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Abstract

Memory-based collaborative filtering (CF) has been studied extensively in the literature and has proven to be
successful in various types of personalized recommender systems. In this paper we develop a probabilistic framework
for memory-based CF (PMCF). While this framework has clear links with classical memory-based CF, it allows us
to find principled solutions to known problems of CF-based recommender systems. In particular, we show that a
probabilistic active learning method can be used to actively query the user, thereby solving the “new user problem”.
Furthermore, the probabilistic framework allows us to reduce the computational cost of memory-based CF by working
on a carefully selected subset of user profiles, while retaining high accuracy. We report experimental results based
on two real world data sets, which demonstrate that our proposed PMCF framework allows an accurate and efficient
prediction of user preferences.
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I. I NTRODUCTION

Information on the web has been growing explosively in recent years. Information filters emerged to meet
the challenge of information search on the WWW, a problem which may be compared to “locating needles
in a haystack that is growing exponentially” [1]. Recommender systems are a class of information filters
which have proven to be successful. For example, recommender systems on e-commerce web sites assist
users to find their favorite CDs or books. Similarly recommender systems assist in locating items like web
pages, news, jokes, or movies, from thousands or even millions of items.

Content-based filtering (CBF) and collaborative filtering (CF) are two technologies used in recommender
systems. CBF systems analyze the contents of a set of items together with the ratings provided by individual
users to infer which non-rated items might be of interest for a specific user. Examples include [2], [3], [4].
In contrast, collaborative filtering methods [5], [6], [1] typically accumulate a database of item ratings cast
by a large set of users, and then use those ratings to predict a query user’s preferences for unseen items.
Collaborative filtering does not rely on the content descriptions of items, but purely depends on preferences
expressed by a set of users. These preferences can either be expressed explicitly by numeric ratings, or can
be indicated implicitly by user behaviors, such as clicking on a hyperlink, purchasing a book or reading a
particular news article.

One major difficulty in designing CBF systems lies in the problem of formalizing human perception and
preferences. Why one user likes or dislikes a joke, or prefers one CD over another is virtually impossible to
formalize. Similarly it is difficult to derive features which represent the difference between an average news
article and one of high quality. CF provides a powerful way to overcome these difficulties. The information
on personal preferences, tastes, and quality are all carried in (explicit or implicit) user ratings.

CF-based recommender systems have successfully been applied in areas ranging from e-commerce (for
example, Amazon and CDnow1) to computer-supported collaborative work [7]. CF research projects include
Grouplens (the first automatic CF algorithm, [5]), Ringo [6], Video Recommender [8], Movielens [9], and
Jester [10].
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A. Collaborative Filtering Algorithms

A variety of CF algorithms have been proposed in the last decade. One can identify two major classes of
CF algorithms [11], memory-based approaches and model-based approaches.

Memory-based CF can be motivated from the observation that people usually trust the recommendations
from like-minded friends. These methods apply a nearest-neighbor-like scheme to predict a user’s ratings
based on the ratings given by like-minded users. The first CF systems Grouplens [5] and Ringo [6] fall
into this category. In the literature, the term collaborative filtering is sometimes used to refer only to the
memory-based methods.

In contrast, model-based CF first learns a descriptive model of user preferences and then uses it for pre-
dicting ratings. Many of these methods are inspired from machine learning algorithms. Examples include
neural network classifiers [1], induction rule learning [12], linear classifiers [13], Bayesian networks [11],
dependency networks [14], latent class models or mixture models [15], [16], item-based CF [17], principle
component analysis based CF [10], association rule mining [18], and hybrids of model- and memory-based
approaches [19].

B. Motivation

Up to now, research on CF primarily focused on exploring various learning methods, hoping to improve
the prediction accuracy of recommender systems. Other important aspects, like scalability, accommodating
to new data, and comprehensibility have received little attention. In the following we will review five general
issues which are important for CF and greatly motivated the work presented in this paper.

1) Accuracy: As a central issue in CF research, prediction accuracy has received a high degree of at-
tention, and various methods were proposed for improvement. Still, conventional memory-based methods
using Pearson correlation coefficient remain among the most successful methods in terms of accuracy. The
experiments presented in Sec. V-D show that our proposed probabilistic interpretation of memory-based CF
can outperform a set of other memory- and model-based CF approaches.

2) Interactive Learning of User Profiles:A recommender system cannot provide accurate service to a
new user, whose preferences are initially unknown. This has been referred to as the “new user problem”
[2], [20], [21] Before being able to make predictions, a CF system typically requires the new user to rate a
list of query items in an initial information gathering stage. Efficient heuristics [21] are essential to select
informative query items and thus keep the information gathering stage as short as possible, since users may
easily lose patience when faced with a long list of query items.

Within our proposed probabilistic framework for CF, we show in Sec. III how informative query items
can be selected in a principled way. At each information gathering step, those query items are presented
to the user which are expected to maximally sharpen the user’s profile. Our experiments (see Sec. V-E)
confirm that this interactive approach outperforms other ways of selecting query items [21] both in terms of
necessary user effort and achieved accuracy of predictions.

3) Efficiency: Memory-based CF often suffers from slow response time, because each single prediction
requires the scanning of a whole database of user ratings. This is a clear disadvantage when compared to the
typically very fast responses of model-based CF. In the proposed probabilistic memory-based CF approach,
predictions are generated from a carefully selected small subset of the overall database of user ratings, which
we callprofile space. As a consequence, predictions can be made much faster than in a classical memory-
based CF system. Still, the accuracy of a system using the full data set can be maintained. We will describe
this process of data selection in Sec. IV. The results presented in Sec. V-F confirm that the constructed
profile space does indeed allows a both accurate and fast prediction of user ratings.

4) Incrementally accommodating to new data:Recommender systems must be capable of handling new
data, be it new users or new items. For example, in a music recommender system, the recommender system
must be able to adapt itself to newly arising styles of music and thus new preference patterns. This suggests
that the training process of any underlying CF algorithm should be incremental. However, model-based CF
approaches are typically trained using batch algorithms. To our knowledge, little work has addressed the use
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of on-line learning in CF. Thus, re-training a model with new data can become quite expensive, in particular
if it needs to be performed regularly [11]. In contrast, memory-based CF can easily accommodate to new
data by simply storing them. In the proposed probabilistic memory-based CF framework, this goal can be
achieved by a straight-forward extension of the data selection procedure introduced in Sec. IV.

