
Reference Count Analysis With Shallow Aliasing

Akash Lal1 akash@cs.wisc.edu

G. Ramalingam grama@microsoft.com

May 2009

Technical Report
MSR-TR-2009-61

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1Work done when the author was an intern at Microsoft Research, India.

1 Introduction

Resource management is a key problem in system software, especially in the
presence of concurrency. Reference counting is a commonly used technique for
resource management. Typically, the reference count field of an object keeps
track of the number of references of a certain kind to that object. For example,
for garbage collection, the field keeps track of the number of pointers pointing
to the given object. Reference counting is also used to implement reader-writer
locks in the presence of concurrency: read locks allow a number of threads to
concurrently read an object, while a thread must acquire an exclusive lock to
update the object. In this context, a reference count field is used to keep track
of the number of readers holding a read-lock on the resource.

A reference count field is of type integer and is manipulated using increment
and decrement operations. For example, when a new client acquires a resource,
the concerned reference count field is incremented by one. When the client
gives up the resource, the field is decremented by one. It is safe for a client to
increment the same reference count multiple times, as long as the client performs
a matching number of the decrements of the reference count at the appropriate
time. (When used to implement a locking mechanism, this feature allows a
thread to acquire a lock on a resource without having to check if it already
holds a lock on that resource, which is often convenient.)

In the garbage-collection context, an object whose reference count is zero is
garbage and may be reclaimed. In the reader-writer lock scenario, an object
whose reference count is zero does not have any readers, and a writer may
acquire a write-lock on the corresponding object.

One key correctness criterion in the use of reference counts is that the in-
crement and decrement operations must be well-matched. If some computation
increments a reference count but omits to perform a matching decrement, the
reference count may never reach zero. This can not only lead to a degradation
of the performance of an application, but it can also have more human-visible
effects. For example, if reference counts are used to track the number of ap-
plications currently accessing a file or a folder, a user may be prevented from
deleting a file or folder whose reference count is positive. Thus, if the reference
count is not accurate in this context, it can lead to undesirable behavior.

Conversely, an extra decrement operation may lead to dangling references
as objects may be freed prematurely while they are still being used or a writer
may acquire a write-lock on an object that is still being used by readers.

In this paper we are interested in statically verifying that a given program
uses reference counts correctly. Reference count analysis is typically amenable
to modular analysis of threads using assume-guarantee reasoning: one can verify
that a concurrent program follows the reference count protocol and enjoys cer-
tain safety properties by verifying that every thread follows the reference count
protocol correctly. Hence, we will restrict our attention to sequential programs
in this paper.

The property that we are interested in verifying is that a program (a thread)
performs an equal number of increment and decrement operations on every

1

object. We call this the reference count property.
In this paper, we give a polynomial time algorithm for verifying this property

when the program is only allowed to have shallow pointers, i.e., pointers are not
allowed to point to other pointers. We also show that in the presence of general
(non-shallow) pointers, but in the absence of procedures and recursive data
structures, the problem is PSPACE-complete.

The reference count property is similar to a typestate property. In typestate
verification, one wishes to verify that the sequence of operations performed
on any given object belongs to a given regular language. The reference count
verification is similar, except that the set of sequences of operations allowed on
an object is not a regular set, but a context-free set. Thus, we cannot use a
finite-state machine to capture the states of an object for purposes of verification
(unlike in typestate verification).

This seems to suggest that reference count verification would be harder than
typestate verification. However, we show that in the presence of shallow point-
ers, reference count verification is in P, whereas certain classes of typestate
verification problems are known to be PSPACE-complete [3].

We solve the problem of reference count verification by giving a reduction
from a program P with shallow pointers to an affine program AP . An affine
program only has integer-valued variables (no pointers) and the right-hand side
of each assignment is a linear polynomial in the program variables. Such pro-
grams can be analyzed in polynomial time to infer all linear equalities that hold
between the program variables [5, 7]. This analysis is called affine-relation anal-
ysis. We show how backward affine-relation analysis on AP can be used for
reference count verification of P . We are not aware of any other reduction from
a program with pointers to one without them.

2 A Polynomial Time Intraprocedural Algorithm

We begin by describing our algorithm for programs with a single procedure. We
extend the approach to handle multiple procedures (and procedure calls) in §3.

