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Abstract—
We investigate the problem of inferring the packet loss characteristics of

Internet links using server-based measurements. Unlike much of existing
work on network tomography that is based on active probing, we make
inferences based onpassiveobservation of end-to-end client-server traffic.

We start with a brief analysis of end-to-end packet loss rate over wide-
area Internet paths, as observed from a busy Web site. We find that the
end-to-end packet loss rate correlates poorly with topological distance (i.e.,
hop count), remains stable for several minutes, and exhibits a limited degree
of spatial locality. These findings suggest that passive network tomography
would be both interesting and feasible.

Our work on passive network tomography focuses onidentifying lossy
links (i.e., the trouble spots in the network). We have developed three tech-
niques for this purpose based on Random Sampling, Linear Optimization,
and Bayesian Inference using Gibbs Sampling, respectively. We evaluate
the accuracy of these techniques using both simulations and Internet packet
traces. We find that these techniques can identify most of the lossy links in
the network with a manageable false positive rate. For instance, simulation
results indicate that the Gibbs sampling technique has over 80% coverage
with a false positive rate under 5%. Furthermore, this technique provides
a confidence indicator on its inference. In the case of Internet traces, val-
idating the inferences is a challenging problem. We present a method for
indirect validation, which suggests that the false positive rate is manage-
able.

I. I NTRODUCTION

The Internet has grown rapidly in terms of size and hetero-
geneity in recent years. The set of hosts, links, and networks
that comprise the Internet is diverse. This presents interesting
challenges from the viewpoint of an Internet server, such as a
Web site, whose goal is to provide the best possible service to
its clients. A significant factor that the server must contend with
is the dissimilar and changeable network performance experi-
enced by clients.

The goal of our work is to investigate ways to infer the perfor-
mance of the Internet bypassivelymonitoring existing network
traffic between a server and its clients. Our goal is to go beyond
characterizing end-to-end network performance by developing
techniques to infer the performance of interior links in the net-
work.

There are a number of ways in which the server could ben-
efit from such characterization and inference. Information on
the stability or predictability of network performance to one or
more clients could be used to adapt content for speedy deliv-
ery to the client(s) [21]. Information on bottlenecks or other hot
spots within the network could be used to direct clients to replica
servers so that they avoid the hot spot. Such information could
also be used by a Web site operator to have the hotspot problem
resolved in cooperation with the concerned ISP(s). The focus of
this paper, however, is on the inference of network performance,
not on its applications.

One question is what “network performance” means. Clearly,
the performance metrics that matter depend on the applica-
tion. Latency may be most critical in the case of game servers

while throughput may be the most important metric for software
download servers. In our study, we primarily focus on the packet
loss rate because it is the most direct indicator of network con-
gestion.1 We view the packet loss rate and RTT metrics as being
more fundamental than throughput since the latter is affected by
factors such as the workload (e.g., bulk transfers versus short
Web transfers) and the transport protocol (e.g., the specific vari-
ant of TCP). Furthermore, it is possible to obtain a rough esti-
mate of throughput knowing the packet loss rate and RTT, using
an analytical model of TCP such as [17].

Here is an overview of the rest of this paper. In Section II,
we discuss related work. In Section III, we describe our experi-
mental setup and methodology. We present details of the packet
traces we gathered at the busymicrosoft.comWeb site.

We begin our analysis in Section IV by seeking answers to
three questions pertaining to the end-to-end packet loss rate ex-
perienced by clients: (a) how well loss rate correlates with topo-
logical distance between the server and client, and (b) how stable
the loss rate is over time, and (c) how strong the spatial local-
ity in loss rate is. We find the correlation between end-to-end
loss rate and hop count is weak, which suggests that the end-
to-end path is dominated by a few lossy links. The end-to-end
loss rate is stable for several minutes, suggesting that lossy links
remain so for several minutes. Finally, there is a limited degree
of spatial locality in end-to-end loss rate (especially at the sub-
net level), but in general the locality is not very strong. This
suggests that while in some cases lossy links may be shared
(i.e., such links may lie on the path from the server to multi-
ple clients), often they are non-shared (e.g., the “last-hop” link
to clients). These findings suggest that it would be interesting to
try and identify the lossy links.

This sets the stage for our main focus,Passive Network To-
mography, which we present in Section V. The goal here is to
identify the lossy links in the interior of the network bypas-
sively observing the end-to-end performance of existing traf-
fic between a server and its clients. This is in contrast to the
previous work on network tomography (e.g., [4]) that has been
based on active probing. We develop three techniques for pas-
sive network tomography: Random Sampling, Linear Optimiza-
tion, and Bayesian Inference using Gibbs Sampling. We evalu-
ate these techniques using extensive simulations and find that
we are able to identify more than 80% of the lossy links with a
false positive rate under 5%. We also apply these techniques to
the traffic traces gathered at themicrosoft.comsite. Validation
is challenging in this setting since we do not know the true loss
rate of Internet links. We present a method for indirect valida-
tion, which suggests that the false positive rate is manageable.

1We have also done some characterization of the round-trip time (RTT) metric,
but we do not present those results in this paper.
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Finally, we present our conclusions in Section VI.

II. RELATED WORK

There have been numerous studies of Internet performance.
We can broadly classify these studies as eitheractive or pas-
sive. Active studies involve measuring Internet performance by
injecting traffic (in the form of pings, traceroutes, TCP connec-
tions, etc.) into the network. In contrast, passive studies analyze
existing traffic obtained from server logs, packet sniffers, etc.
Our study is a passive one.

Several studies (e.g., [18], [23]) have examined the tempo-
ral stability of Internet performance metrics through active mea-
surements. In [18] Paxson reports that observing (no) packet
loss along a path is a good predictor that we will continue to
observe (no) packet loss along the path. However, the magni-
tude of the packet loss rate is a lot less predictable. Zhanget.
al. examines the stationarity of packet loss rate and available
bandwidth [23]. They find that the correlation in the loss pro-
cess mainly comes only from back-to-back loss episodes, and
not from “nearby” losses. Throughput has a close coupling with
the loss process, and can often be modeled as a stationary IID
process for periods of hours.

Several studies have also examined similar issues by studying
traces gathered passively using a packet sniffer. The authors
in [2] used traces from the 1996 Olympic Games Web site to
analyze the spatial and temporal stability of TCP throughput.
Using traceroute data, they constructed a tree rooted at the server
and extending out to the client hosts. Clients were clustered
together based on how far apart they are in the tree. The authors
report that clients within 2-4 tree-hops of each other tend to have
similar probability distributions of TCP throughput. They also
report that throughput to a client host tends to remain stable (i.e.,
within a factor of 2) for time scales of many tens of minutes.

Packet-level traces have also been used to characterize other
aspects of network traffic. In [1] Allman uses traces gathered
at the NASA Glenn Research Center Web server to study issues
such as TCP and HTTP option usage, RTT and packet size dis-
tributions, etc. Mogulet al. uses packet-level traces to study the
effectiveness of delta compression for HTTP [15].

