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Abstract— Given a wireless ad hoc network and an end-
to-end traffic pattern, the power rate function refers to
the minimum total power required to support different
throughput under a simplified layered model of wireless
networks. A critical notion of the layered model is thesup-
ported (realizable) capacity graphs, which describe possible
bit-rate provisions on the links by the physical and link
layers. Under the layered model, the problem of finding
the power rate function can be transformed into finding
the minimum-power supported capacity graph that can
provide a given throughput.

We introduce a usage conflict graphto represent the
conflicts among different uses of the wireless medium.
Testing the realizability of a given capacity graph can be
transformed into finding the (vertex) chromatic number,
i.e., the minimum number of colors required in a proper
vertex-coloring, of the associated usage conflict graph.
Based on an upper bound of the chromatic number, we
propose a linear program that outputs an upper bound of
the power rate function. A lower bound of the chromatic
number is the clique number. We propose a systematic way
of identifying cliques based on a geometric analysis of the
space sharing among active links. This leads to another
linear program, which yields a lower bound of the power
rate function. We further apply greedy vertex-coloring to
fine tune the bounds. Simulations results demonstrate that
the obtained bounds are tight in the low power and low
rate regime.

I. I NTRODUCTION

Throughput and energy efficiency are two important
performance metrics for wireless ad hoc networks, each
of which has been studied extensively in the literature
[1]–[6]. Whereas one or the other may be more critical
in certain wireless network, these two considerations
do closely affect each other. A brief explanation is as
follows. Consider multiple unicast sessions in a wireless
network. For the sake of energy efficiency, each session
would prefer the path along which the energy consump-
tion is the minimum. However, if each session only
routes packets along its individual minimum energy path,
bottlenecks may be created, which would subsequently
constrain the overall throughput. Higher throughput may

be achieved by arranging some sessions to adopt routes
with sub-optimal energy efficiency.

The subject of this paper is the tradeoff between
throughput and energy efficiency for a given wireless
network with a given end-to-end traffic pattern. Among
others, characterizing such tradeoff can facilitate evaluat-
ing the efficiency of different network structures. Finding
the optimal tradeoffs between throughput and energy
efficiency essentially turns into addressing how the op-
erational characteristics of a wireless network should be
varied by coordinating the degrees of freedoms (e.g.,
routing, scheduling, power allocation, beam patterns)
differently, as the offered traffic load changes.

Some recent works that investigate such tradeoff are
as follows. Previous work [7] by Bhatia and Kodialam
considered minimizing the total power consumed in pro-
viding different rates for a single unicast session. They
formulated the problem as a nonlinear optimization. Pre-
vious work [8] by Cruz and Santhanam considered min-
imizing the total power consumed in providing different
rates for multiple unicast sessions. Their formulation is
also a nonlinear optimization. Previous work [9] by Wu
et al considered minimizing the total power consumed in
providing different rates for multiple multicast sessions.
They proposed an iterative optimization that alternates
between a linear optimization and a heuristic algorithm.

While very different modelling assumptions have been
adopted in [7]–[9], these previous works used similar
curves to quantitatively represent the tradeoff between
throughput and energy efficiency. Based on these, we
use the namepower rate functionto refer to the mini-
mum total power required to support different end-to-
end throughput for a given wireless network with a
given traffic pattern, under a simplified layered model
of wireless networks.

Note that the “minimum” investigated in this paper
is certainly not the fundamental limit in network infor-
mation theory, where lots of problems remain open. For
example, the information theoretic capacity region for a
simple network with a source, a relay, and a destination,



remains unknown. Instead, we adopt a simplified layered
model of wireless networks. The basic assumptions of
the layered model are as follows. The physical and link
layers of the wireless network provide communication
resources in the form of a collection of “lossless bit-
pipes”, each capable of transferring information between
(neighboring) nodes at a certain rate. Given a collection
of lossless bit-pipes, information can be routed from
the sources to the destinations at certain rates in the
network layer. Such a simplified model is certainly
sub-optimal from an information theoretic perspective.
Nonetheless, its simplicity facilitates the analysis and
enables some engineering insights to be obtained. In
fact, these assumptions have been implicitly or explicitly
made in many recent works, such as [1]–[3], [7]–[9].

To explain the layered model in more details, we adopt
the terminologies and notations in [9]. A collection of
lossless bit-pipes mentioned earlier is called acapacity
graph in [9]. A capacity graphcan be represented as a
tupleG = (V, E, c) whereV andE are the set of vertices
and edges respectively and there is a positive edge ca-
pacity c(vw) associated with each directed edgevw. At
the physical layer, the network operates in many different
physical states, each corresponding to an arrangement of
concurrent transmissions among neighbors. Each physi-
cal state corresponds to anelementary capacity graph. At
the MAC layer, by timesharing different physical states,
convex combinations of the elementary capacity graphs
can be achieved, hence presenting to the upper layers a
set of supportedcomposite capacity graphs.

