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Abstract

This note describes power EP, an extension of Expectation Propagation (EP) that
makes the computations more tractable. In this way, power EP is applicable to a
wide variety of models, much more than EP. Instead of minimizing KL-divergence
at each step, power EP minimizes α-divergence. This minimization turns out to
be equivalent to minimizing KL-divergence with the exact distribution raised to a
power. By choosing this power to cancel exponents, the problem may be substan-
tially simplified. The resulting approximation is not the same as regular EP, but in
practice is still very good, and allows tackling problems which are intractable under
regular EP.

1 Introduction

Expectation Propagation (EP) is a method for approximating a complex probability distribution p
by a simpler distribution q (Minka, 2001b). To apply it, you write the distribution as a product of
terms, p(x) =

∏
a ta(x), and then you approximate the terms one by one. At each step, you need

to evaluate an integral of the form
∫

x
ta(x)q\a(x)dx (a definite integral). If the terms ta are simple

enough, this integral can be done quickly, usually analytically.

Unfortunately, there are many functions which cannot be factored into simple terms. For example,
consider a product of T densities:

p(x) =
1

x2 + 1
1

x2 + 1
(1)

This function naturally factors into two terms, but the integrals
∫

x
1

x2+1 q\a(x)dx are not easy to
evaluate, so EP bogs down. On the other hand, the integrals

∫
x
(x2 + 1)q\a(x)dx are easy to evaluate.

Using power EP, we can approximate p using only these easy integrals.

Power EP is an extension of EP to employ integrals of the form
∫

x
ta(x)βq(x)dx, for any powers β

that you choose. For example, in the T density problem we can let the powers be β = −1, which
leads to easy integrals. The rest of the algorithm is essentially the same as EP, with a scaling step
to account for the powers.

Power EP was originally described by Minka & Lafferty (2002), briefly and without derivation.
Later, Wiegerinck & Heskes (2002) discussed an algorithm called “fractional belief propagation”,
describing its energy function and an interpretation in terms of α-divergence. In fact, fractional
belief propagation is a special case of power EP, and all of their results also apply to power EP. This
paper expands on both Minka & Lafferty (2002) and Wiegerinck & Heskes (2002), giving a unified
perspective on power EP and the different ways of implementing it.

The paper is organized as follows. Section 2 describes the algorithm in detail. Section 3 describes
the α-divergence interpretation, and section 4 gives the objective function.



2 EP and power EP

A set of distributions is called an exponential family if it can be written as

q(x) = exp(
∑

j

gj(x)νj) (2)

where νj are the parameters of the distribution and gj are fixed features of the family, such as
(1, x, x2) in the Gaussian case. Because we will be working with unnormalized distributions, we
make 1 a feature, whose corresponding parameter captures the scale of the distribution. The reason
to use exponential families is closure under multiplication: the product of distributions in the family
is also in the family.

Given a distribution p and an exponential family F , Expectation Propagation tries to find a distri-
bution q ∈ F which is “close” to p in the sense of the KL-divergence:

KL(p||q) =
∫

p(x) log
p(x)
q(x)

dx +
∫

(q(x)− p(x))dx (3)

Here we have written the divergence with a correction factor, so that it applies to unnormalized
distributions. The basic operation in EP is KL-projection, defined as

proj[p] = argmin
q∈F

KL(p || q) (4)

(In this notation, the identity of F comes from context.) Substituting the form of q (2) into the KL-
divergence, we find that the minimum is the unique member of F whose expectation of gj matches
that of p, for all j:

q = proj[p] ⇐⇒ ∀j

∫
x

gjq(x)dx =
∫

x

gjp(x)dx (5)

For example, if F is the set of Gaussians, then proj[p] means computing the mean and variance of
p, and returning a Gaussian with that mean and variance.