Our study is similar to [2] in that it is based on packet sniffer
traces gathered passively at a busy server. However, our analysis
is different in many ways. We focus on packet loss rate rather
than TCP throughput for the reasons mentioned previously. Our
analysis of spatial locality considers operationally meaningful
entities such as autonomous systems (ASes) and BGP prefix
clusters [14] rather than treating the network as an undifferenti-
ated tree. And, most importantly, we try to infer the character-
istics of internal links in the network rather than just the end-to-
end characteristics.

This last aspect of our work lies in the area ofNetwork To-
mography, which is concerned with the inference of the internal
network characteristics based on end-to-end observations. The
observations can be made throughactive probing (either uni-
cast or multicast probing) orpassivemonitoring. MINC [4] and
[19] base their inference on loss experienced by multicast probe
packets while [6], [7] use closely-spaced unicast probe packets
striped across multiple destinations. A common feature of the
above techniques is that they are based onactive injection of

Date Duration # packets # clients
Dec 20, 2000 2.12 hours 100.0 million 134,475
Jan 11, 2002 2.21 hours 125.0 million 945,986

TABLE I

SUMMARY OF THE TWO TRACES ANALYZED IN THIS PAPER.

probe packets into the network. Such active probing imposes
an overhead on the network and runs the risk of altering the link
characteristics, especially when applied on a large scale (e.g., on
the path from a busy server to all of its clients).

In [20] and [13], the authors take a passive approach in de-
tecting shared bottlenecks. The former requires senders to co-
operate by time stamping the packets while the latter requires
an observer that receives more than 20% of the output traffic of
the bottleneck (i.e., light background traffic). Tsang et al. [22]
estimate loss rate for each link by passively observing closely
spaced packet-pairs. A problem, however, is that existing traf-
fic often may not contain enough such packet-pairs to make an
inference. Furthermore, their evaluation is based on very small
topologies containing a dozen (simulated) nodes, and it is not
clear how well their technique would scale to large topologies.

III. E XPERIMENTAL SETUP AND METHODOLOGY

We now describe the experimental setup and methodology
used in our study. The packet traces were gathered at themi-
crosoft.comsite, which is a busy corporate Web site that sees
a large number of long TCP connections (e.g., software down-
loads) from users across the globe. We used thetcpdumptool
[12] on a Pentium-III 550 MHz PC running the Windows 2000
Server OS to do the packet capture. This machine was con-
nected to the spanning (replication) port of a Cisco Catalyst
6509 switch via a 100 Mbps Ethernet link. With port replication
turned on, our packet sniffer saw traffic to/from several server
nodes that were connected either to the same Catalyst switch or
to a sister switch in a two-switch cluster. The packet drop rate
on the replicated port on the switch was no more than 0.3%.

For our study, we only captured (the headers of) TCP pack-
ets since we are able to estimate packet loss rate by observing
TCP data packets and the corresponding ACKs. With the setup
described above, we were able to capture a portion of the traffic
entering and leaving themicrosoft.comsite. This included Web
traffic, software download traffic, and streaming media traffic
(including streaming media over TCP to traverse firewalls). Due
to cluster-level load balancing, our packet sniffer did not neces-
sarily see all connections to/from a particular client. For a par-
ticular connection, however, it either sawall of the packets or
none at all. So we are able to derive meaningful estimates of
packet loss rate from the subset of connections that were cap-
tured. Table I summarizes the two traces we analyze in this
paper.

We used thetraceroute[11] tool to determine the network
path from themicrosoft.comsite to each of the clients seen in
the traces. The traceroute data was collected in the few days fol-
lowing the trace capture. Due to security and administrative con-
cerns, the packet sniffer machine located in the data center was
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configured to be in “listen-only” mode. So the traceroutes were
run from a FreeBSD PC located on a separatemicrosoft.com
network. While the first few hops within the corporate network
were different, the entire external path was identical to the path
that packets from the server nodes located in the data center
would have taken. So these traceroutes help us determine the
wide-area Internet path from the server cluster to the clients.

Since our packet sniffer is located very close to the server
nodes, we detect packet losses by looking for packet retransmis-
sions by the sender. The underlying assumption is that the TCP
sender only retransmits a packet if the original transmission was
lost, which is reasonable since TCP is conservative about re-
transmissions. We compute the loss rate for client node as the
ratio of the number of retransmitted packets to the total number
of packets sent to it within a window of time. As explained in
Section IV, we varied the window size when studying temporal
locality.

Our analysis shows that clients experience widely different
loss rates. In the Dec. 2000 trace, around 40% of the clients
experience no loss, and 6% of the clients suffer from more than
20% loss, when the loss rate is computed using the entire trace
period, while in the Jan. 2002 trace, half the clients have no loss,
and above 10% of the clients encounter over 20% loss.

IV. A NALYSIS OF END-TO-END LOSSRATE

In this section, we analyze the end-to-end loss rate informa-
tion derived from the traffic traces with a view to answering
three questions: (a) how well loss rate correlates with topologi-
cal distance between the server and client, and (b) how stable the
loss rate is over time, and (c) how strong spatial locality in loss
rate is. This analysis is not the primary objective of this paper;
indeed, some of our findings confirm previous findings albeit
in a different setting (i.e., server-based passive measurements
rather than active or client-based measurements). Our goal here
is to motivate the primary focus of our work, Passive Network
Tomography, which is presented in Section V.

A. Correlation between Topological Distance and Loss Rate

We begin by studying the correlation between the topologi-
cal distance between the server and a client and the end-to-end
loss rate experienced by the client. We consider several differ-
ent notions of topological distance between the server and client:
(i) router hop count, (ii) AS hop count, and (iii) address prefix
(AP) hop count. To compute these hop counts from a traceroute
path, the AS associated with a router is determined by querying
Whoisand the AP is determined using address prefix informa-
tion [14] from a BGP routing table dump [3] obtained on Jan
24, 2001. Our goal is to understand if such static topological
metrics correlate well with end-to-end loss rate. For instance,
can such distance metrics be used to select the best replica for
a particular client as is done by the Cisco Distributed Director
[5]?

As explained in Section III, we determined the network path
from the server to each client using traceroute. For each client,
we determined the number of router hops. We determined the
AS number corresponding to each router by querying theWhois
database and thereby computed the AS hop count of each path.
(We ignored paths for which we were unable to determine the

AS number for even one router. 31.6% of paths were ignored as
a result of this.) Likewise, we used BGP prefix information to
determine the address prefix (AP) corresponding to each router
and thus computed the AP hop count of each path. Since BGP
prefixes tend to be more fine-grained than ASes, the AP hop
count for a path is generally larger than the AS hop count but
smaller than the router hop count.