Each supported capacity graphG provides certain
communication rateR(G) and has an associated power
consumptionP (G), corresponding to the two axes under
investigation. The problem of finding the power rate
function, in the end, turns into one where theoptimal
supported capacity graph, associated with each traffic
rate, is the target. However, computational difficulties
can arise when searching over the entire set of supported
capacity graphs, since the number of elementary capacity
graphs to be considered can grow exponentially in the
number of nodes.

In this work, we present a sufficient condition under
which a capacity graph can be decomposed into a
convex combination of elementary capacity graphs. We
also present a necessary condition based on the fact
each link exclusively occupies certain spatial region.
These conditions can be expressed as linear constraints.
The sufficient condition identifies a subset of supported
capacity graphs and the necessary condition identifies a
superset of the set of capacity graphs. By optimizing the

multi-commodity flow assignment over the subset (resp.
the superset) with power minimization as the objective,
we obtain a linear program that yields an upper-bound
(resp. a lower bound) to the power rate function.

The solution to a linear program mentioned above
transforms the end-to-end traffic demand into a particular
capacity graph that need to be supported. For each
resulting capacity graph, we propose to apply a greedy
coloring procedure to scale the obtained power rate pair
and hence improve the bounds.

II. PRELIMINARIES: MODELLING ASSUMPTIONS

A. Physical Layer Model

Let V0 denote the set of nodes in a wireless network,
which are labelled1, 2, . . . , |V0|. Let Xi denote the
location of nodei. Assume there is a fixed transmission
power pij = κ|Xi − Xj |

β associated with each linkij,
whereκ andβ are two positive constants. Further assume
there is a limit pmax on the maximum transmission
power that can be used. Thus, a wireless linkij is
regarded as feasible, or nodei can directly transmit to
nodej, if and only if pij ≤ pmax. In other words, the
connectivity graphC, i.e., the graph of all possible links,
has vertex setV0 and edge setEC = {ij |pij ≤ pmax }.

We adopt theconflict graphdefined by Jain et al [3]
as the interference model. The vertices in the conflict
graph I correspond to links in the connectivity graph.
The edges inI represent conflict relationships among
links in EC .

Definition 1 (Conflict Graph [3]):
Theconflict graphis an undirected graphI with V (I) =
EC . There is an undirected edge between verticesij and
kl if the links ij and kl conflicts and thus cannot be
concurrently active.

More specifically, here linkij and kl are allowed to
be concurrently active if and only if

|Xk − Xj | ≥ (1 + ν)|Xk − Xl|, (1)

|Xi − Xl| ≥ (1 + ν)|Xi − Xj |, (2)

whereν is a positive constant. Note that conditions (1)
and (2) implies that each node can only transmit to
or receive from at most one other node at any time.
With some simple geometric arguments, the following
Lemma 1 can be established.

Lemma 1: Under the physical layer model described



above, if link ij andkl can be concurrently active, then

|Xj − Xl| ≥
ν

2
(|Xi − Xj | + |Xk − Xl|) , (3)

|Xk − Xi| ≥
ν

2
(|Xi − Xj | + |Xk − Xl|) , (4)

|Xk − Xj | ≥
ν

2
(|Xi − Xj | + |Xk − Xl|) , (5)

|Xi − Xl| ≥
ν

2
(|Xi − Xj | + |Xk − Xl|) . (6)
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Fig. 1. Exclusive share of space.

Introduce

Ω(ij) ≡
{

X
∣

∣

∣
min{|X − Xi|, |X − Xj |} ≤

ν

2
|Xi − Xj |

}

,

which refers to the spatial region comprising points
falling into one of the two circles centered atXi andXj

with radiusν
2 |Xi−Xj |. According to Lemma 1, if linkij

andkl can be concurrently active, thenΩ(ij)∩Ω(kl) =
∅, as illustrated in Figure 1. Thus, when a wireless linkij
is active, it exclusively occupies the spatial regionΩ(ij).

This exclusive sharing of space constrains the max-
imum achievable throughput. In [1], with a different
interference model, Gupta and Kumar showed that a
wireless link exclusively shares a disk centered at the
receiver. The observation was used to establish a tight
upper bound of the asymptotic scaling rate of transport
capacity.