The Problem

The Language. Consider programs with a single main procedure, and a fixed
number of global variables. The programs are assumed to manipulate objects
of a single type T, which has just one field refcount of type integer. The
variables are assumed to be shallow pointers of type T*. Programs can have
the usual control flow. We make the common assumption that all paths are
executable, i.e., the branch conditions are non-deterministic. A program can
have five kinds of statements:

2

1. x1 = new; x2 = new; x3 = new; x4 = new;
2. if(...){
3. x3 = x1; x4 = x2;
4. } else {
5. x3 = x2; x4 = x1;
6. }
7. if(...){
8. x1 → refcount ++; x2 → refcount ++;
9. x3 → refcount --; x4 → refcount --;
10. }

Figure 1: An example program with four global variables x1, · · · , x4.

Statement Meaning
x = y Copy from y to x
x→ refcount ++ Increment the refcount field of object pointed to by x
x→ refcount -- Decrement the refcount field of object pointed to by x
x = new x points to a newly allocated object
x = null x is made null

An example program is shown in Fig. 1. The program has four execution
paths, and the reader can verify that along all those paths the reference count
of an object is zero when it goes out of scope.

Concrete Semantics. Fix a program P . Let Var be the set of global variables
of P . The state of program P during execution consists of the program counter
as well as a triple 〈H, υ, κ〉, where H represents the set of heap-allocated objects,
υ : Var 7→ H is a map from variables to the objects they point to, and κ : H 7→
int is a map from objects to the value of their refcount field. We will use the
shorthand notation rc(x, σ) to represent the refcount value of the object that
x points to in state σ. Thus, rc(x, 〈H, υ, κ〉) is equal to κ(υ(x)).

We simplify the semantics by treating the null value as a constant repre-
senting the address of a special object onull. We will assume that all variables are
initialized to null when program execution begins. Thus, the initial program
state is represented by the triple 〈{onull}, λx.onull, λy.0〉. All newly allocated ob-
jects have their refcount field initialized to zero. We omit a formal definition
of the semantics of the various statements as they are quite standard.

In this paper we will assume that the given program does not contain any
null pointer dereferences or dereferences of uninitialized variables. Note that
the above simplification has the effect of converting dereferences of uninitialized
variables into dereferences of a null pointer. In the absence of multi-level pointers
(pointers to pointers or pointers to objects containing pointers), potential null
pointer dereferences can be easily identified.

3

The Problem. The property we wish to check for is that the refcount value
of every object is zero in any final state produced by the execution of the pro-
gram.

A Finite But Precise Abstraction.

We first describe a finite abstraction that can be used to precisely check for the
above property.

Because the name or identity of an object is immaterial, we can use a (store-
less) abstraction of the program state of the form {(S1, v1), (S2, v2), · · · , (Sn, vn)},
where {Si}n

i=1 forms a partition of Var and each vi is an integer. This state
represents the fact that all variables in Si point to the same object and the
refcount of that variable has value vi. For example, the state after execution
of line 3 in Fig. 1 is {({x1, x3}, 0), ({x2, x4}, 0)}.

Note that the above abstraction also omits information about unreachable
objects in the heap: objects that are not pointed to by any program variable. We
say an object becomes unreachable due to the execution of a program statement
if the object is pointed to by some variable in the state before the statement
execution but not in the state after the statement execution. Obviously, the
refcount of an object can never change once it becomes unreachable.

Thus, we can perform the desired verification with the storeless abstraction
by (i) Checking that the refcount of any object is zero when it becomes un-
reachable, and (ii) Checking that the refcount of all reachable objects in any
final state is zero.