Figure 1 shows the average end-to-end loss rate experienced
by clients for various values of router hop count, AP hop count,
and AS hop count (Dec 2000 trace). We find that there is little
correlation between loss rate and hop count. The correlation co-
efficients between loss rate and router hop count, AP hop count,
and AS hop count are 0.05, 0.03, and 0, respectively. (Note that
the correlation coefficient is computed using the entire raw data
set whereas Figure 1 only plots the average loss rate for legibil-
ity.) Filtering out the IP addresses that have loss rate below 10%
improves the correlation coefficient somewhat. The correspond-
ing correlation coefficients become 0.112, 0.104, and 0.011, re-
spectively. The correlation is still pretty weak, which implies
that the hop count is not a reliable indicator of end-to-end packet
loss rate.
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Fig. 1. The correlation between loss rate and hop counts.
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One reason why the correlation between topological distance
and loss rate is weak is that all links are not “equal” (which is
in contrast to the implicit assumption made in metrics such as
router hop count that all hops are the same). In other words, it
is likely that poor end-to-end performance is caused by a few
lossy links. If the network path from the server to a client tra-
verses one or more of the lossy links, then it is likely that the
client would see poor performance (e.g., a high packet loss rate)
even if the number of hops in the path is small. Therefore it is
important to identify the lossy links. This motivates our network
tomography work presented in Section V.

B. Temporal Locality of Loss Rate

We now turn to the question of how long the end-to-end
packet loss rate experienced by clients remains stable. We use
the methodology developed in [23] to analyze the constancy of
Internet path properties based on active measurements in the
NIMI testbed. Basically, we partition loss rates into the follow-
ing categories: 0 - 0.5%, 0.5 - 2%, 2 - 5%, 5 - 10%, 10 - 20%,
and 20+%. According to the classification in [23], these cate-
gories correspond to “no loss”, “minor loss”, “tolerable loss”,
“serious loss”, “very serious loss”, and “unacceptable loss”. We
study how long a client’s loss rate remains stable, i.e., remains in
the same category. In our analysis, from each trace we pick the
top 1000 hosts in terms of the total number of packets sent and
received to avoid biasing the result due to lack of data samples.

Figure 2 plots the cumulative distribution (CDF) of the max-
imum duration for which loss rate remains stable based on the
Dec 2000 trace. The curve is weighted by the size of the station-
ary interval as in [23]. When computing the loss rate, we only
consider clients that have received at least a threshold number
of packets within a 10-second time interval. We use two thresh-
olds: 100 and 1000 packets. As we can see, about 50% of time,
the stability period is less than 10 minutes using 1000 as the
threshold, and about 70% of time, the stability period is less
than 10 minutes using 100 as the threshold. To test for possi-
bility of binning effects, we also use a different set of cutpoints
for the loss categories, each falling in the middle of the above
cutpoints, as suggested in [23]. The results are very similar and
are omitted in the interest of space.

The above analysis results suggest that loss rate is stable on
the time scale of several minutes, which is consistent with the
findings in [23]. This consistency is interesting considering that
our data set is different from that studied in [23] in several re-
spects: passive, server-based measurements of a much larger
and more heterogeneous set of end hosts.

The stability of end-to-end loss rate over a time scale of sev-
eral minutes suggests that the underlying cause of packet loss —
i.e., the lossiness of network links — is also likely to persist for
a significant length of time. So trying to identify the lossy links
using network tomography would be a worthwhile goal.

C. Spatial Locality of Loss Rate

Finally, we analyze the spatial locality of end-to-end packet
loss rate. We would like to answer the question of whether
clients that are topologically close to each other experience sim-
ilar loss rates. Toward this end, we cluster clients using vari-
ous schemes and examine whether clients belonging to the same
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Fig. 2. CDF of the time period in which a host’s loss rate remains in the same
loss category.

cluster see similar loss rates.
We consider the following clustering schemes: (i) clients

clustered by subnet address assuming a 24-bit subnet prefix,
(ii) clients clustered by the address prefix (AP) in BGP routing
tables [14], (iii) clients clustered by autonomous system (AS)
number, (iv) clients clustered randomly.

In addition, we also examine a new clustering scheme, which
we call DNS-based clustering. The basic idea is to cluster the
clients that share the same set of authoritative name servers.
Such clustering is cheap to perform: we just need to do a DNS
zone transfer, and obtain the mapping between IP addresses and
authoritative name servers. It is likely to be more coarse-gained
than BGP address prefix clustering, as different BGP prefixes
may share the same authoritative name server. An alterative ap-
proach is to cluster the clients that share the same local name
server. This may be better in terms of network locality. How-
ever, the mapping between client IP addresses and their local
name servers is not easily obtainable. In our study, we use the
data obtained from a DNS zone transfer done in October 2001
to perform DNS-based clustering.

In our analysis, we use the top 20000 clients from the Dec
2000 trace, and the top 50000 clients from the Jan 2002 trace.
We cluster them using the above schemes. Then from each clus-
ter we randomly pick two groups, each containing 3 clients, and
compare the difference in their average loss rates (we only con-
sider groups that received at least 1000 packets to keep the loss
rate computation meaningful). We repeat this five times for each
cluster.

We use the same categorization of loss rates as detailed in
Section IV-B. Instead of comparing the absolute difference in
average loss rate between the two groups, we compare the num-
ber of loss categories the two groups are away from each other.
So, for example, the difference between the loss rate values
0.3% (“no loss”) and 4% (“tolerable loss”) is quantified as a
difference of 2 loss rate categories.

Figure 3 and Figure 4 plot CDF of the loss rate difference
within clusters for the Dec 2000 and Jan 2002 traces, respec-
tively. We find that spatial locality is greatest in the case of
subnet-based clustering. The probability of the loss rates of two
groups drawn from the same cluster being in the same loss rate
category is 40-60%. The corresponding probability for the AP
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and AS based clustering schemes is around 30%. However, we
also find that even random clustering yields a 25% probability
of a match in loss rate categories. So the question is how signif-
icant the apparent spatial locality in the case of subset, AP, and
AS based clustering is.

Random clustering exhibits a significant degree of spatial lo-
cality because many clients see little or no loss (i.e., lie in the
“no loss” category) and thereby skew our results. However, our
main interest is in determining how much locality exists when
there is packet loss. Therefore we introduce a loss threshold and
only consider samples of loss rate difference between the two
groups when the loss rate ofeithergroup exceeds the threshold.
We vary the loss threshold from 0 to 10%.

With a loss threshold of 10%, we find that probability of loss
rates within a subnet lying within the same category is nearly
80% in the Dec 2000 trace and about 30% in the Jan 2002 trace.
However, the correponding probability for random clustering is
almost zero. This suggests that there is indeed some spatial lo-
cality, especially at the subnet level. However, the degree of
spatial locality varies and is in some cases (e.g., Jan 2002 trace)
quite limited.

We repeat the same analysis using a set of cutpoints for the
loss categories that are in the middle of the above cutpoints, as
was done in [23], and the results are very similar.

Our observation of a limited degree of spatial locality in loss
rate, especially at the subnet level, suggests that there may in
some cases be a shared cause (i.e., lossy link(s) shared by all
clients in the cluster) for the end-to-end packet loss experienced
by clients. At the same time, however, our results suggest that
often there is low degree of locality in loss rate among clients in
a cluster. This leads us to believe that often the cause of packet
loss is a non-shared link (e.g., the “last-hop” link). It would be
interesting to see if network tomography could shed more light
on this issue.

