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Abstract 
C# is the new flagship language in the Microsoft .NET platform. C# is an attractive vehicle for 
language design research not only because it shares many characteristics with Java, the current 
language of choice for such research, but also because it’s likely to see wide use. Language 
research needs a large investment in infrastructure, even for relatively small studies. This paper 
describes a new C# compiler designed specifically to provide that infrastructure. The overall 
design is deceptively simple. The parser is generated automatically from a possibly ambiguous 
grammar, accepts C# source, perhaps with new features, and produces an abstract syntax tree, or 
AST. Subsequent phases—dubbed visitors—traverse the AST, perhaps modifying, annotating it or 
emitting output, and pass it along to the next visitor. Visitors are specified entirely at compilation 
time and are loaded dynamically as needed. There is no fixed set of visitors, and visitors are 
completely unconstrained. Some visitors perform traditional compilation phases, but the more 
interesting ones do code analysis, emit non-traditional data such as XML, and display data 
structures for debugging. Indeed, most usage to date has been for tools, not for language design 
experiments. Such experiments can use source-to-source transformations or can extend existing 
visitors to handle new language features. These approaches are illustrated by adding a typeswitch 
statement, which switches on a type instead of a value, and can be implemented in a few hundred 
lines. The compiler demonstrates again the value of dynamic loading and of type reflection, both 
of which contribute significantly the efficacy of its design. 

Microsoft Research 
Microsoft Corporation 

One Microsoft Way 
Redmond, WA 98052 

http://www.research.microsoft.com/ 

 

http://www.research.microsoft.com/


 



 

A Research C# Compiler 

Introduction 
C# [4, 6] is the preeminent programming language in the Microsoft .NET platform. The .NET platform 
includes tools, technologies, and methodologies for writing internet applications [12]. It includes pro-
gramming languages, tools that support XML web services, and new infrastructure for writing HTML 
pages and Windows applications. At its core are a new virtual machine and an extensive runtime envi-
ronment. Compilers for C# and other .NET languages generate code for this virtual machine, called the 
.NET Common Intermediate Language or MSIL for short. MSIL provides a low-level, executable, type-
safe program representation that can be verified before execution, much in the same way as the Java 
VM [10] provides a verifiable representation for Java programs. It is, however, designed specifically to 
support multiple languages on modern processors. 

C# is a high-level, type-safe, object-oriented programming language. It has many of the same features 
as Java, but it also has language-level support for properties, events, attributes, and interoperability with 
other languages. C# also has operator overloading, enumerations, value types, and language constructs for 
iterating over collections. 

Java is often the language of choice for experimental programming language research. Research fo-
cuses either on the Java VM or on changes to Java itself. Adding generics to Java is an example of the 
latter focus [2]. C# is an attractive platform for language research because it is in the same language ‘fam-
ily’ as Java and because it is likely to become used widely. Also, C# will undoubtedly evolve over time 
and language research results might find their way into practical use. Again, adding generics to C# and to 
MSIL [9] is an example of the possibilities. 

Programming language research on new language features and their implementation requires a signifi-
cant investment in a suitable compilation infrastructure. At the minimum, such work needs a compiler 
that accepts the full language, is easily changed, and can compile significant programs quickly. Besides 
the usual complexity inherent in all non-trivial compilers, there is a natural tension between flexibility and 
performance, both of the compiler itself and of the generated code. Wonderfully flexible compilers that 
accept only a subset of the language, are too slow, or produce incorrect or very inefficient code don’t get 
used. The same fate befalls compilers that generate highly optimized code but that are too complex to un-
derstand and modify easily. 

This note describes a new C# compiler designed specifically for use in language research. The goal of 
this compiler, named lcsc (for local C sharp compiler), is to facilitate experiments with a wide range of 
language-level features that require new syntax and semantics. Examples include simple additions like a 
Modula-3 TYPECASE statement [11] to more exotic features like Icon iterators [7], program histo-
ries [13], and dynamically scoped variables [8]. Lcsc is not designed for code generation research, per se, 
because it has no support specifically for native code generation, but there’s nothing in its design that pre-
cludes such work. By default, it emits MSIL. 

