

Raven: Extending HTML for Peer-to-peer Synchronous Applications

Harry Chesley, Sean Kelly, Greg Kimberly, Tim Regan

8/9/2001

Technical Report
MSR-TR-2001-75

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Raven: Extending HTML for Peer-to-peer Synchronous
Applications

Harry Chesley, Sean Kelly, Greg Kimberly, Tim Regan
Microsoft Corporation

1 Microsoft Way
Redmond, WA 98052

E-mail: {harrych, seankell, a-gregk, timregan}@microsoft.com

ABSTRACT
The Raven architecture provides object replication for any
object system that implements object properties and
methods. In the current Windows Internet Explorer
implementation, it is particularly tightly integrated with
HTML, allowing simple, rapid development of multi-user
applications in a web page. Raven uses an XML schema
approach to describing the objects to be shared among
clients. The XML schemas determine which properties on
the objects should be replicated and which methods should
be remoted. In addition to the overall system design, this
paper shows details of two examples: a simple chat
application and a Spacewar game. It also provides detailed
descriptions of some of the internal algorithms used.

KEYWORDS: Multi-user applications, HTML, peer-to-
peer.

INTRODUCTION
Using the Internet is largely a solitary process, at least in
terms of synchronous interaction. With the exception of
some game sites like Microsoft’s Gaming Zone and
Shockwave.com, and simple chat interactions like IRC,
users search for and read information in isolation. Even
those sites generally use non-HTML technologies – custom
controls, Java, and Director – to implement their multi-user
applications.

In the Social Computing Group at Microsoft Research, we
study the social aspects of computer interaction. In part,
this involves creating and performing user studies with
multi-user synchronous applications. In order to easily and
quickly develop prototype systems, we needed a system
that would let us create such applications with a minimum
of development overhead, and which could be used by
developers with only web page expertise.

We developed a system code-named Raven that extends
HTML to allow simple development of multi-user
applications. This approach makes it easy for anyone
familiar with HTML web-page creation to develop
distributed social applications. By basing the system on
HTML, we allow users to make use of their existing
knowledge of web page user interface design. The only
new element is connecting users together through the
Raven component.

Raven makes developing multi-user application even
simpler by employing a replicated object technique [4] that
is much easier for users to understand and use than a
traditional distributed communicating object approach.
Conceptually, the same object exists on all of the
cooperating machines. Raven replicates changes to and
method calls on the object from the originating machine to
the others.

Raven uses an XML schema system [1, 5, 6] for describing
which aspects of objects should be replicated. In addition to
telling the system what portions of the object should be
replicated remotely when changed locally, it protects the
local object from unwanted remote changes to aspects of
the object that were not intended to be exposed. We have
attempted to remain as close as possible to existing schema
systems such as SOAP [3] for these purposes.

SYSTEM DESIGN
Objects in the Raven system are viewed as existing
simultaneously on all participating machines as replicated
objects. The task of Raven is to synchronize new
participants, replicate property changes and remote method
calls from one machine to another. What aspects of an
object should be replicated and what methods remoted are
described in Raven’s XML type schema. Channels provide
a means of limiting the communicating clients and
specifying the type of communication required.

Replicated Objects
Considering objects on different machines to be the same is
much easier for a naïve developer to grasp than the
traditional model of distributed communicating objects. In
that traditional model, each machine has its own

independent collection of objects which communicate with
each other using message sending or remote procedure
calls. Designing and debugging this type of system requires
the designer to mentally keep multiple active objects in his
or her head simultaneously. This becomes even more
difficult when you need to remember that each of these
pieces is acting independently and simultaneously. The
most difficult bugs to find in these systems generally have
to do with asynchronous independent interactions between
the communicating objects.

The replicated object model is particularly suited to HTML-
based applications, where the identical page description is
loaded onto each participating machine. Since the
application description is the same, it’s quite natural to the
developer that the objects described in it are also the same.
Changes made on one machine automatically appear on all
machines, without the developer needing to consider the
details of that process.

But despite the fact that identical descriptions can easily be
used to create identical, connected objects on multiple
machines, Raven also allows for implementations involving
different objects, in two senses: objects with different
functionality, and objects with different implementations.

