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Abstract

In this paper, we present REPRIV, a system for managing and control-

ling the release of private information from the browser. We demon-

strate how always-on user interest mining can effectively infer user in-

terests in a real browser. We go on to discuss an extension framework

that allows third-party code to extract and disseminate more detailed

information, as well as language-based techniques for verifying the

absence of privacy leaks in this untrusted code. To demonstrate the ef-

fectiveness of our model, we present REPRIV extensions that perform

personalization for Netflix, Twitter, Bing, and GetGlue.

We evaluated several aspects of REPRIV in realistic scenarios. We

show that REPRIV’s default in-browser mining can be done with no

noticeable overhead to normal browsing, and that the results it pro-

duces converge quickly. We then go on to show similar results for each

of our case studies: that REPRIV enables high-quality personalization,

as shown by cases studies in news and search result personalization

we evaluated on thousands of instances, and that the performance im-

pact each case has on the browser is minimal. We conclude that per-

sonalized content and individual privacy on the web are not mutually

exclusive.
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1. Introduction
The motivation of this work comes from the observation that in to-
day’s web there are two distinct groups, users and service providers
such as Amazon, Google, Microsoft, Facebook and the like. Ser-
vice providers are interested in learning as much about their users
as they can so that they can better target their ads or provide content
personalization. Users might welcome content, ad, and site person-
alization as long as it does not compromise their privacy.

In today’s web, for service providers, personalization opportu-
nities are limited. Even if sites like Amazon and Facebook allow or
sometimes require authentication, service providers only know as
much about the user as can be gathered through interaction with the
site. A user might only spend a few minutes a day on Amazon.com,
for example. This is minuscule compared to the amount of time the
same user spends in the browser. This suggests a simple lesson: the
browser knows much more about you than any particular site you
visit. Based on this observation, we suggest the following strategy,
which forms the basis for REPRIV:

1. Let the browser infer information about the user’s interests
based on his browsing behavior, the sites he visits, his prior
history, and detailed interactions on web sites of interest to form
a user interest profile.

2. Let the browser control the release of this information. For
instance, upon the request of a site such as Amazon.com or
BarnesAndNoble.com, the user will be asked for a permission
to send her high-level interests to the site. This is similar to
prompting for the permission to obtain the geo-location in to-
day’s mobile browsers. By default, more explicit information
than this, such as the history of visited URLs would not be ex-
posed to the requesting site. It is important that the user stay in
control of the information that is released.

3. In addition to default user interest mining, REPRIV allows ser-
vice providers to register extensions that would perform infor-
mation extraction within the browser. For instance, a Netflix
extension (or miner) may extract information pertinent to what
movies the user is interested in. The miner may use the history
of visiting Fandango.com to see what movies you saw in the-
aters in the past. REPRIV miners are statically verified at the
time of submission to disallow undesirable privacy leaks.

This approach is attractive for web service providers because they
get access to user’s preferences without the need for complex data
mining machinery and is in any case based on very limited informa-
tion. It is also attractive for the user because of better ad targeting
and content personalization opportunities. Moreover, this approach
opens up an interesting new business model: service providers can
incentivize users to release their preferences in exchange for store
credit, ad-free browsing, or access to premium content. Compared
to prior research [12, 33], the appeal of REPRIV is considerably
more extensive as it enables the following broad applications:

1. Personalized search. Search results from a variety of search
engines can be re-ranked to match user’s preferences as well as
their browsing history (Section 6.1).

2. Site personalization. Sites such as Google News, CNN.com, or
overstock.com can be easily adopted within the browser to
match user’s news or shopping preferences (Section 6.2).

3. Ad targeting. Although we do not explicitly focus on ad per-
sonalization in this apper, REPRIV enables client-based ad-
targeting as suggested by Adnostic [33] and Privad [].

Note that REPRIV is largely orthogonal to in-private browsing
modes supported by modern browsers. While it is still possible
for a determined service provider to perform user tracking unless

they combile REPRIV with a browser privacy mode, it is our hope
that the service provider will opt for explicitly requesting user
preferences through the REPRIV protocol rather than using a back
door.

1.1 Contributions
Our paper makes the following contributions:

• REPRIV, a system for controlling the release of private infor-
mation within the browser. We demonstrate how built-in data
mining of user interests can work in a real browser called C3.

• REPRIV protocol. We propose a protocol on top of HTTP that
can be used to seamlessly integrate REPRIV with existing web
infrastructure. We also show how pluggable extensions can be
used to extract more detailed information, and how to check
these third-party miners for unwanted privacy leaks.

• REPRIV miners. Using four realistic miner examples, we show
how custom miners can be developed in REPRIV.

• Miners verification. We describe a browser API and a type
system based on the Fine programming language [] that ensures
that miners installed in the brower cannot result in privacy
leaks.

• Evaluation. Implementation and evaluation in real-life scenar-
ios. We demonstrate that REPRIV mining can be done with min-
imal overhead to the end-user latency. We also show the efficacy
of REPRIV mining on real-life browsing sessions and conclude
that REPRIV is able to learn user preferences quickly and suffi-
ciently for many web personalization tasks. We demonstrate the
utility of REPRIV by performing two large-scale case studies,
one targeting news personalization, and the other focusing on
search result personalization, both evaluated on real user data.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2 gives moti-
vation for the specification inference techniques REPRIV uses. Sec-
tion 3 talks about our implementation. Section 4 discusses custom
REPRIV miners. Section 5 describes our experimental evaluation.
Section 6 describes two detailed case studies, one focusing on news
and the other on search personalization. Section 7 touches upon
everything else. Finally, Sections 8 and 9 describe related work and
conclude.

2. Overview
We begin with a high-level discussion in Section 2.1 of existing ef-
forts to preserve privacy on the web, and how REPRIV fits into this
context. Section 2.2 talks about site personalization and Section 2.3
argues for third-party personalization extensions or “miners”.

2.1 Background
One definition of privacy common in popular thought and law is
summarized as follows: individual privacy is a person’s right to
control information about one’s self, both in terms of how much
information others have access to, and the manner in which others
may use it. The web as it currently stands is different from how it
was initially concieved; it has transformed from a passive medium
to an active one where users take part in shaping the content they
receive. One popular form of active content on the web is person-
alized content, wherein a provider uses certain characteristics of a
particular user, such as their demographic or previous behaviors,
to filter, select, or otherwise modify the content that it ultimately
presents. This transition in content raises serious concerns about
privacy, as arbitrary personal information may be required to en-
able personalized content, and a confluence of factors has made it
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difficult for users to control where this information ends up, and
how it is used.

Because personalized content presents profit opportunity, busi-
nesses have incentive to adopt it quickly, oftentimes without user
consent. This creates situations that many users percieve as a viola-
tion of privacy. A prevalent example of this is already seen with
online targeted advertising, such as that offered by Google Ad-
Sense [10]. By default, this system tracks users who enable browser
cookies across all websites that choose to partner with it. This
tracking can be arbitrarily invasive as it pertains to the user’s be-
havior at partner sites, and in most cases the user is not explicitly
notified that the content they choose to view also actively tracks
their actions, and transmits it to a third party (Google). While most
services of this type have an opt-out mechanism that any user can
invoke, many users are not even aware that a privacy risk exists,
much less that they have the option of mitigating it.

As a response to concerns about individual privacy on the web,
developers and researchers continue to release solutions that re-
turn various degrees of privacy to the user. One well-known ex-
ample is the private browsing modes available in most modern
browsers, which attempt to conceal the user’s identity across ses-
sions by blocking access to various types of persistent state in the
browser [1]. However, a recent study [1] demonstrated that none
of the major browsers implement this mode correctly, leading to
alarming inconsistencies between user expectations and the fea-
tures offered by the browser. Even if private browsing mode were
implemented correctly, it inherently poses significant problems for
personalized content on the web, as sites are not given access to the
information needed to perform personzlization.

Others have attempted to build schemes that preserve the pri-
vacy of the user while maintaining the ability to personalize con-
tent. Most examples [9] [12] [17] [33] concern targeted advertising,
given its prevalence and well-known privacy implications. For ex-
ample, both PrivAd [12] and Adnostic [33] are end-to-end systems
that preserve privacy by performing all behavior tracking on the
client, downloading all potential advertisements from the adver-
tisor’s servers, and selecting the appropriate ad to display locally
on the client. Although these systems differ in details regarding
accounting and architecture, they share a basic strategy for main-
taining user privacy: keep sensitive information local to the user, to
simplify the matter of control.

The goal of REPRIV is to enable general personalized content
on the web in a privacy-conscious manner. Like PrivAd and Adnos-
tic, REPRIV does this by keeping all of the sensitive information
necessary to perform personalization close to the user, within the
browser. However, REPRIV differs from these systems both tech-
nically and in the notion of privacy it considers. Because REPRIV
does not target a specific application, it does not attempt to com-
pletely hide all personal information from the party responsible for
providing personalized content. Aside from the improbable techni-
cal advances needed to make such a system practical, it is not clear
that content providers would take part in such a scheme, as they
would loose access to the valuable user data that they currently use
to improve their products and increase efficiency. Rather, REPRIV
leaves it to the user to decide which parties may access the various
types of data stored inside the browser, and manages dissemination
accordingly in a secure manner.

We posit that expecting the user to make this decision is not only
reasonable, but necessary given the constraints discussed above.
The basis of this decision must be two-fold, depending both on the
trust the user has in the content provider, as well as the incentive
the content provider gives the user for access to his data. However,
this type of decision is ultimately similar to the type of decision
a user makes when signing up for an account at amazon.com or
netflix.com: if he agrees to the terms in the privacy policy, then he

has deemed the benefit offered by that site worth the reduction in
personal privacy needed to obtain it. This is the same negotiation
that REPRIV relies on to protect user privacy while still enabling
a diverse set of personalized applications. Thus, the challenge of
REPRIV is to facilitate the collection of personal information from
the browser in a manner flexible enough to enable existing and
future personalized applications, while maintaining explicit user
control over how that information is used and disseminated to third
parties on the web.

2.2 Motivating Personalization Scenarios
In designing the core behavior mining mechanisms in REPRIV, we
kept several applications in mind to guide our considerations. Our
goal with core behavior mining is to remain as general and flexible
as possible, while allowing the user precise, total control over the
information about them that is released to remote parties.

Content Targeting: Commonplace on many online merchant
websites is content targeting: the inference and strategic placement
of content likely to compel the user, based on previous behavior. Al-
though popular sites such as amazon.com and netflix.com already
support this functionality without issue, the amount of personal
information collected and maintained by these sites have real im-
plications for personal privacy [24] that may surprise many users.
Additionally, the fact that the personal data needed to implement
this functionality is vaulted on a particular site is an inconvenience
for the user, who would ideally like to use their personal infor-
mation to recieve a better experience on a competitor’s site. By
keeping all of the information needed for this application in the
browser, REPRIV can solve both problems.

As a concrete example, consider that news sites should be able
to target specific stories to users based on their interests. This could
be done in a hierarchical fashion, with various degrees of speci-
ficity. For example, when a user navigates nytimes.com, the main
site could present the user with easy access to relevant types of sto-
ries (e.g. technology, politics, . . . ). When the user navigates to more
specific portions of the site, as in looking only at articles related to
technology, then the site should be able to query for specific inter-
est levels on subtopics, to prioritize stories that best match the user.
As the site attempts to provide this functionality, the user should be
able to decline requests for personal information, and possibly offer
related personal information that is not as specific or personally-
identifying as a more private alternative. Notice that nytimes.com
does not play a special role in this process; immediately after visit-
ing nytimes.com, a competing site such as reuters.com could utilize
the same information about the user to provide a similar personal-
ized experience.

Targeted Advertising: Advertising serves as one of the primary
enablers of free content on the web, and targeted advertising al-
lows merchants to maximize the efficiency of their efforts. REPRIV
should facilitate this task in the most direct way possible by allow-
ing advertisers to consult the user’s personal information, without
removing consent from the picture. Advertisers have incentive to
use the accurate data stored by REPRIV, rather than collecting their
own data, as the browser-computed interests are more representa-
tive of the user’s complete browsing behavior. Additionally, con-
sumers are likely to select businesses who engage in practices that
do not seem invasive.

Most targeted advertisement schemes today make use of an
interest taxonomy, that characterize market segments in which a
user is most likely to show interest. Thus, for REPRIV to properly
facilitate existing targeted advertising schemes, it must allow a
third-party to infer this type of information with explicit consent
from the user.
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Figure 1: REPRIV architecture

2.3 Personalization Extensions
While the core mining mechanism in REPRIV is meant to be as
general-purpose as possible, the pace at which new personalized
web applications is appearing suggests that REPRIV will need an
extra degree of flexibility to support up-and-coming apps. A large
part of our work focuses on an extension platform that enables near-
arbitrary programmatic interaction with the user’s personal data,
in a verifiably privacy-preserving manner. Due to the technicial
difficulty of achieving this goal, we focus our efforts on a few areas
described below.

Topic-Specific Functionality: Users may spend a disproportion-
ate amount of time at particular types of sites, e.g. movie-related,
science, or finance sites. These users are likely to expect a more
specific degree of personalization on these sites than the general-
purpose core mining can provide. To facilitate this, third-party au-
thors should be able to write extensions that have specific under-
standing of user interaction with these websites, and are able to
mediate REPRIV’s stored user information accordingly. For exam-
ple, a plugin should be able to track the user’s interaction with Net-
flix, observe which movies he likes and dislikes, and update his
interest profile to reflect these preferences. Another example arises
with search engines: a single extension should be able to interpret
interactions with all popular search engines, perform an analysis
to determine which interest categories the observed search queries
relate to, and update the user’s profile accordingly.

Web Service Relay: A popular trend on the web is to open pro-
prietary functionality to independent developers through API’s over
HTTP. Many of these API’s have direct implications for personal-
ization. For example, Netflix now has an API that allows a third-
party developer to programmatically access information about the
user’s account, including their movie preferences and purchase his-
tory. Other examples allow a third-party developer to submit por-
tions of a user’s overall preference profile or history to recieve
content recommendations or hypothesized ratings; getglue.com,
hunch.com, and tastekid.com are all examples of this. REPRIV ex-
tensions should be able to act as intermediaries between the user’s
personal data and the services offered by these API’s. For exam-
ple, when a user navigates to fandango.com, the site can query an
extension that in turn consults the user’s Netflix interactions and
amazon.com purchases, and returns useful derived information to
fandango.com for personalized showtimes or film reviews.

Direct Personalization: In many cases, it is not reasonable to
expect a website to keep up with the user’s expectations when it
comes to personalization. It may be simpler and more direct to
write an extension that can access REPRIV’s repository of user in-
formation, and modify the presentation of selected sites to imple-
ment a degree of personalization that the site is unwilling to pro-
vide. To facilitate this need, REPRIV extensions should be able to

interact with and modify the DOM structure of selected websites
to reflect the contents of the user’s personal information. For ex-
ample, REPRIV should allow an extension that activates only when
the user visits nytimes.com, and reconfigures the layout of the sto-
ries that are presented to reflect the interest topics that are most
prevalent in REPRIV’s personal information store.

3. Technical Issues
This section is organized as follows. Section 3.1 discussed browser
modifications we implemented to support REPRIV. Section 3.2
discusses support for REPRIV miners.

3.1 Browser Modifications
Our current research prototype of REPRIV is built on top of C3,
a research browser developed in .NET. However, we believe that
other browsers can be modified in a very similar manner. We
modified C3 in the following ways to add support for REPRIV:

• Added a behavior mining algorithm that observes users’ brows-
ing behavior and automatically updates a profile of user inter-
ests (Section 3.1.1).

• Implemented a communication protocol that sits on top of
HTTP and allows web sites to utilize the information main-
tained by REPRIV in the browser (Section 3.1.2).

• Exposed an API that allows third-party extensions to utilize the
information maintained by REPRIV, and interact programati-
cally with web sites (Section 3.2).

3.1.1 User Behavior Mining
The goal of our general-purpose behavior mining algorithm is to
provide relevant parties with two types of information about the
user:

• Top-n topics of interest, where n can vary to suit the needs of
each particular application,

• The level of interest in a given set of topics, normalized to a
reasonable scale.

Our approach works by classifying individual documents viewed
in the browser, and keeping related aggregate information of total
browsing history in the personal store.

top 

science 

physics 

math 

sports football 

Figure 2: Portion of taxonomy

Interest Categories: To
characterize user inter-
ests, we use a hierarchi-
cal taxonomy of docu-
ment topics maintained
by the Open Directory
Project [26] (ODP). The
ODP classifies a portion of
the web according to a hierarchical taxonomy with several thou-
sand topics, with specificity increasing towards the leaf nodes of
the corresponding tree. We use only the most general two levels of
the taxonomy, which account for 450 topics. To convey the level
of specificity contained in our interest hierarchy, a small portion is
presented in Figure 2.