The design of lcsc is particularly simple and it is easy to modify and to extend, and it’s fast enough for 
experimental purposes, albeit much slower than the production C# compiler in .NET. However, imple-
mentation languages account for some of the speed difference: lcsc is written in C# and the .NET com-
piler is written in C++. Early experience with lcsc confirms that it is easy to extend and to modify, par-
ticularly if the new features can be modeled in C# itself. 

Perhaps surprisingly, most of the use of lcsc to date is for C# language tools and program analysis, and 
not for language research. Of course, there are more tool developers than language researchers, but this 
usage was not anticipated and was not factored into the design. The end result is, however, that lcsc’s de-
sign, which is based on abstract-syntax trees, is a good infrastructure for language-level tools. Using a 
similar approach for other languages might harvest similar benefits. 
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Design 
From 30,000 feet, lcsc’s design is dead simple: The parser reads the C# source input and builds an ab-
stract syntax tree [1], or AST, and subsequent phases, such as type checking and code generation, traverse 
the AST, perhaps leaving annotations on its nodes. The details are, of course, more involved, but the basic 
design dictates little beyond the ASTs. 

Parsing 
The parser is generated automatically from a C# BNF grammar that is nearly identical to the grammar 

given in the language specification [4]. This grammar is ambiguous, and the home-grown parser generator 
accepts ambiguous grammars. The generated parser is a generalized LR parser [14, 15]; for inputs that 
have ambiguous parses, the parser builds multiple parse trees. The number of parse trees is theoretically 
unbounded, but for practical programming language grammars, there are few alternatives, which can usu-
ally be resolved by inspecting the alternative subtrees, as described below. 

The parser generator also emits code to build an AST bottom-up from the parse trees. Code fragments 
that return AST nodes are associated with each production in the grammar, as exemplified by the produc-
tions for the if-statement: 

if-statement  if ( boolean-expression ) embedded-statement 
       statement new if_statement(a3,a5,null) 

if-statement  if ( boolean-expression ) embedded-statement else embedded-statement 
       statement new if_statement(a3,a5,a7) 

In the productions, nonterminals appear in italics and terminals in a typewriter font. The code frag-
ment—the ‘action’ in grammar parlance—appears on the far right in the lines following the productions. 
The occurrences of statement identify the abstract type of the AST nodes returned by the new expres-
sions. The a3, a5, and a7 refer to the AST values returned by the corresponding grammar symbols in the 
rule in the order in which they occur, e.g., boolean-expression, and the two occurrences of embedded-
statement. 

Ambiguities are resolved during AST construction. If a parse tree node has more than one alternative, 
the set of alternatives is passed to the user-defined method resolve, which inspects the alternatives and 
perhaps the context in which they occur, chooses one, and returns the appropriate AST node. While this 
ad hoc approach does require some iteration to discover and handle all the ambiguities, its cost is too 
small to warrant more sophisticated mechanisms [3]. Per-node resolution code is short, usually less than a 
dozen lines; the C# if-statement takes 17 lines and is one of the most complicated. The entire body of 
resolve for C# is only 114 lines. 

A novelty of the parser generator is that it reads the grammar specification from Excel spreadsheets, 
which eliminates much of the code that parses the grammar specification in other generators and provides 
some error checking. Nonterminals, rules, types, and actions each appear in separate columns, one pro-
duction per row. The type column, which holds statement in the if-statement example above, is com-
puted using Excel formulas. A separate ‘sheet’ in the spreadsheet lists the AST type for each nonterminal, 
and formulas are used propagate those types into the third column of the 476 productions in the grammar 
sheet. Separate sheets are also used to list keywords and operator tokens. 

The types sheet also gives the default AST expression for each nonterminal, which is used when an op-
tional occurrence of a nonterminal appears in a rule. For example, 

block  { statement-listopt }  statement new block_statement(a2) 

specifies that a block is an optional statement-list enclosed in braces. If statement-list is omitted, its de-
fault from the types sheet (a zero-length statementList) is supplied as the value of a2. Incidentally, 
optional elements are written exactly as this example shows, with a subscript ‘opt’. 
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Using an Excel spreadsheet makes the grammar easy to augment. Additional columns can be added 
for, say, comments or annotations for other tools, without modifying the parser generator, which inspects 
only specific columns. Finally, the parser generator accepts one or more spreadsheets, so language exten-
sions can be specified in a separate spreadsheet without modifying the core C# grammar. 