Two different functional objects, with different behaviors,
can be registered with Raven as the same object. This can
be used, for example, so that one user may have control
over an object and the ability to modify it, while the other
users can only see the object and the effects of the
modifications. Raven’s type system allows the developer to
describe the object in abstract terms, as a collection of
properties and methods, independent of its operation.

Similarly, how an object is actually implemented on each
participating machine is separate from Raven and the
Raven type description of the object. Although the current
Raven implementation runs only on Windows with Internet
Explorer, it is possible to implement Raven clients in
virtually any environment that supports objects with
properties and methods.

Types
A Raven type description consists of XML that describes
each object in terms of the properties and methods that
make up the object. These properties and methods are not a
complete description of the object – local implementations
may have more properties and/or methods than are
mentioned in its Raven type definition. Rather, they
describe those aspects of the object that are shared with
other Raven instances of the object.

The following is an example description of an HTML
checkbox that exposes only the state of the checkbox:

<raven>
 <ravenType name="ravenCheckbox">

 <element name="checked" type="boolean"/>
 </ravenType>
</raven>

Similarly, the following type definition exposes a single
method:

<raven>
 <ravenType name="totalScore">
 <method name="addToScore">
 <argument name="count" type="ui4"/>
 </method>
 </ravenType>
</raven>

As base types, Raven uses the same types as are available
in SOAP, plus a set that are specific to HTML objects. In
addition, Raven has a mechanism for dynamically
extending the base types by supplying an object that
performs three type-related functions for a new type: object
creation, conversion from object to XML for
synchronization, and conversion from XML to object.

Channels
Communication between different instances of an object
takes place on a Raven Channel. At the top level, a Raven
channel connects a set of clients together, but these top-
level connections can have sub-channels as well. Raven
objects are registered on a particular channel, which
determines both who will hear of changes and method calls
and how.

The primary purpose of a channel is to determine which
clients should be told of property changes or passed method
calls on shared objects. At the top level, this is a question of
who is participating is the multi-user application. But the
sub-channel facility allows Raven applications to
compartmentalize communication so that not all instances
of the application hear about all of the objects. This can be
used to limit communication overhead to only those clients
that need to know. It can also be used to separate out
communication that some clients should not hear for
security purposes.

A secondary function of a channel is to determine the
communications characteristics to be used. Channels can be
reliable or unreliable, and they can be serialized or
randomly ordered. For most applications, reliable serialized
communication is needed, or at least desired to keep
application development simple. However, there are cases
where applications can handle a much larger number of
clients if some aspects of their communication are not
reliable and/or not serialized. For example, in a spatial
virtual world simulation, moment-to-moment position data
need not be 100% reliable, but chat input does need to be.

Serialization is the process of ensuring that the same
actions occur on objects in the same order on all clients.

Serialization helps to limit or eliminate the sort of race-
condition bugs that are so hard to isolate and fix in multi-
client applications.

Since the same object may have different aspects that
require different channel characteristics, Raven allows the
same object to be registered simultaneously on multiple
channels, which different types on each channel.

Using Raven
In our Windows Internet Explorer implementation, Raven
exists as an ActiveX control that can be embedded in a web
page. In addition to invoking Raven directly via methods on
the Raven control, this allows Raven access to the web
document object model (DOM).

Objects can be registered or created programmatically with
Raven. Registered objects are pre-existing objects that the
application tells Raven about. Created objects are objects
that Raven itself is asked to create.

In each case, four things are needed for each object:

1. An object.
2. A Raven type.
3. A channel.
4. A Raven ID.

Aspects of the object, as defined by the type, are replicated
via the channel and according to the communications
characteristics of the channel.

The Raven ID uniquely identifies the object on the channel.
If two Raven clients register objects with the same ID, they
are considered to be instances of the same object. If Raven
is asked to create an object and is not given an ID, it will
make up a unique ID and use it on all clients.

Once an object is registered with Raven, property settings
can be replicated and method calls remoted. However, for
Raven to do this, it must know when these events happen.
Since Raven works with any type of local object, it cannot
intercept the events from within the object. Instead,
developers must perform the actions on a special,
“wrapped,” version of the object, as supplied by Raven. For
example, to set the innerText property of a textSpan object,
the develop uses the following:

Raven.Wrap(textSpan).innerText = “new text”;

The wrapped object returned from the Raven.Wrap() call
takes any property sets and method calls and performs them
both locally and remotely on all other clients.