The storeless abstraction is, however, not a finite abstraction. A program’s
execution can still produce an unbounded number of states with this abstraction.
However, we can still do the reference count verification precisely as follows. We
say that two states {(S1, v1), (S2, v2), · · · , (Sn, vn)} and {(R1, w1), (R2, w2), · · · , (Rn, wn)}
have the same aliasing configuration if the partitions {Si}n

i=1 and {Ri}n
i=1

are identical. Note that if two states arise at the same program point with
same aliasing configuration but different values of refcount, then the pro-
gram is bound to have an error. Suppose the two states are {(S1, v1), · · · }
and {(S1, v

′
1), · · · } with v1 6= v′1, and the program point is p. Let the concerned

objects in the two states, which are pointed to by all variables in S1, be o and
o′, respectively. For the program to be correct, there must be a path starting at
p that decrements the refcount of o by v1 when it goes out of scope. Because
the program is never allowed to look at the value of refcount, the very same
path will decrement the value of o2 by v1, leaving its refcount at v′1 − v1 6= 0
when it goes out of scope. Hence, the reference count property is not satisfied.
This shows that an analysis only needs to track states with different aliasing
configurations at any given program point. Because the number of such states
is bounded, the problem is decidable.

The above bound is still exponential in the number of variables. To obtain
a polynomial time algorithm, we need further ways of cutting down on the
information to be tracked.

4

Analyzing A Single Path

We first present an algorithm for verifying that a single execution path ρ satisfies
the reference count property. The approach presented here may seem unneces-
sarily complex as a single path can be analyzed quite easily. However, as we
will show later, this approach has the advantage that it can be generalized in a
straightforward fashion to analyze a whole program.

Let σ1 = 〈H1, υ1, κ1〉 denote any state. Let σ2 = 〈H2, υ2, κ2〉 denote the
state produced by the execution of path ρ starting from state σ1. Let o be
any object in the initial state σ1. We define ∆(ρ, σ1, o) to be κ2(o) − κ1(o).
Thus, ∆(ρ, σ1, o) captures the effect of executing ρ, starting at state σ1, on the
reference count of o.

Assume that the given program has n global variables x1 to xn. Let σu be
the state where each variable xi points to a distinct object oi with a reference
count of 0: thus, it corresponds to the state {(x1, 0), ({x2}, 0), · · · , ({xn}, 0)}.
We define ∆(ρ, xi) to be ∆(ρ, σu, oi).

The reason that ∆(ρ, xi) is of interest is that it can be used to compute any
∆(ρ, σ, o) as shown below. Let refs(σ, o) denote the set of all variables xj that
point to o in state σ.

Lemma 1. ∆(ρ, σ, o) =
∑

xj∈refs(σ,o) ∆(ρ, xj).

Proof. We proceed by induction on the length of ρ, denoted as |ρ|.

Base case. When |ρ| = 0, i.e., the path is empty, both sides of the above
equation evaluate to zero and the lemma holds trivially.

Inductive case. We do a case analysis on the first statement st of ρ. Let the
suffix of ρ after the first statement be ρ′. Let σ′ denote the program state after
execution of st. Let ci and c′i denote ∆(ρ, xi) and ∆(ρ′, xi) respectively.

Case 1. st is x1 → refcount++. In this case, c1 = c′1 + 1 and ci = c′i for
2 ≤ i ≤ n. Furthermore, ∆(ρ, σ, o) is equal to ∆(ρ′, σ′, o) + 1 if x1 ∈ refs(σ, o)
and ∆(ρ, σ, o) is equal to ∆(ρ′, σ′, o) if x1 6∈ refs(σ, o) In either case, the lemma
holds. This establishes the inductive case. When st is x1 → refcount--, we
can use a similar argument.

The execution of other types of statements does not change the reference count
of any object. As a result, ∆(ρ, σ, o) is equal to ∆(ρ′, σ′, o), which is itself equal
to

∑
xj∈refs(σ′,o) ∆(ρ′, xj) by the inductive hypothesis. The result will follow if

we can show that
∑

xj∈refs(σ′,o) ∆(ρ′, xj) =
∑

xj∈refs(σ,o) ∆(ρ, xj), which we do
below.

Case 2. st is x1 = new. In this case, note that refs(σ′, o) = refs(σ, o)− {x1} for
any object o in σ. Furthermore, ∆(ρ, x1) = 0, and ∆(σ′, xi) = ∆(σ, xi) for any
xi ∈ refs(σ, o)− {x1}. Hence,

∑
xj∈refs(σ′,o) ∆(ρ′, xj) =

∑
xj∈refs(σ,o) ∆(ρ, xj).