Summary: A set of wireless linksA is allowed to be
concurrently active if no conflict exists between any two
links in A. Under our modeling assumptions, a physical
state of interest can be characterized entirely by the set of
wireless links that are active. For a given physical state
with active links A ⊆ EC , the associated elementary
capacity graphGA is (V0, A,1); that is,GA has a set of
edgesA ⊆ EC , each assigned unit capacity. The power
consumption ofGA is then

p(GA) =
∑

ij∈A

pij . (7)

B. Structure of Supported Capacity Graphs [9]

By timesharing among different physical states, it
is possible to achieve any convex combination of the

elementary capacity graphs. That is, ifλk is the rel-
ative share of time for the elementary capacity graph
Gk = (Vk, Ek, ck), then it is possible to achieve
on average the capacity graphG =

∑

k λkGk ≡
(∪kVk,∪kEk,

∑

k λkck). The capacity graphs resulting
from timesharing the elementary capacity graphs will be
referred to ascomposite capacity graphs; conversely, the
composite capacity graphs are said to bedecomposable
into elementary capacity graphs as a realization through
timesharing. Hence, a distinguishing feature of wireless
networks is the characterization of supported capacity
graphs as a convex combination of elementary capacity
graphs. This can be stated mathematically as

G0 =

{

G

∣

∣

∣

∣

∣

G =
∑

k

λkGk,
∑

k

λk ≤ 1, λk ≥ 0 ∀k,Gk ∈ B0

}

,

where G0 is the entire set of capacity graphs sup-
ported/spanned by the set of all feasible elementary
capacity graphsB0. For later use, we introduce the
following definition.

Definition 2: A capacity graphG = (V, E, c) is said
to besupportedor realizable if G ∈ G0 or equivalently,
there exists a set of elementary capacity graphs{Gk} ⊆
B0 and a set of timesharing coefficients{λk} such that

G =
∑

k

λkGk,
∑

k

λk ≤ 1. (8)

The power consumption of a composite capacity graph
G =

∑

k λkGk is

P

(

∑

k

λkGk

)

=
∑

k

λkp(Gk). (9)

Since the power associated with an elementary capacity
graphGk is simply the sum of the power of the associ-
ated active links, the power consumption of a supported
capacity graphG = (V0, EC , c) can be immediately
obtained as

P (G) =
∑

vw∈EC

c(vw)pvw, (10)

although the decomposition into convex combinations of
elementary capacity graphs may not be unique.

C. Traffic Pattern

We represent the end-to-end communication demands
as a collection of unicast sessions in the formSm ≡
〈sm, tm, αmR〉, sm ∈ V0, tm ∈ V0, αm > 0, m =
1, . . . , M . In unicast sessionSm, a sendersm transmits
information to a receivertm at rate αmR (bps). As
a modeling simplification, we adopt the traffic scaling
factor R as a scalar measure of rate, since the power
rate tradeoff, rather than the throughput tradeoff among
users, is our current focus.



D. Multi-commodity Flow on a Given Capacity Graph

Routing the traffic demands{Sm} on a given capac-
ity graph G = (V, E, c) amounts to the well-known
multi-commodity flow problem in graph theory. Traf-
fic demands{Sm} can be accommodated by a multi-
commodity flow assignment if and only if the following
system of linear constraints has a feasible solution

fm(vw) ≥ 0, ∀vw ∈ E,m = 1, . . . ,M (11)
M
∑

m=1

fm(vw) ≤ c(vw), ∀vw ∈ E, m = 1, . . . ,M (12)

∑

w∈V :vw∈E

fm(vw) −
∑

w∈V :wv∈E

fm(wv) = 0,

∀v ∈ V \{sm, tm}, m = 1, . . . ,M (13)
∑

w∈V :smw∈E

fm(smw) −
∑

w∈V :wsm∈E

fm(wsm) = αmR,

m = 1, . . . ,M. (14)

The maximum achievable rate on a given capacity graph
G, R(G), can be found by maximizing rateR subject to
(11)-(14).

III. T HE POWER RATE FUNCTION

Definition 3 (Achievable Power Rate Pair):
A power rate pair(P, R) is said to beachievableif
there exists a supported capacity graphG, which can
accommodate rateR and has a power consumption
P (G) ≤ P .

Definition 4 (Power Rate Function):
The power rate functionP (R) for a wireless network is
the minimum of all power valuesP such that(P, R) is
achievable for a given rateR.

Theorem 1: The power rate functionP (R) is
nondecreasing and convex.
Proof: If (P1, R1) and(P2, R2) are achievable, then by

timesharing, power rate pair(λ1P1+λ2P2, λ1R1+λ2R2)
is achievable,∀λ1 ≥ 0, λ2 ≥ 0 andλ1 + λ2 ≤ 1.

By setting (P2, R2) = (0, 0), we can establish that
P (R) is nondecreasing.

For an achievable power rate pair(P, R), the ratio
P/R is the energy-per-bit, which can be used as a
quantitative measure of energy efficiency. Introduce

Emin
b ≡ inf

R

P (R)

R
. (15)

The following Theorem 2 shows that the minimum
energy-per-bitEmin

b is achievable and can be found by
a linear program. This corresponds to the first linear seg-
ment ofP (R) starting from a rate of zero, as illustrated
in Figure 3.

Rate

Power
x

x

x

x

Region of achievable 
(P, R) pairs

Fig. 3. The power rate function. The shaded region represents
the set of achievable power rate pairs. The power rate function is
the boundary of the achievable region and is nondecreasing and
convex. Under the physical layer model of this paper, the power
rate function is linear up to certain rateRe with the slope being the
minimum energy-per-bitEmin

b . Rmax is defined as the maximum
rate beyond which no higher rate can be supported regardless of the
power consumption.

