
Deciding Validity in a Spatial Logic for Trees

Cristiano Calcagno Luca Cardelli
Andrew D. Gordon

December 2002

Technical Report
MSR–TR–2002–113

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Publication History

A portion of this work appears in the proceedings of the ACM SIGPLAN Work-
shop on Types in Language Design and Implementation, New Orleans, January
18, 2003.

Affiliation

Cristiano Calcagno is with Queen Mary, University of London. The authors
completed part of this work at Queen Mary, University of London and part at
Microsoft Research, Cambridge.

Deciding Validity in a Spatial Logic for Trees

Cristiano Calcagno Luca Cardelli Andrew D. Gordon

December 2002

Abstract

We consider a propositional spatial logic for finite trees. The logic
includes A |B (tree composition), A .B (the implication induced by com-
position), and 0 (the unit of composition). We show that the satisfaction
and validity problems are equivalent, and decidable. The crux of the ar-
gument is devising a finite enumeration of trees to consider when deciding
whether a spatial implication is satisfied. We introduce a sequent calculus
for the logic, and show it to be sound and complete with respect to an
interpretation in terms of satisfaction. Finally, we describe a complete
proof procedure for the sequent calculus. We envisage applications in the
area of logic-based type systems for semistructured data. We describe a
small programming language based on this idea.

Contents

1 Introduction 1

2 Ground Propositional Spatial
Logic (Review) 2
2.1 Edge-Labelled Finite Trees . 3
2.2 Logical Formulas and Satisfaction 3
2.3 Validity of a Formula . 4

3 Deciding Validity by Model Checking 5
3.1 Bounding the Names to Consider 6
3.2 Bounding the Sizes to Consider 7
3.3 Enumerating Equivalence Classes 13

4 Deciding Validity by Deduction 17
4.1 A Sequent Calculus . 17
4.2 Soundness and Completeness . 19
4.3 A Complete Proof Procedure . 21

5 A Language for Manipulating Trees 24
5.1 Syntax . 25
5.2 Values . 26
5.3 Operational Semantics . 26
5.4 Type System . 27
5.5 Examples . 30

6 Conclusions 30

1 Introduction

Due to the growing popularity of semistructured data [Bun97], and particularly
XML [XML], there is a renewed interest in typed programming languages that
can manipulate tree-like data structures. Unfortunately, semistructured data
cannot be checked by conventional type systems with sufficient flexibility. More
advanced type systems are being proposed that better match the data schemas
used with semistructured data [HP00].

In general, we are going to have some tree-like data t, and some description
language T that can flexibly describe the shape of the data. We are interested
in description languages so flexible that they are akin to logics rather than to
type systems. The question is: what is needed to use a description language T
as a type system in some programming language that manipulates t data?

First of all, the programming language needs to analyze the data, so it needs
to check at run-time whether a tree value matches a description. In type system
terms this is a run-time typing problem: does tree t have type A. In logical
terms this is a satisfaction problem: does tree t satisfy formula A.

Second, the programming language needs (most likely) to check at compile
time whether a description A is less general than a description B. In terms of
type system this is a subtyping test: is type A a subtype of type B. In logic
terms this is a validity test: does every tree t satisfying formula A also satisfy
formula B.

Given both a satisfaction and a validity algorithm, it is then fairly routine to
build a type system around the description language, along with an operational
semantics obeying standard typing soundness properties. The key problem,
though, is to find rich description languages that admit satisfaction and (more
crucially) validity algorithms. In the case of XDuce [HP01], for example, these
algorithms are found in tree automata theory.

We propose here a logic that can be used as a rich description language
for tree-like data. It emerges as an application of the novel area of “spatial”
logics used for describing data and network structures. The logic of this paper
is so expressive that, in fact, satisfaction and validity are equivalent problems
(validity can be defined internally). For a restricted version of the spatial logics
studied so far, we are able to obtain a validity algorithm, and this is sufficient
for language applications. We end this paper by describing a simple language
based on these ideas.

In a spatial logic, the truth of a formula depends on its location. Mod-
els for spatial logics include computational structures such as concurrent ob-
jects [CM98], heaps [Rey02, IO01, ORY01], trees [CG01a], graphs [CGG02], and
also process calculi such as the π-calculus [CC01, CC02] and the ambient cal-
culus [CG00, CG01b]. Previous applications of spatial logics include specifying
and verifying imperative and concurrent programs, and querying semistructured
data.

The spatial logic of this paper describes properties of finite edge-labelled
trees. In our textual notation, n1[P1] | · · · |nk[Pk] is a tree consisting of k edges,
labelled n1, . . . , nk, leading to k subtrees P1, . . . , Pk, respectively. Our logic

1

starts with propositional primitives: conjunction A∧B, implication A ⇒ B, and
falsity F. To this basis, we add spatial primitives: composition A|B (satisfied by
composite trees P |Q where P and Q satisfy A and B, respectively), guarantee
A . B (the spatial implication corresponding to composition, satisfied by trees
that, whenever composed with any tree that satisfies A, result in trees that
satisfy B) and void 0 (the unit of composition, satisfied by the empty tree). We
complete the logic with primitives for labelled edges: location n[A] (satisfied by
a tree n[P] if P satisfies A) and placement A@n (satisfied by a tree P if the
tree n[P] satisfies A).

We consider the satisfaction problem (whether a given tree satisfies a given
formula) and the validity problem (whether every tree satisfies a given formula).
Since satisfaction of the guarantee operatorA.B is defined as an infinite quantifi-
cation over all trees, neither problem is obviously decidable. Our first significant
result, is that both are, in fact, decidable (Theorem 2). In effect, we show how
to decide validity by model checking. The main auxiliary result (Theorem 1) is
that we need consider only a finite enumeration of trees when model checking a
formula A . B.

Subsequently, we introduce a sequent calculus for our spatial logic, and show
how to decide validity by deduction in this calculus. The finite enumeration of
trees introduced in the first half is built into the right rule for A.B. Our sequent
calculus has a standard interpretation in terms of the satisfaction predicate. By
appeal to Theorem 1, we show the sequent calculus to be sound (Theorem 3) and
complete (Theorem 4) with respect to its interpretation. Moreover, we obtain
and verify a complete algorithm for finding proofs in the sequent calculus (The-
orem 5). The resulting algorithm for validity is better suited to optimisations
than the algorithm based directly on model checking.

Section 2 gives formal definitions of our logic and its model. Section 3
develops our first algorithm for validity, based on model checking. Section 4
develops our second algorithm, based on our sequent calculus. Section 5 de-
scribes a small programming language for manipulating trees, to illustrate the
idea of using spatial logic formulas as programming language types. Section 6
concludes.

2 Ground Propositional Spatial
Logic (Review)

This section introduces our spatial logic and its model. First, we define our
notation for edge-labelled finite trees. Second, we introduce the formulas of the
logic and their semantics: the satisfaction predicate, P |= A, means that the tree
P satisfies the formula A. Third, we define the validity predicate, vld(A), to
mean P |= A for every tree P . By constructing certain characteristic formulas,
we note that satisfaction and validity are interderivable.

In a study of a richer spatial logic than the one considered here, Hirschkoff,
Lozes, and Sangiorgi [HLS02] also define characteristic formulas for ambient

2

processes, and note equivalences between the satisfaction and validity problems.

2.1 Edge-Labelled Finite Trees

Let m,n range over an infinite set N of names. The model of our logic is the
set of edge-labelled trees, finitely branching and of finite depth.

Trees:

P,Q ::= tree
0 empty tree
P |Q composition
m[P] edge labelled by m, atop tree P

Let fn(P) be the set of names free in P . For any X ⊆ N, let TreeX
4= {P |

fn(P) ⊆ X}.

Structural Equivalence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q, Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ P |R ≡ Q |R (Struct Par)
P ≡ Q⇒M [P] ≡M [Q] (Struct Amb)

P |Q ≡ Q | P (Struct Par Comm)
(P |Q) |R ≡ P | (Q |R) (Struct Par Assoc)
P | 0 ≡ P (Struct Zero Par)

Lemma 1 If P ∈ TreeX and P ≡ Q then Q ∈ TreeX .

2.2 Logical Formulas and Satisfaction

Logical Formulas:

A,B ::= formula
F false
A ∧ B conjunction
A ⇒ B implication
0 void
A | B composition
A . B guarantee
n[A] location
A@n placement

3

The derived propositional connectives T, ¬A, A ∨ B, are defined in the usual
way. Name equality can be defined by m = n

4= m[T]@n; this formula holds if
and only if m = n. We write A{m←m′} for the outcome of substituting each
occurrence of the name m in the formula A with the name m′.

We define the satisfaction predicate, P |= A, as follows.

Satisfaction: P |= A

P |= F never
P |= A ∧ B 4= P |= A ∧ P |= B
P |= A ⇒ B 4= P |= A ⇒ P |= B
P |= 0 4= P ≡ 0
P |= A | B 4= ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧

P ′ |= A ∧ P ′′ |= B
P |= A . B 4= ∀P ′.P ′ |= A ⇒ P | P ′ |= B
P |= n[A] 4= ∃P ′.P ≡ n[P ′] ∧ P ′ |= A
P |= A@n

4= n[P] |= A

A basic property is that structural congruence preserves satisfaction:

Lemma 2 If P |= A and P ≡ P ′ then P ′ |= A.

Proof An easy induction on the structure of A. 2

It is useful to know that every tree P has a characteristic formula P . Let 0 4= 0,
P |Q 4= P |Q, and m[P] 4= m[P]. The formula P identifies P up to structural
equivalence:

Lemma 3 For all P and Q, Q |= P if and only if Q ≡ P .

Proof An easy induction on the structure of P . 2

Now, to turn the definition of satisfaction into an algorithm, that is, to build a
model checker for the logic, we must show that the three quantifications in the
clauses for A | B, A . B, and n[A] can be reduced to finite problems. It is not
hard to reduce the clauses for A | B and n[A] to finite quantifications [CG00],
but it seems far from obvious how to reduce satisfaction of A . B to a finite
problem. The principal result of the paper, Theorem 1, is that for any A′, A′′
there is a finite set T (A′ .A′′) such that:

P |= A′ .A′′ ⇔ ∀P ′ ∈ T (A′ .A′′).P ′ |= A′ ⇒ P ′ | P |= A′′

2.3 Validity of a Formula

The validity predicate, vld(A), means every tree satisfies the formula A.

4

Validity: vld(A)

vld(A) 4= ∀P.P |= A

The next two lemmas exhibit formulas to encode validity in terms of satisfaction,
and the converse.