D. Summary

In summary, our analysis of end-to-end loss rate indicates that
(a) the correlation between loss rate and hop count is weak, (b)
loss rate tends to be stable over a period of several minutes, and
(c) clients that are topologically close to each other experience
more similar loss rate than clients picked at random, which indi-
cates that there is a limited degree of spatial locality in loss rate.
These finding suggest that a few lossy links, whether shared
or non-shared, dominate the end-to-end loss rate and that the
link loss rate tends to be stable for a significant length of time.
This sets the stage for our work on passive network tomogra-
phy, where we develop techniques to provide greater insight into
some of these conjectures.

V. PASSIVE NETWORK TOMOGRAPHY

In this section, we attempt to identify lossy links in the net-
work based on observations made at the server of end-to-end
packet loss rates to different clients. As noted in Section II,
much of the prior work on estimating the loss rate of network
links has been based on the active injection of probe packets
into the network. In contrast, our goal here is to base the infer-
ence onpassiveobservation of existing network traffic. We term
thispassive network tomography.
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Fig. 3. CDF of the loss rate difference within clusters (Dec 2000).
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Fig. 4. CDF of the loss rate difference within clusters (Jan 2002).

Figure 5 depicts the scenario of interest: a server transmitting
data to a distributed set of clients. By passively observing the
client-server traffic, we can determine the number of packets
transmitted by the server to each client. Based on the feedback
from the clients (e.g., TCP ACKs, RTCP receiver reports), we
can also determine how many of those packets were lost in the
network.

We assume that the network path from the server to each
client is known. In the experiments reported in this paper, the
path to each client was determined using thetraceroute tool
[11]. While these traceroutes do constituteactivemeasurement,
this need not be done very frequently or in real time. (Indeed
previous studies have shown that end-to-end Internet paths gen-
erally tend to be stable for significant lengths of time. For in-
stance, [24] indicates that very often paths remain stable for at
least a day.) Moreover, it may be possible determine the server-
to-client path “pseudo-passively” by invoking the record route
option (IPv4) or extension header (IPv6) for a small subset of
the packets.

The set of paths from the server to its clients is likely to form
a tree (as depicted in Figure 5) and so our explanations here
are couched in terms of tree-specific terminology. However, we
do recognize that the topology may not strictly be a tree (for
instance, because of transient route fluctuations), so our tech-
niques do not depend on the topology being a tree. We elaborate
on this point in Section V-B.

l1

l8l7l6

l2

l4 l5

l3

������

�����	�

p1 p2 p3 p4 p5

Fig. 5. A sample network topology as viewed from a server. The link loss rates
are denoted byli and the end-to-end loss rate at the clients are denoted by
pj .

A. Challenges

Identifying lossy links is challenging for the following rea-
sons. First, network characteristics change over time. With-
out knowing the temporal variation of the network link perfor-
mance, it is hard to correlate performance observed by different
clients. Second, even when the loss rate of each link is con-
stant, it may not be possible to definitively identify the loss
rate of each link. GivenM clients andN links, we haveM
constraints (corresponding to each server→client path) defined
overN variables (corresponding to the loss rate of the individ-
ual links). For each clientCj , there is a constraint of the form
1−∏

i∈Tj
(1− li) = pj whereTj is the set of links on the path

from the server to clientCj , li is the loss rate of linki, andpj is
the end-to-end loss rate between the server and clientCj . There
is not a unique solution to this set of constraints ifM < N , as
is often the case.
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To make the problem tractable, we make the simplifying as-
sumption that the loss rate of each link is constant. Although
this is not a very realistic assumption, it is a reasonable simpli-
fication in the sense that some links consistently tend to have
high loss rates whereas other links consistently tend to have low
loss rates. Zhang et al. [23] reported that the loss rate remains
operationally stable on the time scale of several minutes. Our
temporal locality analysis in Section IV-B also confirms it.

There is still the problem that we may not, in general, be able
to determine a unique assignment of loss rate to network links.
We address this issue in several ways.

First, we collapse a linear sections of a network path with no
branches into a singlevirtual link2. This is appropriate since
it would be impossible to determine the loss rates of the con-
stituent physical links of such a linear section using end-to-end
measurements.

Second, although there may not be a unique assignment of
loss rate to network links, two of our techniques seek a parsimo-
nious explanation for the observed end-to-end loss rates. (This
bias is implicit in the case of Random Sampling and explicit in
the case of Linear Optimization.) So given a choice between an
assignment of high loss rates to many links and an assignment
of high loss rates to a small number of links, they would pre-
fer the latter. The underlying assumption is that a lossy link is
relatively uncommon. If most of the links are lossy, network to-
mography may not be very useful any way since there are not
specific trouble spots to pinpoint. On the other hand, our Gibbs
Sampling technique uses a uniform prior and so isunbiased.

Finally, we set our goal to primarily be the identification of
links that are likely to have a high loss rate rather than inferring
a specific loss rate for each link. We believe that the identifi-
cation of the most lossy links in itself would be very useful for
applications such as network diagnosis and server selection.

We now describe the three different techniques we have ex-
plored and developed for passive network tomography. We
present these in roughly increasing order of sophistication.
However, as the experimental results in Section V-E indicate,
even the simplest technique, yields good results.

B. Random Sampling

The set of constraints mentioned in Section V-A define a
space of feasible solutions for the set of link loss rates. (We
denote a specific solution aslL =

⋃
i∈L li whereL is the set of

all links in the topology.) The basic idea of random sampling
is to repeatedly sample the solution space at random and make
inferences based on the statistics of the sampled solutions. The
solution space is sampled as follows. We first assign a loss rate
of zero to each link of the tree (Figure 5). The loss rate of linki
is bounded by the minimum (saylmin

i ) of the observed loss rate
at the clients downstream of the link. We pick the loss rate,li,
of the link i to be a random number between 0 andlmin

i . We
define the residual loss rates of a client to be the loss rate that
is not accounted for by the links whose loss rates have already
been assigned. We update the residual loss rate of a clientCj to
1 − 1−pj∏

i∈T ′
j

(1−li)
whereT ′j is the subset of links along the path

2In the rest of the paper, we use the term “link” to refer to both physical links
and virtual links.

from the server to the clientCj for which a loss rate has been
assigned. Then we repeat the procedure to compute the loss rate
at the next level of the tree by considering the residual loss rate
of each client in place of its original loss rate. At the end, we
have one sample solution forlL.

We iterateR times to produceR random solutions forlL. We
draw conclusions based on the statistics of the individual link
loss rates,li, across theR random solutions. For instance, if the
average loss rate assigned to a link across all samples is higher
than a threshold, we conclude that the link is lossy.

Note that we compute a loss rate only for those clients to
whom the server has transmitted at least a threshold number of
packets. Only this subset of the clients and the topology induced
by them is considered in the random sampling algorithm.

The sampling procedure outlined above is biased because the
order in which links are picked matters. As we assign loss rates
to an increasing number of links, the loss rate bound on the re-
maining links gets tighter. So links that are picked early in an
iteration are likely to be assigned a higher loss rate than ones
picked later. Thus in the above algorithm, links higher up in
the tree (i.e., close to the server), which are picked early in the
process, tend to get assigned a higher loss rate. Of course, the
loss rate bound on a link higher up in the tree might be tighter to
begin with because of there is a greater chance that one or more
downstream clients will have experienced a low loss rate.