Theorem 2: The power rate functionP (R) is linear
up to certain rateRe with the slope being the minimum
energy-per-bit, i.e.,

P (R) = Emin
b R, R < Re. (16)

Proof: Let G = (V0, EC , c) denote the capacity graph
in the solution of the linear program in Figure 2. Thus,G
achieves a rateR(G) = 1 at a powerP (G). There exists
a scaling factorǫ > 0 such thatǫG ∈ G0 and the energy-
per-bit is the same asG, i.e., P (ǫG)/R(ǫG) = P (G).

We proveP (G) = Emin
b by contradiction. Suppose

instead there is a capacity graphG∗ ∈ G0 such that

P (G∗)

R(G∗)
< P (G). (17)

Then 1
R(G∗)G

∗ would satisfy all the constraints in Fig-
ure 2, yet achieving a smaller power. This leads to a
contradiction.

IV. REALIZABILITY OF A GIVEN CAPACITY GRAPH

In this section, we ask the following question: “is
a given capacity graphG = (V0, EC , c) realizable as
a convex combination of feasible elementary capacity
graphs?”

A. Background: Vertex Coloring

The neighborhoodof v in an undirected graphU is:

N(v) = {w ∈ V : vw ∈ E(U)} (23)

The degreeof a vertexv in U is d(v) = |N(v)|. The
maximum degree of a graphU is

∆(U) = max
v∈U

d(v). (24)



min
∑

vw∈EC

c(vw)pvw subject to: (18)

fm(vw) ≥ 0, ∀vw ∈ EC , m = 1, . . . , M (19)
M
∑

m=1

fm(vw) ≤ c(vw), ∀vw ∈ EC , (20)

∑

w∈V0:vw∈E

fm(vw) −
∑

w∈V0:wv∈E

fm(wv) = 0, ∀v ∈ V0\{s
m, tm}, m = 1, . . . , M (21)

∑

w∈V0:smw∈E

fm(smw) −
∑

w∈V :wsm∈E

fm(wsm) = αm, m = 1, . . . , M (22)

Fig. 2. A linear program which computesEmin

b .

A proper vertex coloringof an undirected graphU is
an assignment of colors (or integer labels), one for each
vertex of U , such that no two adjacent vertices receive
the same color. The(vertex) chromatic number, χ(U),
of an undirected graphU is defined as the minimum
number of colors required in a proper vertex coloring.

A clique refers to a subset of vertices that induces
a complete sub-graph. Theclique numberω(U) of a
graphU is the maximum number of vertices among the
complete subgraphs ofU .

Theorem 3 (See, e.g., [10]):

ω(U) ≤ χ(U) ≤ ∆(U) + 1. (25)
The lower boundω(U) holds because the vertices

in a clique of U must receive different colors in a
proper coloring. The upper bound can be established by
a greedy coloring algorithm. First, assign a fixed order
to the vertices, sayv1, . . . , vn, n = |V (U)|. Then, visit
the vertices in turn and assign each vertexvi the first
available color, i.e., the smallest color label that has not
been used to color any neighbor ofvi. Thus∆(U) + 1
colors is sufficient with any order.

The following heuristic coloring order can be found
in [11] and [12]: choose the last vertexvn to be the one
with the minimum degree inU ; then choosevn−1 to be
the one with the minimum degree inU − vn; and so on.

B. Sufficient Condition for Realizability

Let a capacity graphG = (V0, EC , c) represent the
rates that need to be provided on the wireless links. We
begin by illustrating the basic idea via Figure 4.

Assume the wireless network operates in a syn-
chronous time-slotted mode and a single use of a wireless
link takes one fixed time slot. In Figure 4, suppose link
vw needs to be used twice and linkpq needs to be

vw

pq

vw1 vw2

pq1 pq2 pq3

Conflict Graph I Usage Conflict Graph U

Fig. 4. Illustration of a usage conflict graph.

used three times and etc. The conflict graphI describes
conflicts among links and hence the rules of allowed
coexistence in a time slot. We construct ausage conflict
graphU , as illustrated on the right of Figure 4. Introduce
two verticesvw1, vw2 to represent the uses, orinstances,
of link vw and three verticespq1, pq2, pq3 to represent
the instances of linkpq. Conflicts exist between linkvw
and pq; hence inU , each instancevwi has edges with
all instances ofpq, pq1, pq2, and pq3. Conflicts also
exist between different instances of the same linkvw;
hence an edge is drawn betweenvw1 andvw2. A proper
vertex coloring corresponds to a scheduling of links into
time slots such that the scheduled links in any time slot
can coexist without any conflict. The chromatic number
χ(U) is then the minimum number of time slots required
for conflict-free scheduling. Since there exists a certain
conflict-free schedule where linkvw is used twice and
link pq is used three times over a period ofχ(U) slots,
ratesc(vw) = 2

χ(U) , c(pq) = 3
χ(U) , can be supported on

the two links.