Classifying Documents: Of primary importance for our docu-
ment classification scheme is performance: REPRIV’s default be-
havior must not impact normal browsing activities in a noticeable
way. This immediately rules out certain solutions, such as querying
existing web API’s that provide classification services. We selected
the Naı̈ve Bayes classification algorithm for its well-known perfor-
mance in document classification tasks, as well as its low compu-
tation cost on most problem instances.
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To create our Naı̈ve Bayes classifier, we obtained 3,000 docu-
ments from each category of the first two levels of the ODP tax-
onomy. We selected attribute words as those that occur in at least
15% of documents for at least one category, not including stop
words such as “a”, “and”, and “the”. We then ran standard Naı̈ve
Bayes training on the corpus, calculating the needed probabilities
P (wi Cj), for each attribute word wi and each class Cj . Calcu-
lating document topic probabilities at runtime is then reduced to a
simple log-likelihood ratio calculation over these probabilities.

To ensure that the cost of running topic classifiers on a docu-
ment does not impinge on browsing activities, this computation is
done in a background worker thread. When a document has fin-
ished parsing, its TextContent attribute is queried and added to a
task queue. When the background thread activates, it consults this
queue for unfinished classification work, runs each topic classifier,
and updates the personal store. Due to the interactive characteris-
tics of internet browsing, i.e. periods of bursty activity followed by
downtime for content consumption, there are likely to be many op-
portunities for the background thread to complete the needed tasks.

Aggregate Statistics: REPRIV uses the classification information
from individual documents to relate aggregate information about
user interests to relevant parties. The first type of information that
REPRIV provides is the “top-n” statistic, which reflects n taxon-
omy categories that comprise more of the user’s browsing history
than the other categories. Computing this statistic is done incremen-
tally, as browsing entries are classified and added to the personal
store.

The second type of information provided by REPRIV is the de-
gree of user interest in a given set of interest categories. For each in-
terest category, this is interpreted as the portion of the user’s brows-
ing history comprised of sites classified with that category. This sta-
tistic is efficiently computed by indexing the database underlying
the personal store on the column containing the topic category.

3.1.2 Interest Protocol
REPRIV allows third-party websites to query the browser for two
types of information that are computed by default when REPRIV
runs. The protocols are depicted graphically in Figure 3. The design
of these protocols is constrained by three separate concerns:

1. Secure dissemination of personal information. The user should
have explicit control over the information that is passed from
the browser to the third-party website. Additionally, the user-
driven declassification process should be intuitive and easy to
understand: when the user is prompted with a dialog box re-
garding a request for personal information, it should be obvi-
ous what information is at stake, and what measures the user
must take to either allow or disallow the dissemination. Finally,
it should be possible to communicate this information over a
channel secure from eavesdropping.

2. Backwards compatibility with existing protocols. Site operators
should not need to run a separate daemon on behalf of REPRIV
users. Rather, it should be possible to incorporate the informa-
tion made available by REPRIV with minor changes to existing
software.

We will now walk through each step of the protocol. There are two
shown in Figure 3; one for each type of information that can be
queried (top-n interests and specific interest level by category).
However, they differ only in minor ways regarding the types of
information communicated.

The client signals its ability to provide personal information by
including a repriv element in the Accept field of the standard
HTTP header. If the server daemon is programmed to understand
this flag, then it may respond with an HTTP 300 message, provid-

ing the client with the option of subsequently requesting the de-
fault content, or providing personal information to receive person-
alized content. The information requested by the server is encoded
as URL parameters in one of the content alternatives listed in this
message. For example, the server in Figure 3(b) requests the user’s
interest in the topic “category-n”, which is encoded by specifing
catN as the value for the interest variable. At this point, the
browser prompts the user regarding the server’s information re-
quest, in order to declassify the otherwise prohibited flow from the
personal store to an untrusted party. If the user agrees to the infor-
mation release, then the client responds with a POST message to the
originally-requested document, which additionally contains the an-
swer to the server’s request. Otherwise, the connection is dropped.

3.2 Miner Support
To support a degree of flexibility and allow future personalization
applications to integrate into its framework, REPRIV provides a
mechanism for loading third-party software that utilizes the per-
sonal store. We call REPRIV extensions Miners, to reflect the fact
that they are intended to assist with novel behavior mining tasks.
Of paramount importance to supporting miners correctly is ensur-
ing that (1) they do not leak private user data to third parties without
explicit consent from the user, and (2) does not compromise the in-
tegrity of the browser, including other miners. The majority of our
technical discussion regarding miners addresses these concerns.

3.2.1 Security Policies
To support a diverse set of extensions while maintaining control
over the sensitive information contained in the personal store,
REPRIV allows extension authors to express the capabilities of
their code in a simple policy language. At the time of installation,
users are presented with the extension’s list of needed capabilities,
and have the option of allowing or disallowing any of the individual
capabilities. Several of the policy predicates refer to provenance
labels, which are 〈host , extensionid〉 pairs. All sensitive infor-
mation used by miners is tagged with a set of these labels, which
allow policies to reason about information flows involving arbitrary
〈host , extensionid〉 pairs. REPRIV’s policy language is based on
the predicates in Figure 4.

Given a list of policy predicates regarding a particular miner, the
policy for that extension is interpreted as the conjunction of each
predicate in the list. This is equivalent to behavioral whitelisting:
unless a behavior is implied by the predicate conjunction, the miner
does not have permission to exhibit it. Each miner is associated
with one security policy, that is active throughout the lifespan of
the miner; it is not possible in general to add or remove predicates
from the miner’s policy after the miner is written.

3.2.2 Tracking Sensitive Information
When a miner makes a call to REPRIV requesting information from
the personal store, special precautions must be taken to ensure that
the returned information is not misused. Likewise, when a miner
writes information to the store that is derived from content on pages
viewed by the user, REPRIV must ensure that the user’s wishes
are not violated. All REPRIV functionality that returns sensitive
information to miners first encapsulates it in a private data type
tracked, which contains metadata indicating the provenance of
that information.

This allows REPRIV to take the provenance of data into account
when it is used by miners. Additionally, tracked is opaque – it
does not allow miner code to directly reference the tracked data
that it encapsulates without invoking a REPRIV mechanism that
prevents misuse. This means that REPRIV can ensure complete
noninterference, to the degree mandated by the miner’s policy.
Whenever the miner would like to perform a computation over the

6 2010/8/27



The domain “example.com” would like to learn 
your top-n interests. We will tell them your 

interests are: c1, c2, … 
 

Is this acceptable? 

(a) top-n interests

The domain “example.com” would like to learn 
how interested you are in the topic “catN”. We 

will tell them interest-level. 
 

Is this acceptable? 

(b) Interest level by category

Figure 3: Communication protocols for personal information.

encapsulated information, it must call a special bind function that
takes a function-valued argument and returns a newly-encapsulated
result of applying it to the tracked value. This scheme prevents
leakage of sensitive information, as long as the function passed to
bind does not cause any side effects. We discuss verification of this
property below.

3.2.3 Verifying Miners
Verifying miners against their stated security properties is an en-
tirely static process. This eliminates the need for costly run-time
checks, and ensures that a security exception will never interrupt a
browsing session. To meet this goal, we require that all untrusted
miners be written in Fine [30], a security-typed programming lan-
guage. Fine allows programmers to express dependent types on
function parameters and return values, which forms the basis of
REPRIV’s verification mechanism.

All REPRIV functionality is exposed to miners through Fine
wrappers of API functions. The interface for these wrappers spec-
ifies dependent type refinements on key parameters that reflect the
consequence of each API function on the relevant policy predicates.
Two example interface definitions are given in Figure 5. The first
example, MakeRequest, is the API used by miners to make HTTP
requests; several policy interests are operative in its definition. The
second argument of MakeRequest is a string that denotes the re-
mote host with which to communicate, and is refined with the for-
mula

AllCanCommunicateXHR host p

where p is the provenance label of the buffer to be transmitted. This
refinement ensures that a miner cannot call MakeRequest unless its
policy includes a CanCommunicateXHR predicate for each element
in the provenance label p. Because the REPRIV API is very limited,
we can rest assured that this is the only function that impacts
the CanCommunicateXHR predicate, giving us a strong argument
for correctness of implementation.

Notice as well that the third argument, as well as the return
value, of MakeRequest, are of the dependent type tracked.
tracked types are indexed both by the type of the data that they
encapsulate, as well as the provenance of that data. The third argu-
ment is the request string that will be sent to the host specified in the
second argument; its provenance plays a part in the refinement on
the host string discussed above. The return value has a provenance
label that is refined in the fifth argument. The refinement specifies
that the provenance of the return value of MakeRequest has all ele-
ments of the provenance associated with the request string, as well
as a new provenance tag corresponding to 〈host, eprin〉, where
eprin is the extension principal that invokes the API. The re-

finement on the fourth argument ensures that the extension passes
its actual ExtensionId to MakeRequest. These considerations
ensure that the provenance of information passed to and from
MakeRequest is available for all necessary policy considertations.

As discussed above, verifying correct enforcement of informa-
tion flow properties in REPRIV requires checking that functional
arguments passed to bind are side effect-free. Fortunately, Fine
does not provide any default support for creating side effects, as it
is purely functional and does not contain facilities for interacting
with the operating system. Therefore, the only opportunities for a
miner to create a side effect are due to the REPRIV API; our verifi-
cation task reduces to ensuring that API’s which create side effects
are not called from code that is invoked by bind, as bind provides
direct access to data encapsulated by tracked types.

We use affine types [30] to gain this property, as follows. Each
API function that may create a side effect takes an argument of
affine type mut capability (short for “mutation capability”),
which indicates that the caller of the function has the right to
create side effects. REPRIV passes each miner a value of type
mut capability to its main function, which the miner must in
turn pass to each location that calls a side-effecting function. Be-
cause mut capability is an affine type, and the functional ar-
gument of bind does not specify an affine type, the Fine type
system will not allow any code passed to bind to reference a
mut capability value, and there is no possibility of creating a
side effect in this code. As an example of this construct in the
REPRIV API, observe that both API examples in Figure 5 create
side effects, so their interface definitions specify arguments of type
mut capability.

3.2.4 Verification Philosophy
The policy associated with a miner is expressed at the top of its
source file, using a series of Fine assume statements: one assume
for each conjunct in the overall policy. An example of this is shown
in Figure 9 on the right hand side, where the policy assumptions
of the miner are 3–5 lines of the source code. Given the type re-
finements on all REPRIV API’s, verifying that the miner correctly
implements its stated policy is reduced to an instance of Fine type
checking. The soundness of this technique rests on three assump-
tions:

• The soundness of the Fine type system, and the correctness
of its implementation. The soundness of the type system was
previously demonstrated in a technical report [30].

• The correctness of the dependent type refinements placed on
the API functions. This amounts to less than 100 lines of code,
which reasons about a relatively simple logic of policy predi-
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CanCaptureEvents(t, 〈h, e〉) indicates that the extension can capture events of type t on elements tagged 〈h, e〉.

CanReadDOMElType(t, h) indicates that the extension can read DOM elements of type t from pages hosted by h.

CanReadDOMElClass(c, h) indicates that the extension can read DOM elements of class c from pages hosted by h.

CanReadDOMId(i, h) indicates that extension e can read DOM elements with ID i from pages hosted by h.

CanWriteDOMElType(t, 〈h1, e〉, h2) indicates that the extension can modify DOM elements of type t with data tagged 〈h1, e〉 on
pages hosted by h2.

CanUpdateStore(d, 〈h, e〉) indicates that the extension can update the personal store with information tagged 〈h, e〉.

CanReadStore(〈h, e〉) indicates that the extension can read items in the personal store tagged 〈h, e〉.

CanCommunicateXHR(h1, 〈h2, e〉) indicates that the extension can communicate information tagged 〈h2, e〉 to host h1 via XHR-
style requests.

CanServeInformation(h1, 〈h2, e〉) indicates that the extension can serve programmatic requests to sites hosted by h1, containing
information tagged 〈h2, e〉. An example of a programmatic request is an invocation of an
extension function from the JavaScript on a site in d.

CanReadLocalFile(f) indicates that the extension can read data from the local file f .

CanHandleSites(h) indicates that the extension can set load handlers on sites hosted by h.

Figure 4: Selected security policy predicates. A full listing is available in Appendix C.

val MakeRequest:
p:provs ->
{host:string | AllCanCommunicateXHR h p} ->
t:tracked<string,p> ->
{eprin:string | ExtensionId eprin} ->
fp:{p:provs | forall (pr:prov).(InProvs pr p) <=>

(InProvs pr p || pr = (P h eprin))} ->
mut_capability ->
tracked<xdoc,fp>

val AddEntry:
({p:provs | AllCanUpdateStore p}) ->
tracked<string,p> ->
string ->
tracked<list<string>,p> ->
mut_capability ->
unit

Figure 5: Example API definitions

cates. Furthermore, because the REPRIV API is very limited,
it is simpler to argue that refinements are placed on all neces-
sary arguments to ensure sound enforcement. In other words,
the API usually only provides one function for producing a par-
ticular type of side effect, so it is not difficult to check that the
appropriate refinements are placed at all necessary points.

• The correctness of the underlying browser’s implementation of
functions provided by the REPRIV API. For REPRIV, we used
C3, an experimental managed-code browser. C3 is written in a
memory-managed language (C#), providing assurance that it
does not contain memory corruption vulnerabilities. The log-
ical correctness of C3 code needed by REPRIV has not been
formally verified, but doing so is a goal of future work.

We stress that these are modest requirements for the trusted com-
puting base, and point towards the overall soundness of REPRIV.

4. REPRIV Miners
In this section, we discuss four example miners that illustrate the
concepts discussed in Section 3: TwitterMiner, BingMiner, Net-
flixMiner, and GlueMiner.

4.1 Miner Patterns
In general, miners can provide a wide range of functionality when it
comes to updating the personal store with information that reflects
the user’s browser-related behaviors. In this section, we present
several examples of miners that fall into three patterns of func-
tionality that we envision many potential miners following. The
policies for each category can be templatized, easing the burden
on miner developers who wish to create variations on these basic
patterns. The three patterns are summarized in Figure 6.

The first miner pattern, “site-specific parsing”, includes exten-
sions that are aware of the layout and semantics of specific web-
sites, and are able to update the user’s interest profile accordingly.
For example, TwitterMiner invokes REPRIV’s document classifier
over the text contained in the user’s latest tweets, and BingMiner
classifies the user’s search terms. Miners that follow this pattern ei-
ther need to send HTTP requests to relevant web API’s, as in the
case of TwitterMiner, or read the relevant DOM elements from
particular sites, as with BingMiner. They invariably require per-
mission to update the personal store with information derived from
these sources.

The second pattern, “category-specific information”, returns de-
tailed information about the user’s interactions with specific types
of sites to services that request it via a JavaScript interface. Net-
flixMiner is an example of this pattern; the user’s interactions with
pages hosted by netflix.com are monitored, and information is
added to the personal store to reflect this. When a third-party site,
such as fandango.com, would like to personalize based on the
user’s recent movie interests, NetflixMiner queries the store to re-
trieve the list of most recently-viewed entries by genre, and returns
the relevant titles to the third-party site. In addition to the capa-
bilities required by site-specific parsing miners, miners that follow
this pattern also need the ability to read from the store, and return
tagged information to specific sites via a programmatic interface.

The final pattern, “web service relay”, acts as a privacy-
conscious intermediary between the user’s personal information,
and websites that provide useful services using this information.
Miners in this category expose functionality via a JavaScript inter-
face, and query a third-party web service with data from the per-
sonal store to implement this functionality. For example, GlueM-
iner returns movies similar to those recently viewed by the user
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Pattern Policy Template
Site-specific parsing For the domain d of interest, either CanCommunicateXHR(d) or CanReadDOM*(d, )

CanUpdateStore( , d)
CanHandleSites(d) (optional, depending on the semantics of the miner)
CanCaptureEvents( , d) (optional, depending on the semantics of the miner)

Category-specific information For the domain d of interest, either CanCommunicateXHR(d) or CanReadDOM*(d, )
CanUpdateStore(Tag( , d))
CanHandleSites(d) (optional, depending on the semantics of the miner)
CanCaptureEvents( , d) (optional, depending on the semantics of the miner)
CanReadStore(Tag( , d))
For each domain p that can request category-specific information, CanServeInformation(p, Tag( , d))

Web service relay For the API provider a and each provenance tag t sent to a CanCommunicateXHR(a, t) and
CanReadStore(t)

For each domain p that can make requests, CanServeInformation(p, t) and CanServeInformation(p, a)

Figure 6: Miner patterns and their policy templates

by reading store entries created by NetflixMiner, sending them to
the API provided by getglue.com, and returning the results to the
JavaScript that requested this information.