Now, write the original distribution p as a product of terms:

p(x) =
∏
a

ta(x) (6)

This defines the specific way in which we want to divide the network, and is not unique. By
approximating each term ta by t̃a, we get an approximation divided in the same way:

q(x) =
∏
a

t̃a(x) (7)

For each term ta, the algorithm first computes q\a(x), which represents the “rest of the distribution.”
Then it minimizes KL-divergence over t̃a, holding q\a fixed. This process can be written succinctly
as follows:

q\a(x) = q(x)/t̃a(x) (8)

t̃a(x)new = argmin KL(ta(x)q\a(x) || t̃a(x)q\a(x)) (9)

= proj
[
ta(x)q\a(x)

]
/q\a(x) (10)

In the Gaussian case, both q(x) and t̃a(x) will be scaled Gaussians, so algorithmically (8) means
“divide the Gaussians and their corresponding scale factors to get a new scaled Gaussian, and call
it q\a(x).” Similarly, (9) means “construct a scaled Gaussian whose moments match ta(x)q\a(x)
and divide it by q\a(x), to get a new scaled Gaussian which replaces t̃a(x).” This is the basic EP
algorithm.

Power EP extends the algorithm to use the following update (for any desired na):

q\a(x) = q(x)/t̃a(x)1/na (11)

t̃a(x)new =
(
proj

[
ta(x)1/naq\a(x)

]
/q\a(x)

)na

(12)



To see this another way, define the “fractional term” fa:

fa(x) = ta(x)1/na f̃a(x) = t̃a(x)1/na (13)

The update for f̃ is:

q\fa(x) = q(x)/f̃a(x) (14)

f̃a(x)new = proj
[
fa(x)q\fa(x)

]
/q\fa(x) (15)

This is exactly like EP, except we then scale f̃ in order to get t̃.

For example, suppose we want to approximate p(x) = a(x)/b(x) with q(x) = ã(x)/b̃(x). For a(x)
we use n = 1, and for b(x) we use n = −1. Then the updates are:

q\a(x) =
1

b̃(x)
(16)

ã(x)new = proj
[
a(x) q\a(x)

]
/q\a(x) (17)

q\b(x) =
ã(x)
b̃(x)2

(18)

b̃(x)new = proj
[
b(x) q\b(x)

]
/q\b(x) (19)

Notice the old b̃(x) is contained in q\b(x), creating a feedback loop. By iterating these equations,
we get the following algorithm for power EP:
Power EP

• Initialize f̃a(x) for all a, and set q(x) to their product.
• Repeat until convergence:

For each a:

q\fa(x) = q(x)/f̃a(x) (20)

q′(x) = proj
[
fa(x)q\fa(x)

]
(21)

f̃a(x)new = f̃a(x)1−γ

(
q′(x)

q\fa(x)

)γ

= f̃a(x)
(

q′(x)
q(x)

)γ

(22)

q(x)new = q(x)

(
f̃a(x)new

f̃a(x)

)na

= q(x)
(

q′(x)
q(x)

)naγ

(23)

In (22), a damping factor γ has been used, which doesn’t change the fixed points, but can help
convergence. Choosing γ = 1/na makes q(x)new = q′(x), which is convenient computationally and
also tends to have good convergence properties.

To get an intuitive sense of what power EP is doing, consider the case of positive integer na. This
means that one fractional term fa(x) is repeated, say, 3 times. Power EP approximates each copy
with the same f̃a(x). To update it, power EP removes one copy of fa(x), computes a new f̃a(x)
for it, and then replicates that approximation to all the copies. If we applied regular EP across
all copies, then the approximations would not be synchronized, but at convergence they would be
the same, yielding the same answer as power EP (this is shown in section 4). Of course, in the
non-integer case this construction is not possible and there is no equivalent EP algorithm.

The above discussion has focused on EP, but in fact the mean-field method has a very similar
structure. All you do is reverse the direction of the divergence in (9). This way of writing the
mean-field updates is known as Variational Message Passing (Winn & Bishop, 2005).