Semantics 
The parser returns a single AST for each input source file. For multiple source files, these ASTs are 
stitched together into a single AST for subsequent processing. Semantic processing is specified entirely 
by command-line options, which specify AST ‘visitors’ and the order in which they are invoked. Visitors 
are packaged as separate classes in .NET dynamically linked libraries, DLLs for short. For example, 

lcsc –visitor:XML,XML.dll foo.cs 

parses foo.cs and passes the resulting AST to the XML class in XML.dll; if the class name and file 
name are the same, the file name may be omitted, so -visitor:XML is sufficient. By convention, the 
AST is passed to the static method visit; there are provisions for passing additional string arguments, 
when necessary. 

Visitor classes traverse the AST, perhaps annotating it, transforming it, or emitting output, and return 
the AST for subsequent passes. For example, traditional compilation is accomplished by 

lcsc –visitor:bind –visitor:typecheck 
    –visitor:rewrite –visitor:ilgen foo.cs 

which parses foo.cs, binds names, type checks, rewrites some ASTs, and generates and assembles 
MSIL code. 

There are 164 AST node classes, 16 of which are abstract classes. For example, statement and ex-
pression are abstract classes. The ASTs describe the source-level structure of the input program; the 
class for an if-statement is typical: 

public class if_statement: statement { 
 public if_statement(expression expr, statement thenpart, 
   statement elsepart) { 
  this.expr = expr; 
  this.thenpart = thenpart; 
  this.elsepart = elsepart; 
 } 
 public expression expr; 
 public statement thenpart; 
 [MayBeNull] public statement elsepart; 
 public override void visit(ASTVisitor prefix, ASTVisitor postfix) {…} 
} 

An if_statement node is created by a new expression, which calls the constructor to fill in the fields. 
The visit method is described below. Nodes with multiple children use type-safe lists that can be in-
dexed like arrays, e.g., the –List types in 

public class class_declaration: declaration { 
 public class_declaration(IList attrs, IList mods, InputElement id, 
    IList bases, IList body) { … } 
 public attribute_sectionList attrs; 
 public typeList bases; 
 public declarationList body; 
 public InputElement id; 
 … 
} 
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InputElements are tokens and identify the token type, the specific token instance, and its location in 
the source code. 

Much of the code in a visitor is boilerplate traversal code. Included with lcsc is mkvisitor, a tool that 
uses type reflection to generate a complete visitor that can be subsequently edited to suit its specific task. 
For example, 

mkvisitor –args ″SymbolTable bindings″ >visitor.cs 

generates the following C# code for the if_statement class shown above. 
void if_statement(if_statement ast, SymbolTable bindings) { 
 expression(ast.expr, bindings); 
 statement(ast.thenpart, bindings); 
 if (ast.elsepart != null) 
  statement(ast.elsepart, bindings); 
} 

The [MayBeNull] annotation on the field elsepart in the declaration of if_statement above is 
a C# attribute, and it indicates that the field may be null. These kinds of attributes are used in mkvisitor 
and other program generation tools to emit appropriate guards to avoid traversing valid null ASTs. Typi-
cal visitors run around 2000 lines of C# of which about 830 are generated by mkvisitor. 

While the full visitor machinery is used for most compilation passes, there is simpler mechanism that 
useful for one-shot applications. Each AST node includes a visit method that implements both a prefix 
and postfix walk. For instance, the visit method in if_statement is 

public override void visit(ASTVisitor prefix, ASTVisitor postfix) { 
 prefix(this); 
 expr.visit(prefix, postfix); 
 thenpart.visit(prefix, postfix); 
 if (elsepart != null) 
  elsepart.visit(prefix, postfix); 
 postfix(this); 
} 

The arguments prefix and postfix are instances of ASTVisitor delegates, which are essentially 
type-safe function pointers. These delegates are particularly useful for tools that need to examine only 
parts of the AST or that look for specific patterns. For example, C# statements of the form 

if (…) throw … 

mimic assertions. The expression 
ast.visit(new ASTVisitor(doit), new ASTVisitor(donothing)); 

finds occurrences of this pattern in an AST rooted at ast, where doit and donothing are defined as 
follows. 