This bias, however, has a positive side-effect in that it favors
parsimonious solutions (i.e., ones in which the observed client
loss rates can be accounted for by assigning a high loss rate to
fewer links). If many clients are experiencing a high loss rate,
an explanation that involves one shared, lossy link higher up in
the tree is more plausible than one that involves a large number
of independently lossy links.

Note that our random sampling algorithm would work the
same way even if the topology were not a tree. In fact, at any
stage in an iteration, we can pick an arbitrary link, determine
the bounds on its loss rate by examining all server→client paths
that traverse the link, and then randomly assign it a loss rate.
Just like in a tree topology, we could start by picking links close
to the server and then working our way towards the clients.

The random sampling algorithm has the advantage of being
simple. However, it is quite susceptible to estimation errors in
the client loss rate. Due to a statistical variation, a single client
that is downstream of a true lossy link could experience a low
loss rate. This would cause the random sampling algorithm to
assign a low loss rate to the link even if all of the other down-
stream clients experience a high loss rate. The alternative algo-
rithms for passive network tomography that we describe below
are robust to such errors.

C. Linear Optimization

We formulate the network tomography problem as a linear
program (LP). As noted in Section V-A, we have a constraint of
the form1−∏

i∈Tj
(1−li) = pj corresponding to each clientCj .

We can turn this into a linear constraint
∑

i∈Tj
Li = Pj where

Li = log(1/(1 − li)) andPj = log(1/(1 − pj)). Note that the
transformed variablesLi andPj are monotonic functions ofli
andpj , respectively.
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To be robust to errors or aberrations in client loss rate es-
timates, we allow the above constraints to be violated (a lit-
tle). We do so by introducing a slack variable,Sj , in the con-
straint corresponding to clientCj yielding a modified constraint:∑

i∈Tj
Li + Sj = Pj . In addition, we have the constraints

Li ≥ 0.
The objection function to minimize isw

∑
i Li +

∑
j |Sj |.

This reflects the objectives of finding a parsimonious solution
(hence the

∑
i Li term) and minizing the extent to which the

original constraints are violated (hence the
∑

j |Sj | term). The
weight,w, allows us to control the relative importance of find-
ing a parsimonious solution versus satisfying the original con-
straints well; we setw to 1 by default. Note that the|Sj | term
means that this is not strictly a linear program in its present
form. However, it is trivial to transform it into one by defin-
ing auxiliary variables,S′j and adding constraints of the form
S′j ≥ Sj andS′j ≥ −Sj . The objective function to minimize is
thenw

∑
i Li +

∑
j S′j .

The linear optimization approach also has its drawbacks.
First, like the random sampling approach, it depends on the
client lossrates, pj , to be computed. However, the loss rate may
be meaningfully computed only when a sufficiently large num-
ber of packets are sent to the client (we use a minimum thresh-
old of 500 or 1000 packets in the experiments presented in Sec-
tion V-F). This limits the applicability of this technique. Second,
while the objective function listed above intuitively conforms to
our goals, there is no fundamental justification for its specific
form. Indeed the solution obtained would, in general, be differ-
ent if the objective function were modified. This then motivates
the statistically rigorous technique we describe next.

D. Bayesian Inference using Gibbs Sampling

We model passive network tomography as a Bayesian infer-
ence problem. We begin by presenting some brief background
information; for details, please refer to [10].

D.1 Background

Let D denote the observed data andθ denote the (unknown)
model parameters. (In the context of network tomography,D
represents the observations of packet transmission and loss, and
θ represents the ensemble of loss rates of links in the network.)
The goal of Bayesian inference is to determine theposteriordis-
tribution of θ, P (θ|D), based on the observed data,D. The in-
ference is based on knowing aprior distributionP (θ) and alike-
lihoodP (D|θ). Thejoint distributionP (D, θ) = P (D|θ)P (θ).
We can then compute the posterior distribution ofθ as follows:

P (θ|D) =
P (θ)P (D|θ)∫

θ
P (θ)P (D|θ)dθ

Any features of the posterior distribution are legitimate for
Bayesian inference: moments, quantiles, etc. All of these quan-
tities can be expressed as posterior expectations of functions of
θ:

E(f(θ)|D) =
f(θ)P (θ)P (D|θ)∫
θ
P (θ)P (D|θ)dθ

In general, it is hard to computeE(f(θ)|D) directly because
of the complex integrations, especially whenθ is a vector (as

it is in our case). An indirect approach is to useMonte Carlo
integration. The idea here is to sample underlying posterior
distribution and use the sample mean as an approximation of
E(f(θ)|D). One way of doing the appropriate sampling is to
construct a Markov chain whose stationary distribution exactly
equals the posterior distribution of interest (P (θ|D)). (Hence
the nameMarkov Chain Monte Carlo (MCMC)[9], [10] was
given to this class of techniques.) When such a Markov chain
is run for a sufficiently large number of steps (termed theburn-
in period), it “forgets” its initial state and converges to its sta-
tionary distribution. It is then straightforward to obtain samples
from this stationary distribution.

The challenge then is then to construct a Markov chain (i.e.,
define its transition probabilities) whose stationary distribution
matchesP (θ|D). Gibbs sampling[9] is a widely used technique
to accomplish this. The basic idea that at each transition of the
Markov chain, only a single variable (i.e., only one component
of the vectorθ) is varied. Rather than explain Gibbs sampling
in general, we now switch to modeling network tomography as
a Bayesian inference problem and explain how Gibbs sampling
works in this context.

D.2 Application to Network Tomography

To model network tomography as a Bayesian inference prob-
lem, we defineD and θ as follows. The observed data,D,
is defined as the number of successful packet transmissions to
each client (sj) and the number of failed (i.e., lost) transmis-
sions (fj). (Note that it is easy to computesj by subtractingfj

from the total number of packets transmitted to the client.) Thus
D =

⋃
j(sj , fj). The unknown parameterθ is defined as the set

of links’ loss rates, i.e.,θ = lL =
⋃

i∈L li (Section V-B). The
likelihood function can then be written as:3

P (D|lL) =
∏

j∈clients

(1− pj)sj p
fj

j (1)

Recall from Section V-A thatpj = 1 − ∏
i∈Tj

(1 − li) and
represents the loss rate observed at clientCj .

The prior distribution,P (lL), would indicate prior knowledge
about the lossiness of the links. For instance, the prior could be
defined differently for links that are known to be lossy dialup
links as compared to links that are known to be highly reliable
OC-192 pipes. However, in our study here, we only use a uni-
form prior, i.e.,P (lL) = 1.