3 Alpha-divergence

This section shows how power EP can be understood in terms of minimizing α-divergence instead of
KL-divergence. This interpretation is originally due to Wiegerinck & Heskes (2002), who mentioned
it in the context of fractional belief propagation.

The α-divergence (Amari, 1985; Trottini & Spezzaferri, 1999) is a generalization of KL-divergence
with the following formula:

Dα(p || q) =
4

1− α2

(
1−

∫
x

p(x)(1+α)/2q(x)(1−α)/2dx

)
(24)

The α-divergence is ≥ 0, with equality iff p = q. It is convex with respect to p and q. When α = 1,
it reduces to KL(p || q), and when α = −1, it is KL(q || p). Consider the following algorithm, call
it α-EP:
α-EP

• Initialize t̃a(x) for all a, and set q(x) to their product.
• Repeat until convergence:

For each a:

q\a(x) = q(x)/t̃a(x) (25)

q(x)new = argmin
q∈F

Dαa
(ta(x)q\a(x) || q(x)) (26)

t̃a(x)new = q(x)new/q\a(x) (27)

This algorithm is just like EP except it minimizes α-divergence at each step. It turns out that this
algorithm has exactly the same fixed points as power EP. The power EP algorithm given in the
previous section is just a particular way of implementing α-EP.

To see the equivalence, set αa = (2/na)− 1. Then the minimization in (26) becomes

argmin
q∈F

n2
a

na − 1

(
1−

∫
x

(
ta(x)q\a(x)

)1/na

q(x)1−1/nadx

)
(28)

This function is convex in the parameters of q(x), so the minimum is unique. Setting the gradient
to zero gives a condition for the minimum:

q(x) = proj
[(

ta(x)q\a(x)
)1/na

q(x)1−1/na

]
(29)

The right hand side is equivalent to q′(x) from (21), so this amounts to q(x) = q′(x), which is true at
any fixed point of (23). Thus the inner loop of power EP is equivalent to minimizing α-divergence.



4 The objective function

EP does not directly minimize the KL-divergence KL(p || q), but rather a surrogate objective
function, described by Minka (2001b; 2001a). This objective extends straightforwardly to power EP.
As described in section 2, power EP can be interpreted as taking the fractional term fi(x) = ti(x)1/ni

and copying it ni times. The objective function has exactly this form: we take the EP objective and
copy each term ni times.

The power EP objective is

min
p̂i

max
q

∑
i

ni

∫
x

p̂i(x) log
p̂i(x)
fi(x)

+ (1−
∑

i

ni)
∫

x

q(x) log q(x) (30)

such that
∫

x

gj(x)p̂i(x)dx =
∫

x

gj(x)q(x)dx (31)∫
x

p̂i(x)dx = 1 (32)∫
x

q(x)dx = 1 (33)

Recall that gj are the features of the exponential family F , so (31) means that proj[p̂i(x)] = q(x).

The dual objective is

min
ν

max
λ

(
∑

i

ni − 1) log
∫

x

exp(
∑

j

gj(x)νj)dx

−
n∑

i=1

ni log
∫

x

fi(x) exp(
∑

j

gj(x)λij)dx (34)

such that (
∑

i

ni − 1)νj =
∑

i

niλij (35)

Define

τij = νj − λij (36)

then it follows that

νj =
∑

i

niτij (37)

Thus we can make the following definitions:

f̃i(x) = exp(
∑

j

gj(x)τij) (38)

q(x) = exp(
∑

j

gj(x)νj) =
∏

i

f̃i(x)ni (39)

By taking gradients, the stationary points of (34) are found to be:

q(x) = proj
[
fi(x)q(x)/f̃i(x)

]
for all i (40)

The right hand side is equivalent to q′(x) from (21), so this amounts to q(x) = q′(x) for all i, which
is true at any fixed point of power EP. Thus the power EP fixed points are exactly the stationary
points of (34). The same result follows similarly for (30).

When the ni are positive integers, the power EP objective is equivalent to the EP objective with
repeated terms. Thus both algorithms converge to the same solutions for this case.
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