We can generalize from the explanation above and
observe that the realizability of a capacity graph is
equivalent to the existence of a conflict-free schedule of
requested uses(instances) of the links over a long period,



which can be further linked with a proper vertex coloring
of the usage conflict graphU . This observation is key to
the following Theorem 4.

Theorem 4 (Sufficient Condition for Realizability):
Under the model described in Section II, a given

capacity graphG = (V0, EC , c) is realizable if

c(vw) +
∑

pq: pq∈N(vw)

c(pq) ≤ 1 ∀vw ∈ EC . (26)

Proof: Multiply both sides of (26) by a (large enough)
integer numberQ

Q



c(vw) +
∑

pq: pq∈N(vw)

c(pq)



 ≤ Q ∀vw ∈ EC .

Without essential loss of generality, we can assume
Qc(vw), ∀vw ∈ EC are all integers. Construct a usage
conflict graph U as follows. Corresponding to each
vertexvw of I, we introduceq = Qc(vw) vertices,vw1,
. . ., vwq in U . Fully connect theseq edges inU , to reflect
conflicts among uses of a same link. Ifvw ∈ N(pq), then
we put an edge betweenvwi andpqj , ∀i, j. The degree
of a vertexvwi in U is

d(vwi) = Qc(vw) +
∑

pq: pq∈N(vw)

Qc(pq) − 1. (27)

Hence the maximum degree ofU is

∆(U) = max
vw∈EC

Q



c(vw) +
∑

pq: pq∈N(vw)

c(pq)



− 1

≤ Q − 1.

According to Theorem 3,

χ(U) ≤ ∆(U) + 1 ≤ Q. (28)

Thus, inQ time slots, each linkvw can be usedQc(vw)
times, resulting in rates{c(vw)} being supported. Con-
sequently,G is decomposable into a convex combination
of Q elementary capacity graphs withλ1 = . . . = λQ =
1/Q.

C. Necessary Condition for Realizability

According to Theorem 3, in order to arrive at a
necessary condition for realizability, we can identify
cliques in the usage conflict graphU . Note that vertices
{vwi} are fully connected and ifvw is adjacent topq
in I, thenvwi is adjacent topqj , ∀i, j. Because of these
structural properties, a clique inI can be mapped to a
clique inU and vice versa. Thus, we just need to identify
cliques in the conflict graphI. Each cliqueK is a set of

links that mutually conflict. Consequently, the following
condition is necessary for realizability

∑

vw∈K

c(vw) ≤ 1. (29)

Enumerating cliques in a general graph is computa-
tionally difficult. However, we may exploit the unique
structural properties of the conflict graph due to the
interference model.

In [13], Baker, Wieselthier, and Ephremides proposed
a simple model for wireless networks, where the only
constraint imposed on the nodes is that each node can
transmit to or receive from at most one other node at
any given time. This model is called “free of secondary
interference”. As mentioned in Section II-A, the interfer-
ence model adopted in this paper implies this constraint.
Based on this constraint,|V0| cliques can be identified,
each comprising the set of links incident at a nodev
in the connectivity graph. This results in the following
necessary condition

∑

w∈V0: vw∈EC

c(vw)+
∑

w∈V0: wv∈EC

c(wv) ≤ 1, ∀v ∈ V0,

(30)
which has been presented in [2] for computing an upper
bound ofRmax under the free of secondary interference
model.

We now present a new method that identifies cliques
based on Lemma 1. Recall from Section II-A, when
a wireless linkij is active, it exclusively occupies the
spatial regionΩ(ij), which is the union of two circles
centered atXi andXj with radius ν

2 |Xi −Xj |. For any
spatial locationX, we can identity the set of links

K(X) = {ij |X ∈ Ω(ij)} . (31)

These set of links mutually conflict because the associ-
ated spatial regions{Ω(ij)} overlap at pointX. There-
fore, K(X) is a clique. Hence we have the following
necessary condition for realizability.

Theorem 5 (Necessary Condition for Realizability):
Let X denote a given spatial location. Under the

physical layer model described in Section II-A,
a necessary condition for a given capacity graph
G = (V0, EC , c) to be realizable is

∑

ij∈K(X)

c(ij) ≤ 1, (32)

or equivalently
∑

ij∈EC

c(ij)I (X ∈ Ω(ij)) ≤ 1, (33)



whereI(·) is the indicator function.
Of course, we may check other spatial locations, which
may result in different cliques. Note that if we pickX
as the location of a node, sayXl, thenK(Xl) includes
all links that are incident at nodel, and possibly others.
Therefore, by checking the locations of the nodes, we
arrive at a necessary condition that is stronger than (30).

We can integrate both sides of (33) over a give region
Ω0 (or summing both side of (33) over a finite collection
of locations). This leads to the following corollary.