The object of network tomography is the posterior distribu-
tion, P (lL|D). To this end, we use MCMC with Gibbs sam-
pling as follows. We start with an arbitrary initial assignment
of link loss rates,lL. At each step, we pick one of the links,
say i, and compute the posterior distribution of loss rate for
that link alone conditioned on the observed dataD and the loss
rates assigned to all other links (i.e.,̄{li} =

⋃
k 6=i lk). Note that

{li} ∪ ¯{li} = lL. Thus we have

3Note that we are only computing the likelihood of the specific observation
we made. We arenot interested in counting all possible ways in which clientj
could have hadsj successes andfj failures, so the equation does not include
such a combinatorial term. We offer this clarification since a few readers have
been confused at first blush.
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P (li|D, ¯{li}) =
P (D|{li} ∪ ¯{li})P (li)∫

li
P (D|{li} ∪ ¯{li})P (li)dli

SinceP (lL) = 1 and{li} ∪ ¯{li} = lL, we have

P (li|D, ¯{li}) =
P (D|lL)∫

li
P (D|lL)dli

(2)

Using equations 1 and 2, we numerically compute the pos-
terior distributionP (li|D, ¯{li}) and draw a sample from this
distribution4. This then gives us the new value,l

′
i, for the loss

rate of linki. In this way, we cycle through all the links and as-
sign each a new loss rate. We then iterate this procedure several
times. After the burn-in period (which in our experiments lasts a
few hundred iterations), we obtain samples from the desired dis-
tribution, P (lL|D). We use these samples to determine which
links are likely to be lossy.

D.3 Discussion

The Bayesian approach outlined above is based on solid the-
oretical foundations. Another advantage of this approach over
the random sampling and the linear optimization approaches is
that it only requires thenumberof packets sent to and lost at
each client,not the loss rate. So it can be applied even when
the number of packets sent to a client is not large enough for the
packet loss rate to be meaningfully computed.

E. Simulation Results

In this section, we show results of our experimental evaluation
of the three passive network tomography techniques discussed
above. We begin with a discussion of our simulation experi-
ments and results. The main advantage of simulation is that the
true link loss rates are known, so validation of the inferences of
the tomography algorithm is easy to do.

The simulation experiments are performed on topologies of
different sizes using multiple link loss models. The topolo-
gies considered are randomly constructed trees with the num-
ber of nodes (n) ranging from 20 to 3000. (Note that the node
count includes both interior nodes (i.e., routers) and leaves (i.e.,
clients).) The number of links in each topology is roughly equal
to the number of nodes (modulo the slight reduction in link
count caused by the collapsing of linear chains, if any, into vir-
tual links). The degree of each node (i.e., the number of chil-
dren) was picked at random between 1 and an upper bound (d)
which was varied from 5 to 50.

In addition, we also consider a real server→clients topology
constructed from our traceroute data set. This topology spans
123166 clients drawn from the Dec 20, 2000 data set.

A fractionf of the links were classified as “good” and the rest
as “bad”. We used two different models for assigning loss rates
to links in these two categories. In the first loss model (LM1),
the loss rate for good links was picked uniformly at random in
the 0-1% range and that for bad links was picked in the 5-10%

4Since the probabilities involved may be very small and could well cause
floating point underflow if computed directly, we do all our computations in
the logarithmic domain.

range. In the second model (LM2), the loss rate ranges for good
and bad links were 0-1% and 1-100%, respectively.

Once each link has been assigned a loss rate, we use one
of two alternative loss processes at each link: Bernoulli and
Gilbert. In the Bernoulli case, each packet traversing a link is
dropped with a fixed probability determined by the loss rate of
the link. In the Gilbert case, the link fluctuates between a good
state and a bad state. At the good state, no packets are dropped
while at the bad state all packets are dropped. As in [16], we
chose the probability of remaining in the bad state to be 35%
based on Paxson’s observed measurements of the Internet. The
other state transition probability is picked so that the average
loss rate matches the loss rate assigned to the link. Thus the
Gilbert loss process is likely to generate more bursty losses than
the Bernoulli loss process. In both cases, the end-to-end loss rate
is computed based on the transmission of 1000 packets from the
root (server) to each leaf (client). Unless otherwise indicated,
our simulation experiments use theLM1 loss model together
with the Bernoulli loss process.

We have chosen these somewhat simplistic loss models over
simulating real congestion losses because it gives us greater flex-
ibility in terms of being able to explicitly control the loss rate of
each link. Furthermore, to the extent that the loss rate of Internet
paths is operationally stationary for significant lengths of time,
these models offer a reasonable approximation.

We repeated our experiment 6 times for each simulation con-
figuration, where each repetition has a new topology and loss
rate assignments. In each repetition of an experiment, a link is
inferred to be lossy as follows. For random sampling, we com-
pute the mean loss rate of the link over 500 iterations (Section V-
B). We infer the link to be lossy if the mean exceeds a loss rate
threshold. Likewise, for the linear optimization (LP) approach,
we compare the (unique) inferred link loss rate to the loss rate
threshold. In the case of Gibbs sampling, since we numerically
compute the posteriordistribution, we apply a somewhat more
sophisticated test. We infer a link to be lossy if more than 99%
of the loss rate samples for the link exceed the loss rate thresh-
old. For theLM1 model, the loss rate threshold was set to 3%
(i.e., the midpoint between the 1% and 5% range delimiters dis-
cussed above) while for theLM2 model it was varied in the
range of 5-20%.

We report the true number of lossy links, and the number of
correctly inferred lossy links (coverage) and the number of in-
correctly inferred lossy links (false positives), all being averaged
over the 6 runs of the experiment for each configuration.

E.1 Random Topologies

We present simulation results for different settings of tree size
(n), maximum node degree (d), and fraction of good links (f ).
We repeated our experiments 6 times for each setting ofn, d,
andf . The results presented in this sub-section are based on the
LM1 loss model with the Bernoulli loss process.

Figure 6 shows the simulation results for 100-node topologies
andd = 10, andf varying from 0.5 to 0.95. We note that in
general, random sampling has the best coverage. In most cases,
it is able to identify over 90-95% of the lossy links. However,
the high coverage comes at the cost of a very high false posi-
tive rate — ranging from 50-140%. Such a high false positive
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100-node random topologies (d=10)
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Fig. 6. Varyingf : 100-node random topologies with maximum degree = 10.

rate may be manageable when there are few lossy links in the
network (i.e.,f is large) since we can afford to run more expen-
sive tests (e.g., active probing) selectively on the small number
of lossy links inferred. However, the large false positive rate is
unacceptable when there are a large number of lossy links in the
network. For instance, whenf = 0.5, random sampling cor-
rectly identifies 46 of the 47 lossy links. In addition, however, it
generates 24 false positives, which makes the inference almost
worthless since there are only about 100 links in all.

One reason why random sampling generates a large number
of false positives is its susceptibility to statistical fluctuations in
the end-to-end loss rate experienced by clients (Section V-B).
For instance, instead of correctly identifying a lossy link high
up in the tree, random sampling may incorrectly identify a large
number of links close to individual clients as lossy.

In contrast to random sampling, LP has relatively poor cov-
erage (30-60%) but an excellent false positive rate (rarely over
5%). (In some cases, the false positive bar in Figure 6 is hard
to see because the number of false positives is close to or equal
to zero.) As explained in Section V-C, LP is less susceptible to
statistical fluctuations in the end-to-end loss rates since it allows
some slack in the constraints. This cuts down the false positive
rate. However, the slack in the constraints and the fact that the
objective function assigns equal weights the link loss variables
(Li) and the slack variables (Sj) causes a reduction in coverage.
Basically, a true lossy link (especially one near the leaves) may
not be inferred as such because the constraint was slackened suf-
ficiently to obviate the need to assign a high loss rate to the link.
In Section V-E.3, we will examine different weights in LP on
the inference.