5) Comprehensibility: The results in [22] indicate that allowing users to know more about the result-
generating process can help them understand the strengths and weaknesses of CF systems. With this knowl-
edge, users can make low-risk decisions. For example, consider the following two cases: (1) Among Julia’s
like-minded users there are50% percent of users who rated ‘like’ to Titanic, while50% of them rated ‘dis-
like’. (2) In the other case, most of her neighbors give neutral ratings to that movie. A traditional CF system
may only give a neutral rating in both of the cases. A more sophisticated system may remind Julia of the
underlying reasons in the first case and, for example, output an estimated distribution of a user’s rating for
some item, either in graphical or textual form (“I guess you will like that movie, and I am pretty sure (or very
unsure) about that”). This suggests that a probabilistic CF approach, as presented in this paper, can improve
the comprehensibility and thus the acceptance of a CF system. Furthermore, memory-based CF has a clear
interpretation that can be easily conveyed to users, such as “You seem to be sharing opinions with user A,
who liked the following items. . . ”.

C. Overview of Our Approach

In this paper, we introduce probabilistic memory-based collaborative filtering (PMCF), a probabilistic
framework for CF systems that is similar in spirit to the classical memory-based CF approach. A schematic
drawing of the components of PMCF is shown in Fig. 1.

As the basic ingredient, we present a probabilistic model for user preferences in Sec. II. We use a mixture
model built on the basis of a set of stored user profiles; thus the model clearly links with memory-based CF
methods.

Various heuristics to improve memory-based CF have been proposed in the literature. In contrast, ex-
tensions to PMCF can be based on a principled probabilistic way. We argue that this is one of the major
advantages of PMCF. We use PMCF to derive solutions for two particularly important problems in CF.

The first one concerns the new user problem. An active learning extension to the PMCF system can
actively query a user for additional information, in case the available information is insufficient.

The second major extension aims at reducing the computational burden in the prediction phase typically
associated with memory-based CF. PMCF allows us to select a small subset, called theprofile space, from
a (possibly huge) database of user ratings. The selection procedure is derived directly from the probabilistic
framework and ensures that the small profile space leads to predictions that are as accurate as predictions
made by using the whole data base of user ratings.

D. Structure of this Article

This paper is organized as follows. In Sec. II, we describe the framework of probabilistic memory-based
CF (PMCF). In Sec. III, we present an active learning extension of PMCF to gather information about a new
user in a particularly efficient way that requires a minimum of user interaction. In Sec. IV, we show how to
construct the profile space for the PMCF model, which is a small subset of the available user rating data. We
present experimental results that demonstrate the effectiveness of PMCF, the active learning extension and
the profile space construction in Sec. V. We end the paper by conclusions and an outlook in Sec. VI.

II. PROBABILISTIC MEMORY-BASED CF

In this section a general probabilistic memory-based CF (PMCF) approach is introduced. Probabilistic
CF has been a vivid research topic. Examples include Bayesian networks [11], dependency networks [14],
latent class models or mixture models [15], [16], and hybrids of memory- and model based systems [19].
The work presented here has been inspired by [19], in that we also aim at connecting memory- and model-
based CF in a probabilistic way. While [19] mainly focusses on making predictions, we use the probabilistic
model for further extensions of the CF system, some of which will be described in Sec. III and IV.



DRAFT, ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Fig. 1. A schematic drawing of the components of probabilistic memory-based collaborative filtering (PMCF). Through an active learning
scheme (presented in Sec. III), the profile of a new user can be inferred with a minimum of required user effort. User ratings are stored in a
database, from which a compact representation—the profile space—can be constructed in order to make fast predictions (presented in Sec. IV)

A. Notation

Suppose that we have gatheredK users’ ratings on a given item setI of sizeM = |I|. Let xi,j ∈ R
be the rating of useri on itemj and letD with (D)i,j = xi,j be theK ×M matrix of all ratings.Ri is
the set of items for which useri has actually given ratings,Ri ⊆ I. If an item has not been rated, we set
xi,j to a neutral ratingni, which we will define later. We denote byxi the vector of all ratings of useri. In
the following text, useri’s ratingsxi are often referred as useri’s profile. We also maintain a smaller set
of user profiles, theprofile spaceP, which consists of a subset of rows ofD. Without loss of generality,
we assume that the profile space is built up2 from the ratings of the firstN users, i.e. the firstN rows ofD,
where typicallyN � K.

In CF terminology, theactive useris the user that queries the CF system for recommendations on some
items. We denote the active user’s ratings bya. By ar, we denote the ratings the active user has already
provided (for items∈ Ra), andan are the yet unknown ratings. The total rating vectora is thus the union
of ar andan.

As mentioned above, we use a neutral ratingni for all items a useri has not given an explicit rating,
i.e.xi,j = ni if j 6∈ Ri. In order to computeni, we assume a Gaussian prior for the neutral rating with mean
m0 which is estimated as the overall mean of user ratings. If we further assume thatni is also Gaussian
distributed with meanm0 we can estimate the neutral rating as

ni =

∑
j∈Ri xi,j + Cm0

|Ri|+ C
(1)

whereC is the ratio of the variance of the ratings for useri and the variance ofm0. We determined a suitable
value forC based on cross validation experiments. We foundC = 9 to work effectively on the data we
consider.

2We will show in Sec. IV how a compact and accurate profile spaceP can be incrementally built from a given set of user ratingsD.
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B. A Density Model for Preference Profiles

We assume a generative probabilistic model in which the ratingsa of an active user are generated based
on a probability density of the form

p(a|P) =
1

N

N∑
i=1

p(a|i), xi ∈ P (2)

wherep(a|i) is the probability of observing the active user’s ratingsa if we assume thata has the same
profile class as theith profile prototype inP, i.e. useri’s profile. The density expressed by Eq. (2) models
the influences of other like-minded users’ preferences on the active usera. For the mixture components
p(a|i), we use Gaussian3 density functions. Assuming that ratings on individual items are independent,
given a profilei, we get

p(a|i) =
∏
j∈I

p(aj|i) (3)

=
∏
j∈I

(2π)−1/2√
σ2 + dj 6∈Riσ

2
0

exp

(
−1

2

(aj − xi,j)2

σ2 + dj 6∈Riσ
2
0

)
Here,dj 6∈Ri = 1 if xi,j is unrated anddj 6∈Ri = 0 otherwise. This model can be motivated as a mixture model,
with the prototype profilesxi serving as cluster centers, or as a Parzen density model on the profile spaceP.
The additional variance for unrated items takes into account the uncertainty of the estimated rating.

