserved keyword in 

System Verilog.  One of the main benefits of a 

single grammar is it will be easier to maintain 



and we only observed one instance of a 

reserved System Verilog keyword being used as 

a variable name in a Verilog file in our test set. 

Merging the grammars into one meant 

determining what could be reused and what 

could not, and writing new AST nodes and 

analysis for the incompatible pieces.  The new 

grammar is a single grammar that parses 

System Verilog and is a superset of the original 

grammar.  This meant that the original AST and 

analysis would be preserved for input source 

files that were pure Verilog.  However, this also 

meant adding to the original grammar rather 

than creating a new one from scratch.  To avoid 

having duplicate rules we had to find the 

common subset between the Verilog and 

System Verilog grammars.  Unfortunately, to 

compare two rules we must recursively 

compare all their children so this was time 

consuming.  It also lead to a problem where a 

construct in Verilog is very similar to a concept 

in System Verilog but with a slight difference.  

This meant it would be easiest in the grammar 

to just add to the existing rule but this has 

cascading ramifications in the AST node and 

analysis.  If for example, System Verilog’s 

grammar leads to adding a new field to an 

original Verilog class all the code that handles 

this type of node should be updated to reflect 

the change.  The strategy we employed was to 

extend the base Verilog class to a new class 

whenever possible.  This way the base class 

methods would probably be sufficient for most 

System Verilog nodes even if some fields were 

ignored. 

7  Progress and 
Unfinished Work 
The current version can parse and build an AST 

for all the System Verilog and Verilog files in our 

test set.  Analysis (symbol mining, clock mining, 

and type checking) is still under development. 

The parser actions throw a 

NotImplementedException when it visits a node 

for which we have not implemented an action.  

Users can try/catch this exception if desired. 

Symbol mining is a bit more complicated than 

building the AST because the base class symbol 

miner may or may not work for new nodes on a 

case by case basis.  Manual testing is needed to 

verify symbol mining works on new nodes. 

8 Future Work 

Extending existing analysis to all System Verilog 

node types and building an analysis on top of 

these types is future work. 

Some of the new features of System Verilog do 

not have a clear analog in Verilog so how to 

handle them requires some thought and 

potentially requires new analysis functionality.  

These include: 

 Enums 

 Imports, exports, and packages 

 Casts 

 Forward Typedefs 

 Implicit types 

Take for example importing and exporting 

packages.  In Verilog the way to import 

Figure 4 - Conceptual Diagram of Project Subsets 



something was with an include preprocessor 

directive so the preprocessor did the work of 

resolving includes before the static analyzer 

even saw the source code.  In System Verilog 

we would need to build a mechanism for 

resolving imports that includes importing a 

whole package and only importing selected 

items.   

Casting suggests a potentially interesting static 

analysis where we may be able to statically 

determine if a cast is valid or not.  In some cases 

it is not decidable, but C# compilers will try to 

perform this check and will report an error to 

the user if the compiler is sure the cast will 

never succeed. 

8.1  Edge cases and 
language coverage 
As Figure 4 depicts, neither the original 

grammar nor the new grammar cover the entire 

language specification.  We decided to prioritize 

parsing and analyzing the parts of the language 

that actually appear in our set of examples.  

Edge cases and complete language coverage 

could be addressed in future work.  For 

example, UDP declarations and instantiations 

are not currently supported by our tool. 

9  Discussion 
Parsing is a difficult problem that will never be 

solved because it comes up in many different 

contexts and use cases.  The parser for a 

compiler and the parser for a static analyzer 

might target the same language but be 

completely different.  For example, maybe I 

want my static analyzer’s parser to accept 

programs with syntax errors so I can help the 

user fix them.  Or maybe my static analyzer 

should be stricter than the compiler and not 

accept programs with implicit casts to help the 

programmer find casts they might not be aware 

of. 

The idea of looking for implicit casts and doing 

type checking in general is one interesting area 

of future work for this project.  A program can 

be type checked much faster than the full 

synthesis process.  Ideally the HDL 

programmer’s IDE would be constantly 

performing lightweight static checking in the 

background as the type to catch errors as 

quickly as possible. 

An interesting area of recent work in parsing is 

incremental parsing.  Traditional compilers 

worked in batch mode.  They read the source 

files, generated the code, wrote the code to 

disk and stopped.  The compiler started from 

scratch every time even when recompiling code 

it had already seen.  In IDEs and bug finding 

tools this is not the desired behavior.  When a 

program is small recompiling/reanalyzing 

everything is fine, but when programs grow to 

thousands or millions of lines of code we do not 

want to have to reanalyze the whole program 

when one line changes.  This is an interesting 

direction for static analyzers that are integrated 

into IDEs because they can quickly and 

incrementally analyze the code in the 

background to give the programmer real time 

feedback.  Integrating gNOSIS into Visual Studio 

in this way could be one direction for future 

work. 

10 Summary 

In this project we extended the gNOSIS 
framework to support parsing and analyzing 
System Verilog source code.  The main 
challenges of this project were maintaining 
backwards compatibility with existing code and 
supporting both Verilog and System Verilog with 
a single grammar through adding new rules to 
the existing grammar.  We have begun work on 



a type checker for the new types introduced by 
System Verilog that will add System Verilog 
programmers in quickly finding errors in their 
code. 
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