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Abstract— Given a wireless ad hoc network and an end-
to-end traffic pattern, the power rate functionrefers to
the minimum total power required to support different
throughput under a simplified layered model of wireless
networks. A critical notion of the layered model is thesup-
ported (realizable) capacity graphsvhich describe possible
bit-rate provisions on the links by the physical and link
layers. Under the layered model, the problem of finding
the power rate function can be transformed into finding
the minimum-power supported capacity graph that can
provide a given throughput.

We introduce a usage conflict graphto represent the

conflicts among different uses of the wireless medium.

Testing the realizability of a given capacity graph can be
transformed into finding the (vertex) chromatic number,
i.e., the minimum number of colors required in a proper

vertex-coloring, of the associated usage conflict graph.

Based on an upper bound of the chromatic humber, we
propose a linear program that outputs an upper bound of
the power rate function. A lower bound of the chromatic

be achieved by arranging some sessions to adopt routes
with sub-optimal energy efficiency.

The subject of this paper is the tradeoff between
throughput and energy efficiency for a given wireless
network with a given end-to-end traffic pattern. Among
others, characterizing such tradeoff can facilitate emalu
ing the efficiency of different network structures. Finding
the optimal tradeoffs between throughput and energy
efficiency essentially turns into addressing how the op-
erational characteristics of a wireless network should be
varied by coordinating the degrees of freedoms (e.g.,
routing, scheduling, power allocation, beam patterns)
differently, as the offered traffic load changes.

Some recent works that investigate such tradeoff are
as follows. Previous work [7] by Bhatia and Kodialam
considered minimizing the total power consumed in pro-
viding different rates for a single unicast session. They
formulated the problem as a nonlinear optimization. Pre-

number is the clique number. We propose a systematic way vious work [8] by Cruz and Santhanam considered min-
of identifying cliques based on a geometric analysis of the jmizing the total power consumed in providing different
space sharing among active links. This leads to another rates for multiple unicast sessions. Their formulation is

linear program, which yields a lower bound of the power
rate function. We further apply greedy vertex-coloring to

fine tune the bounds. Simulations results demonstrate that

the obtained bounds are tight in the low power and low
rate regime.

I. INTRODUCTION

also a nonlinear optimization. Previous work [9] by Wu
et al considered minimizing the total power consumed in
providing different rates for multiple multicast sessions
They proposed an iterative optimization that alternates
between a linear optimization and a heuristic algorithm.
While very different modelling assumptions have been

Throughput and energy efficiency are two importamtdopted in [7]-[9], these previous works used similar
performance metrics for wireless ad hoc networks, eactirves to quantitatively represent the tradeoff between
of which has been studied extensively in the literatutbroughput and energy efficiency. Based on these, we
[1]-[6]. Whereas one or the other may be more criticalse the namgower rate functiorto refer to the mini-
in certain wireless network, these two consideratiomsum total power required to support different end-to-
do closely affect each other. A brief explanation is and throughput for a given wireless network with a
follows. Consider multiple unicast sessions in a wireleggven traffic pattern, under a simplified layered model
network. For the sake of energy efficiency, each sessiohwireless networks.
would prefer the path along which the energy consump-Note that the “minimum” investigated in this paper
tion is the minimum. However, if each session onlis certainly not the fundamental limit in network infor-

routes packets along its individual minimum energy patmation theory, where lots of problems remain open. For
bottlenecks may be created, which would subsequengiyample, the information theoretic capacity region for a
constrain the overall throughput. Higher throughput magimple network with a source, a relay, and a destination,



remains unknown. Instead, we adopt a simplified layeretulti-commaodity flow assignment over the subset (resp.
model of wireless networks. The basic assumptions thie superset) with power minimization as the objective,
the layered model are as follows. The physical and linke obtain a linear program that yields an upper-bound
layers of the wireless network provide communicatiofresp. a lower bound) to the power rate function.
resources in the form of a collection of “lossless bit- The solution to a linear program mentioned above
pipes”, each capable of transferring information betweefnsforms the end-to-end traffic demand into a particular
(neighboring) nodes at a certain rate. Given a collectig@pacity graph that need to be supported. For each
of lossless bit-pipes, information can be routed fromesulting capacity graph, we propose to apply a greedy
the sources to the destinations at certain rates in 'ﬂftﬂoring procedure to scale the obtained power rate pair
network layer. Such a simplified model is certainland hence improve the bounds.

sub-optimal from an information theoretic perspective.