In our experiments, we setσ2
0 to be the overall variance of user ratings.σ2 was optimized by maximizing

the leave-one-out likelihood of profiles ∑
a∈P

p(a|P \ a) (4)

with respect toσ2. σ2 is tuned after constructing the profile space (see Sec. IV) and left constant thereafter.
Note that, technically, profiles take on different meanings: If they are part of the data base, they represent
prototype vectors defining the component densities in Eq. (3). If we consider the active user’s profile, the
profile corresponds to a sample generated from the probability density defined in the same equation.

C. A Probabilistic Approach to Estimating User Ratings

We can now calculate the posterior density of the active usera’s ratings on not yet rated items, denoted
byan, based on the ratingsar usera has already given. Using the previously defined density model for user
ratings, we find

p(an|ar,P) =
p(an,ar|P)

p(ar|P)
(5)

=

∑N
i=1 p(a

n,ar|i)∑N
i=1 p(a

r|i)
(6)

=
N∑
i=1

p(an|i) Pr(i|ar,P). (7)

3We are a little inaccurate here and assume for simplicity that our rating scale is continuous and unbounded, ignoring the fact that ratings are
often given on a discrete scale. One might also chose mixture components that fit particular data, for example binomial distributions for discrete
ratings.
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Pr(i|ar,P) indicates thea posterioriprobability of usera having theith prototype profile, given the ratings
usera already has provided. It thus models the “like-mindedness” of active usera to other usersi in the
profile spaceP:

Pr(i|ar,P) =
p(ar|i)∑N
i=1 p(a

r|i)
. (8)

Within the PMCF model, predictions for the active user are thus made by combining the predictions based
on other prototype usersxi, weighted by their degree of like-mindedness to usera. This puts the key idea of
memory-based collaborative filtering into a probabilistic framework.

Note that the computational complexity of prediction isO(NM), i.e. it is linear in the size of the profile
space. In Sec. IV we will show how to obtain a profile space that is much smaller than the complete user
rating databaseD. Making predictions only on basis of the small profile space thus brings a significant
reduction of overall computational cost.

III. A N ACTIVE LEARNING APPROACH TOLEARNING USERPROFILES

In the previous section, we introduced the PMCF framework and showed how predictions can be made.
In this section we will use an active learning approach to efficiently learn the profile of an individual user.
The active learning approach integrates smoothly into the PMCF framework and provides a solution for the
“new user problem”. By presenting a set of most informative query items in an interactive process, we can
learn about the profile of a new user with a minimum of user effort.

A. The New User Problem

For users that are new to a recommender system, no information about their preferences is initially known.
Thus, the recommender system typically requests them to rate a set of query items. Using the ratings on these
query items, the CF system can then start making recommendations.

There are several important reasons why this set of query items should be selected carefully: (1) Users
are not willing to rate a long list of items; (2) Users cannot rate items unknown to them; (3) Rating results
for some items might be very informative for determining a user’s profile whereas rating results for other
items might not provide useful new information. So far little work has been done to address4 the new user
problem. [21].

In the next sections, we will present an approach for selecting query items that requires particularly little
user effort, yet allows fast learning about the user’s preferences.

B. Identifying Informative Query Items

To achieve an efficient interactive learning of user profiles, we put the selection of query items into a
decision theoretic framework (see for example Sec. 4.3 of [24]). First, one needs to define a loss function,
evaluating the quality of the system before querying a new itemλ(ar,P) and after querying the user for
item j, j 6∈ Ri and after having obtained ratingaj. We denote the loss after querying byλ(aj,a

r,P). The
goal is now to select the query itemj such that the expected loss

Ep(aj |ar,P)

[
λ(aj,a

r,P)
]

(9)

is minimized. The expectation is calculated here with respect to the predicted probability of usera’s ratings
for item j.

The most important ingredient is the loss functionλ(aj,a
r,P). We propose to use the entropy of the

like-mindednessPr(i|ar,P) as the loss function.Pr(i|ar,P) describes the like-mindedness of a useri in
the profile spaceP with active usera, givena’s ratingsar. In an extreme case,Pr(i|ar,P) has a uniform

4A method for improving the accuracy of CF systems by adding extra query items has been presented in [23]. This approach might also be
adapted to solve the new user problem.
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distribution, which means that the profile of usera is completely unclear. In contrast, a sharp peak in the
distribution of Pr(i|ar,P) indicates that usera has similar preferences as a small group of like-minded
users. It thus seems natural to choose those query items that minimize the uncertainty (thus, the entropy) of
usera’s like-mindedness.

Putting this into a formal setting, we can write for the loss function

λ(aj,a
r,P) = −

N∑
i=1

Pr(i|aj,ar,P) log Pr(i|aj,ar,P). (10)

By Pr(i|ar, aj,P) we denote like-mindedness, computed with an updated vector of ratings for the active
user, who now also has rated the (previously unrated) itemj.

We can now define the expected benefit (Sec. 4.3.2 of [24]) for querying itemj as

E[B(j)] = Ep(aj |ar,P) [λ(aj,a
r,P)]− λ(ar,P) (11)

and terminate the query process if the expected benefit is less than a threshold related to the cost of querying.
Our algorithm for query item selection is myopic in the sense that the algorithm only looks one step ahead.

In contrast, a hyperopic algorithm would aim at finding the optimalsequenceof query items to be presented.
However, since hyperopic optimization is computationally intractable, myopia is a standard approximation
used in sequential decision-making problems [25], [26].

C. Identifying the Items Possibly Known to the Active User

If we wanted to use the active learning approach described in the previous section directly, we would
most often get a “don’t know” as the answer to most of the query items. Users of a CF system can typically
provide ratings for only few of the items. For example, in a recommender system for movies, users may
typically have seen a few dozen movies out of the several hundred movies contained in the data base. It may
be quite informative to know the user’s opinion on an unusual movie, yet it is likely that the user will not be
able to give this movie any rating.