Finally, we observe that Gibbs sampling has a very good cov-
erage (over 80%) and also an excellent false positive rate (well
under 5%). We believe that the excellent performance of this
technique arises, in part, because the Bayesian approach is based
on observations of packet losseventsand not the (noisy) com-
putation of packet lossrates.

Figures 7 and 8 show the corresponding results for experi-
ments on 1000-node topologies. Figure 9 shows the results for
3000-node topologies. We observe that the trends remain qual-
itatively the same even for these larger topologies. Gibbs sam-
pling continues to have good coverage with less than 5% false
positive.

1000-node random topologies (d=10, f=0.95)
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Fig. 7. 1000-node random topologies with maximumdegree = 10 andf =
0.95.

1000-node random topologies (d=10, f=0.5)
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Fig. 8. 1000-node random topologies with maximumdegree = 10 andf =
0.5.

Figure 10 shows the how accurate the inference based on
Gibbs sampling is when the links inferred as lossy are rank or-
dered based on our “confidence” in the inference. We quantify
the confidence as the fraction of Gibbs samples that exceed the
loss rate threshold set for lossy links. The 983 links in the topol-
ogy are considered in order of decreasing confidence. We plot
3 curves: the true number of lossy links in the set of links con-
sidered up to that point, the number of correct inferences, and
the number of false positives. We note that the confidence rating
assigned by Gibbs sampling works very well. There are zero
false positives for the top 33 rank ordered links. Moreover, each
of the first 401 true lossy links in the rank ordered list is cor-

3000-node random topologies
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Gibbs sampling for a 1000-node 
random topology (d = 10, f = 0.5)
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Fig. 10. The performance of Gibbs sampling when the inferences are rank or-
dered based on a confidence estimate. (1000-node random topology, maxi-
mumdegree = 10, andf = 0.5)

rectly identified as lossy (i.e., none of these true lossy links is
“missed”). These results suggest that the confidence estimate
for Gibbs sampling can be used to rank the order of the inferred
lossy links so that the top few inferences are (almost) perfectly
accurate. This is likely to be useful in a practical setting where
we may want to identify at least a small number of lossy links
with certainty so that corrective action can be taken.

100-node random topologies (f=0.95)
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Fig. 11. Varying degree: 100-node random topologies withf = 0.95.

Finally, we evaluate the impact of node degree on the accu-
racy of the inference. Figure 11 shows the results for a 100-node
topology andf = 0.95. We consider 3 settings for the maxi-
mum node degree,d: 5, 10, and 20. The qualitative trends across
the three techniques are the same as discussed above. However,
it is interesting to observe that the false positive rate for random
sampling decreases as the node degree increases. We believe
this happens because a larger node degree implies that a larger
proportion of the nodes are leaves. So end-to-end loss rate infor-
mation imposes a larger number of constraints on the link loss
rates. This results in a smaller feasible solution space, which
makes random sampling of this space more accurate.

E.2 Alternative Loss Model

So far, we have consideredLM1 loss model with the
Bernoulli loss process. In this section, we evaluate the effective-
ness of inference using alternatives for both (i.e., the LM2 loss
model and the Gilbert loss process) in various combinations.

LM2 Bernoulli loss model: Figure 12 shows the results for
1000-node random topologies withd = 10 andf = 0.95 using
theLM2 Bernoulli loss model. We vary the loss rate threshold,

lb, used to decide whether a link is lossy. We observe that the
coverage is well over 80% for all the algorithms. As the loss
threshold is increased, the false positive rate decreases while the
coverage remains high. This suggests that the inference can be
more accurate if we are only interested in highly lossy links.
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Fig. 12. ALM2 Bernoulli loss model for 1000-node random topologies with
maximumdegree = 10 andf = 0.95. We vary the loss thresholdlb, and
only the links with loss rate higher thanlb are considered lossy.

LM1 and LM2 Gilbert loss models: Figure 13 and Fig-
ure 14 show the performance of inference forLM1 andLM2

Gilbert loss models. The relative performance of different infer-
ence schemes remains the same. The Gibbs sampling continues
to be the best performer: it has around 90% coverage with the
lowest false positive among all the schemes.
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Fig. 13. A LM1 Gilbert loss model for 1000-node random topologies with
maximumdegree = 10 andf = 0.95.

E.3 Different Weights in LP

The linear optimization algorithm aims to minimize
w

∑
i Li +

∑
j |Sj |, where the weight,w, reflects the relative

importance between finding a parsimonious solution versus sat-
isfying the end-to-end loss constraints. So far in our experi-
ments, we usew = 1. In this section, we varyw and examine
its effect on the performance of the inference.

Figure 15 and Figure 16 show the LP performance for 1000-
node random topologies under GilbertLM1 andLM2 loss mod-
els, respectively. As we can see, the lower thew, the better
coverage the inference achieves, but at the cost of higher false
positive rates. This is because when we decrease the weight, we
emphasize more on satisfying the constraints than finding a par-
simonious solution; as a result, we are more likely to attribute
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Fig. 14. A LM2 Gilbert loss model for 1000-node random topologies with
maximumdegree = 10 andf = 0.95. We vary the loss thresholdlb, and
only the links with loss rate higher thanlb are considered lossy.

loss to several non-shared links than a single shared link in order
to satisfy the constraints more closely. Moreover it is interesting
that the performance of LP is less sensitive to the weights in the
LM2 loss model than in theLM1 loss model.

1000-node random topologies
with LM1 Gilbert loss model

0

10

20

30

40

50

60

70

80

LP(0.5) LP(1) LP(2)

# 
lin

ks

# true lossy links # correctly identified lossy links # false positive

Fig. 15. Effects of different weights in LP: ALM1 Gilbert loss model for 1000-
node random topologies with maximumdegree = 10 andf = 0.95.

E.4 Real Topology

We also evaluate the effectiveness of inference using a real
topology (constructed from traceroute data) spanning 123166
clients. We assign a loss rate to each link based on theLM1

Bernoulli loss model with different settings off . Figure 17
shows the performance of random sampling. As with the ran-
dom topologies, random sampling has very good coverage but a
significant false positive rate.

We were unable to evaluate the performance of LP and Gibbs
sampling over the real topology because of computational com-
plexity.

F. Internet Results

In this section, we evaluate the passive tomography tech-
niques using the Internet traffic traces frommicrosoft.com. Val-
idating our inferences is challenging since we only have end-
to-end performance information and do not know the true link
loss rates. The validation approach we use is to (i) check con-
sistency in the inferences made by the three techniques, (ii) look
at the characteristics of inferred lossy links, and (iii) examine
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Fig. 16. Effects of different weights in LP: ALM2 Gilbert loss model for 1000-
node random topologies with maximumdegree = 10 andf = 0.95. We
vary the loss thresholdlb, and only the links with loss rate higher thanlb
are considered lossy.
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Fig. 17. Real topology from the Dec 2000 traceroute.

whether clients downstream of an inferred lossy link do in fact
experience high loss rates.