Nonetheless, its simplicity facilitates the analysis and

enables some engineering insights to be obtained. Inll. PRELIMINARIES: MODELLING ASSUMPTIONS

fact, these assumptions have been implicitly or explicitly

made in many recent works, such as [1]-[3], [7]-[9]. A. Physical Layer Model

To explain the layered model in more details, we adopt _ _
the terminologies and notations in [9]. A collection of L&t Vo denote the set of nodes in a wireless network,
lossless bit-pipes mentioned earlier is calledapacity Which are labelled1, 2, ..., [Vo|. Let X; denote the
graphin [9]. A capacity graphcan be represented as Jdocation of nodei. Assume ther_e is a flged transr_msgon
tupleG = (V, E, ¢) whereV andE are the set of vertices POWe pij = #|Xi — X;|? associated with each linkj,
and edges respectively and there is a positive edge Wherex andg are two positive constants. Further assume
pacity c(vw) associated with each directed edge. At there is a limitp,,, on the maximum transmission
the physical layer, the network operates in many differeRpWer that can be used. Thus, a wireless ligkis
physical stateseach corresponding to an arrangement §g9arded as feasible, or nodecan directly transmit to
concurrent transmissions among neighbors. Each phydde s, if and only if pi; < pj... In other words, the
cal state corresponds to alementary capacity graptit connectivity graplC, i.e., the graph of all possible links,
the MAC layer, by timesharing different physical state'@s vertex sety and edge sefc = {ij |pij < pmaz }-
convex combinations of the elementary capacity graphsWe adopt theconflict graphdefined by Jain et al [3]
can be achieved’ hence presenting to the upper |aye@5athe interference model. The vertices in the conflict
set of supporte@omposite capacity graphs graph I correspond to links in the connectivity graph.

Each supported capacity graphi provides certain The edges in/ represent conflict relationships among
communication rate?(G) and has an associated powelnks in Ec.
consumptionP(G), corresponding to the two axes under Definition 1 (Conflict Graph [3]):
investigation. The problem of finding the power raté&he conflict graphis an undirected graphwith V(1) =
function, in the end, turns into one where thptimal E¢. There is an undirected edge between vertigeand
supported capacity graph, associated with each traffit if the links i and k!l conflicts and thus cannot be
rate, is the target. However, computational difficultiesoncurrently active.
can arise when searching over the entire set of supportediiore specifically, here linkj and k! are allowed to
capacity graphs, since the number of elementary capacity concurrently active if and only if
graphs to be considered can grow exponentially in the
number of nodes. N N X5 — X;1 > (14 )| Xk — X1, @

In this work, we present a sufficient condition under
which a capacity graph can be decomposed into a [ Xi = Xi| = (1+v)|Xi — X, (2)
convex combination of elementary capacity graphs. We
also present a necessary condition based on the faberev is a positive constant. Note that conditions (1)
each link exclusively occupies certain spatial regio@hd (2) implies that each node can only transmit to
These conditions can be expressed as linear constraifitseceive from at most one other node at any time.
The sufficient condition identifies a subset of supportadfith some simple geometric arguments, the following
capacity graphs and the necessary condition identifieé&mma 1 can be established.
superset of the set of capacity graphs. By optimizing theLemma 1: Under the physical layer model described



above, if link¢j andkl can be concurrently active, therelementary capacity graphs. That is, Nf is the rel-

v ative share of time for the elementary capacity graph
1X; — Xy > 3 (X = X + Xk =Xi), ) Gy = (Vi,Ep, ci), then it is possible to achieve
v on average the capacity grapi = >, MGy =
[ X = Xil 2 5 (1K = X] + X = Xal), - (4) (UrVi, UrE, > Akcr). The capacity graphs resulting
v from timesharing the elementary capacity graphs will be
[ Xk — X[ > 9 (1K = X5+ [Xk = Xal), (®)  referred to agomposite capacity graphsonversely, the
A v A ‘ composite capacity graphs are said todeeomposable
X = X = 92 (12X = X[ + X = Xal). (6) jpgg elementary capacity graphs as a realization through
timesharing. Hence, a distinguishing feature of wireless
S CRI S S — networks is the characterization of supported capacity
/ N graphs as a convex combination of elementary capacity
e KO graphs. This can be stated mathematically as
Go = {G G =3 MGr S M <1, A > 0k, Gy € By } :
T I ’J k k

J/ where G, is the entire set of capacity graphs sup-
ported/spanned by the set of all feasible elementary
capacity graphsB,. For later use, we introduce the
following definition.
Introduce Definition 2: A capacity graph = (V, E, ¢) is said
U to be supportedor realizableif G € Gy or equivalently,
Qi) = {X )minﬂX = Xil, |X = X5l} < 51X - X } there exists a set of elementary capacity grafifis} C

which refers to the spatial region comprising pointlg0 and a set of timesharing coefficierfta; } such that

falling into one of the two circles centered &t and X G = Z MeGr, Z e < 1. (8)
with radiusg|X; — Xj|. According to Lemma 1, if linki;
andkl can be concurrently active, théd(ij) NQ(kl) =
(), as illustrated in Figure 1. Thus, when a wireless link
is active, it exclusively occupies the spatial regfofi;).