Thus, we must also predict the probability that a user is able to rate5 a given query item. This can be
achieved by again referring to the like-mindedness of users. In Eq. (5), predictions for active usera were
built from a sum of other users’ ratings, weighted by their degree of like-mindednessPr(i|ar,P). Similarly,
we can predict the probability of usera being able to rate itemj, given his or her other ratingsar, by
checking usera’s like-minded users:

Pr(usera can rate itemj|ar,P) =
N∑
i=1

Pr(usera can rate itemj|i) Pr(i|ar,P) (12)

Pr(usera can rate itemj|i) is the probability thata can rate itemj, given that usersa andi (as described by
prototype profilexi) agree on which items they are able to rate. We assume for simplicity that usera can
rate exactly the same6 movies as useri:

Pr(usera can rate itemj|i) =

{
1 if useri has rated itemj

0 otherwise
(13)

5Another way of solving this problem would be to integrate this probability into the loss function Eq. (10) for the active learning approach.
We do not pursue this solution in the present article.

6This is a strong assumption, yet due to the weighting introduced by the like-mindedness we obtain meaningful results



DRAFT, ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

D. A Summary of the Active Learning Process

Using the ideas described in the previous sections, we propose the following iterative scheme to learn the
profile of the active usera:

1) Out of the set of items that have not yet been rated by usera, find thosek1 items with the highest
probability of being known to usera, i.e. those items with the highest value for Eq. (12).

2) Out of thesek1 items, select a subset ofk2 items that lead to the highest reduction of uncertainty about
the user’s profile, i.e. the items with the highest expected benefit in Eq. (11).

3) Display thosek2 items to the user for rating. Collect the ratings and update the vector of ratingsa.
4) Terminate if the user is not willing to answer any more queries or if the expected benefit of querying

(as defined in Eq. (11)) is below a certain threshold. Otherwise, go to step 1.
In the very first step, where nothing is known about usera, we assume equal like-mindedness of usera with
all profiles inP. Thus, usera will be presented thek2 most popular items as query items.

E. Implementation

1) Parameters for Active Learning:The value ofk1 (see step 1 of Sec. III-D) should be carefully selected.
If k1 is too small, for example, as small ask2, then the selection procedure is too much biased by Eq. (12),
and thus might miss out informative items—the system performs too little exploration. Ifk1 is too large, too
many items will be presented to the user which the user is not able to rate. In cross validation experiments,
we found thatk1 = 50 gives the best results for the data we consider. The value fork2 is rather uncritical.
We usedk2 = 10, because it seems reasonable to display10 items on a normal-sized PC screen. Thus, at
each iteration, we first find the50 candidate items with largest probability of being known, and then identify
10 query items according to the expected reduction of uncertainty in like-mindedness.

2) Computational Complexity:The most costly part in this active learning approach is the evaluation of
Eq. (11), where the expected reduction of uncertainty in like-mindedness is computed. The algorithm needs
to exhaustO(ck1) possibilities of user feedbacks at each iteration (wherec is the number of ratings a user
might possibly give to a presented query item, andk1 is the number of candidate items) and calculate the
entropy of the like-mindedness for each case. This again requires evaluating Eq. (2) with changed preference
vectora. Fortunately, Eq. (2) factorizes along items, thus the distances only need to be re-calculated along
the dimensions of the newly rated items. This greatly reduces the overall computational cost.

3) Alternative Methods: Several of the approaches proposed in the active learning literature may be
adopted for CF. A common approach isuncertainty sampling[27], which has been successfully applied to
text categorization [27] and image retrieval [26] to reduce the number of training examples. The general
idea behind all proposed variants of uncertainty sampling is to present the unlabeled examples for which the
outcome is most uncertain, based on the current predictions. In a CF scenario, one is interested in predicting
a user’s ratings for non-rated items. Thus, the variance of predictionsvar p(aj|ar,P) is an appropriate
measure of uncertainty. An advantage of this approach lies in its low computational cost, since we only have
to compute the predictionsp(aj|ar,P) for all yet unrated items.

Another low complexity method for query item selection isentropy sampling[21]. Here, we consider
Prj(s), the fraction of users who had given a particular ratings ∈ {s1, . . . , sc} for item j. Query items are
selected such that the entropy ofPrj(s) is maximized.

We will show in Sec. V-E that the method based on uncertainty of like-mindedness (as outlined in Sec. III-
B) achieves best results, both in terms of achieved accuracy and in terms of required user input.

IV. I NCREMENTALLY CONSTRUCTINGPROFILE SPACE

In Sec. II we introduced a probabilistic model for describing user preferences. This model was based on
a given set of user profiles, the profile spaceP. In this section, we will show how this profile space can
be constructed, by selecting informative user profiles from the overall database of user ratingsD. Since
the profile space typically contains only a low number of user profiles (as compared to the often hugeD),
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it allows us to build compact models and make predictions efficiently, while maintaining a high accuracy.
It thus solves the well-known problem that predictions of traditional memory-based CF methods are rather
time-consuming.

A. Kullback-Leibler Divergence for User Profile Sampling

Let’s assume that there exists an optimal density model for user ratings, which we denote bypopt(x).
Naturally we do not have access to this optimal model but we work with a non-optimal modelp(x|P), as
given in Eq. (2), based on some profile spaceP. The key idea of our proposed selection procedure is to
select the profile spaceP such that the densityp(x|P) is as close as possible to the optimal densitypopt(x).

To measure the distance of these two distributions, we use the Kullback-Leibler divergence (KL-divergence
[28]). We denote the KL-divergence of the two distributions by

D (p(x|P)||popt(x)) =

∫
popt(x) log

popt(x)

p(x|P)
dx (14)

where the integral is over the whole space of user rating vectors. The KL-divergence is always non-negative
and is zero when two compared distributions are identical. Assuming that the total set of user ratingsD
constitutes a set of independent samples drawn frompopt(x), we can approximate the KL-divergence by
Monte-Carlo integration [29]:

D̃ (p(x|P)||popt(x)) =
1

K

K∑
i=1

log
popt(xi)

p(xi|P)
(15)

=
1

K
log

popt(D)

p(D|P)
(16)

whereK is the number of users inD.
As stated above, we wish to minimize the KL-divergenceD̃(p(x|P)||popt(x)) so that the densityp(x|P)

best approximatespopt(x). Sincepopt(D) is constant, Eq. (15) can be minimized by maximizing the likeli-
hood of the user rating databaseD with respect to the profile spaceP. Finding the optimal profile spaceP
is clearly an intractable task, we thus switch to an iterative greedy approach for constructingP.