Lemma 4 (Validity from Satisfaction) vld(A) if and only if 0 |= T .A.

Proof With appeal to Lemma 2, we get: vld(A)⇔ (∀P.P |= A)⇔ (∀P.P |=
T⇒ P | 0 |= A)⇔ 0 |= T .A. 2

Lemma 5 (Satisfaction from Validity) P |= A if and only if vld(P ⇒ A).

Proof With appeal to Lemmas 2 and 3, we get: vld(P ⇒ A) ⇔ (∀Q.Q |=
P ⇒ Q |= A)⇔ (∀Q.Q ≡ P ⇒ Q |= A)⇔ P |= A. 2

Hence, the validity and satisfaction problems are equivalent. The goal of the
paper is to show both are decidable.

3 Deciding Validity by Model Checking

The crux of our problem is the infinite quantification in the definition of sat-
isfaction for A . B. We bound this infinite quantification in three steps, which
lead to an alternative definition in terms of a finite quantification. This leads
to a model checking procedure, and hence to an algorithm for validity.

• In Section 3.1, we bound the alphabet of distinct names that may occur in
trees that need to be considered. Let fn(A) be the set of names occurring
free in any formula A. Let m be some other name. Proposition 1 asserts
that P |= A . B if and only if Q |= A ⇒ P | Q |= B for all trees Q with
edge-labels drawn from the set fn(A) ∪ {m}.

• In Section 3.2, we introduce a measure of the size of a tree, and bound both
the alphabet and size of trees that need to be considered. Proposition 4
asserts that P |= A .B if and only if Q |= A ⇒ P |Q |= B for all the trees
Q smaller than a size determined by A and with edge-labels drawn from
a particular finite alphabet.

• In Section 3.3, we give a procedure to enumerate a finite set of structural
equivalence classes of trees determined by a formula. Theorem 1 asserts
that P |= A . B if and only if Q |= A ⇒ P |Q |= B for all the representa-
tives Q of these equivalence classes. Hence, we prove in Theorem 2 that
satisfaction, and hence validity, is decidable.

5

3.1 Bounding the Names to Consider

We need the following facts relating substitution with the operators for adding
an edge to a tree and for composing trees.

Lemma 6 If n /∈ {m,m′} then:

P{m←m′} ≡ n[Q]⇔ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ Q

Proof

P{m←m′} |= n[Q]
⇔ ∃m′′, P ′.P ≡ m′′[P ′] ∧m′′{m←m′} = n ∧ P ′{m←m′} ≡ Q

⇔ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ Q

2

Lemma 7

P{m←m′} ≡ Q′ |Q′′ ⇔
∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′{m←m′} ≡ Q′ ∧ P ′′{m←m′} ≡ Q′′

Proof Immediate since substitution preserves the structure of trees. 2

Given these facts we can show that satisfaction of a formula is independent of
any name not occurring in the formula.

Lemma 8 If m,m′ /∈ fn(A), P |= A ⇔ P{m←m′} |= A.

Proof By induction on the structure of A. We only consider the interesting
cases.

Case A | B. We have m,m′ /∈ fn(A) ∪ fn(B). With appeal to Lemma 2 and
Lemma 7, and the induction hypothesis, we calculate:

P |= A | B
⇔ ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′ |= A ∧ P ′′ |= B
⇔ ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′{m←m′} |= A ∧ P ′′{m←m′} |= B
⇔ ∃P ′, P ′′, Q′, Q′′.P ≡ P ′ | P ′′ ∧Q′ ≡ P ′{m←m′} ∧

Q′′ ≡ P ′′{m←m′} ∧Q′ |= A ∧Q′′ |= B
⇔ ∃Q′, Q′′.P{m←m′} ≡ Q′ |Q′′ ∧Q′ |= A ∧Q′′ |= B
⇔ P{m←m′} |= A | B

Case A . B. We have m,m′ /∈ fn(A) ∪ fn(B). With appeal to the induction
hypothesis, we calculate:

P |= A . B ⇔ ∀Q.Q |= A ⇒ P |Q |= B
⇔ ∀Q.Q |= A ⇒ (P |Q){m←m′} |= B
⇔ ∀Q.Q |= A ⇒ (P{m←m′} |Q){m←m′}) |= B
⇔ ∀Q.Q |= A ⇒ P{m←m′} |Q |= B
⇔ P{m←m′} |= A . B

6

Case n[A]. We have m,m′ /∈ {n} ∪ fn(A). With appeal to Lemma 2 and
Lemma 6, and the induction hypothesis, we calculate:

P |= n[A] ⇔ ∃P ′.P ≡ n[P ′] ∧ P ′ |= A
⇔ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} |= A
⇔ ∃P ′, P ′′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ P ′′ ∧ P ′′ |= A
⇔ ∃P ′′.P{m←m′} ≡ n[P ′′] ∧ P ′′ |= A
⇔ P{m←m′} |= n[A]

Case A@n. We have m,m′ /∈ {n} ∪ fn(A). With appeal to the induction
hypothesis, we calculate:

P |= A@n ⇔ n[P] |= A
⇔ (n[P]){m←m′} |= A
⇔ n[P{m←m′}] |= A
⇔ P{m←m′} |= A@n

2

This lemma is not true for the logic extended with quantifiers: we have m[]|n[] |=
∃x, y.(x[] | y[]) ∧ x 6= y but m[] |m[] 6|= ∃x, y.(x[] | y[]) ∧ x 6= y.

Proposition 1 (Bounding Names) Suppose m /∈ fn(A . B). Then:

P |= A . B ⇔ (∀Q ∈ Treefn(A.B)∪{m}. Q |= A ⇒ P |Q |= B)

Proof The forwards direction is immediate. For the backwards direction,
assume that (∀Q ∈ Treefn(A.B)∪{m}. Q |= A ⇒ P | Q |= B) and consider any
tree Q such that Q |= A. Suppose that fn(P |Q) ⊆ fn(A . B) ∪ {m,n1, . . . , nk}
where {n1, . . . , nk} ∩ (fn(A . B) ∪ {m}) = ∅. Let P ′ = P{n1←m} · · · {nk←m}
and Q′ = Q{n1←m} · · · {nk←m}. By repeated application of Lemma 8, we get
that Q |= A ⇔ Q′ |= A. Since Q′ ∈ Treefn(A.B)∪{m} and Q′ |= A, we obtain
P |Q′ |= B by assumption. Now, we have:

(P |Q′){n1←m} · · · {nk←m}
= P ′ |Q′

= (P |Q){n1←m} · · · {nk←m}

Hence, by repeated application of Lemma 8, we get that P | Q′ |= B ⇔
P ′ |Q′ |= B ⇔ P |Q |= B. Hence P |Q |= B follows. 2

3.2 Bounding the Sizes to Consider

We introduce measures of the height and width of both trees and formulas.

Definition 1 (Notation) Write a·P for a ≥ 0 copies of P in parallel: P |. . .|P .

7

Definition 2 (Size of Trees)
|P |hw 4= (h, w) iff there are a1, n1, P1, . . . , ak, nk, Pk, for some k, such that:

• P ≡ a1 · n1[P1] | . . . | ak · nk[Pk]

• ∀i, j ∈ 1..k. ni[Pi] ≡ nj [Pj]⇒ i = j

• (hi, wi) = |Pi|hw for each i ∈ 1..k

• if k = 0, h = 0; otherwise h = 1 + max(h1, . . . , hk)

• if k = 0, w = 0; otherwise w = max(a1, . . . , ak, w1, . . . , wk)

When |P |hw = (h, w), we write |P |h for h and |P |w for w. We write (h1, w1) ≤
(h2, w2) for (h1 ≤ h2) ∧ (w1 ≤ w2).

Intuitively |P |h is the height of P , and |P |w is the width, defined as the maximum
multiplicity of the subtrees of P . The multiplicity is the number of structurally
equivalent non-empty trees under the same edge. For example:

• |0|hw = (0, 0)

• |n[0]|hw = (1, 1)

• |n[0] |m[0]|hw = (1, 1)

• |n[0] | n[0]|hw = (1, 2)

• |n[m[0]]|hw = (2, 1)

• |n[n[0]]|hw = (2, 1)

Next, we define height and width measures for logical formulas.

Size of Logical Formulas

|F|h 4= 0 |F|w 4= 0
|A ∧ B|h 4= max(|A|h, |B|h) |A ∧ B|w 4= max(|A|w, |B|w)
|A ⇒ B|h 4= max(|A|h, |B|h) |A ⇒ B|w 4= max(|A|w, |B|w)
|0|h 4= 1 |0|w 4= 1
|A | B|h 4= max(|A|h, |B|h) |A | B|w 4= |A|w + |B|w

|A . B|h 4= |B|h |A . B|w 4= |B|w

|n[A]|h 4= 1 + |A|h |n[A]|w 4= max(2, |A|w)
|A@n|h 4= max(|A|h − 1, 0) |A@n|w 4= |A|w

Here are the sizes for the derived propositional connectives:

|T|h 4= 0 |T|w 4= 0
|¬A|h 4= |A|h |¬A|w 4= |A|w

|A ∨ B|h 4= max(|A|h, |B|h) |A ∨ B|w 4= max(|A|w, |B|w)

8

We define a relation ∼h,w between trees, parameterized by the size (h, w).
The main property of the relation is that if P ∼h,w Q then no formula with size
(h, w) can distinguish between P and Q (Proposition 2).

Definition 3 (Relation P ∼h,w Q)

P ∼0,w Q always

P ∼h+1,w Q ⇔ ∀i ∈ 1..w. ∀n, Pj with j ∈ 1..i.
if P ≡ n[P1] | · · · | n[Pi] | Pi+1

then Q ≡ n[Q1] | · · · | n[Qi] | Qi+1

such that Pj ∼h,w Qj for j ∈ 1..i
and vice versa

Note that ∼h,w is an equivalence relation: reflexivity, symmetry, and transi-
tivity are immediate consequences of the definition. Moreover, it is preserved
by structural congruence:

Lemma 9 If P ∼h,w Q and Q ≡ R then P ∼h,w R.

Proof By an easy induction on h. 2

The following lemma shows that the relation ∼h,w is monotone in (h, w).

Lemma 10 (Monotonicity) If P ∼h,w Q and (h′, w′) ≤ (h, w) then P ∼h′,w′

Q.