This exclusive sharing of space constrains the max- P (Z Aka) = ZAkp(Gk)- (9)
imum achievable throughput. In [1], with a different k k
interference model, Gupta and Kumar showed thatSince the power associated with an elementary capacity
wireless link exclusively shares a disk centered at t§aPhGy is simply the sum of the power of the associ-
receiver. The observation was used to establish a tigigd active links, the power consumption of a supported
upper bound of the asymptotic scaling rate of transp&@Pacity graphG = (Vo, Ec,c) can be immediately

> (1 + )X X e

Fig. 1. Exclusive share of space.

k k
The power consumption of a composite capacity graph
G = Zk MGy is

capacity. obtained as
Summary: A set (_Jf wireles; Iink§4 is allowed to be P(G) = Z (W) Py, (10)
concurrently active if no conflict exists between any two vweEe

links in A. Under our modeling assumptions, a physicaliihough the decomposition into convex combinations of
state of interest can be characterized entirely by the Se%%mentary capacity graphs may not be unique.
wireless links that are active. For a given physical state

with active links A C E¢, the associated elementanf>- 1raffic Pattern
capacity graphG 4 is (Vp, A, 1); that is,G4 has a set of We represent the end-to-end communication demands
edgesA C E(, each assigned unit capacity. The powers a collection of unicast sessions in the fofin =

consumption ofG 4 is then (st a™R), s™ € Vpy, t" € Vp, ™ > 0, m =
1,..., M. In unicast sessio®,,, a sendeg™ transmits
p(Ga) = Zpij' (7) information to a receiver™ at rate ™R (bps). As
iyeA a modeling simplification, we adopt the traffic scaling
B. Structure of Supported Capacity Graphs [9] factor R as a scalar measure of rate, since the power

By timesharing among different physical states, fate tradeoff, rather than the throughput tradeoff among
is possible to achieve any convex combination of thesers, is our current focus.



D. Multi-commodity Flow on a Given Capacity Graph Power T ™ ~
T Reg|on of ach|evab!e

Routing the traffic demand§sS,,} on a given capac- (p R) pa|rs
ity graph G = (V, E,c) amounts to the well-known b
multi-commodity flow problem in graph theory. Traf-
fic demands{S,,} can be accommodated by a multi- “
commodity flow assignment if and only if the following p = EmmR
system of linear constraints has a feasible solution b

fMow) >0, Yowe Eim=1,.... M (11) :
M Re Rmaz Rate
Z fMow) < clvw), Yow e E, m=1,...,M (12)
m=1 Fig. 3. The power rate function. The shaded region represents
m _ m -0 the set of achievable power rate pai_rs. The power rate fun;tion is
Z 7 (vw) Z 7 (wo) ’ the boundary of the achievable region and is nondecreasing and
weVivweEl weViwveE . .
m o convex. Under the physical layer model of this paper, the power
Vo e VA\{s™,t"}, m=1,.... M (13)  rate function is linear up to certain rafe. with the slope being the
myom, \ m(, o my _ om minimum energy-per-bity™"". R,... is defined as the maximum
Z; F (s w) Zm F*(ws™) = o™ R, rate beyond which no higher rate can be supported regardless of the
weV:smweE weV:iwsmeE power consumption.
m=1,..., M. (14)

The maximum achievable rate on a given capacity grap

G. R(G), can be found by maximizing ra@ subject to hTheorem 2: The power rate functio®(R) is linear

up to certain rateR. with the slope being the minimum

(11)-(14). energy-per-bit, i.e.,
I1l. THE POWER RATE FUNCTION P(R) = E"™R, R < R.. (16)
Definition 3 (Achievable Power Rate Pair): Proof: Let G = (Vp, E¢, c) denote the capacity graph

A power rate pair(P, R) is said to beachievableif in the solution of the linear program in Figure 2. Thas,
there exists a supported capacity gra@h which can achieves a rat&(G) = 1 at a powerP(G). There exists
accommodate ratd? and has a power consumptiora scaling factoe > 0 such thatG € G, and the energy-

P(G) < P. per-bit is the same a§, i.e., P(eG)/R(eG) = P(G).
Definition 4 (Power Rate Function): We prove P(G) = E™™ by contradiction. Suppose

The power rate functio®®(R) for a wireless network is instead there is a capacity grapt € Gy such that

the minimum of all power value® such that(P, R) is P(GY)

achievable for a given rat&. R(G) P(G). 17)
Theorem 1:  The power rate functionP(R) is

nondecreasing and convex. Then ( )G* would satisfy all the constraints in Fig-

Proof: If (Py, R;) and (P, R,) are achievable, then byYre 2, yet achieving a smaller power. This leads to a

timesharing, power rate paiiy Py +A\2 P, A R1+ o Ro) contradiction. .

is achievableyA; > 0, A > 0 and Ay + Ay < 1.
By setting (P, R2) = (0,0), we can establish that V. REALIZABILITY OF A GIVEN CAPACITY GRAPH

P(R) is nondecreasing. B In this section, we ask the following question: “is
a given capacity grapli: = (Vy, Ec,c) realizable as

For an achievable power rate pdiP, R), the ratio 5 convex combination of feasible elementary capacity
P/R is the energy-per-bit, which can be used as g@aphg?”

guantitative measure of energy efficiency. Introduce _
A. Background: Vertex Coloring

' P(R
Eyt = i% % (15) The neighborhoodof » in an undirected graply is:
The following Theorem 2 shows that the minimum N@)={weV:vwe EWU)} (23)

energy-per-bitE]"™™ is achievable and can be found byrhe degreeof a vertexv in U is d(v) = |N(v)|. The
a linear program. This corresponds to the first linear segraximum degree of a graph is

ment of P(R) starting from a rate of zero, as illustrated
in Figure 3. A(U) = maxd(v). (24)



min Z c(vw)pyw  Subject to: (18)

vweEFEo

fMow) >0, Yowe Ec, m=1,...,M (19)

M
Z M (vw) < c(vw), Yow € Eg, (20)

m=1
S fMew) = > fMww) =0, Yoe W\{s" ", m=1,...,M (21)

weVyvweE weVy:wveE
Z M (smw) — Z fMws™)=a™, m=1,....M (22)
weVy:smweR weViwsmeE

Fig. 2. A linear program which computds]™ .