B. Incremental Profile Space Construction

For constructing the profile spaceP from a data baseD of user ratings, we consider an incremental
scenario. Given the current profile spaceP, which profile patternxi ∈ D should be included such that the
updated profile spaceP ∪ xi can achieve the maximum reduction in KL-divergence, according to Eq. (15)?

The reduction in KL-divergence caused by includingxi in P can be written as

∆i =

=D̃ (p(x|P)||popt(x))− D̃ (p(x|P ∪ xi)||popt(x))

=
1

K
log

p(D|P ∪ xi)
p(D|P)

(17)

Mind that this step causes the optimal densitypopt(x) to drop out. According to Bayes’ rule, the likelihood
of the overall dataD, given the updated profile spaceP ∪ xi can be written as follows:

p(D|P ∪ xi) = p(D|P)
p(xi|D)

p(xi|P)
(18)

wherep(xi|D) is the likelihood ofxi, based on a model that uses the complete data as the profile space.
Combining Eq. (17) and (18), the optimal profilex to be selected is given by:

arg max
i

∆i = arg max
xi∈D\P

p(xi|D)

p(xi|P)
(19)
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An intuitive interpretation of this selection scheme is as follows: Eq. (19) suggests that profilesxi with low
p(xi|P) but highp(xi|D) will be selected.p(xi|P) encodes how likely a profilexi is, given our current
knowledgeP, while p(xi|D) encodes the likelihood and thus the “degree of typicalness” of profilexi in the
overall dataD. The profile selection scheme thus focusses on profiles that are novel to our current knowledge
(encoded by the current profile space), but are in fact typical in the real world (represented by the whole data
D). Thus, this sampling scheme will result in removing redundancies (we only focus on novel data that is
not yet included in the profile space) and in removing outliers (outliers can be considered untypical data).

Still, Eq. (19) does not give a practical algorithm, since it requires evaluatingO(K) profiles,K = |D|,
where each evaluation requiresO(K) steps to actually buildp(xi|D). This leads to the clearly impractical
overall runtime ofO(K2). Practical variants will be discussed in the next section.

C. Implementation

Constructing a profile spaceP according to Eq. (19) is sometimes referred to asfull greedy selection. This
can only be done efficiently if the associated objective function can be computed cheaply—which is not the
case for the likelihood ratio we consider here. In related problems, it has been suggested to consider small
subsets of candidates, evaluate the objective function for each candidate, and select the best candidate out of
this subset (see, for example, Sec. 6.5 of [30]).

We thus obtain the following profile sampling scheme to buildP fromD:
1) Select a subsetC of candidate profiles at random fromD \ P.
2) Compute the likelihoodp(xi|P) for each candidate profilexi ∈ C, based on the current profile space
P.

3) Compute the likelihoodp(xi|D) for eachxi ∈ C, based on the complete dataD.
4) Include the best candidate profile in the profile space:

P ← P ∪ arg max
xi∈C

p(xi|D)

p(xi|P)
(20)

5) Terminate, if the profile space has reached a given maximum size or if the reduction of KL-divergence
is below a given threshold.

It has been suggested in [30] that subsets of size|C| = 59 can be guaranteed to select profiles that are
better than95% of all other profiles with confidence95%. In our experiments, we aim at achieving higher
efficiency and thus use subsets of size|C| = 7. This corresponds to selecting profiles that are better than
80% of all others with confidence80%.

D. Constructing Profile Spaces in a Dynamic Environment

While the sampling approach presented in the previous section works fine in a static environment with a
fixed database of user ratings, it needs to be refined to work in a dynamic environment. The dynamics arises
from changing preferences patterns (for example, new styles of music in a music recommender system)
and the ever growing database of user ratings. Since user profiles are typically collected incrementally, we
suggest an incremental extension to the basic sampling scheme presented in Sec. IV-C. We assume that the
profile space is being updated after a fixed period of time, e.g. each day or week. The new user profiles
gathered during this period are being processed and some of them will be added to the profile space.

Assuming that we have a data base of user ratingsD. FromD, we have already constructed a profile space
P. After collecting user profile data for some time, we get an updated data baseD+, withD+ = D∪∆D. In
order to build the according profile spaceP+, select the set of candidate itemsC fromD+. Select the most
informative profile and update the profile spaceP+:

P+ ← P+ ∪ arg max
xi∈C

p(xi|D+)

p(xi|P+)
(21)
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Terminate if the new profile spaceP+ has reached a given size or if none of the candidate itemsxi ∈ C leads
to a reduction of KL-divergence. Otherwise, select a new candidate set and proceed.

Through this straight-forward extension we can retain the basic idea of using a small profile space, as
introduced in Sec. IV-B, while now being capable of incrementally processing new data.7

E. Computational Complexity

For the basic profile space construction, as outlined in Sec. IV-B, the computational complexity is as
follows:

Evaluating the density functionp(xi|D) for a candidate profilexi (see Eq. (19)) requires scanning the
whole data baseD with K user ratings. Its complexity is thusO(K). Since all potential profile spacesP
are subsets ofD, P ⊆ D, one can easily constructp(xi|P) as a “by-product” when scanning the data base
in order to findp(xi|D). Both steps are thusO(K), with K = |D|. Constructing a profile space of sizeN
requires a total ofO(KN) operations. Once the profile space, is constructed, one also needs to update the
varianceσ2 according to Eq. (4). This is done with a leave-one-out scheme, its complexity is thusO(N2).

Since one would typically keep the profile space resident in memory, the memory consumption of the
profile space construction isO(N), withN = |P|.

The suggested method for constructing a profile spaceP thus has the same complexity as making predic-
tions in a traditional memory-based CF method. Yet, as described in Sec. IV-D, profile space construction
can be seen as a background process that is being triggered by time or when unused computing power is
available. Thus, its time consumption is not visible to a user of the CF system. We argue that the so achieved
shift of workloadis important, since it greatly improves the efficiency of front-end processing, namely,
making predictions.

V. EMPIRICAL STUDY

In this section we report results from applying the probabilistic memory-based collaborative filtering
(PMCF) framework to two CF benchmark data sets, EACHMOVIE and JESTER. We report results on pre-
diction accuracy, efficiency of learning individual user profiles (based on the ideas presented in Sec. III) and
accuracy of the constructed profile spaces (using the incremental scenario of Sec. IV).