Note that in order to maintain consistent serialization across
all of the clients, these actions are not performed
immediately on the local client. They must be delayed to fit
into the sequence of operations on the channel in the same
order as on the other clients.

Extending HTML
Some Raven objects are created in a scripting language
such as JavaScript or VBScript. Some Raven objects are
more complex things like the Windows Media Events
player. But many Raven objects are simple DHTML DOM
objects.

To make using Raven with DHTML as simple as possible,
we have included a way to automatically register DHTML
elements with Raven by including the Raven type in the
DHTML tag. For example, to register a checkbox using the
Raven type previously discussed, the following is all that is
required:

<input type=”checkbox” ravenType=”ravenCheckbox”>

Thus, to make the simplest Raven multi-user application, a
shared checkbox, all we need is:

<input type=”checkbox” ravenType=”ravenCheckbox”
 onClick=”Raven.Wrap(this).checked = this.checked”>

A ravenID attribute can be used to set the Raven ID of the
object as well. However, by default, the HTML ID is used,
and this is usually sufficient.

Raven comes with a number of predefined Raven types for
commonly shared DHTML objects.

Security & Authentication
Raven provides two types of security, but specifically does
not provide one other type or authentication.

The most important security feature of Raven is that it
operates within the Internet Explorer “sandbox.” It does not
allow anything to happen that is not possible with a normal
web page. Since one of the primary goals of Raven is
distribution of social computing experiments, making it
totally safe for users was a primary concern. Confining it to
IE allows users to run applications based on it free from
concern, and also allows us to provide Raven as an auto-
install, safe-for-scripting control.

The type facility of Raven provides another type of
security, protecting the internal integrity of Raven-based
applications. Since no properties changes or method calls
are allowed that are not specifically described in an object’s
Raven type, applications can be written without concern for
unexpected remote interference or side-effects.

On the other hand, Raven does not provide any type of
network encryption to keep data being transferred from one
client to another private. Nor does it attempt to authenticate
either the Raven user or messages coming from other
clients. Since our initial application for Raven involves
information applications and social computing user studies,
this level of security and authentication were considered
unnecessary. These features are prime candidates for a
future version of Raven.

EXAMPLE APPLICATIONS
In order to test Raven, we developed a number of multi-
user applications. We present two of them here. The intent
is to show how applications are implemented in Raven, not
to suggest that these particular applications are themselves
of any special interest. The checkbox example was already
shown above. Here we present SimpleChat and Spacewar.

SimpleChat
SimpleChat is a simple chat application in which each user
sees a shared text history and can append comments to the
end.

The following is a screen shot from SimpleChat:

The SimpleChat implementation consists of a that
contains all of the text history, embedded in a <div> that
provides the scrollbars, plus one <div> for each user-
entered comment. The history is defined as:

<div style="height: 300px; border: 2px inset;
 padding: 4px; overflow: auto">

</div>

It uses the Raven type chatHistorySpan, which is defined
as:

<ravenType name="chatHistorySpan">
 <element name="innerHTML" type="string"/>
 <method name="insertAdjacentHTML">
 <argument name="where" type="string"/>
 <argument name="what" type="string"/>
 </method>
 <method name="scrollIntoView">
 <argument name="alignToTop" type="boolean"/>
 </method>
</ravenType>

When each instance of SimpleChat starts up, it asks the
user for their nickname. From then on, new comments can
be inserted in the chat history using the following
JavaScript code:

var h = "<div>" + chatNickname + ": " +
 "New input…" + "</div>";
Raven.Wrap(chatHistory).insertAdjacentHTML(
 "beforeEnd", h);
Raven.Wrap(chatHistory).scrollIntoView(false);

This inserts the new text into the history and scrolls the
history to the bottom.

Note also that since the innerHTML property of the history
span is declared as a property in the Raven type, new users
histories will be synchronized to contain the preexisting
history text, taken from other users already in the session.

Spacewar
In picking a test application for a new multi-user system, it
seemed appropriate to reimplement what was the first
multi-user computer application, Spacewar[2], though in
the original it was played by two users sitting at the same
keyboard. Spacewar was first implemented on a PDP-1 in
1961-1962. It can still be played today via a PDP-1
emulation written in Java. While not a complete recreation,
Raven Spacewar does capture much of the feel of the
original.