Proof By induction on h. The case h = 0 is immediate.
For h + 1, suppose P ∼h+1,w Q and (h′, w′) ≤ (h + 1, w). If h′ = 0 then

clearly P ∼h′,w′ Q. If h′ = h′′ + 1 for some h′′, then consider any i ∈ 1..w′, n,
Pj for j ∈ 1..i such that

P ≡ n[P1] | · · · | n[Pi] | Pi+1

Since w′ ≤ w, then i ∈ 1..w, and from P ∼h+1,w Q we have

Q ≡ n[Q1] | · · · | n[Qi] | Qi+1 such that Pj ∼h,w Qj for j ∈ 1..i

Since (h′′, w′) ≤ (h, w), by induction hypothesis we have Pj ∼h′′,w′ Qj for
j ∈ 1..i. This proves P ∼h′′+1,w′ Q, that is, P ∼h′,w′ Q. 2

The following lemma shows that the relation ∼h,w is a congruence.

Lemma 11 (Congruence) The following hold:

(1) If P ∼h,w Q then n[P] ∼h+1,w n[Q].

(2) If P ∼h,w P ′ and Q ∼h,w Q′ then P |Q ∼h,w P ′ |Q′.

Proof We prove both parts directly.

9

(1) Suppose P ∼h,w Q. If w = 0 then the conclusion is immediate. Otherwise,
consider any i ∈ 1..w, n, Pj for j ∈ 1..i such that

n[P] ≡ n[P1] | · · · | n[Pi] | Pi+1

Then i = 1 and P1 ≡ P and Pi+1 ≡ 0. We have n[Q] ≡ n[Q] | 0, and
P1 ∼h,w Q by Lemma 9. This proves n[P] ∼h+1,w n[Q].

(2) There are two cases. If h = 0 then the conclusion is immediate.

For h + 1, suppose P ∼h+1,w P ′ and Q ∼h+1,w Q′; then consider any
i ∈ 1..w, n, Rj for j ∈ 1..i such that

P | Q ≡ n[R1] | · · · | n[Ri] | Ri+1

Suppose without loss of generality that the Rj are ordered in a way that
there exist k ∈ 1..i, P†, Q† such that

P ≡ n[R1] | · · · | n[Rk] | P†
Q ≡ n[Rk+1] | · · · | n[Ri] | Q†
Ri+1 ≡ P† | Q†

Since k ∈ 1..w, from P ∼h+1,w P ′ we have

P ′ ≡ n[P ′1] | · · · | n[P ′k] | P ′† such that Rj ∼h,w P ′j for j ∈ 1..k

Similarly, from Q ∼h+1,w Q′ we have

Q′ ≡ n[Q′k+1] | · · · | n[Q′i] | Q′† such that Rj ∼h,w Q′j for j ∈ (k + 1)..i

Hence, we have

P ′ | Q′ ≡ n[P ′1] | · · · | n[P ′k] | n[Q′k+1] | · · · | n[Q′i] | P ′† | Q′†

Since Rj ∼h,w P ′j for j ∈ 1..k and Rj ∼h,w Q′j for j ∈ (k + 1)..i, this
proves P | Q ∼h+1,w P ′ | Q′. 2

Lemma 12 (Inversion) If P ′ | P ′′ ∼h,w1+w2 Q then there exist Q′, Q′′ such
that Q ≡ Q′ |Q′′ and P ′ ∼h,w1 Q′ and P ′′ ∼h,w2 Q′′.

Proof There are two cases. If h = 0 then the conclusion is immediate.
For h + 1, suppose P ′ | P ′′ ∼h+1,w1+w2 Q. Consider the following definition:

A tree P is in (h, w)-normal form if whenever P ≡ n[P1] | n[P2] | P3

for some P1, P2, P3, if P1 ∼h,w P2 then P1 ≡ P2. Note that P ∼h+1,w

n[P1] | n[P1] | P3, hence it is always possible to find a P † such that
P † is in (h, w)-normal form and P ∼h+1,w P †.

10

We can assume without loss of generality that P ′ and P ′′ are in (h, w)-normal
form, and by Lemma 10 that Q is in (h, w)-normal form. Hence, there exist k,
Pj , a

′
j , a
′′
j , bj for j ∈ 1..k such that

P ′ ≡ a′1 · n1[P1] | · · · | a′k · nk[Pk]
P ′′ ≡ a′′1 · n1[P1] | · · · | a′′k · nk[Pk]
Q ≡ b1 · n1[P1] | · · · | bk · nk[Pk]

where if Pi ∼h,w Pj and ni = nj then i = j.
To split Q into two parts, we now specify how to split each bi, for i ∈ 1..k,

into b′i and b′′i , such that:

bi = b′i + b′′i
a′i · ni[Pi] ∼h+1,w1 b′i · ni[Pi]
a′′i · ni[Pi] ∼h+1,w2 b′′i · ni[Pi]

For each i ∈ 1..k, we choose b′i and b′′i according to the following cases:

• Case a′i + a′′i < w1 + w2. Then P ′ | P ′′ ∼h+1,w Q implies bi = a′i + a′′i , so
we can choose b′i = a′i and b′′i = a′′i .

• Case a′i + a′′i ≥ w1 + w2. Then P ′ | P ′′ ∼h+1,w Q implies bi ≥ w1 + w2.
There are three subcases:

– Subcase a′i ≥ w1 and a′′i ≥ w2. Then we choose b′i = w1 and b′′i =
bi−w1 (note that b′′i is saturated, that is, b′′i ≥ w2, since bi ≥ w1+w2).

– Subcase a′i < w1. We must have a′′i ≥ w2. Then we choose b′i = a′i
and b′′i = bi − a′i. So b′′i ≥ w2 since bi ≥ w1 + w2 and b′i < w1.

– Subcase a′′i < w2. This is symmetric to the previous case. We must
have a′i ≥ w1. We choose b′′i = a′′i and b′i = bi − a′′i . So b′i ≥ w1 since
bi ≥ w1 + w2 and b′′i < w2.

Now we define Q′ and Q′′ as follows:

Q′ ≡ b′1 · n1[P1] | · · · | b′k · nk[Pk] Q′′ ≡ b′′1 · n1[P1] | · · · | b′′k · nk[Pk]

We have Q ≡ Q′ | Q′′, and by repeated application of Lemma 11 we get
P ′ ∼h+1,w1 Q′ and P ′′ ∼h+1,w2 Q′′. 2

Proposition 2 If |A|hw = (h, w) and P |= A and P ∼h,w Q then Q |= A.

Proof By induction on the structure of A. We consider only some interesting
cases.

Case 0. Suppose P |= 0 and P ∼1,1 Q. Then P ≡ 0. Since P ∼1,1 Q, if
Q ≡ n[Q1] | Q2 for some n, Q1, Q2 then P ≡ n[P1] | P2 for some P1, P2.
Hence Q ≡ 0; thus Q |= 0.

11

Case A1 | A2. Suppose |Ai|hw = (hi, wi) for i = 1, 2 and P |= A1 | A2. We
have |(A1 | A2)|hw = (max(h1, h2), w1 + w2) and there exist P1, P2 such
that P ≡ P1 | P2 and Pi |= Ai for i = 1, 2. Then by Lemma 12 there
exist Q1, Q2 such that Q ≡ Q1 | Q2 and Pi ∼max(h1,h2),wi

Qi for i = 1, 2.
Then Pi ∼hi,wi

Qi for i = 1, 2 by Lemma 10, hence Qi |= Ai for i = 1, 2
by induction hypothesis. This proves Q |= A1 | A2.

Case A . B. Suppose |B|hw = (h, w) and P |= A.B. We have |A.B|hw = (h, w)
and P ∼h,w Q. Consider any P1 such that P1 |= A; then P | P1 |= B.
Since P ∼h,w Q and P1 ∼h,w P1 we have P | P1 ∼h,w Q | P1 by Lemma 11.
Hence Q | P1 |= B by induction hypothesis. This proves Q |= A . B.

Case n[A]. Suppose |A|hw = (h, w). We have |n[A]|hw = (h + 1,max(w, 2))
and P ∼h+1,max(w,2) Q and P |= n[A]. Then there exists P ′ such that
P ≡ n[P ′] and P ′ |= A. From P ∼h+1,max(w,2) Q we deduce that there
exists Q′ such that Q ≡ n[Q′] and P ′ ∼h,max(w,2) Q′. Lemma 10 implies
P ′ ∼h,w Q′, and by induction hypothesis we have Q′ |= A. This proves
Q |= n[A].

Case A@n. Suppose |A|hw = (h, w). We have |A@n|hw = (max(h − 1, 0), w)
and P ∼max(h−1,0),w Q. If h > 0 then we have n[P] ∼h,w n[Q] by
Lemma 11. If h = 0 then n[P] ∼h,w n[Q] is immediate. With appeal
to the induction hypothesis, we calculate:

P |= A@n ⇔ n[P] |= A
⇔ n[Q] |= A
⇔ Q |= A@n

2

The following lemma shows that each equivalence class determined by ∼h,w

contains a tree of size bounded by (h, w).

Lemma 13 (Pruning) For all P ∈ TreeX , h, w there exists P ′ ∈ TreeX such
that P ∼h,w P ′ and |P ′|hw ≤ (h, w).

Proof We describe how to construct P ′ by induction on h. For h = 0 define
P ′

4= 0.
For h + 1, suppose P ≡ n1[P1] | · · · | nk[Pk], for some k and nj , Pj with

j ∈ 1..k. Let P ′j , for j ∈ 1..k, be the tree obtained by pruning Pj to size
h, w. Define Q

4= n1[P ′1] | · · · | nk[P ′k]. We can write Q in a canonical form
with respect to ≡, that is, there exist i and aj ,mj , Qj for j ∈ 1..i such that
Q ≡ a1 ·m1[Q1] | · · · | ai ·mi[Qi] and, for all j, j′ ∈ 1..i, if mj [Qj] ≡ mj′ [Qj′]
then j = j′. For each j ∈ 1..i, define bi

4= min(ai, w). Then we can define
P ′

4= b1 ·m1[Q1] | · · · | bi ·mi[Qi]. It is easy to see that |P ′|hw ≤ (h + 1, w) and
P ∼h+1,w P ′. 2

12

Proposition 3 (Bounding Size) For any tree P , set of names X and formu-
las A and B, if h = max(|A|h, |B|h) and w = max(|A|w, |B|w) then

(∀Q ∈ TreeX . Q |= A ⇒ P |Q |= B) ⇔
(∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proof The forwards direction is immediate. For the backwards direction,
assume that the right hand side holds. Take any Q ∈ TreeX such that Q |= A.
Then we have:

∃Q′. Q ∼h,w Q′ ∧ |Q′|hw ≤ (h, w) by Lemma 13
Q ∼|A|h,|A|w Q′ by Lemma 10 since |A|hw ≤ (h, w)
Q′ |= A by Proposition 2
P |Q′ |= B by assumption
P |Q ∼h,w P |Q′ by Lemma 11
P |Q ∼|B|h,|B|w P |Q′ by Lemma 10 since |B|hw ≤ (h, w)
P |Q |= B by Proposition 2

2

Proposition 4 (Bounding Size and Names) For any tree P and formulas
A and B, if m /∈ fn(A . B) and X = fn(A . B) ∪ {m} and h = max(|A|h, |B|h)
and w = max(|A|w, |B|w), then:

P |= A . B ⇔ (∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proof We have:

P |= A . B
⇔ (∀Q ∈ TreeX . Q |= A ⇒ P |Q |= B)
⇔ (∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proposition 1 justifies the first step, Proposition 3 the second. 2

So, to check satisfaction of A .B, we need only consider trees whose free names
are drawn from fn(A.B)∪{m}, and whose size is bounded by max(|A|hw, |A|hw).
We show in the next section, that the number of such trees, modulo structural
equivalence, is finite. Hence, we obtain an algorithm for satisfaction of A . B.