A proper vertex coloringof an undirected graply is vw Wi W,
an assignment of colors (or integer labels), one for each G = (Vo Ber )
vertex of U, such that no two adjacent vertices receive
the same color. Thévertex) chromatic numbery(U),

of an undirected graply/ is defined as the minimum Pa be, PG oq
. . . 3

number of colors required in a proper vertex coloring.
A clique refers to a subset of vertices that induces  Conflict Graph Usage Conflict Graph U

a complete sub-graph. Thdique numberw(U) of a
graphU is the maximum number of vertices among the
complete subgraphs @f.

Theorem 3 (See, e.g., [10]):

Fig. 4. lllustration of a usage conflict graph.

used three times and etc. The conflict grdptiescribes
w(U) < x(U) <AU) + 1. (25) conflicts among links and hence the rules of allowed
The lower boundw(U) holds because the verticesoexistence in a time slot. We constructisage conflict
in a clique of U must receive different colors in agraphU, as illustrated on the right of Figure 4. Introduce
proper coloring. The upper bound can be established o verticesvw,, vws to represent the uses, imstances
a greedy coloring algorithm. First, assign a fixed ord@f link vw and three verticepq:, pg2, pgs to represent
to the vertices, sayy,...,v,, n = |[V(U)|. Then, visit the instances of linlg. Conflicts exist between linkw
the vertices in turn and assign each vertgxthe first andpg; hence inU, each instancew; has edges with
available color, i.e., the smallest color label that has n@ll instances ofpq, pq1, pge, and pgz. Conflicts also
been used to color any neighbor @f ThusA(U) + 1 exist between different instances of the same link
colors is sufficient with any order. hence an edge is drawn betweam andvws. A proper
The following heuristic coloring order can be foundertex coloring corresponds to a scheduling of links into
in [11] and [12]: choose the last vertey to be the one time slots such that the scheduled links in any time slot
with the minimum degree i#/; then choose,,_; to be can coexist without any conflict. The chromatic number
the one with the minimum degree Ui — v,,; and so on. x(U) is then the minimum number of time slots required
for conflict-free scheduling. Since there exists a certain
B. Sufficient Condition for Realizability conflict-free schedule where linkw is used twice and

Let a Capacity grapr — (%;EC7C) represent the link pq is used three times over a periOd mU) slots,
rates that need to be provided on the wireless links. \k&esc(vw) = ﬁ c(pq) = ﬁ can be supported on
begin by illustrating the basic idea via Figure 4. the two links.

Assume the wireless network operates in a syn-We can generalize from the explanation above and
chronous time-slotted mode and a single use of a wireledsserve that the realizability of a capacity graph is
link takes one fixed time slot. In Figure 4, suppose linkquivalent to the existence of a conflict-free schedule of

vw needs to be used twice and linky needs to be requested uses(instances) of the links over a long period,



which can be further linked with a proper vertex colorintinks that mutually conflict. Consequently, the following
of the usage conflict grapti. This observation is key to condition is necessary for realizability
the following Theorem 4.

Theorem 4 (Sufficient Condition for Realizability): > clow) <1, (29)
Under the model described in Section Il, a given vwek
capacity graptG = (Vj, Ec, c) is realizable if Enumerating cliques in a general graph is computa-

tionally difficult. However, we may exploit the unique
c(vw) + Z c(pq) <1 Vow € Eg.  (26) structural properties of the conflict graph due to the
P pgEN (vw) interference model.
. Proof: Multiply both sides of (26) by a (large enough) In [13], Baker, Wieselthier, and Ephremides proposed
integer number) . -
a simple model for wireless networks, where the only
constraint imposed on the nodes is that each node can
Q | c(vw) + Z c(pg)| <Q Yow € Eg. transmit to or receive from at most one other node at
pq: pgeN (vw) any given time. This model is called “free of secondary

Without essential loss of generality, we can assurmgerference”. As men_tiongd in Sec_tion_II-A, t_he interfe_r-
Qc(vw), Yow € Ec are all integers. Construct a usag&NCe model gdopted in this paper implies thl_s coq;tralnt.
conflict graphU as follows. Corresponding to eactBased on this constraintys| cliques can be identified,
vertexvw of I, we introducey = Qc(vw) vertices,vws, _each comprising the set of I.|nks |n(:|d§nt at a nod_e
..., vw, in U. Fully connect these edges i/, to reflect in the connectlvllt_y graph. This results in the following
conflicts among uses of a same linkvth € N (pq), then Necessary condition

we put an edge betweenv; andpg;, Vi, j. The degree c(vw) + o) < 1. Yo eV
of a vertexvw; in U is Z (vw) Z (wv) <1, 0

d(vw;) = Qe(vw)+ > Qelpg) — 1. (27)

Pg: pgEN (vw)

weVy: vweFE¢ weVy: wveFE s

(30)
which has been presented in [2] for computing an upper
bound ofR,,., under the free of secondary interference
Hence the maximum degree bf is model.