A. Data Sets

We apply the PMCF framework to the following two benchmark data sets:
• EACHMOVIE8 contains ratings from72, 916 users on1, 628 movies. User ratings were recorded on a

discrete scale from zero to five. On average, each user rated about 30 movies. EACHMOVIE is one of
the most widely used data sets in recommender system research.

• JESTER9 contains ratings from17, 998 users on 100 jokes, continuously valued from−10 to 10. On av-
erage, each user rated about 50 jokes. We transferred the ratings to a discrete scale{−10,−9, . . . , 9, 10}.

B. Evaluation Metrics and Experimental Setup

In collaborative filtering research, one is typically interested in two types of accuracy, the accuracy for
predicting ratings and the accuracy for making recommendations. The first one measures the performance
when explicitly predicting the active users ratings on some unseen items. The second one focusses on finding
an accurate ordering of a set of unseen items, in order to recommend the top ranked items to the active user.
These two scenarios require different experimental setups and metrics, which we will describe now.

7One might also consider the case of removing certain (outdated) user profiles fromP, yet we did not evaluate this idea in the present work.
8Available from the Digital Equipment Research Center athttp://www.research.digital.com/SRC/EachMovie/
9JESTERstems from a WWW-based joke recommender system, developed at the University of California, Berkeley [10]. It is available from

http://shadow.ieor.berkeley.edu/humor/
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1) Accuracy of Predicting Ratings:To evaluate the accuracy when the CF system is asked to predict
an active user’s ratings, we use the mean absolute error (MAE, the average absolute difference between
the actual ratings and the predicted ratings). This measure has been widely used in previous collaborative
filtering research [11], [31], [19], [5], [6].

We examine the accuracy of predictions in two experimental setups, ALL BUTONE and GIVEN5, which
were introduced in [11]:
• ALL BUTONE evaluates the prediction accuracy when sufficient information about the active user is

available. For each active user (from the test set10) we randomly hide one of the rated items and predict
its rating, based on the ratings on other non-hidden items.

• GIVEN5 evaluates the performance of a CF system when only little information about a user is available.
For each active user, we retain only 5 ratings. The CF system predicts the ratings of hidden items, based
on the 5 visible ratings.

It has been argued that the accuracy of a CF system is most critical when predicting extreme ratings (very
high or very low) for items [19], [6]. Since the goal of a CF system is to make recommendations, high
accuracy on high and low rated items is of most importance. One would like to present those items (in
particular, products) that the active user likes most, and avoid anything the user dislikes. Therefore, for both
of the above ALL BUTONE and GIVEN5 setups, we use two settings EXTREME and ALL (see [19]). The
ALL setting corresponds to the standard case where the CF system is asked to predict any of the hidden
ratings. In the EXTREME setting, the CF system only predicts ratings that are on the end of the rating scales.
For EACHMOVIE, these extreme ratings are{0, 1, 2, 4, 5}, and ratings below -5 or above 5 for JESTER.

2) Accuracy of Recommendations:We use precision and recall to evaluate the accuracy of recommen-
dations. These two metrics have been extensively used in information retrieval and collaborative filtering
research [1], [18]. In our experiments, precision is the percentage of items recommended to a user that the
user actually likes. Recall is the percentage of items the user likes that are also recommended by the CF
system. For the EACHMOVIE data, we assume that users like those items (movies) which they had rated 4
or 5. For JESTER, we assume that users like those jokes that had been given a rating larger than 5.

To compute precision and recall, we use the following setup. For each active user (from the test set11) we
randomly hide 30 of the user’s ratings12. The CF system then predicts the ratings for these items, based on
the remaining visible ratings. The top ranked items out of these 30 items are then recommended to the user
and used to evaluate precision and recall. We compute precision and recall for two cases, where we either
recommend the top 5 or the top 10 ranked items. These two cases will be labeled TOP5 and TOP10 in the
table of results.

3) Training and Test Sets:For comparing the accuracy of predictions of PMCF with that of Bayesian
network CF [11] on the EACHMOVIE data, we use exactly the same split as reported in [11], [19] with
training and test sets of size 5000. To be able to evaluate the significance of our results, we use training and
test sets (both of size 5000) drawn at random from the data, and repeat this five times.

Similarly, for evaluating the accuracy of prediction on the JESTERdata, we take the first 5000 users as the
training set, and the next 5000 as the test set. Five random splits are used for significance tests.

As mentioned above, we skip all test users that have rated less than 31 items when computing precision
and recall, respectively less than two (six) items when computing the MAE in the ALL BUTONE (GIVEN5)
setup. Final results for MAE, precision and recall are always averaged over all users in the test set.

C. Comparison With Other CF Methods

To compare the results of PMCF with other established CF methods, we report results in terms of MAE,
precision and recall for PMCF and for the following methods that have proven successful in the CF litera-
ture.

10This naturally requires that we skip users in the test set that have only rated one single item, respectively users that rated less than 6 items in
the GIVEN5 setup.

11The setup requires that we skip users who had rated less than 31 items.
12We experimented with different numbers here, for example, hiding 20 of the user’s ratings. We found that the results were consistent

throughout these experiments, thus we present only results for one setup.
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• Memory-based CF with Pearson correlation coefficient [5], one of the most popular memory-based CF
algorithms.

• Bayesian network CF [11]. Since we use exactly the same experimental setup and evaluation metrics
for the EACHMOVIE data as reported in [11], we can directly compare the performance of Bayesian
network CF with other methods. We did not implement Bayesian network CF for the JESTERdata.

• Näıve Bayesian CF [32]. Despite its simplicity, the naı̈ve Bayesian classifier has proven to be competi-
tive with Pearson correlation CF.

All methods are evaluated in the setup described in Sec. V-B.
We compare the above listed methods with two variants of PMCF, which we label PMCFP and PMCFD.

For the PMCFD variant, we use the full training set to build the density model in Eq. (2), that is, the profile
space is taken to be the full training dataP = D. The other variant PMCFP is PMCF with profile space
constructed from the training setD in the way described in Sec. IV. For both EACHMOVIE and JESTER, we
constructed profile spaces with 1000 profiles (out of the training data of size 5000).

D. Evaluation of Accuracy

Tab. I and II summarize the performance of all evaluated CF methods in terms of accuracy for prediction
and recommendation.