5

Case 3. st is x1 = x2. First, let us determine the values of ci by consid-
ering the execution of this statement on σu, which produces the state σ′u =
{({x1, x2}, 0), ({x3}, 0), · · · , ({xn}, 0)}. Using the inductive hypothesis, the ef-
fect of executing ρ′ on o1 is 0 (because it is not in scope), on o2 is c′1 + c′2,
on oi, i > 2 is c′i. Therefore, c1 = 0, c2 = c′1 + c′2, ci = c′i, i > 2. We need
to show that

∑
xj∈refs(σ′,o) ∆(ρ′, xj) =

∑
xj∈refs(σ,o) ∆(ρ, xj), We consider the

following four subcases. Case x1 6∈ refs(σ, o) and x2 6∈ refs(σ, o): the result
follows trivially. Case x1 6∈ refs(σ, o) and x2 ∈ refs(σ, o): in this case, we have
refs(σ′, o) = (refs(σ, o) ∪ {x1}) ⊇ {x2}; hence, we have c′1 + c′2 on the left-hand
side and c2 on the right-hand side (apart from the common terms) and the
result follows. Case x1 ∈ refs(σ, o) and x2 6∈ refs(σ, o): in this case, we have
x2 6∈ refs(σ′, o) = refs(σ, o) − {x1} and the result follows. Case x1 ∈ refs(σ, o)
and x2 ∈ refs(σ, o): in this case, we have refs(σ′, o) = refs(σ, o) ⊇ {x1, x2} and
the result follows.

Lemma 1 says that we only need to consider the aliasing scenario σu in which
all variables are unaliased. The effect of a program path on other states can be
calculated from the effect of that path on σu.

Given a path ρ, it is relatively straightforward to compute the values of
∆(ρ, xi) for every variable xi inductively (along the lines in the inductive proof
of Lemma 1). For reasons that will become clear soon, we will actually construct
a (straight-line) program that can compute these values as follows. For each
variable xi in ρ, we introduce an integer-valued variable Xi in the constructed
program that is used to compute ∆(ρ, xi).

Given path ρ, let ρT be the path obtained by replacing every statement S
in ρ by the corresponding code-fragment ST shown in Fig. 3. We will make the
simplifying assumption that the first vertex in ρ is a unique entry vertex and
that the last vertex in ρ is a unique exit vertex, which are also transformed as
indicated in Fig. 3. We define ρR to be the path (program) obtained by reversing
ρT . Thus, if ρ is entry;S1; · · ·Sk; exit, then ρR is exitT ;SkT ; · · ·S1T ; entryT .

We now explain how to interpret the transformed statement ST . (For now,
ignore the assertions embedded in ST .) Assume that the path ρ consists of
statement S followed by path ρ′. The statement ST shows how the values
of ∆(ρ, xi) (represented by Xi on the left-hand side of assignments) can be
computed from the values of ∆(ρ′, xi) (represented by Xi on the right-hand side
of the assignments). The program ρR is an imperative program that computes
the same values for the whole path.

An example is shown in Fig. 2. Interesting facts to note from this example
are: the value of X1 is 0 at line 3 because x1 starts pointing to a new object,
and the old object is not touched by further dereferences to x1; at line 1 we
get to know the fact that x2 and x1 are aliased, and the value of X1 captures
the dereferences made through both x1 and x2. The value of X2 is made zero
because, again, x2 loses reference to the original object it pointed to.

Lemma 2. Let ρ be any program path. (a) The final value of variable Xi after
the execution of ρR is ∆(ρ, xi). (b) The execution of ρ satisfies the reference

6

y

1. x2 = x1 X1 = 2, X2 = 0
2. x1 → refcount ++ X1 = 1, X2 = 1
3. x1 = new X1 = 0, X2 = 1
4. x1 → refcount -- X1 = −1, X2 = 1
5. x2 → refcount ++ X1 = 0, X2 = 1
6. X1 = 0, X2 = 0

x
Figure 2: A program path and the values of Xi. For each row, the third column
denotes the values of Xi just before the program statement.

Statement S Statement ST

xi = xj Xj := Xi + Xj ;Xi := 0
xi → refcount ++ Xi := Xi + 1
xi → refcount -- Xi := Xi − 1
xi = new assert Xi == 0; Xi := 0
entry forall i. assert Xi == 0
exit forall i. Xi := 0

Figure 3: Updating the values of Xi according to program statements.

count property iff the execution of ρR satisfies all the assertions embedded in it.