Corollary 1: Let Ω0 denote a given spatial region.
Under the physical layer model described in Section II-
A, a necessary condition for a given capacity graphG =
(V0, EC , c) to be realizable is

∑

ij∈EC

∫

X∈Ω0

c(ij)I (X ∈ Ω(ij)) dX ≤

∫

X∈Ω0

1dX.

(34)

D. Maximum Scaling of a Capacity Graph

Note that any capacity graphG can be scaled by a
sufficiently small numberk such thatkG is realizable.
We can thus define

κ(G) ≡ max {k |kG ∈ G0 } , (35)

which is the maximum scaling factor such that the scaled
capacity graph is realizable. Lower and upper bounds
of κ(G) can be constructed from the sufficient and
necessary conditions above. For example,

κ(G) ≥
1

maxvw:vw∈EC
c(vw) +

∑

pq: pq∈N(vw) c(pq)
.

(36)
This lower bound ofκ(G) holds for generalG.

For a givenG, a better lower bound ofκ(G) can be
found by actually applying the greedy coloring algorithm
(Section IV-A) on the usage conflict graphU .

V. BOUNDING POWER RATE FUNCTION

To facilitate understanding, we use Figure 5 as a “road
map” for this section.

According to Section II-D, given a capacity graphG
as the provision of network resources, the maximum rate
R(G) that can be achieved can be found by solving a
linear program which assigns the multi-commodity flows
{fm}. A given capacity graphG has an associated power
consumptionP (G). Thus, the problem of finding the
power rate functionP (R) turns into one of finding the
optimal supported capacity graph, providing a desired
rateR at the minimum power consumption.

x

Linear 
Program

Fig. 5. Relations among different sets of capacity graphs. The
entire set of supported capacity graphs isG0 = G(B0). Since the
number of elementary capacity graphs to be considered can grow
exponentially in the number of users, it is computationally impractical
to search overG0. G1 ⊆ G0 is the subset of capacity graphs satisfying
the sufficient condition in Theorem 4.G(B) ⊆ G0 is the subset of
capacity graphs spanned by a finite number of elementary capacity
graphs inB. G2 ⊇ G0 is the set of capacity graphs satisfying the
necessary condition in (30).G3 ⊇ G0 is the set of capacity graphs
satisfying the necessary condition in Theorem 5. Searching over
subsetsG(B) andG1 yields upper bounds ofP (R). Searching over
supersetsG2 andG3 yields lower bounds ofP (R).

The physical and link layers of a wireless network
can support many different capacity graphs, each being
a convex combination of several elementary capacity
graphs. Due to the combinatorial nature in arranging
concurrent transmissions in the physical layer, there can
be an exponential number of elementary capacity graphs
to be considered. This renders a full search over the
complete setG0 difficult. In [3], Jain et al showed that
finding Rmax is NP-hard under the interference model
characterized by the conflict graph.

The basic idea of the upper-bounding (resp. lower-
bounding) approaches to be discussed next is to search
over a subset (resp. superset) ofG0, which can be char-
acterized by a finite number of linear constraints. The
finite set of linear constraints characterizing the search
space of capacity graphs can be combined with the linear
constraints characterizing feasible multi-commodity flow
assignment, resulting in a joint linear program with
power minimization as the objective.

A. Upper-bounding

1) Searching overG(B): One way to reduce the
complexity is to restrict the search space to those com-
posite capacity graphs spanned by a small subset of
preselected elementary capacity graphs. With a finite set
of elementary capacity graphsB ⊆ B0, the convex set
of supported capacity graphs becomes

G(B) =

{

G

∣

∣

∣

∣

∣

G =
∑

k

λkGk,
∑

k

λk ≤ 1, λk ≥ 0 ∀k,Gk ∈ B

}

,

(37)



where the dependence onB is explicitly shown. Given a
finite set of elementary capacity graphsB, the associated
convex combination coefficients{λk} can be treated as
variables and jointly optimized with the flow variables
{fm}, resulting in a combined linear program. Such
a joint optimization idea was first proposed by Jain
et al in [3] to lower boundRmax. They suggested a
random construction ofB. The major drawback with
their method is that a more systematic way of efficiently
settingB is lacking. It is unclear how to select a small but
“efficient” subset that provide a reasonably good span.

By minimizingP (G) overG(B) ⊆ G0 while providing
a rate R, an upper-bound of the power rate function
P (R) can be given. However, for a givenB, such a linear
program may result in a solution where the sum of the
flows F = (V0, EC , φ) with φ(vw) =

∑m
m=1 fm(vw),

does not match exactly withG. By reducing the provi-
sion of resourceG to F , which can also be supported,
the power can be reduced fromP (G) to P (F ) while
still supporting rateR. Thus, we propose to set the
optimization objective as

min
∑

vw∈EC

φ(vw)pvw. (38)

The complete linear program is shown in Figure 6. We
denote the resulting upper-bound function byP (R,B),
where the dependence onB is explicitly shown.