4.2 Miner Examples
In this section we present several specific REPRIV extensions for
Netflix (Section 4.2.3), hunch.com (Section 4.2.4), and Bing (Sec-
tion 4.2.1). Figure 8 compares the sizes of these miners as well as
the time it takes the Fine compiler to verify them.

4.2.1 BingMiner

BingMiner is a simple example of a REPRIV extension that un-
derstands the semantics of a particular website, and is able to up-
date the personal store accordingly. The functionality of this miner
is straightforward: when the user navigates to a site hosted by
bing.com, the extension recieves a callback from the browser, at
which point it attaches a listener on submit events for the search
form. Whenever the user sends a search query to Bing, the callback
method receives the contents of the query. It then invokes REPRIV’s
document classifier to determine which categories the query may
apply to, and updates the personal store accordingly.

To carry out these tasks, BingMiner needs four capabilities from
REPRIV, as depicted in Figure 7.

1. It must be able to listen for DOM submit events on sites from
bing.com.

2. In order to determine which elements event listeners must be
attached to, Bing miner must be able to read parts of the DOM
of sites hosted on bing.com so that it can search for the query
form. Specifically, BingMiner must be able to obtain a handle
on the element with id sb form to attach an event listener, and
subsequently on the element with id sb form q to read the
search query.

3. BingMiner must be able to write data from bing.com to the
personal store.

4.2.2 TwitterMiner

The functionality of TwitterMiner is similar to that of Bing-
Miner; the user’s interactions with Twitter are explicitly inter-
cepted, analyzed, and used to update the user’s interest profile.
However, unlike BingMiner, TwitterMiner does not need to un-
derstand the structure of twitter.com pages or the user’s inter-
actions with them. Rather, it utilizes the RESTful API exposed by
twitter.com to periodically check the user’s twitter profile for
updates. When the user posts a new tweet, TwitterMiner analyzes

its content using REPRIV’s classifier to determine how to update
the personal store.

As shown in Figure 7, TwitterMiner needs only two capabilities
from REPRIV, as the twitter.com API simplifies its task.

1. It must be able to make XHR-style requests to twitter.com.
The second argument of the CanCommunicateXHR capability
in Figure 7 indicates that TwitterMiner cannot send any sensi-
tive information derived from the store, or a page visited by the
user, in such a request.

2. It must be able to update the store to reflect data derived from
twitter.com

The source code for TwitterMiner is shown in Figure 9, in both
C# and Fine. One can see that the two versions are nearly identical
in control flow and API usage. There are only two places in the Fine
code in which the programmer must justify to the compiler that the
stated policy is in fact being enforced. The first is in the type signa-
ture of CollectLatestFeed, where a refined type is used to tell
the compiler that the identifier extid in fact refers to the exten-
sion ID stated in the policy manifest. The second location is the
first statement in CollectLatestFeed, where a provenance label
is constructed to reflect the source of information that will be col-
lected by TwitterMiner, e.g. twitter.com. This allows the com-
piler to verify that the tracked information being sent to the store at
the end of CollectLatestFeed is in accordance with the policy.
Refinements on the type of API function MakeXDocRequest make
it impossible for the programmer to forge this provenance label; if
the constructed label does not accurately reflect the URL passed to
MakeXDocRequest, a type error will indicate a policy violation.

4.2.3 NetflixMiner

NetflixMiner is a slightly more complicated example than the pre-
vious two. This extension performs two high-level tasks. First, it
observers user behavior on netflix.com, and updates the personal
store to reflect the user’s interactions sites hosted on that domain.
Second, it provides specific parties (fandango.com, amazon.com,
and metacritic.com) with a list of the user’s most recently
viewed movies for a specific genre.

Figure 7 shows the capabilities needed by NetflixMiner to carry
out these tasks.

1. It must be able to listen for click events on DOM elements
with class labels rv1 - rv5, as these indicate the rating the the
user gives to a movie.
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Extension Policy

BingMiner CanHandleSites(“bing.com”)
CanCaptureEvents(“bing.com”, onsubmit)
CanReadDOMId(“bing.com”, sb form), CanReadDOMId(“bing.com”, sb form q)

CanUpdateStore(Tag(“bing.com”, “bingminer”))

TwitterMiner CanCommunicateXHR(“twitter.com”, ∅)
CanUpdateStore(Tag(“twitter.com”, “twitterminer”))

NetflixMiner CanHandleSites(“netflix.com”)
CanUpdateStore(Tag(“netflix.com”, “netflixminer”))
CanReadStore(Tag(“netflix.com”, “netflixminer”))
CanReadDOMClass(“netflix.com”, rv1), CanReadDOMClass(“netflix.com”, rv2)
CanReadDOMClass(“netflix.com”, rv3) CanReadDOMClass(“netflix.com”, rv4)
CanReadDOMClass(“netflix.com”, rv5)
CanCaptureEvents(“netflix.com”, onclick)
CanServeInformation(“fandango.com”,Tag(“netflix.com”, “netflixminer”))
CanServeInformation(“amazon.com”,Tag(“netflix.com”, “netflixminer”))
CanServeInformation(“metacritic.com”,Tag(“netflix.com”, “netflixminer”))
CanReadLocalFile(“moviegenres.txt”).

GlueMiner CanCommunicateXHR(“getglue.com”, (Tag(“netflix.com”, “netflixminer”))
CanCommunicateXHR(“getglue.com”, (Tag(“twitter.com”, “twitterminer”))
CanCommunicateXHR(“getglue.com”, (Tag(“facebook.com”, “facebookminer”))
CanReadStore(Tag(“twitter.com”, “twitterminer”)), CanReadStore(Tag(“netflix.com”, “netflixminer”))
CanReadStore(Tag(“facebook.com”, “facebookminer”))
CanServeInformation(“fandango.com”,Tag(“getglue.com”, “glueminer”))
CanServeInformation(“fandango.com”,Tag(“netflix.com”, “netflixminer”))
CanServeInformation(“linkedin.com”,Tag(“getglue.com”, “glueminer”))
CanServeInformation(“linkedin.com”,Tag(“twitter.com”, “twitterminer”))
CanServeInformation(“linkedin.com”,Tag(“facebook.com”, “facebookminer”))

Figure 7: Policies for sample REPRIV extensions.

Lines of code Verification

Name C# Fine Time (s)

TwitterMiner 89 36 6.4
BingMiner 78 35 6.8
NetflixMiner 112 110 7.7
GlueMiner 213 101 9.5

Figure 8: Miner characteristics.

2. It must be able to update the personal store to reflect informa-
tion derived from netflix.com pages, as well as read that in-
formation back at a later time.

3. It must be able to return information it can read from the
personal store to requests from fandango.com, amazon.com,
and metacritic.com.

4. It must be able to read from the local file “moviegenres.txt”, to
associate movies in the personal store with genre labels given
in requests from third-party sites.

Note that the policy is explicit about information flows: only data
computed by NetflixMiner can be communicated to a small num-
ber of third-party sites. This degree of restrictiveness is necessary
to ensure the privacy of the user’s sensitive information, without
obliging the user to respond to modal access control checks at run-
time.

4.2.4 GlueMiner

GlueMiner is different from previous examples in that it does not
add anything to the store; rather, it provides a privacy-preserving
conduit between third-party websites that want to provide person-

alized content, the user’s personal store information, and another
third party (getglue.com) that uses personal information to pro-
vide intelligent content recommendations. The appendix shows
GlueMiner’s source code. The function predictResultsByTopic
is the core of its functionality, effectively multiplexing the user’s
personal store to getglue.com: a third-party site can use this
function to query getglue.com using data in the personal store.
This communication is made explicit to the user in the policy
expressed by the extension. Given the broad range of topics on
which getglue.com is knowledgeable, it makes sense to open
this functionality to pages from many domains. This creates novel
policy issues: the user may not want information in the personal
store collected from netflix.com to be queried on behalf of
linkedin.com, but may still agree to allowing linkedin.com to
use information from twitter.com or facebook.com. Likewise,
the user may want sites such as amazon.com and fandango.com
to use the extension to ask getglue.com for recommendations
based on the data collected from netflix.com.

This usage scenario suggests a more complex policy for the
proposed extension.

• The extension must only communicate personal store informa-
tion from twitter.com and facebook.com to linkedin.com
through the return value of predictResultsByTopic. Ad-
ditionally, the information that is ultimately returned will
be tagged with labels from getglue.com, as it was com-
municated to this host to obtain recommendations. Thus,
GLUEMINER must be able to communicate these sources to
getglue.com, and it must be able to send information tagged
from getglue.com to linkedin.com through the return value
of predictResultsByTopic.
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using RePriv;

namespace TwitterMiner
{
static class Program
{
static string userId;
static List <string > guids;
static RePriv.ExtensionPrincipal p;

static void CollectLatestFeed(object source ,
ElapsedEventArgs e)

{
// Get the user ’s twitter RSS feed
TrackedValue <XDocument > twitFeed =
RePriv.MakeXDocRequest("twitter.com",
"http :// twitter.com /.../"+userId+".rss", p);

// Extract the latest tweet from the feed
TrackedValue <string > cur = twitFeed.Bind(
x => (from d in x.Descendants("item")

where !guids.Contains(d.Element("guid"))
select (string)d.Element("description")
).Take (1). Single ());

// Find the categories that apply
TrackedValue <List <string >> cat =
cur.Bind(computeQueryCategories );

// Update the personal store
RePriv.AddEntry(cur , "contents:tweet", cat);

}

static void Main()
{
guids = new List <string >();

Timer feedTimer = new Timer ();
feedTimer.Elapsed +=
new ElapsedEventHandler(CollectLatestFeed );

feedTimer.Interval = 600000;
feedTimer.Start ();

}
}

}

module TwitterMiner

open Url
open RePrivPolicy
open RePrivAPI

// Policy assumptions
assume extid: ExtensionId "twitterminer"
assume PAx1: CanCommunicateXHR "twitter.com"
assume PAx2: forall (s:string) . (ExtensionId s) =>

CanUpdateStore (P "twitter.com" s)

// Miner code
val GetDescription: xdoc -> string
let GetDescription d =
let allMsgs =
ReadXDocEls d "item" (fun x -> true) "description" in
match allMsgs with
| Cons h t -> h
| Nil -> ""

val CollectLatestFeed: ({s:string | ExtensionId s}) ->
mut_capability ->
unit ->
unit

let CollectLatestFeed extid mcap u =
let twitterProv = simple_prov "twitter.com" extid in
let reqUrl =

mkUrl "http" "twitter.com" "statuses ..." in
let twitFeed =

MakeXDocRequest reqUrl extid twitterProv mcap in
let currentMsg =

bind twitterProv twitFeed GetDescription in
let categories =

bind twitterProv currentMsg ClassifyText in
AddEntry twitterProv currentMsg "tweet" categories mcap

val main: mut_capability -> unit
let main mcap =
let collect =
(CollectLatestFeed "twitterminer" mcap) in

SetTimeout 600000 collect

Figure 9: Twitter miner in C# (left) and Fine (right), abbreviated for presentation.

• Similarly, the extension must only leak information from
netflix.com to getglue.com on behalf of amazon.com or
fandango.com. This creates policy requirements analogous to
those of the previous case.

The policy requirements of GlueMiner are made possible by
REPRIV’s support for multi-label provenance tracking. Note also
the assumption that getglue.com is not a malicious party, and
does not otherwise pose a threat to the privacy concerns of the user.
This judgement is ultimately left to the user, as REPRIV makes
explicit the requirement to communicate with this party, and guar-
antees that the leak cannot occur to any other party.

5. Experimental Evaluation
The experimental section is organized as follows. First, we char-
acterize the performance overhead of REPRIV on browsing activi-
ties, with respect to both the default behavior mining that occurs in
the background and the topic-specific extensions discussed in Sec-
tion 4. Then, we talk about the quality of our document classifier,
that is used for all default in-browser behavior mining. Finally, we
discuss the usability concerns that arise with REPRIV.

5.1 Performance Overhead
We evaluated the effect of REPRIV on the performance of web
browsing activities. Several aspects of REPRIV can affect the per-
formance of browsing. This section is organized to provide a sepa-
rate discussion of each such aspect: the effect of default in-browser
behavior mining, the effect that each proposed personalization ex-
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Figure 10: Document classification time

tension (Section 4) has on document loading latency, and the per-
formance of primary extension functionality.

5.1.1 In-Browser Behavior Mining
One of the major components of REPRIV is the behavior mining
that happens by default inside the browser, as the user navigates
sites. In this section, we characterize the cost of performing this
type of mining and the impact that it has on browser performance.
Figure 10 depicts the amount of time in seconds needed by REPRIV
to classify a document, plotted against the size of the document.
Nearly all documents are classified in around one-tenth of a second;
given this result, it is clear that REPRIV will not adversely affect the
performance of the browser.
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Figure 11: Miner memory footprint

5.1.2 Personalization Extensions
One concern with REPRIV’s support for miners is the possibly arbi-
trary amount of memory overhead that it can introduce. We sought
to characterize the memory requirements of REPRIV miners, by
loading many compiled copies of the four miners presented in the
previous section into a running instance of C3. Figure 11 shows
the results. We see that in the extreme case of one hundred miners
loaded into memory, only 20.3 megabytes of memory are needed.

5.2 Classifier Effectiveness
We sought to characterize the quality of the default in-browser
classifier. However, doing so is not straightforward, as the task
of document classification is inherently subjective. Our evaluation
focuses on two metrics: the rate at which a user’s interest profile
converges, and human-perceived accuracy of the classifiers.

5.2.1 Profile Convergence
The rate at which a user’s interest profile converges is an important
property of our implementation, as it indicates the reliability of the
personalization information provided by REPRIV. To measure the
convergence of a profile, we require a notion of its final form. All
of our measurements are taken over history traces of IE8 users, so
the final profile that we use in these measurements is simply the
profile computed by our classifier after processing an entire trace.
All convergence measurements for a given trace are taken relative
to the final profile for that trace, computed in this manner.

We use two measures of convergence. The first is the percent-
age of current entries in the top-ten list of interest categories that
are also present in the final top-ten list. This measure is relevant be-
cause we forsee many websites querying REPRIV for top interests
using the protocol outlined in Section 3. The second measure is the
average distance of each interest category in the current ordering
from its position in the final ordering; this gives a global view of
interest profile stability.

The results of these experiments are presented in Figures 12
(a) and (b), which depict top-ten and distance convergence, respec-
tively. They key point to notice about both of these curves is the
state of the computed interest profile after 20% completion: 50%
of the final top-ten categories are already present, and the global
convergence curve has reached a point of gradual decline. This im-
plies that the results returned by the core mining algorithm will not
change dramatically from this point.

5.2.2 In-Browser vs. Public Data Mining
We claim that a major incentive for web service providers to utilize
the personalization features enabled by REPRIV is the high quality
of personal information that is available within the browser, rela-

tive to other types of information used for this purpose. In this sub-
section, we compare REPRIV’s mining algorithm when used over
browsing history data to the results obtained by gathering publicly-
available information given a person’s name. This approach is be-
ing used to facilitate personalization by a number of websites [31].

We see a fundamental problem with this approach, in that most
names have several homonyms, and the precision and accuracy of
a behavior profile will be adversely affected by this condition. To
demonstrate this fact, we began by measuring the number of dis-
tinct homonyms for 48 names selected at random from a phone
book. To take this measurement, we used a search engine called
“WebMii” [34] which returns a listing of much of the publicly-
available information about a particular name on the web, in addi-
tion to a list of homonyms for that name. The results are displayed
in Figure 13 (a): each bucket on the x-axis contains all of the values
between the listed number, and that immediately left of it. Note-
worthy is the fact that fewer than ten of the names were found to
be unique on WebMii; the remaining names either had no visible
web presence, or from dozens to hundreds of homonyms. Clearly,
these names would be very difficult to build an accurate profile for
content personalization without additional input.

Figure 13(b) relates the confidence in result accuracy that
REPRIV’s core mining algorithm produces for documents collected
by searching the web for documents with a given name, versus run-
ning the algorithm over a user’s search history. The confidence is
the sum of the probabilities computed for each interest category
in the user’s final top-10 interest profile, normalized by the num-
ber of documents used to build the profile to fit a scale of 0 to
1. The public profiles and user histories do not correspond to the
same person when grouped at the same point on the x-axis; rather,
they are sorted by confidence. To build a public profile for a given
name, we searched for that name on yahoo.com, facebook.com,
twitter.com, hi5.com, and myspace.com. The browsing histo-
ries are a subset of those used to compute the data in Figure 12.
The results in figure 13(b) show that in all but a very few cases, the
behavior mining algorithm was able to come to a much stronger
conclusion given browsing histories.