We now present a new method that identifies cliques
A(U) = max Q |c(vw) + Z c(pg)| —1 ~ based on Lemma 1. Recall from Section II-A, when
vwekc a wireless linkij is active, it exclusively occupies the

pq: pgEN (vw) . . . o . .
<0-1 spatial regionQ2(ij), which is the union of two circles
- ) centered afX; and X; with radius5|X; — X;|. For any
According to Theorem 3, spatial locationX, we can identity the set of links
X(U) <AU)+1<Q. (28) K(X) = {ij|X € Q(ij)} . (31)

Thus, inQ time slots, each linkw can be used)c(vw) These set of links mutually conflict because the associ-
times, resulting in rate$c(vw)} being supported. Con-ated spatial region§Q(ij)} overlap at pointX. There-
sequently( is decomposable into a convex combinatiofore, K(X) is a clique. Hence we have the following

of @ elementary capacity graphs with = ... = A\¢p = necessary condition for realizability.

1/Q. ] Theorem 5 (Necessary Condition for Realizability):
Let X denote a given spatial location. Under the

C. Necessary Condition for Realizability physical layer model described in Section II-A,

a necessary condition for a given capacity graph

According to Theorem 3, in order to arrive at — (Vi, Ec., ¢) to be realizable is

necessary condition for realizability, we can identify
cliques in the usage conflict gragh Note that vertices Z c(ij) <1, (32)
{vw;} are fully connected and ifw is adjacent topq ijeK(X)

in I, thenvw; is adjacent tgg;, Vi, j. Because of these
structural properties, a clique ih can be mapped to a
clique inU and vice versa. Thus, we just need to identify Z c(ii)I(X € Q>ij)) < 1, (33)
cliques in the conflict grapli. Each cliqueK is a set of ijeEc

or equivalently



wherel(-) is the indicator function.

Of course, we may check other spatial locations, which

may result in different cliques. Note that if we pick

as the location of a node, say;, then K(X;) includes

all links that are incident at node and possibly others.

Therefore, by checking the locations of the nodes, we

arrive at a necessary condition that is stronger than (30).
We can integrate both sides of (33) over a give region

Qo (or summing both side of (33) over a finite collection

of locations). This leads to the following corollary. ~ Fig. 5. Relations among different sets of capacity graphs. The

Corollary 1: Let ), denote a given spatial region entire set of supported capacity graphsGis = G(By). Since the
’ 0 ‘number of elementary capacity graphs to be considered can grow

Under the physical layer model described in Section Wxponentially in the number of users, it is computationally impractical
A, a necessary condition for a given capacity gréph- to search ovego. G1 C Go is the subset of capacity graphs satisfying
(VO, Ec, c) to be realizable is the sufficient condition in Theorem 4(B) C Gy is the subset of
capacity graphs spanned by a finite number of elementary capacity
graphs inB. G2 D Go is the set of capacity graphs satisfying the
Z / c(if)I(X € Q(ij)) dX < / 1dX. necessary condition in (30§s D Go is the set of capacity graphs
ij€Ec XeQ XeQo satisfying the necessary condition in Theorem 5. Searching over
(34) subsetsj(B) and g, yields upper bounds oP(R). Searching over
supersetsj, andGs yields lower bounds oP(R).

(P(G), B(G))

P@) = Y clowpm
vwebo

D. Maximum Scaling of a Capacity Graph

Note that any capacity grapf can be scaled by a
sufficiently small numbe¥k such thatkG is realizable.
We can thus define

The physical and link layers of a wireless network
can support many different capacity graphs, each being
a convex combination of several elementary capacity

#(G) = max {k |kG € Go } (35) graphs. Due to the _compinatorial n.ature in arranging

concurrent transmissions in the physical layer, there can

which is the maximum scaling factor such that the scal&@ an exponential number of elementary capacity graphs

capacity graph is realizable. Lower and upper bounts be considered. This renders a full search over the
of k(G) can be constructed from the sufficient andomplete setj, difficult. In [3], Jain et al showed that

necessary conditions above. For example, finding R, IS NP-hard under the interference model
1 characterized by the conflict graph.
k(G) > : The basic idea of the upper-bounding (resp. lower-

MaXyu:pweEe C(V0) + D0 paeNww) C(pq()%) bounding) approaches to be discussed next is to search

This lower bound ofx(G) holds for generalG over a subset (resp. superset)daf which can be char-
" acterized by a finite number of linear constraints. The

For a givenG, a better lower bound of(G) can be it Cof I iraints ch terizing th h
found by actually applying the greedy coloring algorithrnInI € set ot linear constraints characterizing the searc