2) Searching overG1: Let G1 denote the set of
capacity graphs satisfying the sufficient condition in
Theorem 4. Thus, Theorem 4 essentially identifies the
subsetG1 ⊆ G0, which can be characterized by a set of
linear constraints. Searching overG1 results in the linear
program in Figure 7.

The linear program in Figure 7 can be run for different
values ofR to give an upper-bound function. The linear
program in Figure 7 will cease to have a feasible solution
for rates larger than a threshold. To find such a threshold,
we just need to replace the objective of Figure 7 by

max R.

SinceG1 ⊆ G0, the threshold is a lower bound to the
maximum achievable throughputRmax.

B. Lower-bounding

In Section IV-C, we have discussed necessary con-
ditions for realizability of a given capacity graphG =
(V0, EC , c), which can be expressed as linear constraints
in {c(vw)}. Let G2 denote the set of capacity graphs
satisfying (30). To perform searching overG2, we just
need to replace (51) in Figure 7 by (30).

Similarly, let G3 denote the set of capacity graphs
satisfying|V0| applications of (33), one for each node’s
location. With this set of spatial locations checked,G3 ⊆
G2 and hence the resulting lower bound is tighter.

C. The Proposed Bounding Procedure

We explain the proposed bounding procedure as be-
low, which integrates the tools and results developed
thus far. To facilitate understanding, we use Figure 10
and Figure 11 in the Simulations section as a concrete
example.

1. Run the linear programs that perform searching
over G1 and G3 while minimizing the power con-
sumption. This gives several power rate pairs, as
shown in Figure 10. Each power rate pair(P, R)
returned by the linear programs has an associated
capacity graphs{G}, i.e., (P, R) = (P (G), R(G)).
The points returned by searching overG3 constitute
the proposed lower bound ofP (R).

2. For each power rate pair(P (G), R(G)) returned by
searching overG1, we apply the greedy coloring
procedure described in Section IV-A to actually
color the usage conflict graphU . This gives a
lower bound ofκ(G) (Section IV-D), which we
denote byκ. Since the scaled capacity graphκG
is realizable, power rate pair(κP (G), κR(G)) is
achievable. BecauseG1 is based on a conservative
upper bound ofχ(U), κ ≥ 1. In Figure 10, we draw
a dashed line that connects each(P (G), R(G)) with
the scaled version(κP (G), κR(G)). It appears in
Figure 10 that the points associated withG1 have
been “pushed” upward.
Apply similar operations to process the power rate
pairs returned by searching overG3. Most points
associated withG3, except those at low rates, appear
to be “pulled” downward since they are based on
a lower bound ofχ(U). These exceptions occur at
small rates where the minimum energy-per-bit is
achieved. This is because at a sufficient small rate,
the clique constraints are loose. Note that although
the points returned by searching overG3 may not
be achievable, the resulting points after the scaling
operation are achievable.

3. Compute the convex hull of the set of achievable
power rate pairs obtained. The convex hull for
the achievable points in Figure 10 is shown in
Figure 11.

4. For each collected power rate pair(P (Gi), R(Gi))
on the convex hull, we can run the greedy coloring



min
∑

vw∈EC

M
∑

m=1

fm(vw)pvw subject to: (39)

fm(vw) ≥ 0, ∀vw ∈ E, m = 1, . . . , M (40)
M
∑

m=1

fm(vw) ≤
∑

k

λkck(vw), ∀vw ∈ EC (41)

∑

k

λk ≤ 1, (42)

λk ≥ 0, ∀k (43)
∑

w∈V0:vw∈EC

fm(vw) −
∑

w∈V0:wv∈EC

fm(wv) = 0, ∀v ∈ V0\{s
m, tm}, m = 1, . . . , M (44)

∑

w∈V0:smw∈EC

fm(smw) −
∑

w∈V0:wsm∈EC

fm(wsm) = αmR, m = 1, . . . , M (45)

Fig. 6. A linear program which gives an upper-bound of the power ratefunction P (R). This essentially performs searching overG(B).

min
∑

vw∈EC

c(vw)pvw subject to: (46)

fm(vw) ≥ 0, ∀vw ∈ EC , m = 1, . . . , M (47)
M
∑

m=1

fm(vw) ≤ c(vw), ∀vw ∈ EC , (48)

∑

w∈V0:vw∈E

fm(vw) −
∑

w∈V0:wv∈E

fm(wv) = 0, ∀v ∈ V0\{s
m, tm}, m = 1, . . . , M (49)

∑

w∈V0:smw∈E

fm(smw) −
∑

w∈V :wsm∈E

fm(wsm) = αmR, m = 1, . . . , M (50)

c(vw) +
∑

pq: pq∈N(vw)

c(pq) ≤ 1, ∀vw ∈ EC . (51)

Fig. 7. A linear program which gives an upper-bound of the power ratefunction P (R). This essentially performs searching overG1.

procedure to decomposeGi into a convex combina-
tion of a set of elementary capacity graphs{Gi

k,∀k}

Gi =
∑

k

λkG
i
k,

∑

k

λk ≤ 1, λk > 0. (52)

Let B = {Gi
k,∀k,∀i}, which consists of all ele-

mentary capacity graphs that have contributed to
the power rate pairs lying on the identified convex
hull. With this set of elementary capacity graphs
B, we can run the linear program in Figure 6 that
performs searching overG(B). This yields the final
upper boundP (R,B). An example can be found in
Figure 11.