6. Case Studies
While the previous section provided a basic experimental evalua-
tion of both the core mininig strategy and miners used in REPRIV,
this section goes more in depth using two case studies, both eval-
uated on large quantities of real data. Section 6.1 talks about our
search personalization experiment. Section 6.2 discusses news per-
sonalization.

6.1 Search Personalization
We wrote an extension that uses REPRIV’s APIs to personalize the
results produced by the main Bing search engine. The extension
operates by observing the user’s previous behavior on Bing, and
memoizing certain aspects relevant to future searches. Specifically,
for a given search term, the extension records which sites the user
selected from the results pages, as well as the frequency with which
each host is selected in search results (across all searches). When
a new search query is submitted, the extension checks its history
of previously-recorded searches for an identical match, and places
the previously-selected results at the top of the current ranking. The
remaining results are ranked by the frequency with which the user
visits the host of each result.

This type of search personalization is appealing for two reasons.
First, the quality of results it provides is quite good, as discussed be-
low. Second, it is not particularly invasive, as it requires observing
user interaction on a single domain (bing.com). Furthermore, this
information is leaked back to no site other than bing.com through
re-arranging the result pages of queries submitted to the search en-
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(a) Average top-ten category convergence curve.
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Figure 12: Convergence curves.
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Figure 13: In-browser vs. public information-based personalization.
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Figure 14: Search personalization effectiveness.

gine; if the user has cookies enabled, then bing.com learns this
information by default. It is also important to note that information
is only leaked to bing.com if the results pages contain JavaScript
code that reflects on the layout of the DOM, and takes note of the
relative position of search results. This activity would not be possi-
ble to hide from the Internet community, effectively minimizing its
risk to end-user privacy and giving bing.com disincentive to do it.

To provide this functionality, the extension needs the following
capabilities:

• To determine which search results the user selects from bing.com
sessions, the extension must be able to receive onclick events
from pages hosted by bing.com.

• To access a full list of search results over which it can per-
form re-ranking, the extension uses a public web API. For this,

it must be able to make HTTP requests to either bing.com,
yahoo.com, or google.com (search API providers).

• To re-arrange the results pages from bing.com, the extension
must be able to change the TextContent of HTML elements
on bing.com, as well as well as call change the href attribute
of a elements.

• To memoize search engine interactions, the extension must be
able to write data from bing.com to the personal store.

6.1.1 Implementation Details
We implemented the extension for C3 as 382 lines of Fine.

The code is presented in Section B.2. The extension uses
several of the API’s exposed by REPRIV: XMLHttpRequest,
SetAttribute, SetTextContent, GetElementById, and GetChildren.

When loaded into the browser, the extension requires approxi-
mately 200KB of memory.

6.1.2 Experimental Methodology
To evaluate the effectiveness of search personalization, we utilized
the histories of nineteen users of the Bing search toolbar. Each his-
tory represents seven months of Bing search activity. Our method-
ology for evaluating the effectiveness of search personalization al-
gorithm is based on the results selected by users for a given query.
For each search performed by a particular user, we split the search
history into two chronologically-contiguous halves. We construct
the relevant portions of a personal store needed to perform search
personalization using the first half, and use the second half to evalu-
ate the effectiveness of the algorithm. For each query in the second
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half of each trace, we evaluated the effectiveness of our search per-
sonalization algorithm as follows:

1. Submit the query to the Yahoo BOSS API [36], and collect the
default search result ranking.

2. Re-rank the results according to the algorithm discussed above.

3. Note the difference in position for the search result selected
by the user between the default and personalized rankings. A
positive difference indicates that the selected result is ranked
higher in the personalized results, whereas a negative difference
indicates the opposite.

This process simulates the user’s interaction with a personalized
and non-personalized search engine, giving us a baseline for com-
parison.

6.1.3 Evaluation
The results of our evaluation are summarized in Figure 14. This
histogram shows the number of positions the user’s selected result
moved towards the top of the ranking when the search personaliza-
tion extension was able to improve results.

We found that for a given user, the extension was able to im-
prove results 49.1% of the time by raising the user’s selected re-
sult 8.2 positions toward the top, on average. 7.7% of the time,
the extension lowered the ranking of the user’s selected result, but
when this occurred, the result was moved downwards an average
of only 2.4 positions. For the remaining percentage of time, 43.2%,
the extension had no effect on the ranking of the user’s selected re-
sult. These results show that our search personalization algorithm is
able to provide useful functionality for a large portion of the user’s
web searching activities, while giving the user explicit control over
the way in which personal information is used in the process.

6.2 News Personalization
We wrote an extension that uses REPRIV’s computed behavior pro-
file to personalize the New York Times front page. The exten-
sion utilizes the collaborative filtering provided by the digg.com
community by matching the user’s top interest categories with
topic names understood by digg.com, and periodically querying
its web API for “hot” stories in those topics. When the user visits
nytimes.com, New York Times articles cached from digg.com
API queries are presented at the top of the page, in place of the
default headlines.

To perform this personalization, the extension needs several
capabilities.

• To query the digg.com API, it must be able to send HTTP re-
quests to digg.com and access the formatted responses con-
taining news stories.

• To locate the appropriate HTML elements on the nytimes.com
front page for personalized re-formatting, the extension must be
able to call GetElementById and GetAttribute("class")
on DOM nodes hosted by nytimes.com.

• To re-format the nytimes.com front page, the extension must
be able to change the TextContent of nodes on nytimes.com
nodes, as well as call SetAttribute("href") on them.

• To construct te appropriate query to digg.com, it must be able
to query the personal store to learn the top interests of the user.

6.2.1 Implementation Details
We implemented the extension for C3 as 124 lines of Fine. The code
is presented in Section B.1.

The extension uses several of the API’s exposed by REPRIV:
XMLHttpRequest, GetAttribute, SetAttribute, SetTextContent,
GetTopInterests, GetElementById, SetTimeout, and GetChildren.
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Figure 15: News personalization effectiveness.

When loaded into the browser, the extension requires approxi-
mately 200KB of memory.

When navigating to nytimes.com, we found that the extension
introduced a latency of 6% over the default loading time without
any personalization, which is a consequence of the fact that the
extension modifies the DOM after initial loading is complete. This
overhead does not reflect the time needed to query the digg.com
API, which occurs periodically in a background thread that runs
when the CPU is otherwise idle.

6.2.2 Experimental Methodology
We performed a set of experiments using Amazon’s Mechanical
Turk service [23] to demonstrate that our news personalization
system does not trivialize the problem of delivering personalized
content in fulfilling the goal of preserving user privacy. In other
words, we sought to show that the type of personalization offered
by our extension is relevant to internet users.

To do so, we generated 1,920 artificial behavior profiles. 900 of
the profiles contained three randomly-selected user interest topics,
and the rest contained three topics related by the same top-level
ODP category. This distribution models users with both focused
and diverse interests. We then seeded our personalization algorithm
with each profile, and captured an image of the stories that would
be presented by the extension. The image contained the headline of
each story, as well as a short summary of each story, in a manner
similar to the default nytimes.com layout.

Using the images and interest profiles, we generated a set of
Mechanical Turk surveys. Each survey consisted of twelve ques-
tions, where each question paired a news content image with a po-
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tential behavior profile, and asked the user how relevant the sto-
ries presented in the image were to the given set of interest topics,
on a scale of 1 to 10. For each survey, approximately half of the
questions matched the image with the interest profile our algorithm
used to generate them, and the other half were paired randomly.
Each survey contained an additional question that paired the default
nytimes.com front page stories with a random interest profile. The
latter two pairings served as our control, to determine how relevant
users found hypothetical interest profiles to general news stories.

6.2.3 Evaluation
Figure 15 is a violin plot that shows the results of our Mechanical
Turk experiments. Each column of the plot summarizes the dis-
tribution of responses for a particular pairing of news articles and
behavior profiles.

“Personalized” denotes real pairings of personalized news sto-
ries to behavior profiles, “Random” refers to pairings of news sto-
ries to randomly-generated behavior profiles that do not bear a
meaningful connection, and “Default” denotes the stories presented
on the default nytimes.com front page paired with a random be-
havior profile. For each column, the statistical mean among sur-
vey responses, as well as the surrounding vicinity of one standard-
deviation, is plotted.

As the figure indicates, respondents gave stories personalized
with our algorithm significantly higher relevance scores than the
control samples. For personalized content, ratings between 6.5
and 8 recieved the most responses, with markedly lower variance
than the control. While some overlap in response exists between
personalized content and the control, the majority of control re-
sponses mass around low relevance scores, indicatating a clear
improvement in percieved relevance for content personalized using
our algorithm.

In summary, the results of this news personalization experiment
show that REPRIV enables useful and effective personalization of
news content without sacrificing control over private information.

7. Discussion
So far, we have showed how REPRIV presents an alternative to in-
trusive end-user tracking to support personalization on the web, by
providing a mechanism on the host that users can opt to use. We
have also discussed some of the technical aspects of REPRIV that
allow it to provide the user with explicit and precise control over the
release of this information to third parties. In this section, we begin
with a discussion of the incentives that users, service providers, and
developers have to adopt REPRIV (Section 7.1). We then discuss
some concerns that arise regarding the usability of REPRIV, and a
distribution model that eases some of these concerns (Section 7.2).
We then present a brief discussion of collaborative mining and fil-
tering algorithms in REPRIV, which are becoming more popular in
web applications (Section 7.3). Finally, we discuss the implications
of REPRIV for the privacy modes that are now present in nearly all
popular browsers (Section 7.4).

7.1 Incentives
It may not be clear that service providers and developers have suf-
ficient cause to utilize and contribute to REPRIV. Here we discuss
why this is not the case, and why REPRIV naturally complements
forces currently present on the web.

7.1.1 Users
The incentives for users to adopt REPRIV are immediate: REPRIV
was designed to facilitate the types of personalized web experience
that have become popular today, while allowing users to maintain
control of their personal information. Beyond better privacy, this

has additional implications for improved user experience. First, be-
cause all of the personal information needed to enable personaliza-
tion is maintained on the client, the user can share it with any party
that can provide a better experience for the user. This means that
the so-called cold-start problem, where a user visits a new web-
site and is not able to recieve personalized content for lack of data,
is no longer an issue. Secondly, users who prefer more personal-
ization are free to install arbitrarily sophisticated miners that al-
low service providers to create more advanced content. Effectively,
REPRIV allows users to opt for the level of sharing and personaliza-
tion that they find most appropriate. Finally, we have demonstrated
that REPRIV’s performance overhead is minimal, so there is very
little disincentive for a user to adopt REPRIV.

7.1.2 Service Providers
An important consideration is the incentive that service providers
have to utilize the personal information maintained by REPRIV,
rather than continuing to collect data invasively via mechanisms
such as third-party tracking. It may seem unreasonable to expect
service providers to voluntarily switch to a system like REPRIV at
this point, having built substantial momentum with existing track-
ing techniques. While a truly anonymous browsing mode would
leave content providers without an alternative, we assert that incen-
tives already exist for service providers to adopt REPRIV without
the need for such measures. The first such incentive is the quality of
information that REPRIV can provide relative to other techniques.
REPRIV gives service providers the opportunity to utilize data that
is not impeded by third-party cookie blockers or cookie deletion on
the client, that is derived using information from the user’s com-
plete browsing experience. Secondly, because REPRIV gives con-
tent providers a way to personalize that respects user privacy, con-
tent providers have the opportunity to differentiate themselves from
competitors on the basis of respecting end-user privacy. The fact
that users are more likely to select services that do not seem inva-
sive creates incentive for content providers to abandon existing data
collection measures.

7.1.3 Miner Developers
Another matter to consider is the incentive to write miners for
REPRIV. We forsee a number of likely scenarios. First, online busi-
nesses have direct incentive to write miners that allow them to col-
lect better information about the user. For example, the operators of
blockbuster.com have clear incentive to write a miner that col-
lects data about user behavior on netflix.com, fandango.com,
etc., and returns it to blockbuster.com. However, REPRIV does
not provide a mechanism for a particular content provider to dis-
allow miners from collecting behaviors pertinent to that provider,
aside from an appeal to the miner distribution framework discussed
in Section 7.2. Rather, REPRIV leaves it to the user to decide
whether to allow a miner to observe his interaction with a particu-
lar website. This may create tension between competing businesses,
that do not consider this sort of behavior to be in their best interest;
it is the philosophy of REPRIV that this choice ultimately falls to
the user.

Another likely scenario arises with general content recommen-
dation web services and social networks, such as getglue.com
and hunch.com. These sites allow users to create detailed profiles
of their likes and interests for the purpose of sharing them with
other users and recieving content recommendations. Key to the ef-
fectiveness of these services, and thus the ultimate success of the
website, is that a large amount of personal information about users
is present to use as the basis of recommendation. REPRIV miners
are a safe and effictive way for these sites to realize this goal.

Finally, it is important not to overlook the contributions made
by enthusiasts to the extension libraries of Firefox, Apple, Win-
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dows Live, and similar services. While some of the extensions in
these libraries are intended to provide revenue for companies, a
surprisingly large number of them are not. Rather, they are writ-
ten and maintained by either open-source developers or enthusiasts
for various reasons, and are in many cases competitive with those
associated with businesses. We believe that this phenomenon has
potential in the context of REPRIV.

7.2 Usability Concerns & Distribution Model
A primary goal of REPRIV is to be as explicit as possible about the
transfer of sensitive user data. This means that at some point, the
user must manually consent to the information being disseminated
by REPRIV to remote parties. For core mining data, this is not
particularly challenging. In fact, the structure of the information
produced by core mining was designed to be highly informative to
content providers and intuitive for end-users: when prompted with
a list of topics that will be communicated to a remote party, most
users will understand the nature and degree of information sharing
that will subsequently take place if they consent.

There is a rich body of research that considers the question of
how best to present such prompts to the user [20], and one area that
we would like to explore in future work is incorporating these find-
ings into REPRIV. There is an additional danger of overwhelming
the user with prompts for access control, effectively de-sensitizing
the user to the problems addressed by the prompts. One way to re-
duce the interactive burden is to allow the user to tell REPRIV to
remember their response for a particular domain. However, this is
not likely to suffice as a final solution, so we would additionally
like to explore more expressive policy frameworks for specifying
these preferences as part of our ongoing work.

On the other hand, the usability problems posed by miners is
more difficult. While the privacy policies imposed on miners are
expressive and precise, it is difficult to make their implications
explicit to an average user. Simply put, it is unreasonable to expect
a user to understand a first-order logical formula stated in terms of
host names and provenance labels.

Because there is no technical mechanism that can test a miner
for all undesirable characteristics (e.g. performance, usability, etc.)
up front, we suggest a distribution model that allows for miners to
be revoked from circulation. This model is similar to that adopted
by Firefox, Apple, and Symbian for supporting third-party func-
tionality. In such a model, miners are submitted to a central reposi-
tory for review before they are made available for installation. The
owner of such a repository is expected to posess considerably more
technical sophistication than most browser users. When the repos-
itory owner reviews a miner, he can first verify that it follows its
stated policy. The properties of Fine make this step both fast and
trivial for the reviewer, whereas this step can take weeks or even
months in the case of Firefox’s extension library of Apple’s app
store. Additionally, the reviewer can perform a sanity check to ver-
ify that the miner’s policy, as well as the complexity of its code,
corresponds to its stated functionality. Finally, if at some point in
the lifetime of a miner it becomes clear that it is abusing access
to sensitive user data, the reviewer can remove the miner from the
library and notify all users who previously installed it.

7.3 Collaborative Mining and Filtering
Not currently addressed in REPRIV are the needs of explicit collab-
orative mining algorithms [6], [18] that factor in the preferences of
a community as a basis for conclusions about a particular user. Cur-
rently, REPRIV can be used to provide this functionality through a
miner that sends all of the relevant information, which is likely to be
a large volume, to a central server for collaborative mining. How-
ever, this is not as attractive from a privacy standpoint as other col-
laborative mining schemes designed with privacy in mind [22] [38].

The problem with implementing these schemes using REPRIV
is that their privacy-preserving characteristics cannot be mechan-
ically verified using REPRIV policies; the same REPRIV policy
would apply to a privacy-preserving data mining algorithm as a
miner that simply sends the needed information to a third party. In
the future, we will explore methods for facilitating this type of func-
tionality either at the API level or through additional verification of
miner code. A number of recent advances, such as differential pri-
vacy [7] and quantitative information flow [19], suggest promising
directions for this problem.