3.3 Enumerating Equivalence Classes

In this section we present an explicit characterization of the equivalence classes
on trees, modulo structural equivalence, determined by ∼h,w .

Definition 4 (Notation) Consider the following notation, where metavariable

13

c ranges over sets of trees modulo structural congruence:

〈P 〉≡
4= {P ′ | P ≡ P ′}

〈P 〉h,w
4= {P ′ | P ∼h,w P ′}

c1 + c2
4= c1 ∪ c2

n[c] 4= {〈n[P]〉≡ | 〈P 〉≡ ∈ c}
c≤n 4= {〈a1 · P1 | · · · | ak · Pk〉≡ | 0 ≤ ai ≤ n for i ∈ 1..k}

when c = {〈P1〉≡, . . . , 〈Pk〉≡}

We can now give a direct definition of the set of equivalence classes EQX
h,w

determined by ∼h,w , given a set of names X.

Definition 5 If X = {n1, . . . , nk}, define EQX
h,w as follows:

EQX
0,w

4= {〈0〉≡}

EQX
h+1,w

4= (n1[EQX
h,w] + · · ·+ nk[EQX

h,w])≤w

Lemma 14 If |P |hw ≤ (h, w) and |P ′|hw ≤ (h, w), then

(1) P ∈ TreeX implies 〈P 〉≡ ∈ EQX
h,w.

(2) P ≡ P ′ ⇐⇒ P ∼h,w P ′.

Proof Part (1) is a simple induction on h.
For Part (2), the interesting direction is ⇐. We proceed by induction on h.

If h = 0 then |P |h = |Q|h = 0, hence P ≡ Q ≡ 0.
For the case h + 1, suppose |P |hw ≤ (h + 1, w) and |P ′|hw ≤ (h + 1, w) and

P ∼h+1,w P ′. Write P and P ′ in canonical form with respect to ≡, that is,
there exist k and aj , a

′
j , nj , Pj for j ∈ 1..k such that

P ≡ a1 · n1[P1] | · · · | ak · nk[Pk] P ′ ≡ a′1 · n1[P1] | · · · | a′k · nk[Pk]

where, for all i, j ∈ 1..k, if ni[Pi] ≡ nj [Pj] then i = j. Since |P |hw ≤ (h + 1, w)
and |P ′|hw ≤ (h + 1, w) we have aj ≤ w and a′j ≤ w for each j ∈ 1..k. For each
i ∈ 1..k we show ai ≤ a′i:

There exists P† such that P ≡ ai · ni[Pi] | P †. Then by definition of
P ∼h+1,w P ′ there exist P ′1, . . . , P

′
ai

, P ′† such that P ′ ≡ ni[P ′1] | · · · |
ni[P ′ai

] | P ′† and Pi ∼h,w P ′j for j ∈ 1..ai. By induction hypothesis
we have Pi ≡ P ′j for each j ∈ 1..ai, hence P ′ ≡ ai · ni[Pi] | P ′†. This
proves ai ≤ a′i.

With a symmetric argument we can show a′i ≤ ai for each i ∈ 1..k. This proves
P ≡ P ′. 2

The following lemma shows that EQX
h,w contains exactly the trees (modulo ≡)

of size at most (h, w) with free names drawn from X.

14

Lemma 15 〈P 〉≡ ∈ EQX
h,w ⇔ P ∈ TreeX ∧ |P |hw ≤ (h, w).

Proof By construction, if 〈P 〉≡ ∈ EQX
h,w then P ∈ TreeX and |P |hw ≤ (h, w).

The converse follows from Lemma 14. 2

The following proposition shows that EQX
h,w is an enumeration of the represen-

tatives of the equivalence classes in TreeX/∼h,w .

Proposition 5 The function f : TreeX → TreeX/∼h,w sending P to 〈P 〉h,w

extends to a bijection f ′ : EQX
h,w → TreeX/∼h,w .

Proof Let f ′ be the function sending 〈P 〉≡ to 〈P 〉h,w. Clearly f ′ is well
defined since P ≡ P ′ implies P ∼h,w P ′.

To show that f ′ is surjective, take any 〈P 〉h,w ∈ TreeX/∼h,w . By lemma 13
there exists P ′ ∈ TreeX such that P ∼h,w P ′ and |P ′|hw ≤ (h, w). So 〈P ′〉h,w =
〈P 〉h,w and 〈P ′〉≡ ∈ EQX

h,w by lemma 14.
To show that f ′ is injective, consider any P,Q ∈ TreeX with 〈P 〉≡, 〈Q〉≡ ∈

EQX
h,w and 〈P 〉h,w = 〈Q〉h,w. Then |P |hw ≤ (h, w) and |Q|hw ≤ (h, w) by

Lemma 15, hence P ≡ Q by Lemma 14. This proves 〈P 〉≡ = 〈Q〉≡. 2

Theorem 1 (Finite Bound) Consider any formulas A and B. Let EQX
h,w =

{〈Q1〉≡, . . . , 〈Qn〉≡}, where h = max(|A|h, |B|h) and w = max(|A|w, |B|w) and
X = fn(A . B) ∪ {m} for some m /∈ fn(A . B).

Then, for any tree P :

P |= A . B ⇔ (∀i ∈ 1..n. Qi |= A ⇒ P |Qi |= B)

Proof Using Proposition 4, Lemma 15, and Lemma 2:

P |= A . B
⇔ (∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)
⇔ (∀Q. 〈Q〉≡ ∈ EQX

h,w ∧Q |= A ⇒ P |Q |= B)
⇔ (∀Q. (∃i ∈ 1..n.Q ≡ Qi) ∧Q |= A ⇒ P |Q |= B)
⇔ (∀i ∈ 1..n.∀Q.Q ≡ Qi ∧Q |= A ⇒ P |Q |= B)
⇔ (∀i ∈ 1..n.Qi |= A ⇒ P |Q |= B)

2

Given this result, we can now show that each of the three quantifications in the
definition of satisfaction can be reduced to a finite problem.

Finite Test Sets: T (P), T (A . B), and T (n, P)

T (P) is the finite non-empty set {〈Q,R〉 | P ≡ Q |R}/(≡×≡).
T (A . B) is the finite non-empty set EQX

h,w,where h = max(|A|h, |B|h)
and w = max(|A|w, |B|w)and X = fn(A . B) ∪ {m} for some m /∈ fn(A . B).
T (n, P) is the finite, possibly empty, set {Q | P ≡ n[Q]}/ ≡.

15

Lemma 16

(1) For any P , P |= A′ | A′′ ⇔ ∃〈P ′, P ′′〉 ∈ T (P).P ′ |= A′ ∧ P ′′ |= A′′.

(2) For any A, B, P |= A . B ⇔ ∀Q ∈ T (A . B).Q |= A ⇒ Q | P |= B.

(3) For any P , P |= n[A′]⇔ ∃P ′ ∈ T (n, P).P ′ |= A′.

Proof Part (2) follows at once from Theorem 1. The other parts follow easily,
as in earlier work [CG00]. 2

Theorem 2 Satisfaction and validity are interderivable and decidable.

Proof As noted in Section 2, Lemmas 4 and 5 establish the equivalence of
satisfaction and validity. An algorithm for satisfaction follows from the rules of
its definition in Section 2, together with the facts in Lemma 16. 2

Validity is defined in terms of an infinite quantification over trees. We end
with a corollary of Lemma 4 and Theorem 1, which reduces validity to a finite
quantification over a computable sequence of trees. Hence, we obtain an explicit
algorithm for validity.

Corollary 1 Consider any formula A. Suppose EQX
h,w = {〈P1〉≡, . . . , 〈Pn〉≡},

where (h, w) = |A|hw and X = fn(A) ∪ {m} for some m /∈ fn(A). Then

vld(A)⇔ (∀i ∈ 1..n. Pi |= A)

It is straightforward to implement the algorithms for satisfaction and validity
suggested above. However, they are of limited practical interest, since the size
of EQX

h,w is not elementary (not bounded by any tower of exponentials) in
the worst case. The only lower bound we know is PSPACE. Still, the algorithm
terminates in a reasonable time on small formulas. Here is a selection of formulas
found to be valid by our implementation.

• (0 ∨ p[0]) | ¬(p[0])

• q[¬0] . ¬(0)

• ¬((q[q[0]] | q[0])@q)

• (T . ¬((q[0] ∨T) . 0))@q

• ((0 ∨ p[0])@p)@p@p

• (¬(p[T]) ∨ ¬(q[T]))@q

• p[T] . (p[T] |T)

• ¬(p[T] . 0)

• ¬(T | (T . q[0])@q)

16

• (T | (¬(0) ∨ 0)) |T

• (T | q[T])@q ∨ 0

To see why, for example, that the formula (0∨p[0]) |¬(p[0]) is valid, consider
any process P . Either P |= p[0] or not. If so, we have P ≡ P |0, and P |= 0∨p[0]
and 0 |= ¬(p[0]). If not, we have P ≡ 0 | P , and 0 |= 0 ∨ p[0] and P |= ¬(p[0]).
So, in either case, the process satisfies (0 ∨ p[0]) | ¬(p[0]).

4 Deciding Validity by Deduction

We present a sequent calculus for our spatial logic, following the pattern of
Caires and Cardelli [CC02]. We show the calculus to be sound and complete
with respect to an interpretation in terms of the satisfaction relation, and present
a complete proof procedure. Hence, we obtain an algorithm for deciding validity
by deduction in the sequent calculus.