Proof. The proof of (a) follows directly from Lemma 1.
Part (b) shows how we can exploit property (a) to check for the reference

count property. To verify the reference count property, we must ensure that for
any new object o allocated during the execution of ρ, the reference count value
of o at the end of execution of ρ is zero. Consider any statement S : xi = new
in ρ that creates a new object o. Let ρ′ represent the suffix of the program path
ρ after this allocation statement. We can restate the requirement as: we need
to verify that ∆(ρ′, xi) is zero. It follows from (a) that the assertion “assert
Xi == 0” inserted as part of the transformed statement ST is equivalent to this
check.

For example, if the path shown in Fig. 2 ends at program exit, then the
reference count property is not satisfied on the path: X1 = −1 right after the
execution of line 3, i.e., the refcount of that object is −1 when it goes out of
scope.

Analyzing A Single-Procedure Program

We now show how the approach presented for analyzing a single path can be
generalized to analyze whole programs.

Let P be a given program. We construct an affine program PR along the
same lines presented earlier. Let G be a control-flow graph representation of P
with each vertex representing a single statement. Let GT represent the control-
flow graph obtained by replacing every statement s in G by the transformed

7

1. X1 := 0; X2 := 0; X3 := 0; X4 := 0; // initialization
2. if(...){
3. X4 := X4 − 1;X3 = X3 − 1; // line 9
4. X2 := X2 + 1;X1 = X1 + 1; // line 8
5. }
6. if(...){
7. X1 := X1 + X4;X4 := 0; X2 := X2 + X3;X3 := 0; // line 5
8. } else {
9. X2 := X2 + X4;X4 := 0; X1 := X1 + X3;X3 := 0; // line 3
10. }
11. assert(X4 == 0); assert(X3 == 0); assert(X2 == 0); assert(X1 == 0); // line 1

Figure 4: Affine program obtained for the one in Fig. 1. The comments show
the lines in Fig. 1 from which the affine statements were obtained.

statement sT as shown in Fig. 3. We define PR to be the program obtained by
reversing the control-flow edges of GT .

Theorem 1. A given program P satisfies the reference count property iff if the
affine program PR satisfies all its assertions.

Proof. Follows directly from Lemma 2.

For example, the affine program obtained for the program in Fig. 1 is shown
in Fig. 4, along with the assertions that need to be verified.

Since PR is an affine program, we can verify if PR satisfies all its assertions
(which are all affine assertions) using the previous results [5, 7] for reasoning
about affine programs.

3 Polynomial Time Interprocedural Algorithm

In this section, we give a polynomial time algorithm for verification of the ref-
erence count property on programs, as defined in the previous section, but with
multiple procedures, and procedure call statements. A procedure can have lo-
cal variables, but no parameters (parameter passing can be implemented using
global variables).

The algorithm is similar to the one described in the previous section. We
convert a program P into an affine program AP : each procedure of P results in
a procedure of AP with the reversed control flow. AP has one global variable
Xi for each global variable xi of P , and one local variable Xj for each local
variable xj of P . The statements are transformed using Fig. 3, and procedure
calls remain the same. The global variables of AP are initialized with 0 at the
beginning of the program, and the local variables are initialized to zero at the
beginning of their procedure. Next, we verify assertions Xi == 0 in AP at each
program point that originally held xi = new. An example is shown in Fig. 5.

8

main(){
fnew();
x5 = new;
if(...){

fcopy1();
} else {

fcopy2();
}
if(...){

fref();
}
x5 → refcount++;
x5 → refcount--;

}
fnew(){

x1 = new; x2 = new;
x3 = new; x4 = new;

}
fcopy1(){

x3 = x1; x4 = x2;
}
fcopy2(){

x3 = x2; x4 = x1;
}
fref(){

x1 → refcount++;
x2 → refcount++;
x3 → refcount--;
x4 → refcount--;

}

main(){
X1 := 0; X2 := 0; X3 := 0; X4 := 0; X5 := 0;
X5 := X5 − 1;
X5 := X5 + 1;
if(...){

fref();
}
if(...){

fcopy2();
} else {

fcopy1();
}
assert(X5 == 0);
fnew();

}
fnew(){

assert(X4 == 0); assert(X3 == 0);
assert(X2 == 0); assert(X1 == 0);

}
fcopy1(){

X1 = X1 + X3;X3 := 0; X2 = X2 + X4;X4 = 0;
}
fcopy2(){

X2 = X2 + X3;X3 := 0; X1 = X1 + X4;X4 = 0;
}
fref(){

X4 := X4 − 1;
X3 := X3 − 1;
X2 := X2 + 1;
X1 := X1 + 1;

}

Figure 5: An example program, and the affine program obtained from it. Vari-
ables x1, · · · , x4, X1, · · · , X4 are global and variables x5 and X5 are local to
main.