7.4 Anonimization, Blocking Techniques and Privacy Modes
Recently, major browsers have come to support some form of a
“private browsing mode” [2]. Although the precise meaning of this
term varies between browsers, the basic idea behind this feature is
to prevent websites from reading persistent data such as cookies for
a particular session, while also erasing the persistent data for that
session when the user terminates it. There have been a number of
other browser add-ons and modifications that attempt to anonymize
the user on the web; an incomplete list includes TrackMeNot [13],
Torbutton, SafeCache [29], SafeHistory [29], and IE8 InPrivate
browsing. While it is clear that a truly anonymous browsing mode
would force content providers to use REPRIV, no such mode has
been successfully implemented [2], and it is not clear that doing so
is technically feasible [8]. However, we assert that REPRIV does in
fact facilitate end-user privacy on the web, by creating incentives
for content providers to use privacy-sensitive personalization tech-
niques, rather than relying on the invasive collection mechanisms
currently available. In this respect, REPRIV is complementary to
private browsing modes; it provides a mechanism for allowing per-
sonalized content without the need for the tracking mechanisms
currently used by content providers, which are not compatible with
anonymous browsing.

Because REPRIV is currently implemented within an experi-
mental browser that does not support private browsing, it does not
contain a mechanism for adhering to such a constraint. However,
the basic architecture of REPRIV is amenable to privacy mode, as
the only persistent state it maintains resides within a single database
table. When private browsing mode is entered, REPRIV’s database
is transitioned to a copy-on-write state; when the session ends, the
copy is erased, if it exists.

8. Related Work
Related work spans privacy issues in the following broad cat-
egories: targeted advertising, web applications, private browser
state, private browsing modes, and web personalization, which we
cover in Sections 8.1–8.5, respectively.

8.1 Privacy in Advertising
The high-level problem of managing web users’ desire for privacy
and the associated trade-offs in personalized content delivery has
been explored by others in various forms. One problem that has re-
ceived much recent attention is that of delivering targeted advertise-
ments to web users without unduly violating their privacy. Freudi-
ger et al. [9] observe that the prevalent mechanism for targeting
advertisements to individual users is the third-party cookie. Third-
party cookies allow advertisers to track user behavior across mul-
tiple sites in different domains without their explicit consent, and
thus pose an immediate threat to privacy. Freudiger et al. propose a
browser extension that allows users to directly manage third-party
cookies and their visibility with respect to individual sites. Through
proper management of cookies, users are free to decide the degree
to which advertisers are able to track them, effectively giving them
more control of their personal data. However, unlike with REPRIV,
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this solution does not give users arbitrary, fine-grained control over
the type of information that is given to third-parties. Furthermore,
advertisers have no incentive to obey the privacy safeguards instan-
tiated by this mechanism.

Guha et al. [12] present Privad, an architectural solution to the
problem of privacy-preserving targeted advertisements. The key to
Privad’s privacy guarantees derives from the fact that all informa-
tion needed to target and display advertisements is collected and
stored on the user’s local machine. Clearly, there are functional dif-
ficulties that arise because of this design choice. The first such dif-
ficulty is click-fraud: the advertiser has no immediate protection,
as the display is anonymized for privacy. To remedy this concern,
Privad relies on a semi-trusted dealer to anonymize user click be-
havior, while accurately reporting such activity to the advertiser
for accounting purposes. The second issue addressed by Privad is
scaling the privacy-preserving mechanism to realistic levels; this
is currently a topic of ongoing research. There are a few key dif-
ferences between REPRIV and Privad. Perhaps the most important
difference is that REPRIV does not necessitate large-scale archi-
tectural shifts to accommodate strong privacy guarantees. Instead,
REPRIV provides a simple client-side mechanism for controlled,
user-directed dissemination of selected types of private data as
needed by applications.

Toubiana et al. [33] discussed Adnostic, a solution similar in
many ways to Privad. In Adnostic, user behavior is monitored lo-
cally on the client in order to build a model suitable for selecting
targeted advertisements. Whenver an advertisement is to be dis-
played, Adnostic contacts the ad network to obtain a fixed list of
potential advertisements. Based on the computed behavior profile,
software on the client selects one ad for display, thus leaving all
remote parties ignorant of the choice. Homomorphic encryption is
used to charge Advertisers for individual renderings in a privacy-
friendly way. However, Adnostic does not consider that a breach
of user privacy has occurred if the advertiser learns when a user
clicks on a particular advertisement, so click-based accounting can
proceed as it currently does without privacy considerations. It is
because of this assumption that Adnostic sidesteps the need for a
semi-trusted dealer to enable proper accounting of advertisements
between the user and advertiser. Like Adnostic, REPRIV observes
user behavior on the client to build a model of user interests. How-
ever, the similarities between Adnostic and REPRIV end there, as
the manner in which private information is disseminated in REPRIV
allows it to be put to a wider range of uses than Adnostic, which is
suitable only for advertisements.

Juels [17] was among the first to tackle the problem of preserv-
ing privacy with targeted advertising. In addition to proposing sev-
eral simple schemes that allow some forms of personalized target-
ing, he described a scheme that utilizes private information retrieval
(PIR) and mix networks to obtain strong privacy guarantees while
allowing flexibility among targeting mechanisms. Essentially, ad-
vertisers provide a ”‘negotiation function”’ that assigns advertise-
ments to user profile types. Because the scheme relies heavily on
strong cryptographic primitives, it does not scale to real-time de-
mands, so Juels recommends the use of prefetching and caching on
the client to meet users’ performance expectations.

Provost et al. [28] observe that users’ social graphs can provide
insight into their interests that may be useful for advertisers. They
proposed a somewhat privacy-preserving technique for construct-
ing social graphs, based on identifying users who visit the same
user-generated content sites. However, because they use third-party
cookies to collect this data without first notifying users or obtain-
ing their permission, some might dispute the degree to which their
system protects privacy.

8.2 Privacy for Web Applications
As a reaction to the perceived decrease in privacy on the web, many
have started exploring techniques that can be applied to restore
some degree of privacy while still allowing for the rich web appli-
cations that people have come to expect. Jakobsson et al. [15] con-
sidered the problem of third-party sites mining users’ navigation
history. They posit that while most users are not comfortable shar-
ing their entire history with content providers, they may be com-
fortable releasing aggregate information that lets a third party learn
whether they have visited at least one or all sites from a large list
of candidate sites. To that end, they developed a system that allows
third parties to learn this type of information about users’ naviga-
tion histories, but nothing more. All privacy assurances offered by
this system derive from the fact that its mechanism is easily au-
ditable by end-users, so parties who wish to mine history data have
disincentive to cheat.

Becker and Chen [4] studied the feasability of inferring specific
attributes of individuals based on their friend connections on social
networking sites. They found that it is possible to deduce users’
personal characteristics with high probabily, for many types of
personal information. Worse yet, they found that it is very difficult
to defend against this type of inference, assuming an attacker has
access to the user’s social graph. On average, they found that
users would have to remove on the order of hundreds of friends
from their connections in order to ensure the privacy of their own
characteristics.

Narayanan and Shmatikov [25] studied the privacy implications
of social networking for end-users. Their observation is that the op-
erators of online social networking sites are sharing user data with
commercially-interested third parties at an increasing rate, and are
doing so after scrubbing the data of personally-identifying infor-
mation in an alarmingly ad-hoc fashion. Relating users’ privacy in
a social network to node anonymity in the social network graph,
they developed a re-identification algorithm that attempts to iden-
tify particular users in an anonymized social network. They found
that if a user subscribed to both Twitter and Flickr, then the algo-
rithm can correctly identify them with 88% accuracy.

McSherry and Mironov [22] attempted to restore a certain
degree of privacy to collaborative recommendation algorithms,
such as that used by Netflix. Citing the work of Narayanan and
Shmatikov [24] in de-anonymizing users who take part in such sys-
tems, they worked in the framework on differential privacy [7] to
build a collaborative recommendation algorithm that preserves the
privacy of each individual rating entered by a participating user.
Their algorithm was able to provide recommendations of quality
comparable to that of the original Netflix recommendation algo-
rithm.

8.3 Managing Private Browser State
A number of researchers have studied the manner in which modern
browsers maintain private state, and how it relates to user privacy.
McKinley [21] examined the privacy modes of popular browsers,
as well as their ability to dutifully clear private state when explic-
itly directed by the user. She found that while some browsers do in
fact clear private state when instructed, none of the browsers’ pri-
vacy modes performs as advertised; each browser left some form of
persistent state that could be later retrieved by web pages in differ-
ent browsing sessions. In particular, third-party browser extensions
posed a significant challenge, as they have the ability to write to
disk without mediation by the browser.

A number of researchers have taken notice of the fact that the
W3 standard mandates functionality, through CSS and JavaScript,
that allows an untrusted web content provider to learn the presence
of specific entries in the user’s navigation history [16]. Janc and
Olejnik [16] performed an in-depth study of this issue, and came to
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the disturbing conclusion that 76% of internet users are vulnerable
to the problem, while attackers can query up to 30,000 history en-
tries per second on modern hardware configurations. Wondracek et
al. [35] exploited this capability to completely de-anonymize users
of popular social networking sites. Jackson et al. [14] observed this
problem, and posit that the underlying problem is that browsers do
not extend the same-origin policy to the navigation history state
leveraged in the attack. They presented a Firefox extension that ex-
tends the same-origin policy in the required way, thus neutralizing
the privacy threat; their solution applies to data in the browser cache
as well, as they point out that this information can also be used to
learn about the user’s history. Recently, Mozilla has taken steps to
prevent history sniffing [32], at the cost of sacrificing certain style
features of web applications.

Taking a broader view of the problem, Eckersley [8] found that
the problem of managing personally-identifying information in the
browser is significantly more difficult than previously thought. The
issue he finds is with a technique dubbed browser fingerprinting,
wherein a large number of publicly-visible but otherwise benign
browser attributes are combined to produce a nearly-unique identi-
fying string for a particular browser. Among the attributes included
in his proposed fingerprint are the user agent string, the HTTP ac-
cept headers, screen resolution, and list of installed plugins. He
found that across all browsers which visited his site at eff.org,
only one in 286,777 browsers will share a fingerprint with any sin-
gle browser. Even worse, among browsers with both Flash and Java
enabled, 94.2% had unique fingerprints.

8.4 Privacy-Preserving Browsing
Noting the tendencies of various third-parties to track users’ brows-
ing behavior without explicit permission, several researchers have
approached the technical problem of maintaining user anonymity
while browsing. Howe and Nissenbaum [13] created TrackMeNot,
a Firefox extension that attempts to anonymize search behavior by
periodically submitting random search queries to major search en-
gines. Additionally, TrackMeNot supports a few mechanisms to
simulate further aspects of normal user interaction with search en-
gines, such as click-through and ”‘burst-mode”’ queries, to de-
crease the likelihood that search engines will be able to reliably dif-
ferentiate between artificial requests submitted on behalf of Track-
MeNot, and real requests submitted by the user.

8.5 Web Personalization and Mining
Many have considered the possibility of automatically personaliz-
ing web content for users based on their interests, preferences, and
behavior. The basis on which personalization is performed varies
from application to application. Pierrakos et al. [27] surveyed the
topic of mining users’ behavior on a set of web services to infer in-
formation that will aid personalization. They found that almost all
web personalization efforts fall into one of four broad categories:
(1) memorizing information about the user to be later replayed, (2)
guiding the user towards information in which they are more likely
to be interested, (3) customizing layout or content to better match
users’ interests, and (4) supporting users’ efforts to complete cer-
tain tasks. REPRIV is designed primarily to support the implemen-
tation of (2) and (3), but it is not difficult to see how it can be used
to support certain aspects of all types of personalization.

There are several browser add-ons popularly referred to as tool-
bars that perform data collection and user behavior mining. Perhaps
the longest-running and most popular among them is the Alexa
Toolbar [3], which for each user collects a complete browsing his-
tory, search engine query list, and summary of the advertisements
presented to the user. This information is transmitted back to Alexa,
where it is used to compute a number of analytic functions, some
of which are returned to toolbar users as a service. Among the

analytics are traffic statistics (including a comprehensive, internet-
wide ranking of popular sites), related search queries for particular
URL’s, audience demographics, related links, and clickstream sta-
tistics. Until recently, Alexa made much of this information avail-
able to the public via a web API. Similarly, Bing [5], Google [11],
and Yahoo [37] all offer toolbars, although they vary in the amount
of mining and automatic personalization that they perform. The Ya-
hoo and Google toolbars collect search engine and navigation his-
tories, and consult them on new searches to present personalized
results.

9. Conclusions
This paper presents REPRIV, an in-browser approach that aims to
perform personalization without sacrificing user privacy. REPRIV
accomplishes this goal by requiring explicit user consent in any
transfer of sensitive user information. We showed how efficient and
effective behavior mining can be added to a web browser to auto-
matically infer the information needed to facilitate many personal-
ized web applications, and evaluated this mechanism on real-world
data. We also showed how third-party code can be incorporated into
the system, and given access to sensitive user information, with-
out sacrificing control and the possibility of user consent. Finally,
we presented two end-to-end case studies of useful personalized
applications, that showcase the abilities of REPRIV. We evaluated
several aspects of these case studies over data collected from real
browsing sessions, as well as human participants. Given our results,
we are able to conclude that REPRIV allows a wide range of per-
sonalized web applications to exist, without requiring the user to
sacrifice control over their personal information: personalized con-
tent and privacy can coexist on the web.
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A. REPRIV Miners
This section lists the following REPRIV miners:

• Netflix miner in Section A.1
• Twitter miner in Section A.2
• Bing miner in Section A.3
• Glue miner in Section A.4

as well as the case studies (Sections B.1 and B.2) and a large portion of the REPRIV API (Section C).

A.1 Netflix Miner

1 // NetflixMiner - Fine version
2
3 module NextflixMiner
4
5 open RePrivPolicy
6 open RePrivAPI
7 open Url
8
9 // Policy assumptions

10 assume PAx0: ExtensionId "netflixminer"
11 assume PAx1: forall (s:string) . (ExtensionId s) => CanUpdateStore (P "netflix.com" s)
12 assume PAx3: forall (s:string) . CanReadDOMId "netflix.com" s
13 assume PAx6: CanReadDOMClass "netflix.com" "rv1"
14 assume PAx7: CanReadDOMClass "netflix.com" "rv2"
15 assume PAx8: CanReadDOMClass "netflix.com" "rv3"
16 assume PAx9: CanReadDOMClass "netflix.com" "rv4"
17 assume PAx10: CanReadDOMClass "netflix.com" "rv5"
18 assume PAx11: CanCaptureEvents "onclick" (P "netflix.com" "netflixminer")
19 assume PAx12: CanServeInformation "fandango.com" (P "netflix.com" "netflixminer")
20 assume PAx13: CanServeInformation "amazon.com" (P "netflix.com" "netflixminer")
21 assume PAx14: CanServeInformation "metacritic.com" (P "netflix.com" "netflixminer")
22 assume PAx15: CanHandleSites "netflix.com"
23 assume PAx16: CanReadStore (P "netflix.com" "netflixminer")
24 assume PAx17: CanReadLocalFile "moviegenres.txt"
25
26 val get_nth: list <’a> -> int -> ’a
27 let get_nth l n = match l with
28 | Cons h t -> if n = 0 then h else get_nth t (n - 1)
29
30 val get_id: xelem -> string
31 let get_id e =
32 let href = GetAttribute e "href" in
33 let sp1 = get_nth (Split href "&") 3 in
34 let sp2 = get_nth (Split sp1 "=") 1 in
35 let sp3 = get_nth (Split sp2 "_") 0 in
36 get_nth (Split sp3 "&") 3
37
38 val make_link: string -> string
39 let make_link x = StringConcat "b0" (StringConcat x "_0")
40
41 val submitHandler: DOMEvent ->
42 unit
43 let submitHandler ev = match ev.doc.dhost with
44 | "netflix.com" ->
45 let flixprov = PCons (P "netflix.com" "netflixminer") PNil in
46 let target = GetEvTarget flixprov "netflixminer" ev in
47 let movieId = bind flixprov target get_id in
48 let linkId = bind flixprov movieId make_link in
49 let titleEl = GetElementByTrackedId flixprov "netflixminer" ev.doc linkId in
50 let movieTitle = bind flixprov titleEl (fun x -> GetAttribute x "href") in
51 let cats = bind flixprov movieTitle (fun x -> Cons "Top/Entertainment/Movies" Nil) in
52 AddEntry flixprov movieTitle "movie" cats (let_mutate ())
53
54 val attachToRatings: ({d:DocHandle | d.dhost = "netflix.com"}) ->
55 ({s:string | CanReadDOMClass "netflix.com" s}) ->
56 unit
57 let attachToRatings doc cl =
58 let flixprov = PCons (P "netflix.com" "netflixminer") PNil in
59 let els = GetElementsByClass flixprov "netflixminer" doc cl in
60 let addEvListen = fun x -> AddEventListener flixprov x "onclick" submitHandler in
61 iterate addEvListen els
62
63 val docLoadHandler: ({d:DocHandle | CanHandleSites d.dhost}) ->
64 unit
65 let docLoadHandler doc = match doc.dhost with | "netflix.com" ->
66 let rv1 = attachToRatings doc "rv1" in
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67 let rv1 = attachToRatings doc "rv2" in
68 let rv1 = attachToRatings doc "rv3" in
69 let rv1 = attachToRatings doc "rv4" in
70 let rv1 = attachToRatings doc "rv5" in
71 ()
72
73 val mymap: list <’a> -> (’a -> ’b) -> list <’b>
74 let mymap l f = match l with
75 | Cons h t -> Cons (f h) (mymap t f)
76 | Nil -> Nil
77
78 val isGenre: string -> string -> list <( string * string)> -> bool
79 let isGenre title genre gl = match gl with
80 | Cons (ctitle , cgenre) t -> if title = ctitle && genre = cgenre then true else isGenre title genre gl
81 | Nil -> false
82
83 val filterByList: list <string > -> list <( string * string)> -> string -> list <string >
84 let filterByList movies gl genre = match movies with
85 | Cons h t -> if (isGenre h genre gl) then (Cons h (filterByList t gl genre)) else (filterByList t gl genre)
86 | Nil -> Nil
87
88 val filterByGenre: string -> list <string > -> list <string >
89 let filterByGenre genre movies =
90 let movieGenres = ReadFileLines "moviegenres.txt" in
91 let genreList = mymap movieGenres (fun x -> match (Split x ":") with | Cons m (Cons g Nil) -> (m, g)) in
92 filterByList movies genreList genre
93
94 val doGetMovies: string ->
95 ({s:string | CanServeInformation s (P "netflix.com" "netflixminer")}) ->
96 unit
97 let doGetMovies genre cdom =
98 let myprov = PCons (P "netflix.com" "netflixminer") PNil in
99 let flixEnts = GetStoreEntriesByTopic myprov "movie" in