Tab. I lists results for accuracy of prediction that are based on one particular split of the data into training
and test set that has also been used in [11]. It can be clearly seen that PMCF achieves an MAE that is about
7-8% lower than the MAE of the competing methods. The results also suggest that PMCF is particularly
suitable for making predictions when only very little information about the active user is given: PMCF
achieved a particularly high improvement of accuracy for the GIVEN5 scenarios.

For the accuracy of predictions, we also evaluated all methods (except for the Bayesian network) with five
different randomly drawn training and test sets of size 5000, and did a pairwise comparison of results using
a pairedt-test. The test confirmed that both variants of PMCF performed better than all of the competing
method with a significance level of99% or above. Comparing PMCFP and PMCFD, we noted that both
performed almost identical for the GIVEN5 setups. For the two ALL BUTONE setups, PMCFD achieved a
slightly better performance.

The results for accuracy of recommendation listed in Tab. I are averages over five different random splits
into training and test data, as described above. The large advantage of PMCF in terms of accuracy of
prediction does not fully carry over to the accuracy of recommendation. Still, a consistent and statistically
significant gain in performance could be achieved. Precision and recall of PMCF are typically about 2-3%
better than those of the competing methods. A larger performance gain was always achieved in the TOP5
setup. Again, a pairwise comparison of results in a pairedt-test was conducted. Results for one of the two
PMCF variants that are marked in bold in Tab. I are better than those of the two competing methods with a
significance level of95% or above. Similarly, results marked in italics achieve a significance level of90%
or above.

Overall, we could verify that our proposed probabilistic memory-based CF framework achieves an accu-
racy that is comparable or superior to other approaches that have been proposed for collaborative filtering.

E. Evaluation of Profile Learning

In Sec. III, we proposed an active learning approach to interactively learn user profiles. In this section we
investigate the performance of this learning process in a series of experiments that simulate the interaction
between users and the recommender system.

We use the training/test split described in Sec. V-B.3. For each test user, ratings are randomly split into
a setS of 30 items and the remaining itemsU . We assume that the test user initially has not rated any
items, and we wish to infer his profile using the active learning approach. To obtain long learning curves,
we restrict the test set to users who had rated at least 60 items. This leaves us with 972 and 1340 test users
respectively for the EACHMOVIE and JESTERdata sets.
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TABLE I

ACCURACY OF PREDICTIONS, MEASURED BY MEAN ABSOLUTE ERRORMAE, OF DIFFERENTCF METHODS. DETAILS ON THE

INDIVIDUAL EXPERIMENTS ARE GIVEN IN SEC. V-B AND V-C. BOTH PMCFP AND PMCFD CONSISTENTLY OUTPERFORM THE

COMPETING METHOD, IN PARTICULAR WHEN LITTLE INFORMATION IS GIVEN ABOUT THE ACTIVE USER IN THEGIVEN5 SCENARIO.

THE RESULTS SHOWN HERE ARE BASED ON THE TRAINING/TEST SPLIT REPORTED INSEC. V-B.3. ADDITIONAL EXPERIMENTS WITH 5

RANDOM SPLITS AND PAIREDt-TEST CONFIRMED THATPMCF OUTPERFORMED THE COMPETING METHODS AT A SIGNIFICANCE LEVEL

OF 99% OR ABOVE

EACHMOVIE JESTER

ALL EXTREME ALL EXTREME

ALL BUTONE GIVEN5 ALL BUTONE GIVEN5 ALL BUTONE GIVEN5 ALL BUTONE GIVEN5
Pearson correlation 0.996 1.150 1.130 1.290 3.927 4.258 5.062 5.730
Bayesian networks 1.066 1.154
Näıve Bayes 0.987 1.162 1.096 1.223 4.132 4.263 4.753 5.512
PMCFD 0.966 1.008 1.010 1.112 3.544 3.967 4.408 5.219
PMCFP 0.984 1.008 1.040 1.110 3.724 3.972 4.523 5.464

TABLE II

ACCURACY OF RECOMMENDATIONS, MEASURED BY PRECISION AND RECALL, OF DIFFERENTCF METHODS. ALL RESULTS IN THIS

TABLE ARE AVERAGED OVER 5 RUNS, WHERE TRAINING AND TEST SETS HAD BEEN DRAWN AT RANDOM FROM THE TOTAL DATA SETS.

MARKED IN BOLD ARE PMCF RESULTS THAT ARE SIGNIFICANTLY BETTER(WITH A SIGNIFICANCE LEVEL OF 95% OR ABOVE IN A

PAIRED t-TEST) THAN THE COMPETING APPROACHES. MARKED IN ITALIC ARE PMCF RESULTS THAT ARE BETTER THAN THE

COMPETING APPROACHES WITH A SIGNIFICANCE LEVEL OF90% OR ABOVE. FURTHER DETAILS ON THE INDIVIDUAL EXPERIMENTS

ARE GIVEN IN SEC. V-B AND V-C

EACHMOVIE JESTER

TOP5 TOP10 TOP5 TOP10
Precision Recall Precision Recall Precision Recall Precision Recall

Pearson correlation 0.703 0.284 0.656 0.510 0.406 0.251 0.386 0.454
Näıve Bayes 0.663 0.264 0.617 0.484 0.383 0.235 0.381 0.443
PMCFD 0.715 0.291 0.665 0.520 0.425 0.264 0.397 0.468
PMCFP 0.713 0 .288 0 .659 0 .512 0.416 0.256 0 .391 0.464

The interactive sessions are simulated as follows: The recommender system selects the 10 most informa-
tive items13 according to the criterion described in Sec. III-D. User feedback is taken from the actual ratings
the user has given on an item, if the item is in setU . Otherwise it is left unrated, simulating that the user is not
able to give feedback on this particular item. We make a series of such simulated interactions,t = 1, 2, . . . ,
gaining more and more knowledge about the user’s profile. For test usera, we compute the MAE when pre-
dicting the ratings in setS and the precision for making recommendations in setS, denoted byMAE(a, t)
andprecision(a, t). By averaging over all users in the test set, we obtainMAE(t) andprecision(t).