: 5 . space of capacity graphs can be combined with the linear
(Section IV-A) on the usage conflict gragh constraints characterizing feasible multi-commodity flow

V. BOUNDING POWER RATE FUNCTION assignment, resulting in a joint linear program with

. _ _ power minimization as the objective.
To facilitate understanding, we use Figure 5 as a “road

map” for this section. A. Upper-bounding

According to Section 1I-D, given a capacity grapgh 1) Searching overG(B): One way to reduce the
as the provision of network resources, the maximum ratemplexity is to restrict the search space to those com-
R(G) that can be achieved can be found by solving RPsite capacity graphs spanned by a small subset of
linear program which assigns the multi-commodity flowRreselected eIemente_lry capacity graphs. With a finite set
{f™}. A given capacity grapl has an associated poweP; elementaary capacity graﬁris;)g Bo, the convex set
consumptionP(G). Thus, the problem of finding the° Supported capacity graphs becomes
power rate functionP(R) turns into one of finding the

optimal supported capacity graph, providing a desiréd® = {G G= zk:/\’“G’“’ ;Ak 1 A 20k Gy € B}’
rate R at the minimum power consumption. (37)




where the dependence dhis explicitly shown. Given a  Similarly, let Gs denote the set of capacity graphs
finite set of elementary capacity grapfisthe associated satisfying|V,| applications of (33), one for each node’s
convex combination coefficients\;} can be treated aslocation. With this set of spatial locations checké&gl,C
variables and jointly optimized with the flow variablegj> and hence the resulting lower bound is tighter.
{f™}, resulting in a combined linear program. Such

a joint optimization idea was first proposed by Jaig. The Proposed Bounding Procedure

et al in [3] to lower boundR,,.,. They suggested a ] )
random construction of3. The major drawback with e explain the proposed bounding procedure as be-

their method is that a more systematic way of efficientfglw' which integrates the tools and results developed

setting is lacking. It is unclear how to select a small bufus far. To facilitate understanding, we use Figure 10

“efficient” subset that provide a reasonably good sparﬁnd Figure 11 in the Simulations section as a concrete
By minimizing P(G) overG(B) C G, while providing €Xample.

a rate R, an upper-bound of the power rate functionl. Run the linear programs that perform searching

P(R) can be given. However, for a givé#) such a linear

program may result in a solution where the sum of the

flows F = (Vo, Ec, ) with p(vw) = Sm_, f™(vw),
does not match exactly wittf. By reducing the provi-

sion of resources to F', which can also be supported,

the power can be reduced frof(G) to P(F') while

over G; and Gz while minimizing the power con-
sumption. This gives several power rate pairs, as
shown in Figure 10. Each power rate p&ir, R)
returned by the linear programs has an associated
capacity graphgG}, i.e., (P, R) = (P(G), R(G)).

The points returned by searching o¥gr constitute

still supporting rateR. Thus, we propose to set the  the proposed lower bound d?(R).
optimization objective as 2. For each power rate paiP(G), R(G)) returned by
) searching oveiG;, we apply the greedy coloring
i Z P(vw)pow- (38) procedure described in Section IV-A to actually
vwebe color the usage conflict graply. This gives a
lower bound ofx(G) (Section IV-D), which we
denote byk. Since the scaled capacity grapldr
is realizable, power rate paixP(G),xR(G)) is

2) Searching overG;. Let G; denote the set of achievable. Becausg, is based on a conservative
capacity graphs satisfying the sufficient condition in  upper bound of¢(U), x > 1. In Figure 10, we draw
Theorem 4. Thus, Theorem 4 essentially identifies the a dashed line that connects ed¢NG), R(G)) with
subsetg; C Go, which can be characterized by a set of  the scaled versiorix P(G), xR(G)). It appears in
linear constraints. Searching ov@r results in the linear Figure 10 that the points associated with have
program in Figure 7. been “pushed” upward.

The linear program in Figure 7 can be run for different  Apply similar operations to process the power rate
values ofR to give an upper-bound function. The linear  pairs returned by searching ovgg. Most points
program in Figure 7 will cease to have a feasible solution associated witlgs, except those at low rates, appear
for rates larger than a threshold. To find such a threshold, to be “pulled” downward since they are based on
we just need to replace the objective of Figure 7 by a lower bound ofy(U). These exceptions occur at
small rates where the minimum energy-per-bit is
achieved. This is because at a sufficient small rate,
the clique constraints are loose. Note that although
the points returned by searching owgy may not
be achievable, the resulting points after the scaling
operation are achievable.

In Section IV-C, we have discussed necessary con3. Compute the convex hull of the set of achievable
ditions for realizability of a given capacity graph = power rate pairs obtained. The convex hull for
(Vo, Ec, ¢), which can be expressed as linear constraints the achievable points in Figure 10 is shown in
in {c(vw)}. Let Gy denote the set of capacity graphs  Figure 11.
satisfying (30). To perform searching ov6s, we just 4. For each collected power rate par(G*), R(G*))
need to replace (51) in Figure 7 by (30). on the convex hull, we can run the greedy coloring

The complete linear program is shown in Figure 6. We
denote the resulting upper-bound function BYR, B),
where the dependence &his explicitly shown.

max R.