100 let genreFlix = bind myprov flixEnts (filterByGenre genre) in
101 ExtensionReturn cdom myprov genreFlix
102
103 val getMoviesByGenre: string -> string -> unit
104 let getMoviesByGenre genre cdom = match cdom with
105 | "fandango.com" -> doGetMovies genre cdom
106 | "amazon.com" -> doGetMovies genre cdom
107 | "metacritic.com" -> doGetMovies genre cdom
108
109 val main: mut_capability -> unit
110 let main mcap =
111 let d = AddNewDocHandler "netflix.com" docLoadHandler in
112 InstallExternalInterface getMoviesByGenre
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A.2 Twitter Miner

1 // TwitterMiner - Fine version
2 module TwitterMiner
3
4 open Url
5 open RePrivPolicy
6 open RePrivAPI
7
8 // Policy assumptions
9

10 assume extid: ExtensionId "twitterminer"
11 assume PAx1: CanCommunicateXHR "twitter.com"
12 assume PAx2: forall (s:string) . (ExtensionId s) => CanUpdateStore (P "twitter.com" s)
13
14 // The actual miner
15
16 val GetDescription: xdoc -> string
17 let GetDescription d =
18 let allMsgs = ReadXDocEls d "item" (fun x -> true) "description" in
19 match allMsgs with
20 | Cons h t -> h
21 | Nil -> ""
22
23 val CollectLatestFeed: ({s:string | ExtensionId s}) ->
24 unit ->
25 unit
26 let CollectLatestFeed extid u =
27 let twitterProv = (simple_prov "twitter.com" extid) in
28 let reqUrl = (mkUrl "http" "twitter.com" "statuses/user_timeline /19852608. rss") in
29 let twitFeed = MakeXDocRequest reqUrl extid twitterProv (let_mutate ()) in
30 let currentMsg = (bind twitterProv twitFeed GetDescription) in
31 let categories = (bind twitterProv currentMsg ClassifyText) in
32 AddEntry twitterProv currentMsg "tweet" categories (let_mutate ())
33
34 val main: unit -> unit
35 let main x =
36 SetTimeout 60000 (CollectLatestFeed "twitterminer")
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A.3 Bing Miner

1 // BingMiner - Fine version
2 module BingMiner
3
4 open RePrivPolicy
5 open RePrivAPI
6
7 // Policy assumptions
8
9 assume extid: ExtensionId "bingminer"

10 assume PAx1: forall (s:string) . (ExtensionId s) => CanUpdateStore (P "bing.com" s)
11 assume PAx2: CanCaptureEvents "submit" (P "bing.com" "bingminer")
12 assume PAx3: CanReadDOMId "bing.com" "sb_form"
13 assume PAx4: CanHandleSites "bing.com"
14
15 val submitHandler: DOMEvent ->
16 unit
17 let submitHandler ev = match ev.doc.dhost with
18 | "bing.com" ->
19 let bingprov = PCons (P "bing.com" "bingminer") PNil in
20 let searchEl = GetElementById bingprov "bingminer" ev.doc "sb_form" in
21 let searchVal = bind bingprov searchEl (fun x -> GetElValue x) in
22 let categories = bind bingprov searchVal ClassifyText in
23 AddEntry bingprov searchVal "search" categories (let_mutate ())
24 | _ -> ()
25
26 val docLoadHandler: ({d:DocHandle | CanHandleSites d.dhost }) ->
27 unit
28 let docLoadHandler doc = match doc.dhost with | "bing.com" ->
29 let bingprov = PCons (P "bing.com" "bingminer") PNil in
30 let el = GetElementById bingprov "bingminer" doc "sb_form" in
31 AddEventListener bingprov el "submit" submitHandler
32
33 val main: mut_capability -> unit
34 let main mcap =
35 AddNewDocHandler "bing.com" docLoadHandler
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A.4 Glue Miner

1 // GlueMiner - Fine code
2 module GlueMiner
3
4 open RePrivPolicy
5 open RePrivAPI
6 open Url
7
8 // Policy assumptions
9

10 assume extid: ExtensionId "glueminer"
11 assume PAx1: CanCommunicateXHRTracked "getglue.com" (P "netflix.com" "netflixminer")
12 assume PAx2: CanCommunicateXHRTracked "getglue.com" (P "twitter.com" "twitterminer")
13 assume PAx3: CanCommunicateXHRTracked "getglue.com" (P "facebook.com" "facebookminer")
14 assume PAx4: CanReadStore (P "netflix.com" "netflixminer")
15 assume PAx5: CanReadStore (P "twitter.com" "twitterminer")
16 assume PAx6: CanReadStore (P "facebook.com" "facebookminer")
17 assume PAx7: CanServeInformation "fandango.com" (P "getglue.com" "glueminer")
18 assume PAx8: CanServeInformation "fandango.com" (P "netflix.com" "netflixminer")
19 assume PAx9: CanServeInformation "linkedin.com" (P "getglue.com" "glueminer")
20 assume PAx10: CanServeInformation "linkedin.com" (P "twitter.com" "twitterminer")
21 assume PAx11: CanServeInformation "linkedin.com" (P "facebook.com" "facebookminer")
22
23 val concat_strs: list <string > -> string -> string
24 let concat_strs l a = match l with
25 | Cons h t -> concat_strs t (StringConcat a h)
26 | Nil -> a
27
28 val movieQueryString: int -> list <string > -> string
29 let movieQueryString n l =
30 if n = 1 then match l with
31 | Cons h t -> StringConcat "/v2/object/links?objectId=movies/" h
32 | Nil -> "/v2/object/links?objectId="
33 else match l with
34 | Cons h t -> movieQueryString (n - 1) t
35 | Nil -> "/v2/object/links?objectId="
36
37 val twitQueryString: int -> list <string > -> string
38 let twitQueryString n l =
39 if n = 1 then match l with
40 | Cons h t -> StringConcat "/v2/object/findObjects?q=" (concat_strs (ClassifyText h) "")
41 | Nil -> "/v2/object/findObjects?q="
42 else match l with
43 | Cons h t -> twitQueryString (n - 1) t
44 | Nil -> "/v2/object/findObjects?q="
45
46 val fbQueryString: int -> list <string > -> string
47 let fbQueryString n l =
48 if n = 1 then match l with
49 | Cons h t -> StringConcat "/v2/object/links?objectId=" h
50 | Nil -> "/v2/object/links?objectId="
51 else match l with
52 | Cons h t -> fbQueryString (n - 1) t
53 | Nil -> "/v2/object/links?objectId="
54
55
56 val getResult: p:({p:provs | AllCanCommunicateXHRTracked "getglue.com" p}) ->
57 tracked <list <string >,p> ->
58 bothprov :({b:provs | forall (pr:prov) . InProvs pr b <=>
59 (InProvs pr p || pr = (P "getglue.com" "glueminer"))}) ->
60 (int -> list <string > -> string) ->
61 tracked <string ,bothprov >
62 let getResult p t both f =
63 let qstr1 = bind p t (f 1) in
64 let qstr2 = bind p t (f 2) in
65 let qstr3 = bind p t (f 3) in
66 let result1 = MakeRequestTracked p "getglue.com" qstr1 "glueminer" both (let_mutate ()) in
67 let result2 = MakeRequestTracked p "getglue.com" qstr2 "glueminer" both (let_mutate ()) in
68 let result3 = MakeRequestTracked p "getglue.com" qstr3 "glueminer" both (let_mutate ()) in
69 let cat1 = bind2 both result1 both result2 StringConcat both in
70 bind2 both cat1 both result3 StringConcat both
71
72 val socialResults: string ->
73 ({s:string | s = "linkedin.com"}) ->
74 unit
75 let socialResults topic cdom =
76 let twitprov = PCons (P "twitter.com" "twitterminer") PNil in
77 let gluetwitprov = PCons (P "getglue.com" "glueminer") twitprov in
78 let fbprov = PCons (P "facebook.com" "facebookminer") PNil in
79 let gluefbprov = PCons (P "getglue.com" "glueminer") fbprov in
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80 let allprovs = PCons (P "twitter.com" "twitterminer") gluefbprov in
81 let twitEnts = GetStoreEntriesByTopic twitprov "tweet" in
82 let fbEnts = GetStoreEntriesByTopic fbprov "like" in
83 let twitResponse = getResult twitprov twitEnts gluetwitprov twitQueryString in
84 let fbResponse = getResult fbprov fbEnts gluefbprov fbQueryString in
85 let finalresult = bind2 gluetwitprov twitResponse gluefbprov fbResponse StringConcat allprovs in
86 ExtensionReturn cdom allprovs finalresult
87
88 val movieResults: string ->
89 ({s:string | s = "fandango.com"}) ->
90 unit
91 let movieResults topic cdom =
92 let flixprov = PCons (P "netflix.com" "netflixminer") PNil in
93 let bothprov = PCons (P "getglue.com" "glueminer") flixprov in
94 let flixEnts = GetStoreEntriesByTopic flixprov "movie" in
95 ExtensionReturn cdom bothprov (getResult flixprov flixEnts bothprov movieQueryString)
96
97 val resultsByTopic: string -> string -> unit
98 let resultsByTopic topic cdom = match cdom with
99 | "fandango.com" -> movieResults topic cdom

100 | "linkedin.com" -> socialResults topic cdom
101
102 val main: unit -> unit
103 let main x = InstallExternalInterface resultsByTopic
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B. Case Studies
B.1 News Personalizer

1 module NewsPersonalizer
2
3 open FineAPI
4 open Url
5
6 assume extid: ExtensionId "newspers"
7 assume PAx1: CanHandleSites "mobile.nytimes.com"
8 assume PAx3: CanCommunicateDOM (P "services.digg.com" "newspers") "mobile.nytimes.com"
9 assume PAx4: CanCommunicateDOM (P "repriv" "repriv") "mobile.nytimes.com"

10 assume PAx5: forall (e:elt) . CanReadAttr e "class"
11 assume PAx6: CanReadDOMId "mobile.nytimes.com" "container"
12 assume PAx7: CanCommunicateXHRTracked "services.digg.com" (P "repriv" "repriv")
13
14 val nthdata:
15 list <’a> ->
16 int ->
17 ’a
18 let nthdata data i =
19 match data with
20 | Cons h1 t1 -> if not (i = 0) then nthdata t1 (i - 1) else h1
21
22 val nthdataT:
23 p:provs ->
24 tracked <list <’a>,p> ->
25 int ->
26 tracked <’a,p>
27 let nthdataT p data i =
28 match data with
29 | Tag d p -> Tag (nthdata d i) p
30
31 val setMinorHeadline:
32 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
33 p1 = (P "repriv" "repriv") && p2 = (P "services.digg.com" "newspers")}) ->
34 ({p:provs | exists (pr:prov) . InProvs pr p && pr = (P "mobile.nytimes.com" "newspers")}) ->
35 tracked <string , bp> ->
36 tracked <string , bp> ->
37 tracked <elt , p> ->
38 mut_capability ->
39 mut_capability
40 let setMinorHeadline bp p line link el cap =
41 let elc = getChildrenT p el in
42 let headl = bind p elc (fun x -> nthdata x 0) in
43 let (_, cap1) = SetTextContent p "mobile.nytimes.com" bp headl line cap in
44 let (_, cap2) = setAttrT p "mobile.nytimes.com" bp headl "href" link cap1 in
45 cap2
46
47 val setTopHeadline:
48 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
49 p1 = (P "repriv" "repriv") && p2 = (P "services.digg.com" "newspers")}) ->
50 ({p:provs | exists (pr:prov) . InProvs pr p && pr = (P "mobile.nytimes.com" "newspers")}) ->
51 tracked <string , bp> ->
52 tracked <string , bp> ->
53 tracked <string , bp> ->
54 tracked <elt , p> ->
55 mut_capability ->
56 mut_capability
57 let setTopHeadline bp p line link sum el cap =
58 let elc = getChildrenT p el in
59 let headl = bind p elc (fun x -> nthdata x 0) in
60 let summary = bind p elc (fun x -> nthdata x 1) in
61 let (_, cap1) = SetTextContent p "mobile.nytimes.com" bp headl line cap in
62 let (_, cap2) = setAttrT p "mobile.nytimes.com" bp headl "href" link cap1 in
63 let (_, cap3) = SetTextContent p "mobile.nytimes.com" bp summary sum cap2 in
64 cap3
65
66 val findNews:
67 list <elt > ->
68 elt
69 let findNews lst =
70 match lst with
71 | Cons h t -> if (getAttr h "class") = "eg sp" then h else findNews t
72
73 // Maps a repriv taxonomy topic to a digg.com news topic
74 val mapTopic:
75 string ->
76 string
77 let mapTopic x = // removed for brevity
78
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79 val getstories:
80 ({p:provs | Singleton p && (exists (pp:prov) . pp = (P "repriv" "repriv") && InProvs pp p)}) ->
81 tracked <list <string >,p> ->
82 ({p2:provs | exists (pr:prov) . InProvs pr p2 && pr = (P "services.digg.com" "newspers")}) ->
83 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
84 p1 = (P "repriv" "repriv") && p2 = (P "services.digg.com" "newspers")}) ->
85 mut_capability ->
86 ((tracked <list <string >, bp> * tracked <list <string >, bp> * tracked <list <string >, bp >) * mut_capability)
87 let getstories p topics p2 bp cap =
88 let q = bind p topics (fun x -> match x with
89 | Cons h t ->
90 StringConcat "http :// services.digg.com /..." (mapTopic h)) in
91 let (xstr , cap1) = MakeTrackedXDocRequestT p "services.digg.com" q "newspers" bp cap in
92 let readtitle = fun x -> readXDocEls x "story" (fun x -> true) "title" in
93 let readlink = fun x -> readXDocEls x "story" (fun x -> true) "link" in
94 let readabstract = fun x -> readXDocEls x "story" (fun x -> true) "description" in
95 ((( bind bp xstr readtitle), (bind bp xstr readlink), (bind bp xstr readabstract )), cap1)
96
97 val docLoadHandler:
98 doc ->
99 mut_capability ->