Using MAE and precision, we compare the following 5 methods for selecting the query items:
1) Query item selection by minimizing the entropy of the like-mindedness, as outlined in Sec. III-D.
2) Uncertainty sampling, as described in Sec. III-E
3) Entropy sampling, as described in Sec. III-E
4) Popularity sampling: At each iteration, we present 10 of the most popular items to the test user
5) Random sampling: At each iterationt, we randomly select 10 query items

Methods 3, 4 and 5 have also been studied in [21].
The resulting learning curvesMAE(t) andprecision(t) for the above 5 methods are shown in Fig. 2 (for

the EACHMOVIE data) and in Fig. 3 (for JESTER). The graphs clearly indicate that query item selection
based on like-mindedness outperforms all other tested methods. Like-mindedness based selection is thus a

13Query items might also be presented one by one, instead of using batches of 10 items. We chose the variant with 10 items since it seems
more natural in an application scenario. Presenting items one by one can easily make users impatient.
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(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 2. Learning individual user profiles for the EACHMOVIE data. Mean absolute errorMAE(t) andprecision(t) achieved aftert = 1, 2, . . .
steps of user interaction with different strategies for query item selection. Details of the experimental setup are given in Sec. V-E

(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 3. Learning individual user profiles for the JESTERdata. Mean absolute errorMAE(t) andprecision(t) achieved aftert = 1, 2, . . . steps
of user interaction with different strategies for query item selection. Details of the experimental setup are given in Sec. V-E

method which achieves a maximum gain of information about a particular user with only a minimum of user
effort.

For all of the tested methods, we also investigated the average number of items the user is being able to
rate at a particular iterationt. The low performance of random and entropy based sampling, in particular on
EACHMOVIE, can be explained by the fact that users are not able to answer the posed queries. The remaining
three methods all achieve similar results for the average number of rated items. Yet, like-mindedness sam-
pling seems to ask more informative questions, leading to the steepest learning curves among all methods in
Fig. 2 and 3.

From the presented results, we conclude that like-mindedness based sampling is a sensible and accurate
method of inferring user profiles and requires only a minimum amount of user effort. It has a particularly
good performance on data sets with high sparsity such as EACHMOVIE, where only 3% of the items are
rated, yet it also performs better than competing approaches on dense data sets (JESTER).



DRAFT, ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 4. Evaluating the profile space construction for the EACHMOVIE data set. Mean absolute error MAE and precision achieved with profile
spaces of different size, that are either constructed based on KL-divergence (see Sec. IV) or drawn at random from the training data. The plot is
averaged over 10 runs, with error bars

F. Evaluation of Constructing Profile Spaces

We showed in Sec. IV how a small profile spaceP for the PMCF model can be constructed out of a large
data base of user ratingsD. In this section, we investigate how the profile space construction relates to the
achievable accuracy for predictions and recommendations in the PMCF model.

To this aim, we use the split of training and test data described in Sec. V-B.3. From the training dataD,
the profile spaceP is constructed iteratively as outlined in Sec. IV. At certain intervals14, we evaluate the
performance of the PMCF method, based on the profile space constructed so far, on the test set. We use the
mean absolute error MAE in the ALL BUTONE setting and precision in the TOP10 setting as the measures
of performance.

We so obtain a curve of performance versus size of the profile space. Since constructing the profile space
uses a randomized strategy to select candidate profiles (see Sec. IV-C), we repeat this procedure 10 times.
Thus, error bars for the performance of PMCF with a profile space of a given size can be plotted. As the
baseline method, we use a PMCF model with a profile space drawn at random from the full training dataD.

The resulting curves for accuracy of prediction (MAE) and recommendation (precision) on the EACH-
MOVIE data are shown in Fig. 4, and in Fig. 5 for the JESTERdata. All plots clearly indicate that the profile
space construction presented in Sec. IV does bring significant advantages in terms of performance over a ran-
domly chosen profile space. The gain in performance was particularly large for accuracy of recommendation
on the JESTERdata.

VI. CONCLUSIONS

In this paper we proposed a probabilistic framework for memory-based collaborative filtering (PMCF).
The PMCF is based on user profiles in a specially constructed profile space. With PMCF the posterior distri-
bution of user ratings can be used to predict an active user’s ratings. An experimental comparison with other
CF methods (memory-based CF with Pearson correlation, Bayesian networks, naı̈ve Bayes) showed that
PMCF outperforms the competing methods both in terms of accuracy for prediction and recommendation.

As one of its major advantages, PMCF allows extensions to the basic model on a sound probabilistic
basis. We showed in Sec. III how an active learning approach can be integrated smoothly into the PMCF
framework. Through active learning, the CF system can interactively learn about a new user’s preferences,

14Evaluation is done when the profile space has reached a size of 60, 125, 250, 500, 1000, 2000 and 4000.
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(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 5. Evaluating the profile space construction for the JESTER data set. Mean absolute error MAE and precision achieved with profile
spaces of different size, that are either constructed based on KL-divergence (see Sec. IV) or drawn at random from the training data. The plot is
averaged over 10 runs, with error bars

by presenting well selected query items to the user. Our results showed that the active learning approach per-
formed better than other methods for learning user profiles, in the sense that it can make accurate predictions
with only a minimum amount of user input.

In Sec. IV we used the probabilistic framework to derive a data selection scheme that allows the recom-
mender system to make fast and accurate predictions. Instead of operating on a possibly huge database of
user preferences (as traditional memory-based CF does), the data selection scheme allows us to use only a
carefully selected subset, which we call the profile space. Using the so selected profile space in the PMCF
model allows making fast predictions with only a small drop in performance over a PMCF model operating
on the full data.

We believe that the PMCF framework will allow more extensions and thus can contribute to further im-
provements of recommender systems. A particularly promising research direction is the combination of CF
methods with content based filtering into hybrid systems. We are currently working on a PMCF based hybrid
system for image and text retrieval [33]. This system implicitly also solves the new item problem: If no user
ratings are available for an item, predictions can still be made on the basis of the content description.

Our further work on the PMCF model will also include an improved model for user preferences. In
Eq. (3), only items that were actually rated contribute to the model. An improved model could also take into
account the information which items had not been rated. For example, in the EACHMOVIE data, a movie
may have been unrated because a friend had dissuaded the user from seeing the movie. Thus, one may be
able to extract a certain degree of information from the set of unrated items as well and further improve the
accuracy of a CF system.

For the current PMCF system, as described in this article, the efficiency of the active learning scheme still
needs to be improved. Active learning based on minimization of the entropy of like-mindedness achieves the
best recommendation accuracy, yet the computational complexity is higher than that of competing methods
such as uncertainty sampling.
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