public static void doit(AST ast) { 
 if (ast is if_statement 
 && ((if_statement)ast).thenpart is throw_statement 
 && ((if_statement)ast).elsepart == null) 
  Console.WriteLine("{0}: Possible assertion", ast.begin); 
} 

public static void donothing(AST ast) { } 

The begin and end fields in an AST give the beginning and ending locations in the source code 
spanned by the AST. 
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Applications 
Finding code fragments that look like assertions typifies the use of lcsc to find patterns in C#. Elabora-
tions of this usage are used for code-auditing tools, for example. Pattern matching on an AST instead of 
text makes it easy to consider context and to fine tune matches to avoid voluminous output. It’s tempting 
to design a little language for specifying tree patterns, perhaps similar to AWK or to the languages used in 
tree-based code-generator generators [5]. But for many pattern-based applications, the C# code is so short 
that more concise specifications are not needed. 

XML is an increasing popular way to exchange data, and there are numerous tools available for editing 
and viewing XML. The XML visitor emits an AST as XML for consumption by XML-based tools or ex-
ternal compilation tools that accept XML. C# includes extensive support for reflection, which makes it 
possible to discover class information during execution. The 70-line XML visitor uses reflection to dis-
cover the details of the AST classes necessary to emit XML and is thus automatically upward compatible 
with future additions to the AST vocabulary. 

The visitor architecture helps write metaprogramming tools, e.g., tools that write programs. The .NET 
platform includes a tree-based API for creating programs, typically those used in web services applica-
tions. This API defines a language-independent code document object model, also known as CodeDOM. 
It’s possible, for example, to build a CodeDOM tree and pass it to C#, Visual Basic, or to any language 
that offers a `code provider’ interface. A common approach to writing CodeDOM applications is to write, 
say, C# source code and translate it by hand into the API calls that build the CodeDOM tree for that C# 
code. The lcsc codedom visitor automates this process: Given a C# program P, it emits a C# program that, 
when executed, builds the CodeDOM tree for P. 

The source visitor is similarly useful: It emits C# source code from an AST. When coupled with visi-
tors that modify the AST, source provides a source-to-source transformation facility. As detailed in the 
next section, source is useful for C# language extensions that can be modeled in C# itself. It’s also useful 
for writing code reorganization tools. A simple example is sortmembers, which alphabetizes the fields and 
methods in all of the classes in its input C# program. For instance, the command 

lcsc –visitor:sortmembers –visitor:source old.cs >new.cs 

sorts the class members in old.cs and writes the C# output to new.cs. The sortmember visitor simply 
rearranges the declaration subtrees in each class declaration and lets source emit the now-sorted results. 

Incidentally, source turns out to document the ASTs nicely, because, for each node type, it shows how 
to emit the corresponding C# source. Writers of new visitors often start with a copy of source and edit to 
suit their own purposes. At any point, the output shows exactly how much progress has been made—C# 
source appears for those node types whose visitor methods remain to be edited. 

Visitors are also used for diagnostic purposes, e.g., to help debug other visitors. The display visitor 
renders its input AST as HTML and launches the web browser to display the result. Using reflection, dis-
play lists the fields in each class instance with hyperlinks to those fields that hold references to other 
classes. Figure 1 shows the class_declaration AST node for the following prototypical ‘hello 
world’ C# program. 

class Hello { 
 public static void Main() { 
  System.Console.WriteLine("Hello, world"); 
 } 
} 

The hyperlinks, shown underlined, make it easy to traverse the data structure by clicking on the links. 
Display handles lists as well as AST types, and it omits empty lists, which occur frequently. 
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class_declaration#22: 
attrs=attribute_sectionList#33 (empty) 
bases=typeList#35 (empty) 
body=declarationList#37 
id=InputElement{coord=hello.cs(3,7),str=Hello,tag=identifier} 
sym=ClassType#43 
mods=InputElementList#45 (empty) 
parent=compilation_unit#12 

Figure 1. Sample display output. 

Because display uses reflection, it can display any class type; for example, the sym field in Figure 1 re-
fers to a ClassType, which is a class type used to represent C# types. This capability helps debug visi-
tors that annotate the AST. For instance, the command 

lcsc –visitor:bind –visitor:display 
    –visitor:typecheck –visitor:display foo.cs 

builds the AST for foo.cs, runs bind, displays the AST with bind’s annotations (which includes the 
sym field shown in Figure 1), runs typecheck, then displays the AST again with typecheck’s additions. 