4.1 A Sequent Calculus

A context, Γ or ∆, is a finite multiset of entries of the form P : A where P
is a tree and A is a formula. A sequent is a judgment Γ ` ∆ where Γ and ∆
are contexts. The following table states the rules for deriving sequents. The
rules depend on the finite test sets T (P), T (A . B), and T (n, P) introduced in
Section 3. All that matters for the purpose of this section is that these sets are
computable and that they satisfy the properties stated in Lemma 16. Hence,
this is a finitary proof system; note the form of the rules (| L), (. R), and (n[]
L).

Rules of the Sequent Calculus:

(Id)
P ≡ Q

Γ, P : A ` Q : A,∆

(Cut)
Γ ` P : A,∆ Γ, P : A ` ∆

Γ ` ∆

(C L)
Γ, P : A, P : A ` ∆

Γ, P : A ` ∆

(C R)
Γ ` P : A, P : A,∆

Γ ` P : A,∆

(F L)

Γ, P : F ` ∆

(F R)
Γ ` ∆

Γ ` P : F,∆

(∧ L)
Γ, P : A, P : B ` ∆
Γ, P : A ∧ B ` ∆

(∧ R)
Γ ` P : A,∆ Γ ` P : B,∆

Γ ` P : A ∧ B,∆

17

(⇒ L)
Γ ` P : A,∆ Γ, P : B ` ∆

Γ, P : A ⇒ B ` ∆

(⇒ R)
Γ, P : A ` P : B,∆
Γ ` P : A ⇒ B,∆

(0 L)
P 6≡ 0

Γ, P : 0 ` ∆

(0 R)
P ≡ 0

Γ ` P : 0,∆

(| L)
∀〈Q,R〉 ∈ T (P). Γ, Q : A, R : B ` ∆

Γ, P : A | B ` ∆
(| R)
Γ ` Q : A,∆ Γ ` R : B,∆ P ≡ Q |R

Γ ` P : A | B,∆

(. L)
Γ ` Q : A,∆ Γ, Q | P : B ` ∆

Γ, P : A . B ` ∆

(. R)
∀Q ∈ T (A . B). Γ, Q : A ` Q|P : B,∆

Γ ` P : A . B,∆

(n[] L)
∀Q ∈ T (n, P). Γ, Q : A ` ∆

Γ, P : n[A] ` ∆

(n[] R)
Γ ` Q : A,∆ P ≡ n[Q]

Γ ` P : n[A],∆

(@n L)
Γ, n[P] : A ` ∆
Γ, P : A@n ` ∆

(@n R)
Γ ` n[P] : A,∆
Γ ` P : A@n, ∆

The variables Q, R in (| L) and the variable Q in (. R) cannot occur free (in a
formalistic reading) in Γ, P , ∆. Compare the side conditions on these rules in
Caires and Cardelli [CC02]. Here, these are meta-level variables ranging over
terms, so there is no need for such side conditions. Note that (n[] L) applies
also when T (n, P) is empty (something that never happens for (| L)), so we can
conclude, for example, Γ,0 : n[A] ` ∆. The fact that T (n, P) may be empty
explains also the irregular form of clause (n[] R) of Lemma 18 below.

Lemma 17 (Weakening) If Γ ` ∆ is derivable, then Γ, P : A ` ∆ and Γ `
P : A,∆ are derivable. Moreover, if there is a derivation of Γ ` ∆ free of (Id),
(Cut), (C L), (C R), then there are derivations of Γ, P : A ` ∆ and Γ ` P : A,∆
free of (Id), (Cut), (C L), (C R).

Proof By induction on the derivation of Γ ` ∆. The second part of the
statement comes from inspection of the cases different from (Id), (Cut), (C L),
(C R). 2

18

4.2 Soundness and Completeness

We make a conventional interpretation of sequents:

∧[[P1 : A1, ..., Pn : An]] 4= P1 |= A1 ∧ . . . ∧ Pn |= An

∨[[Q1 : B1, ..., Qm : Bm]] 4= Q1 |= B1 ∨ . . . ∨Qm |= Bm

[[Γ ` ∆]] 4= ∧[[Γ]]⇒ ∨[[∆]]

To prove soundness and completeness of the sequent calculus, we need the fol-
lowing two lemmas.

Lemma 18 (Validity of Antecedents)

(F L) [[Γ, P : F ` ∆]]

(F R) [[Γ ` P : F,∆]] iff [[Γ ` ∆]]

(∧ L) [[Γ, P : A′ ∧ A′′ ` ∆]] iff [[Γ, P : A′, P : A′′ ` ∆]]

(∧ R) [[Γ ` P : A′ ∧ A′′,∆]] iff [[Γ ` P : A′,∆]] ∧ [[Γ ` P : A′′,∆]]

(∨ L) [[Γ, P : A′ ∨ A′′ ` ∆]] iff [[Γ ` P : A′,∆]] ∧ [[Γ, P : A′′ ` ∆]]

(∨ R) [[Γ ` P : A′ ∨ A′′,∆]] iff [[Γ, P : A′ ` P : A′′,∆]]

(0 L) [[Γ, P : 0 ` ∆]] iff P ≡ 0⇒ [[Γ ` ∆]]

(0 R) [[Γ ` P : 0,∆]] iff P 6≡ 0⇒ [[Γ ` ∆]]

(| L) [[Γ, P : A′ | A′′ ` ∆]] iff ∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒ [[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]

(| R) [[Γ ` P : A′ | A′′,∆]] iff ∃P ′, P ′′.P ≡ P ′ |P ′′ ∧ [[Γ ` P ′ : A′,∆]]∧ [[Γ ` P ′′ :
A′′,∆]]

(. L) [[Γ, P : A′ .A′′ ` ∆]] iff ∃P ′.[[Γ ` P ′ : A′,∆]] ∧ [[Γ, P ′ | P : A′′ ` ∆]]

(. R) [[Γ ` P : A′ .A′′,∆]] iff ∀P ′.[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]]

(n[] L) [[Γ, P : n[A′] ` ∆]] iff ∀P ′.P ≡ n[P ′]⇒ [[Γ, P ′ : A′ ` ∆]]

(n[] R) [[Γ ` P : n[A′],∆]] iff (∀P ′.P 6≡ n[P ′]∧ [[Γ ` ∆]])∨(∃P ′.P ≡ n[P ′]∧ [[Γ `
P ′ : A′,∆]])

(@n L) [[Γ, P : A′@n ` ∆]] iff [[Γ, n[P] : A′ ` ∆]]

(@n R) [[Γ ` P : A′@n, ∆]] iff [[Γ ` n[P] : A′,∆]]

Proof By detailed, but straightforward, calculations. 2

19

Lemma 19 (Finite Test Sets)

(1) For any P there is a finite set T (P) with:
∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒ [[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]
iff ∀〈P ′, P ′′〉 ∈ T (P).[[Γ, P ′ : A′, P ′′ : A′′ ` ∆]].

(2) For any A′, A′′, there is a finite set T (A′ .A′′) with:
∀P ′.[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]]
iff ∀P ′ ∈ T (A′ .A′′).[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]].

(3) For any P there is a finite set T (n, P) with:
∀P ′.P ≡ n[P ′]⇒ [[Γ, P ′ : A′ ` ∆]]
iff ∀P ′ ∈ T (n, P).[[Γ, P ′ : A′ ` ∆]].

Proof By expanding definitions, and appeal to Lemma 16. 2

Theorem 3 (Soundness) If Γ ` ∆ is derivable, [[Γ ` ∆]].

Proof By induction on the derivation of Γ ` ∆. 2

Theorem 4 (Completeness) If [[Γ ` ∆]], then Γ ` ∆ has a derivation. More-
over, it has a derivation that does not use (Id), (Cut), (C L), (C R).

Proof By induction on the sum of the sizes of all the formulas in Γ ` ∆. The
interesting cases are (| L), (n[] L) and, particularly, (. R), relying on Lemma 19.
These are the only cases we show.

Subcase [[Γ, P : A′ | A′′ ` ∆]]. By Lemma 18(| L) we have ∀P ′, P ′′.P ≡ P ′ |
P ′′ ⇒ [[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]. By Lemma 19(1) there is a finite set
T (P) such that ∀〈P ′, P ′′〉 ∈ T (P).[[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]. By IndHyp,
∀〈P ′, P ′′〉 ∈ T (P).Γ, P ′ : A′, P ′′ : A′′ ` ∆ has a derivation. Hence by (|
L) we can construct a (finite) derivation for Γ, P : A′ | A′′ ` ∆.

Subcase [[Γ, P : n[A′] ` ∆]]. By Lemma 18(n[] L) we have ∀P ′.P ≡ n[P ′] ⇒
[[Γ, P ′ : A′ ` ∆]]. By Lemma 19(3) there is a finite set T (n, P) such that
∀P ′ ∈ T (n, P).[[Γ, P ′ : A′ ` ∆]]. By IndHyp, ∀P ′ ∈ T (n, P).Γ, P ′ : A′ ` ∆
has a derivation. Hence by (n[] L) we can construct a (finite) derivation
for Γ, P : n[A′] ` ∆.

Subcase [[Γ ` P : A′ .A′′,∆]]. By Lemma 18(. R) we have ∀P ′.[[Γ, P ′ : A′ `
P ′ | P : A′′,∆]]. By Lemma 19(2) there is a finite set T (A′ . A′′) such
that ∀P ′ ∈ T (A′ . A′′).[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]]. By IndHyp, ∀P ′ ∈
T (A′ . A′′).Γ, P ′ : A′ ` P ′ | P : A′′,∆ has a derivation. Hence by (. R)
we can construct a (finite) derivation for Γ ` P : A′ .A′′,∆.

For the second part of the statement, it is sufficient to note that the rules (Id),
(Cut), (C L), (C R) are never used in the proof to construct the derivation, and
that the cases (0 L), (0 R), (n[] R) use Lemma 17 applied to a derivation that,
inductively, does not contain (Id), (Cut), (C L), (C R). 2

20

Proposition 6 (Id, Cut, and Contraction Elimination) If Γ ` ∆ has a
derivation, then there is a derivation that does not use (Id), (Cut), (C L), (C
R).

Proof If Γ ` ∆ is derivable in the full system, then [[Γ ` ∆]] by Theorem 3
(Soundness). Then, by Theorem 4 (Completeness), Γ ` ∆ has a derivation that
does not use (Id), (Cut), (C L), (C R). 2

By combining Theorems 2, 3, and 4 we obtain:

Proposition 7 (Decidability) It is decidable whether Γ ` ∆ is derivable.