100 unit
101 let docLoadHandler d cap =
102 let p1 = simple_prov "mobile.nytimes.com" "newspers" in
103 let p2 = simple_prov "services.digg.com" "newspers" in
104 let rp = simple_prov "repriv" "repriv" in
105 let bp = comp_prov rp p2 in
106 let topi = getTopInterests rp 1 in
107 let ((headlines , urls , summaries), cap1) = getstories rp topi p2 bp cap in
108 match (getDocHost d) with | ("mobile.nytimes.com", dr) ->
109 let cont = getEltByIdT p1 "newspers" dr "container" in
110 let cc = getChildrenT p1 cont in
111 let storyCont = bind p1 cc findNews in
112 let storyChildren = getChildrenT p1 storyCont in
113 let cap2 = setTopHeadline bp p1 (nthdataT bp headlines 0)
114 (nthdataT bp urls 0)
115 (nthdataT bp summaries 0)
116 (nthdataT p1 storyChildren 0) cap1 in
117 let cap3 = setMinorHeadline bp p1 (nthdataT bp headlines 0)
118 (nthdataT bp urls 0)
119 (nthdataT p1 storyChildren 0) cap2 in
120 ()
121
122 val main: mut_capability -> unit
123 let main cap =
124 AddNewDocHandler "mobile.nytimes.com" (fun x -> docLoadHandler x cap)
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B.2 Search Personalizer

1 module SearchPersonalizer
2
3 open FineAPI
4 open Url
5
6 assume extid: ExtensionId "searchpers"
7 assume PAx1: CanCommunicateXHRTracked "boss.yahooapis.com" (P "m.bing.com" "searchpers")
8 assume PAx2: CanReadDOMId "m.bing.com" "Q"
9 assume PAx3: CanHandleSites "m.bing.com"

10 assume PAx4: forall (e:elt) . CanReadValue e
11 assume PAx5: CanReadStore (P "m.bing.com" "searchpers")
12 assume PAx6: CanReadDOMClass "m.bing.com" "s15"
13 assume PAx7: forall (e:elt) . CanReadAttr e "class"
14 assume PAx8: CanCommunicateDOM (P "m.bing.com" "searchpers") "m.bing.com"
15 assume PAx9: CanCommunicateDOM (P "boss.yahooapis.com" "searchpers") "m.bing.com"
16 assume PAx10: CanCaptureEvents "submit" (P "m.bing.com" "searchpers")
17 assume PAx11: CanUpdateStore (P "m.bing.com" "searchpers")
18 assume PAx12: CanCaptureEvents "click" (P "m.bing.com" "searchpers")
19
20 val yahooProv: provs
21 let yahooProv = PCons (P "boss.yahooapis.com" "searchpers") PNil
22
23 val bingProv: provs
24 let bingProv = PCons (P "m.bing.com" "searchpers") PNil
25
26 val inlist:
27 ’a ->
28 list <’a> ->
29 bool
30 let inlist el lst =
31 match lst with
32 | Cons hd tl -> if hd = el then true else (inlist el tl)
33 | Nil -> false
34
35 val allexcept:
36 list <string > ->
37 list <string > ->
38 list <string >
39 let allexcept primary exclude =
40 match primary with
41 | Cons hd tl -> if (inlist hd exclude) then (allexcept tl exclude) else (Cons hd (allexcept tl exclude ))
42 | Nil -> Nil
43
44 val append:
45 list <’a> ->
46 list <’a> ->
47 list <’a>
48 let append l1 l2 =
49 match l1 with
50 | Cons h t -> Cons h (append l2 t)
51 | Nil -> l2
52
53 // Queries the BOSS API
54 val runsearch:
55 ({ip:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 ip}) ->
56 tracked <string ,ip > ->
57 ({p:provs | exists (pr:prov) . InProvs pr p && pr = (P "boss.yahooapis.com" "searchpers")}) ->
58 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
59 p1 = (P "boss.yahooapis.com" "searchpers") && p2 = (P "m.bing.com" "searchpers")}) ->
60 mut_capability ->
61 ((tracked <list <string >, bp> * tracked <list <string >, bp> * tracked <list <string >, bp >) * mut_capability)
62 let runsearch ip query p bp cap =
63 let tq1 = bind ip query (fun x -> StringConcat x "?appid={ appid }& format=xml&count =50") in
64 let q = bind ip tq1 (fun x -> StringConcat "ysearch/web/v1" x) in
65 let (xstr , cap1) = MakeTrackedXDocRequestT ip "boss.yahooapis.com" q "searchpers" bp cap in
66 let readclos = fun x -> readXDocEls x "{http :// www.inktomi.com/} result" (fun x -> true)
67 "{http :// www.inktomi.com/}url" in
68 let readtitle = fun x -> readXDocEls x "{http :// www.inktomi.com/} result" (fun x -> true)
69 "{http :// www.inktomi.com/}title" in
70 let readabstract = fun x -> readXDocEls x "{http :// www.inktomi.com/} result" (fun x -> true)
71 "{http :// www.inktomi.com/} abstract" in
72 ((( bind bp xstr readclos), (bind bp xstr readtitle), (bind bp xstr readabstract )), cap1)
73
74 // Return results previously selected by user
75 val lastselected:
76 list <string > ->
77 list <string > ->
78 list <string > ->
79 list <string >
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80 let lastselected searchres prev ret =
81 match searchres with
82 | Cons hd tl -> if (inlist hd prev) then (lastselected tl prev (Cons hd ret)) else (lastselected tl prev ret)
83 | Nil -> ret
84
85 // Sort the first argument by frequency of host visitation
86 val reorder:
87 string ->
88 int ->
89 list <( string * int)> ->
90 list <( string * int)>
91 let reorder ent freq lst =
92 match lst with
93 | Cons (s, n) tl -> if freq = n then (Cons (ent , freq) lst) else (Cons (s, n) (reorder ent freq tl))
94 | Nil -> Nil
95
96 val count:
97 string ->
98 list <string > ->
99 int

100 let count el l = match l with
101 | Cons el tl -> 1 + (count el tl)
102 | Cons _ tl -> count el tl
103 | Nil -> 0
104
105 val counthostvisits:
106 ({p:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 p}) ->
107 tracked <list <string >,p> ->
108 tracked <list <( string * int)>, p>
109 let counthostvisits p l =
110 let all = GetStoreEntriesByTopic p "searchresult" in
111 let first = bind p l (fun x -> match x with | Cons h t -> h) in
112 let rest = bind p l (fun x -> match x with | Cons h t -> t | Nil -> Nil) in
113 let num = bind2 p first p all count p in
114 let pair = bind2 p first p num (fun x y -> (x, y)) p in
115 bind2 p pair p (counthostvisits p rest) (fun x y -> Cons x y) p
116
117 val countvisits:
118 list <( string * int)> ->
119 string ->
120 int
121 let countvisits freqs ent = match freqs with
122 | Cons (ent , i) tl -> i
123 | Cons _ tl -> countvisits tl ent
124 | nil -> 0
125
126 val hostfrequency:
127 list <string > ->
128 list <( string * int)> ->
129 list <( string * int)> ->
130 list <string >
131 let hostfrequency searchres freqs ret =
132 match searchres with
133 | Cons hd tl -> hostfrequency tl freqs (reorder hd (countvisits freqs hd) ret)
134 | Nil -> map ret (fun x -> match x with | (x, y) -> x)
135
136 // The actual re-ranking function
137 val filterBySearch:
138 string ->
139 list <string > ->
140 list <string >
141 let filterBySearch q l =
142 match l with
143 | Cons h t -> if (Split h ":" 0) = q then Cons (Split h ":" 1) (filterBySearch q t) else (filterBySearch q t)
144 | Nil -> Nil
145
146 val getselected:
147 bp:provs ->
148 tracked <string ,bp > ->
149 ({p:provs | AllCanReadStore p}) ->
150 ({fp:provs | forall (tp:prov) . (InProvs tp p || InProvs tp bp) <=> InProvs tp fp}) ->
151 tracked <list <string >, fp >
152 let getselected bp q p fp =
153 let all = GetStoreEntriesByTopic p "searchresult" in
154 bind2 bp q p all filterBySearch fp
155
156 val rerank:
157 ({p:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 p}) ->
158 tracked <string , p> ->
159 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
160 p1 = (P "boss.yahooapis.com" "searchpers") && p2 = (P "m.bing.com" "searchpers")}) ->
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161 mut_capability ->
162 ((tracked <list <string >,bp > * (tracked <list <string >,bp > * tracked <list <string >,bp> * tracked <list <string >,bp >)) *
163 mut_capability)
164 let rerank p t bp cap =
165 let p1 = simple_prov "boss.yahooapis.com" "searchpers" in
166 let (defltall , cap1) = runsearch p t p1 bp cap in
167 match defltall with | (deflt , _, _) ->
168 let prev = getselected p t p p in
169 let reorder1 = bind2 bp deflt p prev (fun x y -> lastselected x y Nil) bp in
170 let pruned1 = bind2 bp deflt bp reorder1 allexcept bp in
171 let hostvisits = counthostvisits bp pruned1 in
172 let reorder2 = bind2 bp pruned1 bp hostvisits (fun x y -> hostfrequency x y Nil) bp in
173 let pruned2 = bind2 bp pruned1 bp reorder2 allexcept bp in
174 let append1 = bind2 bp reorder1 bp reorder2 append bp in
175 (( bind2 bp append1 bp pruned2 append bp , defltall), cap1)
176
177 // Browser interfacing stuff
178 val findLink:
179 list <elt > ->
180 elt
181 let findLink lst =
182 match lst with
183 | Cons h t -> if (getAttr h "class") = "Link" then h else findLink t
184
185 val findDispUrl:
186 list <elt > ->
187 elt
188 let findDispUrl lst =
189 match lst with
190 | Cons h t -> if (getAttr h "class") = "c2" then h else findLink t
191
192 val findSpan:
193 list <elt > ->
194 elt
195 let findSpan lst =
196 match lst with
197 | Cons h t -> if (getElType h) = "span" then h else findSpan t
198
199 val changeLink:
200 ({p:provs | forall (p1:prov) . (InProvs p1 p) <=> (p1 = (P "m.bing.com" "searchpers"))}) ->
201 tracked <elt ,p> ->
202 ({bp:provs | forall (p1:prov) . InProvs p1 bp <=>
203 (p1 = (P "boss.yahooapis.com" "searchpers") || p1 = (P "m.bing.com" "searchpers"))}) ->
204 tracked <string ,bp > ->
205 tracked <string ,bp > ->
206 mut_capability ->
207 (unit * mut_capability)
208 let changeLink p el bp url title cap =
209 let t1 = getChildrenT p el in
210 let linkEl = bind p t1 findLink in
211 let (t2 , cap1) = setAttrT p "m.bing.com" bp linkEl "href" url cap in
212 let (t3 , cap2) = SetTextContent p "m.bing.com" bp linkEl title cap1 in
213 ((), cap2)
214
215 val changeDispUrl:
216 ({p:provs | forall (p1:prov) . (InProvs p1 p) <=> (p1 = (P "m.bing.com" "searchpers"))}) ->
217 tracked <elt ,p> ->
218 ({bp:provs | forall (p1:prov) . InProvs p1 bp <=>
219 (p1 = (P "boss.yahooapis.com" "searchpers") || p1 = (P "m.bing.com" "searchpers"))}) ->
220 tracked <string ,bp > ->
221 mut_capability ->
222 (unit * mut_capability)
223 let changeDispUrl p el bp url cap =
224 let t1 = getChildrenT p el in
225 let dispEl = bind p t1 findDispUrl in
226 let (t3 , cap1) = SetTextContent p "m.bing.com" bp dispEl url cap in
227 ((), cap1)
228
229 val changeDescription:
230 ({p:provs | forall (p1:prov) . (InProvs p1 p) <=> (p1 = (P "m.bing.com" "searchpers"))}) ->
231 tracked <elt ,p> ->
232 ({bp:provs | forall (p1:prov) . InProvs p1 bp <=>
233 (p1 = (P "boss.yahooapis.com" "searchpers") || p1 = (P "m.bing.com" "searchpers"))}) ->
234 tracked <string ,bp > ->
235 mut_capability ->
236 (unit * mut_capability)
237 let changeDescription p el bp desc cap =
238 let t1 = getChildrenT p el in
239 let spanEl = bind p t1 findSpan in
240 let (t2 , cap1) = SetTextContent p "m.bing.com" bp spanEl desc cap in
241 ((), cap1)
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242
243 val modifySearch:
244 ({p:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 p}) ->
245 tracked <elt ,p> ->
246 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
247 p1 = (P "boss.yahooapis.com" "searchpers") && p2 = (P "m.bing.com" "searchpers")}) ->
248 tracked <string ,bp > ->
249 tracked <string ,bp > ->
250 tracked <string ,bp > ->
251 mut_capability ->
252 (unit * mut_capability)
253 let modifySearch p el bp url title abs cap =
254 let children = getChildrenT p el in
255 let (t1 , cap1) = changeLink p el bp url title cap in
256 let (t2 , cap2) = changeDescription p el bp abs cap1 in
257 let (t3 , cap3) = changeDispUrl p el bp url cap2 in
258 ((), cap3)
259
260 val submitHandler:
261 ({ip:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 ip}) ->
262 ({p:provs | exists (pr:prov) . InProvs pr p && pr = (P "boss.yahooapis.com" "searchpers")}) ->
263 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
264 p1 = (P "boss.yahooapis.com" "searchpers") && p2 = (P "m.bing.com" "searchpers")}) ->
265 evt ->
266 mut_capability ->
267 unit
268 let submitHandler ip p bp e cap =
269 let d = getEvTarget e in
270 match (getDocHost d) with | ("m.bing.com", dr) ->
271 let resDiv = getEltByIdT ip "searchpers" dr "Q" in
272 let q = bind ip resDiv getElValue in
273 let t = MakeTrackedXDocRequestT ip "boss.yahooapis.com" q "searchpers" bp cap in
274 ()
275
276 val selectionHandler:
277 ({ip:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 ip}) ->
278 tracked <string ,ip > ->
279 tracked <string ,ip > ->
280 evt ->
281 mut_capability ->
282 unit
283 let selectionHandler p q url e cap =
284 let tconcat = bind2 p q p url StringConcat p in
285 let tnil = bind p q (fun x -> Nil) in
286 let t = AddEntry p tconcat "searchresult" tnil cap in
287 ()
288
289 val hookSel:
290 ({ip:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 ip}) ->
291 tracked <elt ,ip> ->
292 tracked <string ,ip > ->
293 mut_capability ->
294 (unit * mut_capability)
295 let hookSel p el q cap =
296 let t1 = getChildrenT p el in
297 let linkEl = bind p t1 findLink in
298 let url = getAttrT p el "href" in
299 let (t2 , cap1) = addListenerWithCap p el "click" (selectionHandler p q url) cap in
300 ((), cap1)
301
302 val hookSelections:
303 ({ip:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 ip}) ->
304 tracked <string ,ip > ->
305 doc ->
306 mut_capability ->
307 (unit * mut_capability)
308 let hookSelections p q d cap =
309 match (getDocHost d) with | ("m.bing.com", dr) ->
310 let reselts = getEltsByClassNameT p "searchpers" dr "s15" in
311 let (t1 , cap1) = hookSel p (nthdata reselts 0) q cap in
312 let (t2 , cap2) = hookSel p (nthdata reselts 1) q cap1 in
313 let (t3 , cap3) = hookSel p (nthdata reselts 2) q cap2 in
314 let (t4 , cap4) = hookSel p (nthdata reselts 3) q cap3 in
315 let (t5 , cap5) = hookSel p (nthdata reselts 4) q cap4 in
316 let (t6 , cap6) = hookSel p (nthdata reselts 5) q cap5 in
317 let (t7 , cap7) = hookSel p (nthdata reselts 6) q cap6 in
318 let (t8 , cap8) = hookSel p (nthdata reselts 7) q cap7 in
319 let (t9 , cap9) = hookSel p (nthdata reselts 8) q cap8 in
320 let (t10 , cap10) = hookSel p (nthdata reselts 9) q cap9 in
321 ((), cap10)
322
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323 val nthdata:
324 list <’a> ->
325 int ->
326 ’a
327 let nthdata data i =
328 match data with
329 | Cons h1 t1 -> if not (i = 0) then nthdata t1 (i - 1) else h1
330
331 val updateResults:
332 ({ip:provs | exists (p1:prov) . p1 = (P "m.bing.com" "searchpers") && InProvs p1 ip}) ->
333 ({p:provs | exists (pr:prov) . InProvs pr p && pr = (P "boss.yahooapis.com" "searchpers")}) ->
334 ({bp:provs | exists (p1:prov), (p2:prov) . InProvs p1 bp && InProvs p2 bp &&
335 p1 = (P "boss.yahooapis.com" "searchpers") && p2 = (P "m.bing.com" "searchpers")}) ->
336 int ->
337 list <tracked <elt , ip>> ->
338 tracked <list <string >, bp > ->
339 tracked <list <string >, bp > ->
340 tracked <list <string >, bp > ->
341 mut_capability ->
342 (unit * mut_capability)
343 let updateResults p2 p1 bp i reselts c1 c2 c3 cap =
344 let data1 = (bind bp c1 (fun x -> nthdata x i),
345 bind bp c2 (fun x -> nthdata x i),
346 bind bp c3 (fun x -> nthdata x i)) in
347 match data1 with | (uc1 , uc2 , uc3) ->
348 let (_, cap1) = modifySearch p2 (nthdata reselts i) bp uc1 uc2 uc3 cap in
349 ((), cap1)
350
351 val docLoadHandler:
352 doc ->
353 mut_capability ->
354 unit
355 let docLoadHandler d cap =
356 let p1 = simple_prov "boss.yahooapis.com" "searchpers" in
357 let p2 = simple_prov "m.bing.com" "searchpers" in
358 let bp = comp_prov p1 p2 in
359 match (getDocHost d) with | ("m.bing.com", dr) ->
360 let resDiv = getEltByIdT p2 "searchpers" dr "Q" in
361 let q = bind p2 resDiv getElValue in
362 let (t1 , cap1) = rerank p2 q bp cap in
363 let (t2 , cap2) = addListenerWithCap p2 resDiv "submit" (submitHandler p2 p1 bp) cap1 in
364 match t1 with | (reranked , allinfo) ->
365 let reselts = getEltsByClassNameT p2 "searchpers" dr "s15" in
366 match allinfo with | (c1 , c2 , c3) ->
367 let (_, cap3) = updateResults p2 p1 bp 0 reselts c1 c2 c3 cap2 in
368 let (_, cap4) = updateResults p2 p1 bp 1 reselts c1 c2 c3 cap3 in
369 let (_, cap5) = updateResults p2 p1 bp 2 reselts c1 c2 c3 cap4 in
370 let (_, cap6) = updateResults p2 p1 bp 3 reselts c1 c2 c3 cap5 in
371 let (_, cap7) = updateResults p2 p1 bp 4 reselts c1 c2 c3 cap6 in
372 let (_, cap8) = updateResults p2 p1 bp 5 reselts c1 c2 c3 cap7 in
373 let (_, cap9) = updateResults p2 p1 bp 6 reselts c1 c2 c3 cap8 in
374 let (_, cap10) = updateResults p2 p1 bp 7 reselts c1 c2 c3 cap9 in
375 let (_, cap11) = updateResults p2 p1 bp 8 reselts c1 c2 c3 cap10 in
376 let (_, cap12) = updateResults p2 p1 bp 9 reselts c1 c2 c3 cap11 in
377 let (_, cap13) = hookSelections p2 q d cap12 in
378 ()
379
380 val main: mut_capability -> unit
381 let main cap =
382 AddNewDocHandler "m.bing.com" (fun x -> docLoadHandler x cap)
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C. RePriv API (representative subset)