For even medium size C# programs, display generates a large amount of HTML. While navigating the 
AST is straightforward, it is often difficult to correlate a specific AST node with its associated source 
text. The browser visitor is a more ambitious variant of display that provides a more natural ‘navigation’ 
mechanism. Brower displays the C# source text in one window and AST nodes in another one. The AST 
nodes are rendered as done by display. Highlighting a fragment of source text causes the root of smallest 
enclosing AST subtree to appear in the AST window. Just that subtree can be explored by clicking the 
field values. Another variant of browser provides a similar mechanism for exploring the generated MSIL 
code: Highlighting a source code fragment displays the corresponding MSIL code in another window. 

Adding Language Features 
Implementing new language features has much in common with writing code analysis tools, and lcsc’s 
visitor-based design facilitates such additions. For example, the source visitor often does half the work for 
new features that can be modeled in vanilla C#. More ambitious features can be implemented by building 
on the existing visitors, either by calling them explicitly or by subclassing them. 

Adding a typeswitch statement provides an example of both approaches. The typeswitch statement is a 
case statement that branches on the type of an expression instead of on its value. For example, 

typeswitch (o) { 
 case Int32  (x): Console.WriteLine(x); break; 
 case Symbol (s): Symbols.Add(s); break; 
 case Segment: popSegment(); break; 
 default: throw new ArgumentException(); 
} 

switches on the type of o. The typeswitch cases can also introduce locals of the case label type, as illus-
trated by the Int32 and Symbol cases, which introduce locals x and s. Figure 2 gives the grammar for 
the typeswitch statement, which is based on the Modula-3 TYPECASE statement [11]. 
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typeswitch-statement 
 typeswitch ( expression ) typeswitch-block new typeswitch_statement(a3,a5) 

typeswitch-block 
 { typeswitch-sectionsopt }   a2 

typeswitch-sections 
 typeswitch-section    typeswitch_sectionList.New(a1) 
 typeswitch-sections typeswitch-section  List.Cons(a1,a2) 

typeswitch-section 
 case type ( identifier ) : statement-list  new typeswitch_section(a2,a4,a7) 
 typeswitch-labels statement-list   new typeswitch_section(a1,a2) 
 default : statement-list   new typeswitch_section(a3) 

typeswitch-labels 
 typeswitch-label     switch_labelList.New(a1) 
 typeswitch-labels typeswitch-label   List.Cons(a1,a2) 

typeswitch-label 
 case type :       new typeswitch_label(a2) 

Figure 2. Typeswitch syntax. 

Typeswitch can be implemented in C# using if and goto statements, local variables, and typecasts to 
convert the typeswitch expression to the types indicated. For example, the typeswitch fragment above 
could be translated mechanically as follows. 

{ 
 object yy_1 = o; 
 if (yy_1 is Int32) { 
  Int32 x = (Int32)yy_1; 
  Console.WriteLine(x); 
  goto yy_1_end; 
 } 
 if (yy_1 is Symbol) { 
  Symbol s = (Symbol)yy_1; 
  Symbols.Add(s); 
  goto yy_1_end; 
 } 
 if (yy_1 is Segment) { 
  popSegment(); 
  goto yy_1_end; 
 } 
 throw new ArgumentException(); 
yy_1_end: ; 
} 

A source-to-source transformation is thus a one way to implement typeswitch. There are several alter-
natives. One approach is to write a visitor that transforms the typeswitch subtrees into the corresponding 
block and if statement trees as suggested by the output above, and use the source visitor to emit the trans-
formed AST. A simpler approach, however, is to extend the source visitor to accept typeswitch subtrees 
and emit the if statement implementation. 

In either case, the first step is to define the typeswitch grammar, which appears in Figure 1. This 
grammar resides in its own Excel spreadsheet and is passed to the parser generator along with the original 
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C# grammar. The second step is to define the AST types needed to represent typeswitch statements and to 
add the appropriate types and actions to the grammar spreadsheet. There are three new types, and the ac-
tions are shown to the right of the productions in Figure 1. The type column is omitted. 