All such assertions hold in AP if and only if the reference count property holds
in P .

The proof for the correctness of the above algorithm proceeds on the same
lines as before, and Lemma 1 is extended to interprocedural paths.

We extend the program state to talk about the program stack as well. Let
VarG = {g1, · · · , gn} be the set of global variables and VarL = {l1, · · · , lm}
be the set of local variables (we assume that all procedures have the same
number of local variables). A program state 〈H,S, υG, υL, κ〉 consists of a set H
whose elements represent heap-allocated objects, a set S = {1, 2, · · · , 2} whose

9

elements represent activation records, a mapping υG from VarG (the global
variables) to H, a mapping υL from S × VarL (a stack of local variables, with
one copy of the local variables for each activation record) to H, and a map κ
from objects in H to their refcount value.

We define the set of variable instances in a state σ = 〈H,S, υG, υL, κ〉 to be
the set VarG ∪ S × VarL. Let refs(σ, o) denote the set of all variable instances
that point to o in state σ.

The definition of ∆ from the intraprocedural case can be generalized to
the interprocedural case in a straightforward fashion. In this generalization,
we will restrict ourselves to valid terminating interprocedural paths: these are
interprocedural paths containing matching call and return edges, as well as
some set of unmatched return edges. (These correspond to suffixes of valid
interprocedural paths from program entry to program exit.)

Let σ1 = 〈H1,S1, υG1, υL1, κ1〉 denote any interprocedural state and let ρ be
any valid terminating interprocedural path such that the number of activation
records in σ1 is one more than the number of unmatched return edges in ρ. We
say that σ1 and ρ are compatible in this case. Let σ2 = 〈H2,S2, υG2, υL2, κ2〉
denote the state produced by the execution of path ρ starting from state σ1. Let
o be any object in the initial state σ1. We define ∆(ρ, σ1, o) to be κ2(o)−κ1(o).
Thus, ∆(ρ, σ1, o) captures the effect of executing ρ, starting at state σ1, on the
reference count of o.

Given a valid terminating interprocedural path ρ, let σρ
u be the state that

is compatible with ρ where each variable instance xi points to a distinct object
oi with a reference count of 0. (The state σρ

u is uniquely determined, upto
isomorphism, if we consider only states without garbage, i.e., objects that are
not pointed-to by any variable instance.) We define ∆(ρ, xi) to be ∆(ρ, σρ

u, oi).

Lemma 3. ∆(ρ, σ, o) =
∑

xj∈refs(σ,o) ∆(ρ, xj).

Proof. The proof proceeds by an induction on the length of ρ. The base case,
when |ρ| = 0, is trivial. For the inductive case, we do a case analysis on the first
statement of ρ. The cases when the first statement is a refcount increment or a
decrement, or a copy xi = xj or an allocation, are exactly same as for Lemma 1.
We only need to consider the cases when the first statement is a procedure call
or a procedure return. Let ρ′ be the suffix of ρ after its first statement.
Case 1. Suppose that the first statement is a procedure call. We assume that
all local variables are initialized to null at procedure entry. Because we have
removed assignments to null, the local variables are assumed to be initialized
to a special object NullObj. Thus, the variables in σu (which excludes the
local variables of the new activation record) remain unaliased. In this case,
∆(ρ, x) = ∆(ρ′, x) for all variables in σu.

When ρ is executed from {(S, o, v), · · · }, the execution of the first statement
does not affect object o, i.e., it produces another state of the same form (with
more instantiations of local variables). By induction hypothesis, the execution
of ρ′ changes refcount of o to v +

∑
x∈S ∆(ρ′, x) = v +

∑
x∈S ∆(ρ, x).