1 // Policy definitions
2
3 private type prov =
4 | P : string -> string -> prov
5
6 private type provs :: * =
7 | PNil : provs
8 | PCons : prov -> provs -> provs
9

10 prop InProvs :: prov => provs => *
11 assume HdProvs:forall (p:prov), (tl:provs). InProvs p (PCons p tl)
12 assume TlProvs:forall (p:prov), (q:prov), (tl:provs).
13 InProvs p tl => InProvs p (PCons q tl)
14 assume notinPNil: forall (p:prov). not (InProvs p PNil)
15 assume notinPCons: forall (a:prov), (b:prov), (tl:provs).
16 ((not (InProvs a tl)) && (not (a=b))) => not (InProvs a (PCons b tl))
17
18 prop Singleton :: provs => *
19 assume provsSing : forall (ps:provs). (exists (p:prov). (ps = (Cons p Nil ))) <=> (Singleton ps)
20
21 type tracked :: * => provs => * =
22 | Tag : ’a -> p:provs -> tracked <’a,p>
23
24 val simple_prov: d:string ->
25 e:string ->
26 ({p:provs | In (P d e) p && Singleton p})
27 let simple_prov d e = Cons (P d e) Nil
28
29 val comp_prov: p1:provs ->
30 p2:provs ->
31 ({p:provs | forall (pr:prov) .
32 (( InProvs pr p1) || (InProvs pr p2)) <=> (InProvs pr p)})
33 let rec comp_prov p1 p2 = match p1 with
34 | PCons p tl -> PCons p (comp_prov tl p2)
35 | PNil -> p2
36
37 val bind: p:provs -> tracked <’a,p> -> (’a -> ’b) -> tracked <’b,p>
38 let bind p v f = match v with
39 | Tag d p -> Tag (f d) p
40
41 val bind2: p1:provs ->
42 tracked <’a,p1 > ->
43 p2:provs ->
44 tracked <’b,p2 > ->
45 (’a -> ’b -> ’c) ->
46 p3:({p3:provs | forall (pr:prov) . (( InProvs pr p1) || (InProvs pr p2)) <=> (InProvs pr p3)}) ->
47 tracked <’c,p3 >
48 let bind2 p1 t1 p2 t2 f p3 =
49 match t1 with | Tag d1 p1 ->
50 match t2 with | Tag d2 p2 ->
51 Tag (f d1 d2) p3
52
53 private type mut_capability :: + =
54 | MCap : mut_capability
55
56 val let_mutate: unit -> mut_capability
57 let let_mutate x = MCap
58
59 // CanReadStore :: source prov
60 prop CanReadStore :: prov => *
61
62 // CanUpdateStore :: source prov
63 prop CanUpdateStore :: prov => *
64
65 // AllCanUpdateStore :: source provs
66 prop AllCanUpdateStore :: provs => *
67 assume AllCanUp: forall (ps:provs) . (forall (p:prov) .
68 (InProvs p ps) => (CanUpdateStore p)) <=> AllCanUpdateStore ps
69
70 // AllCanReadStore :: source provs
71 prop AllCanReadStore :: provs => *
72 assume AllCanRead: forall (ps:provs) . (forall (p:prov) .
73 (InProvs p ps) => (CanReadStore p)) <=> AllCanReadStore ps
74
75 // CanServeInformation :: dest host => source prov
76 prop CanServeInformation :: string => prov => *
77
78 // AllCanServeInformation :: dest host => source provs
79 prop AllCanServeInformation :: string => provs => *
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80 assume AllCanServe: forall (ps:provs), (s:string) . (forall (p:prov) .
81 (InProvs p ps) => (CanServeInformation s p)) <=> AllCanServeInformation s ps
82
83 // ExtensionId :: extension id
84 prop ExtensionId :: string => *
85
86 // CanCommunicateXHR :: dest host
87 prop CanCommunicateXHR :: string => *
88
89 // CanCommunicateXHRTracked :: dest host => source prov
90 prop CanCommunicateXHRTracked :: string => prov => *
91
92 // AllCanCommunicateXHRTracked :: dest host => source provs
93 prop AllCanCommunicateXHRTracked :: string => provs => *
94 assume AllCanCom: forall (h:string), (ps:provs), (p:prov) .
95 (( InProvs p ps) => (CanCommunicateXHRTracked h p)) <=> AllCanCommunicateXHRTracked h ps
96
97 // CanCommunicateDOM :: source prov => host
98 prop CanCommunicateDOM :: prov => string => *
99

100 // AllCanCommunicateDOM :: source provs => host => *
101 prop AllCanCommunicateDOM :: provs => string => *
102 assume AllCanCommDOM: forall (ps:provs), (s:string) . (forall (p:prov) .
103 (InProvs p ps) => (CanCommunicateDOM p s)) <=> AllCanCommunicateDOM ps s
104
105 // CanReadLocalFile :: file name
106 prop CanReadLocalFile :: string => *
107
108 // CanCaptureEvents :: element type => element provenance
109 prop CanCaptureEvents :: string => prov => *
110
111 // AllCanCapture :: element type => element provs
112 prop AllCanCapture :: string => provs => *
113 assume AllCanCap: forall (ps:provs), (s:string) . (forall (p:prov) .
114 (InProvs p ps) => (CanCaptureEvents s p)) <=> AllCanCapture s ps
115
116 // CanReadDOMId :: page host => id name
117 prop CanReadDOMId :: string => string => *
118
119 // CanReadDOMClass :: page host => class name
120 prop CanReadDOMClass :: string => string => *
121
122 // CanHandleSites :: site host
123 prop CanHandleSites :: string => *
124
125 // EltHost :: element => host
126 prop EltHost :: elt => string => *
127
128 //
129 // API Wrappers
130 //
131
132 extern API val getDocHost:
133 d:doc ->
134 (s:{s:string | DocHost d s} * {dr:doc | DocHost dr s})
135
136 private extern API val getElementById: doc -> string -> elt
137
138 val getEltByTrackedIdT:
139 p:({p:provs | Singleton p}) ->
140 ({e:string | ExtensionId e}) ->
141 d:({d:doc | exists (h:string) . (DocHost d h) && (InProvs (P h e) p)
142 && (forall (s:string) . CanReadDOMId h s)}) ->
143 tracked <string ,p> ->
144 tracked <elt ,p>
145 let getEltByTrackedIdT p e d s =
146 match s with | Tag us p -> (Tag (getElementById d us) p)
147
148 val getEltByIdT:p:
149 ({p:provs | Singleton p}) ->
150 ({e:string | ExtensionId e}) ->
151 d:({d:doc | exists (h:string) . (DocHost d h) && InProvs (P h e) p}) ->
152 ({s:string | exists (h:string) . (DocHost d h) && CanReadDOMId h s}) ->
153 tracked <elt ,p>
154 let getEltByIdT p e d s = Tag (getElementById d s) p
155
156 private extern API val getElementsByClass: doc -> string -> list <elt >
157
158 val getEltsByClassNameT:
159 p:({p:provs | Singleton p}) ->
160 ({e:string | ExtensionId e}) ->
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161 d:({d:doc | exists (h:string) . DocHost d h && InProvs (P h e) p}) ->
162 ({s:string | exists (h:string) . DocHost d h && CanReadDOMClass h s}) ->
163 list <tracked <elt ,p>>
164 let getEltsByClassNameT p e d s = map (getElementsByClass d s) (fun x -> Tag x p)
165
166 extern API val installExternalInterface: (’a -> string -> unit) -> bool
167
168 extern API val getChildren:
169 elt ->
170 list <elt >
171
172 val getChildrenT:
173 p:provs ->
174 tracked <elt ,p> ->
175 tracked <list <elt >,p>
176 let getChildrenT p e = match e with | Tag ue p ->
177 Tag (getChildren ue) p
178
179 extern API val getElValue: elt -> string
180
181 extern API val setValue
182 : elt
183 -> s:string
184 -> ({ ce2:elt | EltTextValue ce s })
185
186 val setValueT:
187 e:elt ->
188 ({p:provs | exists (s:string) . EltHost e s && AllCanCommunicateDOM p s}) ->
189 tracked <string ,p> ->
190 mut_capability ->
191 (unit * mut_capability)
192 let setValueT e p t c =
193 let ce = Assume <elt , CanWriteValue > e in
194 let x = match t with | Tag s p -> setValue ce s in
195 ((), c)
196
197 private extern API val setAttribute: elt -> string -> string -> bool
198
199 extern API val getAttribute: elt -> string -> string
200
201 val setAttrT:
202 ({ elprov:provs | Singleton elprov }) ->
203 ({h:string | exists (e:string) . InProvs (P h e) elprov }) ->
204 ({p:provs | AllCanCommunicateDOM p h}) ->
205 tracked <elt ,elprov > ->
206 k:string ->
207 tracked <string ,p> ->
208 mut_capability ->
209 (unit * mut_capability)
210 let setAttrT elprov p h el k v cap =
211 match el with | Tag uel elprov ->
212 match v with | Tag uv p ->
213 let x = setAttribute uel k uv in
214 ((), cap)
215
216 val getAttrT:
217 p:provs ->
218 tracked <elt ,p> ->
219 k:string ->
220 tracked <string ,p>
221 let getAttrT p te atname = match te with
222 | Tag el p -> Tag (getAttribute el atname) p
223
224 val SetTextContent:
225 ({ elprov:provs | Singleton elprov }) ->
226 ({h:string | exists (e:string) . InProvs (P h e) elprov }) ->
227 ({p:provs | AllCanCommunicateDOM p h}) ->
228 tracked <elt ,elprov > ->
229 tracked <string ,p> ->
230 mut_capability ->
231 (unit * mut_capability)
232 let SetTextContent elprov h p el v cap =
233 match el with | Tag uel elprov ->
234 match v with | Tag uv p ->
235 (( setTextContent uel uv), cap)
236
237 private extern API val makeXDocRequest: string -> string -> xdoc
238
239 val MakeXDocRequestT:
240 h:({h:string | CanCommunicateXHR h}) ->
241 t:string ->
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242 eprin:string ->
243 ({p:provs | InProvs (P h eprin) p}) ->
244 mut_capability ->
245 (tracked <xdoc ,p> * mut_capability)
246 let MakeXDocRequestT h t eprin pr m =
247 let r = (makeXDocRequest h t) in ((Tag r pr), m)
248
249 val MakeTrackedXDocRequestT: sp:provs ->
250 h:({h:string | AllCanCommunicateXHRTracked h sp}) ->
251 t:tracked <string ,sp > ->
252 eprin:string ->
253 fp:({p:provs | forall (pr:prov) . (InProvs pr p) <=>
254 (InProvs pr sp || pr = (P h eprin ))}) ->
255 mut_capability ->
256 (tracked <xdoc ,fp > * mut_capability)
257 let MakeTrackedXDocRequestT sp h t eprin fp c =
258 match t with | Tag r sp -> (Tag (makeXDocRequest h r) fp , c)
259
260 private extern API val addNewDocHandler: string -> (doc -> unit) -> bool
261 val AddNewDocHandler:
262 ({s:string | CanHandleSites s}) ->
263 (doc -> unit) ->
264 unit
265 let AddNewDocHandler s f = let x = addNewDocHandler s f in ()
266
267 private extern API val addEventListener:
268 elt ->
269 string ->
270 (doc -> evt -> unit) ->
271 evtHandler
272
273 val addStatelessListener:
274 p:provs ->
275 tracked <elt ,p> ->
276 ({s:string | AllCanCapture s p}) ->
277 (evt -> unit) ->
278 evtHandler
279 let addStatelessListener p e s f = match e with
280 | Tag ue p -> addEventListener ue s (fun d -> f)
281
282 val addListenerWithCap:
283 p:provs ->
284 tracked <elt ,p> ->
285 ({s:string | AllCanCapture s p}) ->
286 (evt -> mut_capability -> unit) ->
287 mut_capability ->
288 (evtHandler * mut_capability)
289 let addListenerWithCap p t s f c = match t with
290 | Tag ue p -> (( addEventListener ue s (fun d e -> f e (let_mutate ()))) , c)
291
292 private extern API val getEvTarget: e:evt -> ({d:doc | HasTarget e d})
293
294 val GetEvTarget:
295 p:provs ->
296 e:string ->
297 ({v:evt | exists (d:doc), (h:string) . HasTarget v d && DocHost d h && InProvs (P h e) p}) ->
298 tracked <doc ,p>
299 let GetEvTarget p e d = Tag (getEvTarget d) p
300
301 extern API val ReadXDocEls: xdoc -> string -> (xelem -> bool) -> string -> list <string >
302
303 extern API val ClassifyText: string -> list <string >
304
305 extern API val StringConcat: string -> string -> string
306
307 extern API val ReadFileLines: ({s:string | CanReadLocalFile s}) ->
308 list <string >
309
310 extern API val Split: string -> string -> int -> string
311
312 extern API val StringToInt: string -> int
313
314 extern API val SetTimeout: int -> (unit -> unit) -> bool
315
316 extern API val ExtensionReturn:
317 dest:string ->
318 p:({p:provs | AllCanServeInformation dest p}) ->
319 tracked <’a,p> ->
320 bool
321
322 //
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323 // Personal store
324 //
325
326 private extern API val addEntry:
327 string ->
328 string ->
329 list <string > ->
330 bool
331
332 val AddEntry:
333 ({p:provs | AllCanUpdateStore p}) ->
334 tracked <string ,p> ->
335 string ->
336 tracked <list <string >,p> ->
337 mut_capability ->
338 (unit * mut_capability)
339 let AddEntry p e t cats c =
340 match e with | Tag ue p ->
341 match cats with | Tag ucats p ->
342 let x = addEntry ue t ucats in
343 ((), c)
344
345 private extern API val getStoreEntriesByTopic:
346 string ->
347 list <string >
348
349 val GetStoreEntriesByTopic:
350 ({p:provs | AllCanReadStore p}) ->
351 string ->
352 tracked <list <string >,p>
353 let GetStoreEntriesByTopic p t = Tag (getStoreEntriesByTopic t) p
354
355 extern API val getTopInterests:
356 ({p:provs | Singleton p && (exists (pp:prov) . pp = (P "repriv" "repriv") && InProvs pp p)}) ->
357 int ->
358 tracked <list <string >,p>
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