The following is a screen shot of Raven Spacewar:

Spacewar was intended to stress Raven’s real-time
performance. When all the missiles of a ship have been
fired, the client controlling the ship does remote method
invocations to set the positions of the ship and five missiles
at each simulation step. The simulation speed was set to ten
iterations per second, which was the maximum that
JavaScript allowed on our 500MHz test machine. Adding

half a dozen remote viewers, connected via Raven, had
negligible impact on the simulation performance.

For Spacewar, we created JavaScript objects for each of the
spaceships and missiles. These objects are registered with
Raven when the session begins, so that every instance of
Spacewar has the same ships and missiles. The Raven type
for these is as follows:

<ravenType name="ship">
 <method name="setPosition">
 <argument name="x" type="r4"/>
 <argument name="y" type="r4"/>
 </method>
 <method name="setRotation">
 <argument name="r" type="r4"/>
 </method>
 <method name="setAnimation">
 <argument name="index" type="ui2"/>
 </method>
 <method name="setSound">
 <argument name="snd" type="string"/>
 </method>
</ravenType>

<ravenType name="missile">
 <method name="setPosition">
 <argument name="x" type="r4"/>
 <argument name="y" type="r4"/>
 </method>
 <method name="setSound">
 <argument name="snd" type="string"/>
 </method>
 <method name="show">
 <argument name="s" type="boolean"/>
 </method>
</ravenType>

The ship type exposes methods to set the position, rotation,
animation, and sound. The missile type exposes methods to
set the position, sound, and whether it is visible or not. The
setPosition method, to take one example, is implemented as
follows:

function setPosition(x, y)
{
 // Set the internal position
 this.x = x;
 this.y = y;

 // Set the visible position
 this.vect.style.pixelLeft =
 Math.round(x) - this.vect.style.pixelWidth/2;
 this.vect.style.pixelTop =
 Math.round(y) - this.vect.style.pixelHeight/2;
}

Each of the objects includes internal properties that keep

the position as a real number. This is important for
purposes of the simulation. But the actual visible ship or
missile is displayed using a Vector Markup Language
(VML) graphic. A reference to the graphic vector is stored
in the object’s vect property, and the
style.pixelLeft/pixelTop properties of this are used to
position the graphic element on the display.

The setPosition method is invoked remotely as follows:

Raven.Wrap(ship).setPosition(newX, newY);

Spacewar also includes a chat area, which is based on the
SimpleChat application described earlier, with the addition
of a list of current participants.

Further details of Spacewar are beyond the scope of this
paper.

ALGORITHMS
The algorithms for most of Raven’s services are apparent
from its functional description. There are two areas,
however, that are not as apparent: top-level channel
coordination via an HTTP server, and serialization.

Client Rendezvous via HTTP
Clients can find each other in three ways with Raven: via a
fixed address, via an HTTP directory service, and via an
external directory service.

The first of these involves embedding the address of one of
the participating machines in the HTML application. This is
the simplest way for other clients to discover one of the
other participating clients to rendezvous with. However, it
has the limitation of requiring that one client always be
running.

The last of these involves using some external directory
service outside of Raven. This allows Raven to be open-
ended with respect to top-level directory facilities, but
doesn’t provide an immediate answer for a developer
needing a directory service.

The HTTP directory service is an ASP script designed to
run on a Microsoft IIS HTTP server, and to talk directly
with Raven. It could, however, easily be re-implemented in
some other server-side technology. The algorithm that the
ASP script uses is as follows:

1. A client requests the address of one of the active
clients, via an HTTP request to the HTTP server.

2. If this is the first such request, the HTTP server
tells the client to initiate a new session, and
remembers the address of this client.

3. If a session is already active, the HTTP server
returns the addresses of the previous clients that
joined the session and remembers the address of

the new one. It passes the addresses of all clients
since one or more may have left the session due to
client or network failures.

4. While a client is active normally, it periodically
contacts the HTTP server to let it know that it is
still present. This allows the server to time-out
clients that have crashed or become unreachable
due to network issues.