Proof Suppose that Γ = P1 : A1, ..., Pn : An and ∆ = Q1 : B1, ..., Qm : Bm.
By Theorems 3 (Soundness) and 4 (Completeness), P1 : A1, ..., Pn : An ` Q1 :
B1, ..., Qm : Bm is derivable if and only if ∧[[P1 : A1, . . . , Pn : An]] ⇒ ∨[[Q1 :
B1, . . . , Qm : Bm]]. By Theorem 2 we know that P |= A is decidable. Therefore,
we just need to test that either there is an i with Pi 6|= Ai, or there is a j with
Qj |= Bj . 2

4.3 A Complete Proof Procedure

The following theorem essentially implies Completeness, and uses Lemma 18 in
a similar way, but is not quite as clean as Completeness, since it talks about an
algorithm. Moreover, the cases for (. L), (| R) and (n[] R) are harder than in
Completeness.

On the other hand, the proposition is interesting because it shows that there
is a complete proof procedure that actually builds a derivation, unlike the one
in Proposition 7.

Lemma 20 (More on Finite Test Sets)

(1) For any P there is a finite set T (P) with:
∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ [[Γ ` P ′ : A′,∆]] ∧ [[Γ ` P ′′ : A′′,∆]]
iff ∃〈P ′, P ′′〉 ∈ T (P).[[Γ ` P ′ : A′,∆]] ∧ [[Γ ` P ′′ : A′′,∆]].

(2) For any A′, A′′, there is a finite set T (A′ .A′′) with:
∃P ′.[[Γ ` P ′ : A′,∆]] ∧ [[Γ, P ′ | P : A′′ ` ∆]]
iff ∃P ′ ∈ T (A′ .A′′).[[Γ ` P ′ : A′,∆]] ∧ [[Γ, P ′ | P : A′′ ` ∆]].

(3) For any P there is a finite set T (n, P) with:
∃P ′.P ≡ n[P ′] ∧ [[Γ ` P ′ : A′,∆]]
iff ∃P ′ ∈ T (n, P).[[Γ ` P ′ : A′,∆]].

Proof By expanding definitions, and appeal to Lemma 16. 2

Theorem 5 (Complete Proof Procedure) For any Γ ` ∆ there is a pro-
cedure such that: if ¬[[Γ ` ∆]], then the procedure terminates with failure; if
[[Γ ` ∆]], then the procedure terminates with a derivation for Γ ` ∆.

21

Proof We describe the procedure, but omit the proof of correctness, which, in
addition to the properties used in the proof of Theorem 4, uses also Lemma 20.
The procedure picks nondeterministically any formula in the sequent to operate
on. It terminates because at every recursive call it either reduces the total size,
size, of the formulas in the sequent, or stops with success or failure.

Case size = 0, that is, the empty sequent − ` −.
The procedure terminates with failure.

Case size ≥ 1, left rules.

Subcase Γ, P : F ` ∆.
The procedure succeeds with derivation Γ, P : F ` ∆.

Subcase Γ, P : A′ ∧ A′′ ` ∆.
The procedure recurses with Γ, P : A′, P : A′′ ` ∆; if the recursion
fails, it fails; if the recursion succeeds with a derivation for Γ, P :
A′, P : A′′ ` ∆, it produces a derivation for Γ, P : A′ ∧ A′′ ` ∆ by
(∧ L).

Subcase Γ, P : A′ ⇒ A′′ ` ∆.
The procedure recurses with Γ ` P : A′,∆ and Γ, P : A′′ ` ∆; if
either recursion fails, the procedure fails. If the recursions succeed
with derivations for Γ ` P : A′,∆ and Γ, P : A′′ ` ∆ the procedure
produces a derivation for Γ, P : A′ ⇒ A′′ ` ∆ by (⇒ L).

Subcase Γ, P : 0 ` ∆.
If P 6≡ 0 (a decidable test) the procedure returns with the derivation
Γ, P : 0 ` ∆ by (0 L), otherwise it recurses with Γ ` ∆. If the
recursion fails, it fails; if it succeeds with a derivation for Γ ` ∆, it
returns a derivation for Γ, P : 0 ` ∆ by weakening.

Subcase Γ, P : A′ | A′′ ` ∆.
The procedure computes the finite set T (P), and for every 〈P ′, P ′′〉
belonging to it, it recurses with Γ, P ′ : A′, P ′′ : A′′ ` ∆. If all the
recursive calls succeed, the procedure builds a derivation for Γ, P :
A′ | A′′ ` ∆ by (| L), otherwise it fails.

Subcase Γ, P : A′ .A′′ ` ∆.
The procedure computes the finite set T (A′ .A′′), and for every P ′

belonging to it, it recurses with Γ ` P ′ : A′,∆ and Γ, P ′ | P : A′′ `
∆. If one pair of recursive calls succeeds, the procedure builds a
derivation for Γ, P : A′ .A′′ ` ∆ by (. L), otherwise it fails.

Subcase Γ, P : n[A′] ` ∆.
The procedure computes the finite set T (n, P) (which may be empty).
For every P ′ belonging to it, the procedure recurses with Γ, P ′ : A′ `
∆. If all the recursive calls succeed, the procedure builds a derivation
for Γ, P : n[A′] ` ∆ by (n[] L), otherwise it fails.

Subcase Γ, P : A′@n ` ∆.
The procedure recurses with Γ, n[P] : A′ ` ∆. If the recursive call

22

succeeds, the procedure builds a derivation for Γ, P : A′@n ` ∆ by
(@n L), otherwise it fails.

Case size ≥ 1, right rules.

Subcase Γ ` P : F,∆.
The procedure recurses with Γ ` ∆. If the recursion fails, the proce-
dure fails. If the recursion succeeds with a derivation for Γ ` ∆, the
procedure returns a derivation for Γ ` P : F,∆ by (F R).

Subcase Γ ` P : A′ ∧ A′′,∆.
The procedure recurses with Γ ` P : A′,∆ and Γ ` P : A′′,∆. If
both recursive calls succeeds, the procedure builds a derivation for
Γ ` P : A′ ∧ A′′,∆ by (∧ R), otherwise it fails.

Subcase Γ ` P : A′ ⇒ A′′,∆.
The procedure recurses with Γ, P : A′ ` P : A′′,∆. If the recursion
fails, it fails; if the recursion succeeds with a derivation for Γ, P :
A′ ` P : A′′,∆, it produces a derivation for Γ, P : A′ ⇒ A′′ ` ∆ by
(⇒ R).

Subcase Γ ` P : 0,∆.
If P ≡ 0 (a decidable test) the procedure returns with the derivation
Γ ` P : 0,∆ by (0 R), otherwise it recurses with Γ ` ∆. If the
recursion fails, it fails; if it succeeds with a derivation for Γ ` ∆, it
returns a derivation for Γ ` P : 0,∆ by weakening.

Subcase Γ ` P : A′ | A′′,∆.
The procedure computes the finite set T (P), and for every 〈P ′, P ′′〉
belonging to it, it recurses with Γ ` P ′ : A′,∆ and Γ ` P ′′ : A′′,∆. If
one pair of recursive calls succeeds, the procedure builds a derivation
for Γ ` P : A′ | A′′,∆ by (| R), otherwise it fails.

Subcase Γ ` P : A′ .A′′,∆.
The procedure computes the finite set T (A′ .A′′), and for every P ′

belonging to it, it recurses with Γ, P ′ : A′ ` P ′ | P : A′′,∆. If all
these recursive calls are successful, the procedure builds a derivation
for Γ ` P : A′ .A′′,∆ by (. R), otherwise it fails.

Subcase Γ ` P : n[A′],∆.
The procedure computes the finite set T (n, P). If T (n, P) is empty,
then it recurses with Γ ` ∆; if the recursion fails the procedure fails,
and if it succeeds with a derivation for Γ ` ∆, the procedure returns
a derivation for Γ ` P : n[A′],∆ by weakening. If T (n, P) is not
empty, then for every P ′ belonging to it, the procedure recurses with
Γ ` P ′ : A′,∆. If one of the recursive calls succeeds, the procedure
builds a derivation for Γ ` P : n[A′],∆ by (n[] R), otherwise it fails.

Subcase Γ ` P : A′@n, ∆.
The procedure recurses with Γ ` n[P] : A′,∆. If the recursive call
succeeds, the procedure builds a derivation for Γ ` P : A′@n, ∆ by
(@n R), otherwise it fails. 2

23

By combining Lemma 4 and Theorems 3 and 4, we equate the validity problem
to a particular proof search problem.

Corollary 2 vld(A) if and only if ` 0 : T .A has a derivation.

Hence, by Theorem 5, we obtain an algorithm for validity based on deduction.

5 A Language for Manipulating Trees

We describe a typed λ-calculus that manipulates tree data. The type system of
this calculus has, at its basis, tree types. Function types are built on top of the
tree types in standard higher-order style. The tree types, however, are unusual:
they are the formulas of our logic. Therefore, we can write types such as:

T→ ¬0
((A ∧ ¬0) | n[B])→ (n[A] | B)

Logical operators can be applied only to tree types, not to higher-order
types. A subtyping relation is defined between types. On tree types, subtyping
is defined as validity of logical implication; that is, A <: B means vld(A ⇒ B).
Subtyping is then extended to function types by the usual contravariant rule.
This implies that a logical validity check is used during static typechecking,
whenever we need to check type inclusion. Tree data is manipulated via pattern
matching constructs that perform “run-time type checks”. Since tree types are
formulas, we have the full power of the logic to express the pattern matching
conditions. Those run-time type checks are executed as run-time satisfaction
checks. For example, one of our matching constructs is a test to see whether
the value denoted by expression t has type A:

t?(x:A).u, v

This construct first computes the tree P denoted by the expression t, and
then performs a test P |= A. If the test is successful, it binds P to x and
executes u; otherwise it binds P to x and executes v. The variable x can be
used both inside u and v, but in u it has type A, while in v it has type ¬A.

To summarize, our formulas are used as a very expressive type system for
tree data, within a typed λ-calculus. A satisfaction algorithm is used to analyze
data at run-time, and a validity algorithm is needed during static typechecking.
We of course have such algorithms available, as described in previous sections,
at least for ground terms and types. In absence of polymorphism or dependent
types, types are in fact ground. And, at run-time, all values are ground too.
As usual, the type system checks whether an open term has a (ground) type: it
can do so without additional difficulties, even though the basic satisfaction test
we have is for closed terms (that is, trees).

24

5.1 Syntax

The λ-calculus is stratified in terms of low types and high types. The low types
are, in this case, just tree types, but could in general include other basic data
types such as integers and names. The high types are function types over the
low types. The tree types are the formulas of our logic.