Since G; C Gy, the threshold is a lower bound to the
maximum achievable throughpii,, . -

B. Lower-bounding



subject to: (39)

vweEs m=1
fMow) >0, Yowe E, m=1,...,M (40)

M

Z M ow) < Z)\kck(vw), Yow € E¢ (41)

m=1 k
d <, (42)

k
A >0, Vk (43)
Z M (ow) — Z fMwv) =0, YveW\{s",t"}, m=1,...,.M (44)
weVy:vweEs weVy:wveEE s

Z fm(s™w) — Z fM(ws™)=a™R, m=1,...,M (45)

weVy:smweEs weVy:wsmeEq

Fig. 6. A linear program which gives an upper-bound of the power fratetion P(R). This essentially performs searching o).

min Z c(vw)pyy Subject to: (46)
vweFEqo
fMvw) >0, Yowe Ec, m=1,...,M 47)
M
Z fM(vw) < c(vw), Yow € Eg, (48)
m=1
Z M (ow) — Z fM(wv) =0, YveW\{s",t"}, m=1,....M (49)
weVy:vweE weVy:wveER
Z fr(s"mw) — Z ffws™)=a™R, m=1,....M (50)
weVy:smweER weV:iwsmeER
c(vw) + Z c(pq) <1, Yow € E¢. (51)

pq: pgeN (vw)

Fig. 7.

procedure to decomposg# into a convex combina-
tion of a set of elementary capacity gragi; , v}

NS A >0 (52

G'=> NG,
k k

Let B = {G%,Vk,Vi}, which consists of all ele-
mentary capacity graphs that have contributed

A linear program which gives an upper-bound of the power fratetion P(R). This essentially performs searching ovar.

VI. SIMULATIONS

We have conducted simulations on two example com-
munity wireless networks. Some simulation parameters
are set up as follows. We se¢t = 3 (the path loss
exponent),v 1.0, andy; = 8. We setp,,q, at a
value corresponding to a maximum transmission range
of 200m. The power of a linkj, p;;, is normalized with

the power rate pairs lying on the identified convex
hull. With this set of elementary capacity graphs
B, we can run the linear program in Figure 6 that

| X — X

{gspect tOpmaz- Thus,
3
200 ) '

pij:(

(53)

performs searching ovel(B). This yields the final A. The First Test Configuration

upper boundP(R, B). An example can be found in
Figure 11.

Figure 8(upper) shows the first example community
wireless network, in which the locations of the houses
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(lower) The connectivity graph.
Fig. 9. (upper) The second example community wireless network.
(lower) The connectivity graph.
are marked with dots. We consider two unicast sessions
S = (1,5,R) and So = (42,43, R), as illustrated
in Figure 8(upper) by two straight lines connectingecessary condition of Theorem 5 is superior to (30).
each source with the associated receiver. Figure 8(lowerAs the next step, for each power rate pair
shows the connectivity graph, which consists of link&P(G), R(G)) returned by searching ove; and Gs,
with distance less than 200m. we apply the greedy coloring procedure to find a scaling
The procedure described in Section V-C is used tactor x such thatsG is realizable. It can be seen from
compute upper and lower bounds Bf R). We first run Figure 10 that the points associated with have been
linear programs that perform searching odr Go, G3, “pushed” upward, whereas most points associated with
respectively. Recall thaf; denotes the set of capacityGs, except those achieving the minimum energy-per-bit,
graphs satisfying the sufficient condition in Theorem 4ave been “pulled” downward. We next compute the
G, denotes the set of capacity graphs satisfying the neonvex hull over all achievable points. This is shown
essary condition (30), an@ denotes the set of capacityin Figure 11. It can be observed that these operations
graphs satisfying the improved necessary condition lvave significantly tightened the upper bound.
Theorem 5, with the set of spatial check points being theEach capacity grapli’ associated with a point lying
locations of the nodes. The obtained power rate pairs @@ the convex hull is then decomposed with greedy
shown in Figure 10. coloring. Taking the union of the useful elementary
It can be observed that the proposed lower-boundiogpacity graphs results in a getFinally, searching over
approach, i.e., optimizing ove¥s, gives better results G(B) delivers a better upper bound, since the search
than optimizing overGs. This demonstrates that thespaceG(B) contains all capacity graphs that achieve
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Fig. 10. The power rate pairs returned by searching oierg.,

G5 and returned by greedy coloring for the first example network.Fi9- 11. Two upper bounds and a lower bound of the power rate

function for the first example network.

points lying on the convex hull. Comparing the lower

bound and the upper bound, it can be concluded ﬂJij(,ﬁper-bounding first searches over a large space which
R lies between 0.33 and ’10 coarsely approximate the true solution sp&ge Once

Figure 12-15 present the four capacity graphs achiet\r/]-e end-to-end traffic demand is mapped into a particular

ing the last 4 points on the upper bouRiR, B). The ca_lpacity graphG, G can be decomposed at a finer scale
- . . with greedy coloring.