5. When a client exits a sessions normally, it contacts
the HTTP server again and the server removes its
address from the list of active clients.

This algorithm is designed for an application where all
clients connecting to the same web page are in the same
session. For applications where multiple sessions are
needed (such as many games), it is possible to implement a
lobby in Raven that serves as a gateway to the application
itself.

Serialization
One of the most important algorithms in Raven is the
serialization algorithm. It is extremely important that this
algorithm function reliably, both under normal
circumstances and in the face of client and network failures.
Serialization is one of the features of Raven that makes
multi-user applications easy to develop. Without it, a
multitude of timing issues can arise that complicate multi-
user design and debugging.

The simplest serialization algorithm involves routing all
messages through a single, serializing machine. This
approach, however, has a number of problems. It places a
large load on the serializing machine, and if the wrong
machine is chosen as the serializer, it can seriously affect
the performance of the application as a whole. Having a
single serializer also goes against the overall peer-to-peer
philosophy of Raven.

The algorithm used in Raven for serialization is fully peer-
to-peer, and it easily recovers from unexpected client and
network failures. In addition, it can be used to provide
simulation timing support for an application that has time
as well as serialization concerns.

Raven serialization thinks of the entire application as a
distributed simulation and uses a global simulation clock to
control and coordinate the process. Although the clocks are
not required to be completely synchronized, they are
generally quite close, within the variances introduced by
network delays.

When a message is sent, either one that sets a property or
one that invokes a remote method, it is stamped with a time
that is far enough in the future of the simulation that it is
expected that the message will arrive on all participating
machines before that simulation time occurs. This is
equivalent to saying that a message that is sent at time t is

received at time t+x, even on the sending client.

Messages are processed in the time order stamped on them.
If two messages have the same time, they are processed in
the order established by the ID of the sender. This ensures
identical serialization of messages on all clients.

Before a client can process a message at time t, it must
know that it will not receive a message from another client
at an earlier time. To know this, it must have received
messages with time t or later from all clients. Clients that
are not actively sending active messages send time marker
messages periodically to allow the simulation to proceed.

The simulation clock advances continually, at the same rate
as real time, so long as messages have been received from
the other clients that allow it to. If it comes to a point such
that messages are not received from all clients for least at
the current simulation time, the simulation clock is
suspended until messages are received that allow it to
continue.

Stopping the simulation clock also prevents a client from
sending messages. Because of this, once one client has
suspended the simulation clock, before long all clients are
suspended. This keeps the client’s simulation clocks in
lock-step within the time difference between the current
time and the time stamped on outgoing messages.

Over time, the network delay to all clients may vary. The
algorithm adjusts the message send/receive time stamp
delta dynamically by comparing the time stamps on
messages to the current simulation time when they are
received. Raven attempts to keep this time difference as
small as possible.

SUMMARY
Raven extends HTML to allow easy development of peer-
to-peer, multi-user applications. By using object replication
and peer-to-peer communication, Raven minimizes the
intellectual hurdles to creating distributed applications. By
integrating tightly with HTML, Raven makes developing
such applications a simple and natural extension of normal
HTML user interface development.

Raven was developed by the Social Computing Group in
Microsoft Research in order to support rapid prototyping of
social applications that allow people to interact over the
Internet. To drive the development of Raven, we have
created a number of simple applications that exercise
Raven’s distributed operation and HTML integration. Our
next step is to create applications to support our research in
social interaction via computers.

REFERENCES
1. Extensible Markup Language (XML) 1.0

(http://www.w3.org/TR/1998/REC-xml-19980210).

2. Graetz, J.M., The Origin of Spacewar, Creative

Computing, August, 1981. Also http://
spaceinvaders.retrogames.com/html/spacewar.html.

3. Simple Object Access Protocol (SOAP) Version 1.1
(http://www.w3.org/TR/SOAP/).

4. Vellon, M., Marple, K., Mitchell, D. & Drucker. S.
(1998). The Architecture of a Distributed Virtual

Worlds System. Proc. 4th Object-Oriented
Technologies and Systems Conf.

5. XML Schema Part 1: Structures
(http://www.w3.org/TR/xmlschema-1/).

6. XML Schema Part 2: Datatypes
(http://www.w3.org/TR/xmlschema-2/).