The same stratification holds on terms: there are terms of low types (the
trees) and terms of high types (the functions). This stratification is not reflected
in the syntax, essentially because variables can hold high or low values, but it
is reflected in the operational semantics.

Syntax:

F ,G,H ::= High Types
A tree types (formulas of the logic)
F → G function types

t, u, v ::= terms
0 void
n[t] location
t | u composition
t?n[x:A].u location match
t?(x:A | y:B).u composition match
t?(x:A).u, v tree type match
x variable
λx:F .t function
t(u) application

The syntax of terms provides: a standard λ-calculus fragment, the three
basic tree constructors, and three matching operators for analyzing tree data.
The tree type match construct performs a run-time check to see whether a tree
matches a given formula. Then one needs other constructs to decompose the
trees: a composition match splits a tree in two components, and a location
match strips an edge from a tree. A zero match is redundant because of the
tree type match construct.

These multiple matching constructs are designed to simplify the operational
semantics and the type rules. In practice, one would use a single case statement
over the structure of trees; this can be easily translated to the given matching
constructs. For example:

25

Case Statement

case t of analyze t
0.u1, if t ≡ 0, run u1, else
n[x:A].u2, if t ≡ n[P] and P |= A,

bind P to x and run u2, else
(x:A | y:B).u3, if t ≡ P |Q and P |= A, Q |= B,

bind P to x, Q to y and run u3,
else u4 else run u4

4= can be translated as:

t?(z1:0).u1,
t?(z2:n[A]).z2?n[x:A].u2,
t?(z3:A | B).z3?(x:A | y:B).u3,
u4

Further, one may want to allow complex nested patterns, that can be trans-
lated to nested uses of the given matching constructs.

5.2 Values

Programs in the syntax of the previous section produce values; either tree values
or function values (that is, closures). Over the tree values we define the usual
structural congruence ≡; the matching constructs of the language are not able
to distinguish between structurally congruent trees. The function values are
triples of a term t with respect to an input variable x (that is, essentially λx.t)
and a stack for free variables ρ. A stack ρ is a list of bindings x, F of variables
to values, with possible repetitions of the variables.

Values:

F,G, H ::= High Values
P tree values
〈ρ, x, t〉 function values

ρ is a list of x, F pairs Stacks
ρ[x←F] is ρ plus an x, F pair at the end
ρ(x) is the last F associated with x (if any)

5.3 Operational Semantics

The operational semantics is given by a relation t ⇓ρ F between terms t, stacks
ρ, and values F , meaning that t can evaluate to F on stack ρ. The semantics
makes use of the satisfaction relation P |= A from Section 2. We use, for
example, t ⇓ρ P to indicate that t evaluates to a tree value P . We use t ⇓ρ≡ P
as an abbreviation for t ⇓ρ Q and Q ≡ P , for some Q.

26

Operational Semantics

(Red 0)

0 ⇓ρ 0

(Red |)
t ⇓ρ P u ⇓ρ Q

t | u ⇓ρ P |Q

(Red n[])
t ⇓ρ P

n[t] ⇓ρ n[P]

(Red ?n[])
t ⇓ρ≡ n[P] P |= A u ⇓ρ[x←P] F

t?n[x:A].u ⇓ρ F

(Red ?|)
t ⇓ρ≡ P ′ | P ′′ P ′ |= A P ′′ |= B
u ⇓ρ[x←P ′][y←P ′′] F

t?(x:A | y:B).u ⇓ρ F

(Red ?1)
t ⇓ρ P P |= A u ⇓ρ[x←P] F

t?(x:A).u, v ⇓ρ F

(Red ?2)
t ⇓ρ P P |= ¬A v ⇓ρ[x←P] F

t?(x:A).u, v ⇓ρ F

(Red Var)
x ∈ dom(ρ)
x ⇓ρ ρ(x)

(Red Lam)

λx:F .t ⇓ρ 〈ρ, x, t〉

(Red App)
t ⇓ρ 〈ρ′, x, t′〉 u ⇓ρ G t′ ⇓ρ′[x←G] H

t(u) ⇓ρ H

5.4 Type System

The type system uses environments E, which are lists of associations x:F of
unique variables and their types. We indicate by dom(E) the set of variables
defined in E, by E, x:F the extension of E with a new association x:F (provided
that x /∈ dom(E)), and by E(x) the type associated with x in E (provided that
x ∈ dom(E)).

The judgments are:

Judgments:

F <: G F is a subtype of G
E ` � E is well-formed
E ` t : F t has type F in E

A validity test is used in the (Sub Tree) rule.

Type Rules:

(Env ∅)

∅ ` �

(Env x)
E ` � x /∈ dom(E)

E, x:F ` �

27

(Term 0)
E ` �

E ` 0 : 0

(Term |)
E ` t : A E ` u : B

E ` t | u : A | B

(Term n[])
E ` t : A

E ` n[t] : n[A]

(Term ?|)
E ` t : A | B E, x:A, y:B ` u : F

E ` t?(x:A | y:B).u : F

(Term ?n[])
E ` t : n[A] E, x:A ` u : F

E ` t?n[x:A].u : F

(Term ?)
E ` t : B E, x:A ` u : F E, x:¬A ` v : F

E ` t?(x:A).u, v : F

(Term Var)
E ` �

E ` x : E(x)

(Term Lam)
E, x:F ` t : G

E ` λx:F .t : F → G

(Term App)
E ` t : F → G E ` u : F

E ` t(u) : G

(Subsumption)
E ` t : F F <: G

E ` t : G

(Sub Tree)
vld(A ⇒ B)

A <: B

(Sub →)
F ′ <: F G <: G′

F → G <: F ′ → G′

Since types are ground, we do not need reflexivity and transitivity rules for
subtyping. Reflexivity for the base case derives from vld(A ⇒ A).

In order to derive some basic results, we need to define a satisfaction relation
between values and types. Over tree types, this is just the satisfaction relation of
Section 2, P |= A. This is then generalized to closures by saying that 〈ρ, x, t〉 |=
F → G if for every F |= F , the result G of evaluating t with F bound to x
on stack ρ, is such that G |= G. Moreover we say that a stack satisfies an
environment, ρ |= E, if ρ(x) |= E(x) for all the variables defined in E.

Satisfaction:

P |= A as in Section 2
H |= F → G iff H = 〈ρ, x, t〉 and ∀F,G.(F |= F ∧ t ⇓ρ[x←F] G)⇒ G |= G
ρ |= E iff ∀x ∈ dom(E).ρ(x) |= E(x)

Proposition 8 (Subsumption) If F <: G and H |= F then H |= G.

Proof Induction on the derivation of F <: G.

(Sub Tree) We have vld(A ⇒ B) and H |= A; hence H is a tree value, and
H |= B by definition of vld.

(Sub →) We have F ′ <: F and G <: G′, and H |= F → G. By definition, H =
〈ρ, x, t〉 and ∀F,G.(F |= F ∧ t ⇓ρ[x←F] G) ⇒ G |= G. Take any F |= F ′;
by Ind Hyp F |= F . Assume t ⇓ρ[x←F] G, then G |= G, and by Ind Hyp
G |= G′. We have shown that ∀F,G.(F |= F ′ ∧ t ⇓ρ[x←F] G) ⇒ G |= G′.
That is, we have shown that 〈ρ, x, t〉 |= F ′ → G′. 2

28

Proposition 9 (Subject Reduction) If E ` t : F and ρ |= E and t ⇓ρ F ,
then F |= F .

Proof Induction on the derivation of E ` t : F .

(Term 0) We have E ` 0 : 0 and ρ |= E and 0 ⇓ρ 0. By definition, 0 |= 0.

(Term n[]) We have E ` n[t] : n[A] and ρ |= E and n[t] ⇓ρ F . We must
have from (Term n[]) that E ` t : A. We must have from (Red n[])
that F = n[P] and t ⇓ρ P . By Ind Hyp, P |= A, hence by definition
n[P] |= n[A].

(Term |) We have E ` t | u : A | B and ρ |= E and t | u ⇓ρ F . We must have
from (Term |) that E ` t : A and E ` u : B. We must have from (Red |)
that F = P |Q and t ⇓ρ P and u ⇓ρ Q. By Ind Hyp, P |= A and Q |= B,
hence by definition t | u |= A | B.

(Term ?n[]) We have E ` t?n[x:A].u : F and ρ |= E and t?n[x:A].u ⇓ρ F . We
must have from (Term ?n[]) that E ` t : n[A] and E, x:A ` u : F . We
must have from (Red ?n[]) that t ⇓ρ≡ n[P] and P |= A and u ⇓ρ[x←P]

F . We have that ρ[x←P] |= E, x:A. By Ind Hyp E, x:A ` u : F and
ρ[x←P] |= E, x:A and u ⇓ρ[x←P] F implies F |= F .

(Term ?|) We have t?(x:A | y:B).u : F and ρ |= E and t?(x:A | y:B).u ⇓ρ F .
We must have from (Term ?|) that E ` t : A | B and E, x:A, y:B ` u : F .
We must have from (Red ?|) that t ⇓ρ≡ P ′ | P ′′ and P ′ |= A and P ′′ |= B
and u ⇓ρ[x←P ′][y←P ′′] F . We have that ρ[x←P][y←Q] |= E, x:A, y:B.
By Ind Hyp E, x:A, y:B ` u : F and ρ[x←P][y←Q] |= E, x:A, y:B and
u ⇓ρ[x←P ′][y←P ′′] F implies F |= F .

(Term ?) We have E ` t?(x:A).u, v : F and ρ |= E and t?(x:A).u, v ⇓ρ F .
We must have from (Term ?) that E ` t : B and E, x:A ` u : F and
E, x:¬A ` v : F . The reduction may come from (Red ?1); then t ⇓ρ P
and P |= A and u ⇓ρ[x←P] F . We have that ρ[x←P] |= E, x:A. By
Ind Hyp E, x:A ` u : F and ρ[x←P] |= E, x:A and u ⇓ρ[x←P] F implies
F |= F . Else the reduction must come from (Red ?2); then t ⇓ρ P and
P |= ¬A and v ⇓ρ[x←P] F . We have that ρ[x←P] |= E, x:¬A. By Ind
Hyp E, x:¬A ` v : F and ρ[x←P] |= E, x:¬A and v ⇓ρ[x←P] F implies
F |= F .

(Term Var) We have E ` x : E(x) and ρ |= E and x ⇓ρ F . We must have
from (Red Var) that F = ρ(x). Since ρ |= E, we have that ρ(x) |= E(x),
that is, F |= E(x).