The final step is to add methods to the source visitor to traverse the three typeswitch AST types, emit-
ting C# code as suggested above. It is not necessary to change the source visitor class itself; it can simply 
be extended by a derived class, typeswitch_source, that implements three new methods. It also 
overrides the methods in source for break statements and default labels, because these constructs can now 
appear in both switch and typeswitch statements. These steps take a total of only 153 lines: 
 

 19 lines typeswitch grammar 
 63 typeswitch AST nodes 
 71 extend source 
153 Total 

 
More exotic language features and those that cannot be modeled in C# require more implementation 

effort. The effort can sometimes be reduced by transforming a part of the feature into existing C# AST 
nodes to make use of existing visitor code. But many additions require all of the typical compilation steps, 
including binding, typechecking, and code generation. Typeswitch again provides an example. 

The first two steps are the same as in the source-to-source approach: specify the grammar and define 
the typeswitch-specific AST node types. 

Each of the four traditional compilation visitors must be extended to traverse the three typeswitch 
nodes. Again, this extension can be done by subclassing, and defining new methods and overriding exist-
ing methods. The complete implementation takes 333 lines: 
 

 19 lines typeswitch grammar 
 63 typeswitch AST nodes 
100 extend bind 
 37 extend typecheck 
 39 extend rewrite 
 65 extend ilgen 
333 Total 

 
Bind requires the most code because it makes three passes over the AST and defines a class for each pass. 
Code generation is performed by rewrite and ilgen, which could be combined into a single visitor. 

Of course, other language features could take much more effort. Substantial features typically add 
1000s of lines instead of 100s. For example, an implementation of futures for C# took about 1000 lines. 
But even a complete visitor is much less effort than implementing a complete compiler or modifying a 
production compiler, and the visitor-based design enforces modularity that helps avoid errors. 

Discussion 
At just under 14,000 lines, lcsc is a relatively small compiler, but lcsc lacks some of the components in 
production compilers, such as an optimization phase. The visitor-based design makes it easy to see the 
relative sizes of the various passes. Table 1 gives the line counts for the core of lcsc, for the visitors, and 
for the program generators. Everything is written in C# except the parser generator, which is written in 
Icon [7]. 

Writing visitors does require substantial understanding of the compiler’s innards. Simple visitors re-
quire understanding only the AST vocabulary, which is easily digested because it follows the language 
closely. More complex visitors and visitors that subclass existing visitors require understanding the sym-
bol-table and type data structures and some of the existing visitors, such as bind. Fortunately, these data 
structures are straightforward, and most visitors can be understood in isolation, because the design in-
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duces a natural decoupling. In any case, getting a grip on even several visitors is much less onerous than 
digesting an entire monolithic compiler. 

 
Table 1. Source line counts. 

Line Count Item 
6779 lines lexer, parser, data structures (required) 
6942 traditional semantic passes (required for ‘normal’ compiler) 
   1972 bind.cs 
   2628 typecheck.cs 
   2342 rewrite.cs, ilgen.cs 
3908 utility passes (optional) 
   1023 browser 
   1644 codedom 
   1015 source 
    156 sortmembers 
     70 xml 
1594 program generation tools 
    966 parser generator (written in Icon) 
    329 excel2gram.cs 
    198 mkvisitor.cs 
    101 list generator 

 
The visitor approach is incredibly flexible, and the design encourages writing several simple visitors 

that each do one task well to accomplish an overall goal rather than a single, complex visitor. And simple 
visitors are easier to debug. All visitors written to date pass along an AST, possibly modified or anno-
tated. While not immediately obvious, there’s nothing in the design that dictates this convention. A set of 
visitors could collaborate to pass along an instance of any object type. So, for example, a visitor could 
accept an AST, build a completely different representation of the program, such as a flow graph of basic 
blocks, and pass this representation along to its successors. 

C# and the .NET platform provide excellent support for dynamic loading and for reflection, and lcsc 
and its build tools make heavy use of them. The value of these features is easy to underestimate a priori. 
Once they seep into an application’s design, however, they become invaluable. Reflection simplified sev-
eral visitors and made mkvisitor, source, and browser possible. The visitor approach would not have been 
nearly as useful, or even possible, without dynamic loading. In an environment that supports only static 
linking, adding new visitors would require at least relinking and probably some recompilation. For exam-
ple, multiple code generators are linked into a single executable for the retargetable C compiler, lcc [5], 
precisely because dynamic loading as supported in .NET and Java was not then universally available. If 
lcc were rewritten today, it would use dynamic loading to access its code generators. 
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