The evaluation we present here is based on the Dec 2000
trace. To compute loss rate, we only consider clients that re-
ceive at least a threshold number of packets,t, which is set to
500 or 1000 packets in our evaluation.

F.1 Consistency across different schemes

First, we examine the consistency in the lossy links identi-
fied by the three tomography techniques. Figure 18 shows the
amount of overlap when we consider the topN lossy links found
by different schemes. Gibbs sampling and random sampling
yield very similar inferences, with an overlap that is consistently
above 95% whenN is varied from 1 to 100.5 The overlap be-
tween LP and the other techniques is also significant — over
60%.

F.2 Characteristics of Inferred Lossy Links

In this section, we examine the characteristics of the inferred
lossy links. We are interested in knowing the location of the

5This overlap is higher than we had expected, since random sampling has a
relatively high false positive rate in our simulations. As we describe in Sec-
tion V-F.2, most lossy links terminate at leaves and most internal links are not
lossy. So clients whose last hop links are not lossy experience little or no loss.
This places tighter constraints on the space of feasible solutions, which makes
random sampling more accurate.
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Fig. 18. Overlap in the top N lossy links identified by different schemes.

inferred lossy links in the Internet topology. As shown in Fig-
ure 19, more than 95% of lossy links detected through random
sampling and Gibbs sampling terminate at leaves (i.e., clients).
In other words, these are non-shared links that include the phys-
ical last-hop link to clients. (Recall from Section V-A that the
tomography techniques operate on virtual links, which may span
multiple physical links.) Even though the linear optimization
technique is biased toward ascribing lossiness to shared links,
more than 75% of the inferred lossy links are non-shared links
terminating at clients. These findings are consistent with the
common belief that the last mile to clients is often the bottle-
neck in Internet paths [8]. Since many losses happen at non-
shared links, it is not surprising that there is only a limited de-
gree of spatial locality in end-to-end loss rate, as reported in
Section IV-C
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Fig. 19. Number of lossy links that terminate at leaf nodes.

We also examine how many of the links inferred to be lossy
cross AS boundaries since such crossings (such as peering
points) are thought to be points of congestion. We find that
among all the virtual links in our topology (each of which may
include multiple physical links), around 45% cross AS bound-
aries, and 45% have roundtrip delay (i.e., the delay between the
two ends of the virtual link as determined from the traceroute
data) over 100 ms. When we consider only the inferred lossy
virtual links, the percentage of links that cross AS boundaries or
have long delay is considerably higher. For example, if we only
consider those links with an inferred loss rate above 10%, 70%
cross AS boundaries, and 80% have one-way delay over 100
ms. Some examples of such links we found include the connec-
tion from AT&T in San Francisco to IndoInternet in Indonesia
(inter-ISP and transcontinental), from Sprint to Trivalent (inter-
ISP), and an international link in ChinaNet from U.S. to China.

Ll Method t Ni Nc

4% Rand 1000 5 5
Rand 500 5 4
LP 1000 8 5
LP 500 11 6

2% Rand 1000 11 10
Rand 500 14 13
LP 1000 22 14
LP 500 24 20

1% Rand 1000 24 17
Rand 500 23 19
LP 1000 46 28
LP 500 106 77

TABLE II

TRACE-DRIVEN VALIDATION FOR RANDOM SAMPLING AND LINEAR

OPTIMIZATION .

F.3 Trace-driven Validation

We now consider the problem of validating our inferences
more directly than the intuitive arguments made in Section V-
F.2. This is a challenging problem since we do not know the
true loss rates of Internet links. (All the inferences were made
offline. So we could not validate the results using active prob-
ing.)

We have developed the following approach for validation. We
partition the clients in the trace into two groups: tomography
set and validation set. The partitioning is done by clustering
all clients according to BGP address prefixes and dividing each
cluster into two sets. One set is included in the tomography
set and the other in the validation set. This partitioning scheme
ensures that there is a significant overlap in the end-to-end path
to clients in the two sets.

We apply the inference techniques to the tomography set to
identify lossy links. For each lossy link that is identified, we ex-
amine whether clients in the validation set that are downstream
of that link experience a high loss rate on average. If they do,
we deem our inference to be correct. Otherwise, we count it
as a false positive. Clearly, this validation method can only be
applied to shared lossy links. We cannot use this method to val-
idate the many “last-hop” lossy links reported in Section V-F.2.

Table II shows our validation results for random sampling and
linear optimization, whereLl is the loss rate threshold we used
to deem a link to be lossy,t is the minimum number of packets a
client should have received to be considered in the tomography
computation,Ni is the number of inferred (shared) lossy links,
andNc is the number of correct inferences according our vali-
dation method. In most cases random sampling and linear opti-
mization have a false positive rate under 30%. Gibbs sampling
identified only 2 shared lossy links, both of which are deemed
correct according to our validation method.

VI. CONCLUSIONS

In this paper, we present a study of wide-area Internet per-
formance as observed from the busymicrosoft.comWeb site.
We characterize the end-to-end loss rate experienced by clients
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and present techniques to identify lossy links within the network
based on passive monitoring of existing client-server traffic.

We find that the end-to-end packet loss rate correlates poorly
with topological distance (i.e., hop count), remains stable for
several minutes, and exhibits a limited degree of spatial locality.

These findings suggest that passive network tomography
would be both useful and feasible. We develop and evaluate
three different techniques for passive network tomography: ran-
dom sampling, linear optimization, and Bayesian inference us-
ing Gibbs sampling. In general, we find that random sampling
has the best coverage but also a high false positive rate, which
can be problematic when the number of lossy links is large. Lin-
ear optimization has a very low false positive rate but only a
modest coverage. Gibbs sampling offers the best of both worlds:
a high coverage (over 80%) and a low false positive rate (below
5%).

On the flip side, however, Gibbs sampling is computationally
the most expensive of our techniques. On the other hand, ran-
dom sampling is the quickest one. Therefore, we believe that
random sampling may still be useful in practice despite its high
false positive rate. For instance, when the number of lossy links
in (the portion of) the network of interest is small, it may be fine
to apply random sampling since the number of false positives (in
absolute terms) is likely to be small. Furthermore, if the number
of lossy links is large (for instance, thef = 0.5 configurations
in Section V-E), it is a moot question as to whether network to-
mography will be very useful.

In addition to simulation, we have applied some of our tomog-
raphy techniques to Internet packet traces. The main challenge
is in validating our inferences. We validate the inference by first
checking consistency across the results from different schemes.
We find over 95% overlap between the top 100 lossy links iden-
tified by random sampling and Gibbs sampling, and over 60%
overlap between LP and the other two techniques. We also find
that most of the links identified as lossy are non-shared links
terminating at clients, which is consistent with common belief.
Finally we develop an indirect validation scheme, and show the
false positive rate is manageable (below 30% in most cases and
often much lower).

We are presently investigating an approach based on selective
active probing to validate the findings of our passive tomography
techniques. To this end, we are working on making inferences
in real time.
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