(Term Lam) We have E ` λx:F .t : F → G and ρ |= E and λx:F .t ⇓ρ F .
We must have from (Red Lam) that F = 〈ρ, x, t〉. We need to show that
〈ρ, x, t〉 |= F → G, that is, that ∀F,G.(F |= F ∧ t ⇓ρ[x←F] G) ⇒ G |= G.
Take any F |= F , then ρ[x←F] |= E, x:F . Assuming that t ⇓ρ[x←F] G
we need to show that G |= G. We must have from (Term Lam) that

29

E, x:F ` t : G. By Ind Hyp if ρ[x←F] |= E, x:F and t ⇓ρ[x←F] G, then
G |= G.

(Term App) We have E ` t(u) : F and ρ |= E and t(u) ⇓ρ F . We must have
from (Term App) that E ` t : G → F and E ` u : G. We must have from
(Red App) that t ⇓ρ 〈ρ′, x, t′〉 and u ⇓ρ G and t′ ⇓ρ′[x←G] F . By Ind Hyp
if E ` t : G → F and ρ |= E and t ⇓ρ 〈ρ′, x, t′〉 then 〈ρ′, x, t′〉 |= G → F .
That means that ∀G′, F ′.(G′ |= G ∧ t′ ⇓ρ′[x←G′] F ′) ⇒ F ′ |= F . By Ind
Hyp if E ` u : G and ρ |= E and u ⇓ρ G then G |= G. Hence, by taking
G′ = G and F ′ = F , we conclude F |= F .

(Subsumption) We have E ` t : F and ρ |= E and t ⇓ρ F . We must have
from (Subsumption) that E ` t : G and G <: F . By Ind Hyp, F |= G. By
Proposition 8, F |= F . 2

5.5 Examples

The following program inspects an arbitrary tree (that is, anything of type T).
If the tree is 0 it returns the tree a[0], otherwise it returns the input tree. Hence
the result is never 0, and the result type can be set to ¬0.

λx:T.x?(y:0).a[0], y : T→ ¬0

Here is a (truncated) typing derivation; note the use of the subsumption rule
to determine that a[0] <: ¬0. Each judgment is derived from the lines above it
at the next level of indentation.

E, x:T ` x:T (Term Var)
E, x:T, y:0 ` 0 : 0 (Term 0)

E, x:T, y:0 ` a[0] : a[0] (Term n[])
a[0] <: ¬0 (Sub Tree)

E, x:T, y:0 ` a[0] : ¬0 (Subsumption)
E, x:T, y:¬0 ` y : ¬0 (Term Var)

E, x:T ` x?(y:0).a[0], y : ¬0 (Term ?)
E ` λx:T.x?(y:0).a[0], y : T→ ¬0 (Term Lam)

6 Conclusions

This paper concerns a propositional spatial logic for finite edge-labelled trees.
The spatial modalities are composition A | B, guarantee A . B, void 0, location
n[A], and placement A@n. There are two main results. First, satisfaction and
validity are equivalent and decidable. Second, there is a sound and complete
proof system for validity. We know of no previous algorithms for satisfaction or
validity in the presence of the guarantee operator.

The spatial logic of this paper is a fragment of the ambient logic introduced
by Cardelli and Gordon [CG00, CG01b]. Model checking algorithms for various
fragments without guarantee have been proposed [CDZG+01, CT01]. Lugiez

30

and Dal Zilio [LD02] show decidability of the satisfiability problem for another
fragment of the ambient logic, but without guarantee; their techniques are based
on tree automata.

Validity for some other propositional substructural logics turns out to be
undecidable. Urquhart proves undecidability for propositional relevant logic
[Urq84]. Lincoln, Mitchell, Scedrov, and Shankar [LMSS92] prove undecidability
for both propositional linear logic and propositional intuitionistic linear logic.
See Cardelli and Gordon [CG00] for a detailed discussion of the differences
between the ambient logic and relevant and linear logics.

Calcagno, Yang, and O’Hearn [CYO01] show decidability of validity in a
propositional substructural logic for reasoning about heaps. The proof in this
paper is an adaptation of their proof technique.

We briefly consider the prospects of extending our results:

• Charatonik and Talbot [CT01] show that validity becomes undecidable in
a spatial logic with name quantification. (Their result depends only on
the presence of propositional logic, 0, n[A], A | B, and ∀x.A.)

• Caires and Monteiro [CM98] and Cardelli and Gordon [CG01b] introduce
logical modalities to deal with fresh names. A prerequisite of studying
these operators would be to enrich our tree model with fresh names.

We obtain only preliminary results about the complexity of validity for our
logic from the constructions of this paper. It is easy to show that PSPACE is
a lower-bound, by reduction from the Quantified Boolean Variables problem.
However, there is still a significant gap between PSPACE and the complexity
of our algorithm: it is easy to see that the number of equivalence classes is not
elementary (not bounded by a tower of exponentials) in the size parameter. We
can obtain a higher complexity lower-bound for an extension of our logic with
a Kleene star operator, A∗ (zero or more copies of A in parallel). The extended
logic can encode Presburger arithmetic, whose satisfiability problem is known
to be complete for a class between double and triple exponential time. However,
our algorithm cannot be trivially extended: there is a formula A∗ that would
invalidate our results when assigned any finite size.

Finally, building on some of the results of this paper, Cohen [Coh02] pro-
poses improvements to the algorithms for satisfaction and validity of Section 3.
He studies a multiset logic, able to encode our logic, and including Kleene star.
He exploits a symbolic representation of multisets to show, in effect, that the
validity problem for the logic of this paper is PSPACE-complete, an improve-
ment on our upper-bound. Moreover, he describes a model checking algorithm
that runs in time linear in the size of the model.

Acknowledgements Ernie Cohen, Silvano Dal Zilio, Philippa Gardner, and
Etienne Lozes made useful comments.

31

References

[Bun97] P. Buneman. Semistructured data. In 16th ACM Symposium on
Principles of Database Systems (PODS’97), 1997.

[CC01] L. Caires and L. Cardelli. A spatial logic for concurrency (Part I).
In Theoretical Aspects of Computer Software (TACS 2001), volume
2215 of Lecture Notes in Computer Science, pages 1–37. Springer,
2001.

[CC02] L. Caires and L. Cardelli. A spatial logic for concurrency (Part II).
In CONCUR 2002—Concurrency Theory, volume 2421 of Lecture
Notes in Computer Science, pages 209–225. Springer, 2002.

[CDZG+01] W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, and
J.-M. Talbot. The complexity of model checking mobile ambients.
In Proceedings FoSSaCS’01, volume 2030 of LNCS, pages 152–167.
Springer, 2001. An extended version appears as Technical Report
MSR–TR–2001–03, Microsoft Research, 2001.

[CG00] L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics
for mobile ambients. In 27th ACM Symposium on Principles of
Programming Languages (POPL’00), pages 365–377, 2000.

[CG01a] L. Cardelli and G. Ghelli. A query language based on the ambi-
ent logic. In Proceedings of the 9th European Symposium on Pro-
gramming (ESOP’01), volume 2028 of LNCS, pages 1–22. Springer,
2001.

[CG01b] L. Cardelli and A. D. Gordon. Logical properties of name restric-
tion. In Proceedings of the 5th International Conference on Typed
Lambda Calculi and Applications (TLCA’01), volume 2044 of Lec-
ture Notes in Computer Science, pages 46–60. Springer, 2001.

[CGG02] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying
graphs. In Automata, Languages and Programming (ICALP’02),
volume 2380 of Lecture Notes in Computer Science, pages 597–610.
Springer, 2002.

[CM98] L. Caires and L. Monteiro. Verifiable and executable logic spec-
ifications of concurrent objects in Lπ. In Proceedings of the 7th
European Symposium on Programming (ESOP’99), volume 1381 of
Lecture Notes in Computer Science, pages 42–56. Springer, 1998.

[Coh02] E. Cohen. Validity and model checking for logics of finite multisets.
Draft, Microsoft Research, 2002.

[CT01] W. Charatonik and J.-M. Talbot. The decidability of model check-
ing mobile ambients. In Proceedings of the 15th Annual Conference

32

of the European Association for Computer Science Logic, volume
2142 of LNCS, pages 339–354. Springer, 2001.

[CYO01] C. Calcagno, H. Yang, and P. O’Hearn. Computability and com-
plexity results for a spatial assertion language for data structures.
In Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’01), volume 2245 of Lecture Notes in Computer
Science, pages 108–119. Springer, 2001.

[HLS02] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, expressive-
ness, and decidability in the ambient logic. In Logic in Computer
Science (LICS’02), pages 423–432. IEEE, 2002.

[HP00] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing lan-
guage. In Third International Workshop on the Web and Databases
(WebDB2000), volume 1997 of Lecture Notes in Computer Science,
pages 226–244. Springer, 2000.

[HP01] H. Hosoya and B. C. Pierce. Regular expression pattern matching
for XML. In 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 67–80, 2001.

[IO01] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In 28th ACM Symposium on Principles
of Programming Languages (POPL’01), pages 14–26, 2001.

[LD02] D. Lugiez and S. Dal Zilio. Multitrees automata, Presburger’s con-
straints and tree logics. Laboratoire d’Informatique Fondamentale,
CNRS and Université de Provence, 2002.

[LMSS92] P.D. Lincoln, J.C. Mitchell, A. Scedrov, and N. Shankar. Decision
problems for propositional linear logic. Annals of Pure and Applied
Logic, 56:239–311, 1992.

[ORY01] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Computer Science Logic
(CSL’01), volume 2142 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2001.

[Rey02] J. C. Reynolds. Separation logic: a logic for shared mutable data
structures. In Logic in Computer Science (LICS’02), pages 55–74.
IEEE, 2002.

[Urq84] A. Urquhart. The undecidability of entailment and relevant impli-
cation. Journal of Symbolic Logic, 45:1059–1073, 1984.

[XML] Extensible markup language. http://www.w3.org/XML/.

33

	Introduction
	Ground Propositional SpatialLogic (Review)
	Edge-Labelled Finite Trees
	Logical Formulas and Satisfaction
	Validity of a Formula

	Deciding Validity by Model Checking
	Bounding the Names to Consider
	Bounding the Sizes to Consider
	Enumerating Equivalence Classes

	Deciding Validity by Deduction
	A Sequent Calculus
	Soundness and Completeness
	A Complete Proof Procedure

	A Language for Manipulating Trees
	Syntax
	Values
	Operational Semantics
	Type System
	Examples

	Conclusions