provisioned link capacitie§c(vw)} are shown next to .

the associated links. As illustrated in Figure 12, when the':Or these two test networks,_ it can be observed thgt

traffic load is light, each session uses only the minimu € pro'posed methods result in very close bounds in

energy path. As the traffic load gets heavier in Figure 1 ’e region where both the power a_md t_he rate are I.OW'

a second route, which is less energy efficient, is used B?presentatlve systems operating in this energy-limited

each session. The connectivity of Figure 14 appearsr?cg'me are sensor networks and UWB systems.

be similar with that of Figure 13; the difference lies in

that more traffic is carried by the less energy-efficient VIl. RELATED WORKS

route in Figure 14. Interpreted in the language of the current paper, pre-
vious work [2] gave the necessary condition (30) for
the realizability of a given capacity graph and proposed
We have also tested the performance over a second #&arching oveg, to provide an upper bound @k,
ample network. The traffic demand and the connectivity Previous work [3] by Jain et al introduced the conflict
graph are given in Figure 9(upper) and Figure 9(lowegraph and showed that finding,,., is NP-hard under
respectively. There are 58 houses space roughly intt& interference model characterized by the conflict
rows. There are two unicast sessiafis = (1,52, R), graph. Interpreted in the language of the current paper,
Sy = (6,53, R). they proposed to lower boun&,,,, by searching over
Similar as in the first test network, Figure 16 shows th&(3) with a random construction of3. The major
power rate pairs returned by searching oder Go, Gz drawback with their method is that a more systematic
and returned by greedy coloring and Figure 17 gives tha@y of efficiently settingB is lacking.
final upper and lower bounds. It can be observed that theUsing the “free of secondary interference” model [13],
scaling (“pushing/pulling”) of capacity graphs returnegrevious work [7] by Bhatia and Kodialam considered
by searching ove§; andgGs is very useful in producing minimizing the total power while providing different
a better upper bound. In essence, the proposed methodadés for a single unicast session. They formulated the

B. The Second Test Configuration
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6 Upper-bound and lower—bound of the power rate function P(R)
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Fig. 16. The power rate pairs returned by searching @4erG., Fig. 17. Two upper bounds and a lower bound of the power rate
Gs and returned by greedy coloring for the second example netwofinction for the second example network.

problem as a nonlinear optimization and proposed canstraints. The conditions essentially identify a subset
polynomial time 3-approximation algorithm. G1 and a superse§s of Gy. Searching ovel; while
Previous work [9] by Wu et al presented an iterativeninimizing power yields an upper bound d?(R).
optimization that alternates between a linear optimizatiésearching overGgs while minimizing power yields a
and heuristic schemes for updating the collection &iwer bound ofP(R). We then propose to apply a greedy

elementary capacity graphs. coloring procedure to fine tune the obtained bounds.
Simulation results on example community mesh net-
VIII. CONCLUSIONS works demonstrate that the proposed bounds are tight in

The power rate function models the tradeoff betwedhe low power and low rate regime.
rate and energy efficiency for a given wireless network In order to focus on the bounding techniques, in
with a given traffic pattern under a layered model dhis paper, we model the end-to-end traffic demands
wireless networks. Finding the power rate function irRs multiple unicast sessions. The proposed bounding
volves a cross-layer optimization. A supported capacitgchniques can be extended to the case with multiple
graph describes a possible provision of bit-rate resourdgglticast sessions, by replacing multicommodity flow
on the links by the physical and link layers. The entirgith multicommodity union of flows and taking physical
set of supported capacity graphs of a wireless netwdgyer broadcast into account.
Go is comprised of convex combinations of elementary
capacity graphs. Each supported capacity gréphs
capable of providing a maximum ratB(G) and has [1] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
. . IEEE Trans. Inform. Theory6(2), pp. 388-404, Mar. 2000.
?n associated power_ con.surpptuﬁ’r(G). T_he problem éZ] M. Kodialam, and T. Nandagopal, “Charactering achievable
is thus transformed into finding the optimal supported * rates in multi-hop wireless networks: the joint routing and
capacity graph associated with each traffic rAteHow- scheduling problemACM MOBICOM Sept. 2003.
ever, the number of elementary capacity graphs to b8l K. Jain, J. Padhye, V. N. Padmanabhan, L. Qiu, “Impact of
considered can arow exponentially. rendering a complete interference on multi-hop wireless network performané&;M
! g p Y; 9 p MOBICOM, Sept. 2003.
search impractical. [4] S. Singh and M. Woo, “Power-aware routing in mobile ad hoc
In this paper, we propose a sufficient condition (The- networks,”Proc. ACM MOBICOM 1998.

" ] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless
orem 4) and a necessary condition (Theorem 5) for B networks IEEE J. Sel. Areas Commil7(8), Aug. 1999.

given capacity g_raph to be realiza_ble’ each of V\_’hicrfﬁ] A. Ephremides, “Energy concerns in wireless networkBEE
can be characterized by a polynomial number of linear Wireless Communicationgp. 48-59, Aug. 2002.
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