Case 2. Suppose that the first statement is a procedure return. Let L be
the instantiation of the local variables that corresponds to the top of the stack

10

(before the return is executed). Then we know that ∆(ρ, x) = ∆(ρ′, x) for all
variables x in σu but not in L. For x ∈ L, ∆(ρ, x) = 0 because the objects
pointed to by them immediately go out of scope.

Starting from state {(S, o, v), · · · } leads to state {(S−L, o, v), · · · } after the
procedure return is executed. By induction hypothesis, the refcount of o when
it goes out of scope is v +

∑
x∈S−L ∆(ρ′, x) = v +

∑
x∈S ∆(ρ, x).

4 Intractable Problem Extensions

The problem of reference count verification in the presence of non-shallow point-
ers (but without recursive types or procedures) is PSPACE-hard. The reduction
follows directly from the problem of must-alias analysis. From [8], we know that
the problem of finding out that two variables are must aliases at a program point
is PSPACE-hard. A must-alias question can be encoded using reference counts
as follows.

Lemma 4. Variables x1 and x2 are must aliases at a program point if and only
if the the program satisfies the reference count property after the insertion of
statements x1 → refcount++ and x2 → refcount-- at that program point.

Theorem 2. Verifying that the reference counts of all objects are zero at the
end of execution is PSPACE-hard in the presence of two-level pointers.

Note that the reference count problem is a particular form of affine analysis
(in the presence of shallow pointers). However, other simple forms of affine
analysis are intractable in the presence of shallow pointers. E.g., boolean copy
constant propagation is also intractable for shallow pointers. Thus, if we replace
our refcount operations with statements that allow the assignment of constant
values zero and one to refcounts (via one level of indirection), and allow copying
these values, then verifying that such a value is zero at the end of execution
becomes intractable (with just shallow pointers).

5 Related Work

The presence of aliasing in programs is often a hurdle in the design of program
analysis. For this reason, there have been various studies to find out how aliasing
increases the complexities of different analyses [6, 8, 3]. These papers have
studied different problems in the presence of shallow and non-shallow pointers:
may and must alias analysis [6], flow-sensitive analyses like constant propagation
[8], and type-state properties [3]. Our work studies a problem that is different
from each of ones discussed before because of the “context-free” nature of the
reference-count property.

Apart from the abovementioned work on complexity-theoretic aspects of
dealing with aliasing in the context of doing precise (with respect to a given
model) verification or analysis, there has been work on various techniques for

11

dealing with aliasing in the context of verification or analysis, with a potential
loss in precision, e.g., see [1, 4].

The problem of reference count verification has been studied previously in
the context of model checking under the presence of an unbounded number of
threads [2]. They use techniques such as temporal-case splitting to isolate a
single object (i.e., resource) and a single thread, which results in a sequential
abstraction of the original program. Next, predicate abstraction is used to con-
struct a finite model of the program that can be verified using a model checker.
Abstraction refinement is used to construct finer-grained models when the cur-
rent set of predicates do not suffice to prove the property. Thus, [2] addresses
the problem in a more general setting, but does not present any complexity
result for this problem. Specifically, they do not provide any polynomial time
verification algorithm. We study the same problem in a more restricted setting
and show that precise verification is possible in polynomial time in this setting.

References

[1] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via scalable
path-sensitive value flow analysis. In ISSTA ’04: Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis,
pages 12–22, New York, NY, USA, 2004. ACM.

[2] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference count-
ing implementations. In TACAS, pages 352–367, 2009.

[3] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification:
Abstraction techniques and complexity results. Sci. Comput. Program., 58(1-
2):57–82, 2005.

[4] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing. In ISSTA ’06: Proceedings of the 2006
international symposium on Software testing and analysis, pages 133–144,
New York, NY, USA, 2006. ACM.

[5] M. Karr. Affine relationships among variables of a program. Acta Inf.,
6:133–151, 1976.

[6] W. Landi and B. Ryder. Pointer-induced aliasing: A problem classification.
In POPL, 1991.

[7] M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear
algebra. In POPL, 2004.

[8] R. Muth and S. K. Debray. On the complexity of flow-sensitive dataflow
analyses. In POPL, pages 67–80, 2000.

12