VI. SIMULATIONS

We have conducted simulations on two example com-
munity wireless networks. Some simulation parameters
are set up as follows. We setβ = 3 (the path loss
exponent),ν = 1.0, and γ1 = 8. We setpmax at a
value corresponding to a maximum transmission range
of 200m. The power of a linkij, pij , is normalized with
respect topmax. Thus,

pij =

(

|Xi − Xj |

200

)3

. (53)

A. The First Test Configuration

Figure 8(upper) shows the first example community
wireless network, in which the locations of the houses
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Fig. 8. (upper) The first example community wireless network.
(lower) The connectivity graph.

are marked with dots. We consider two unicast sessions
S1 = 〈1, 5, R〉 and S2 = 〈42, 43, R〉, as illustrated
in Figure 8(upper) by two straight lines connecting
each source with the associated receiver. Figure 8(lower)
shows the connectivity graph, which consists of links
with distance less than 200m.

The procedure described in Section V-C is used to
compute upper and lower bounds ofP (R). We first run
linear programs that perform searching overG1, G2, G3,
respectively. Recall thatG1 denotes the set of capacity
graphs satisfying the sufficient condition in Theorem 4,
G2 denotes the set of capacity graphs satisfying the nec-
essary condition (30), andG3 denotes the set of capacity
graphs satisfying the improved necessary condition in
Theorem 5, with the set of spatial check points being the
locations of the nodes. The obtained power rate pairs are
shown in Figure 10.

It can be observed that the proposed lower-bounding
approach, i.e., optimizing overG3, gives better results
than optimizing overG2. This demonstrates that the
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Fig. 9. (upper) The second example community wireless network.
(lower) The connectivity graph.

necessary condition of Theorem 5 is superior to (30).
As the next step, for each power rate pair

(P (G), R(G)) returned by searching overG1 and G3,
we apply the greedy coloring procedure to find a scaling
factor κ such thatκG is realizable. It can be seen from
Figure 10 that the points associated withG1 have been
“pushed” upward, whereas most points associated with
G3, except those achieving the minimum energy-per-bit,
have been “pulled” downward. We next compute the
convex hull over all achievable points. This is shown
in Figure 11. It can be observed that these operations
have significantly tightened the upper bound.

Each capacity graphG associated with a point lying
on the convex hull is then decomposed with greedy
coloring. Taking the union of the useful elementary
capacity graphs results in a setB. Finally, searching over
G(B) delivers a better upper bound, since the search
spaceG(B) contains all capacity graphs that achieve
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Fig. 10. The power rate pairs returned by searching overG1, G2,
G3 and returned by greedy coloring for the first example network.

points lying on the convex hull. Comparing the lower
bound and the upper bound, it can be concluded that
Rmax lies between 0.33 and 1.0.

Figure 12-15 present the four capacity graphs achiev-
ing the last 4 points on the upper boundP (R,B). The
provisioned link capacities{c(vw)} are shown next to
the associated links. As illustrated in Figure 12, when the
traffic load is light, each session uses only the minimum
energy path. As the traffic load gets heavier in Figure 13,
a second route, which is less energy efficient, is used for
each session. The connectivity of Figure 14 appears to
be similar with that of Figure 13; the difference lies in
that more traffic is carried by the less energy-efficient
route in Figure 14.

B. The Second Test Configuration

We have also tested the performance over a second ex-
ample network. The traffic demand and the connectivity
graph are given in Figure 9(upper) and Figure 9(lower),
respectively. There are 58 houses space roughly in 3
rows. There are two unicast sessionsS1 = 〈1, 52, R〉,
S2 = 〈6, 53, R〉.

Similar as in the first test network, Figure 16 shows the
power rate pairs returned by searching overG1, G2, G3

and returned by greedy coloring and Figure 17 gives the
final upper and lower bounds. It can be observed that the
scaling (“pushing/pulling”) of capacity graphs returned
by searching overG1 andG3 is very useful in producing
a better upper bound. In essence, the proposed method of
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Fig. 11. Two upper bounds and a lower bound of the power rate
function for the first example network.

upper-bounding first searches over a large space which
coarsely approximate the true solution spaceG0. Once
the end-to-end traffic demand is mapped into a particular
capacity graphG, G can be decomposed at a finer scale
with greedy coloring.

For these two test networks, it can be observed that
the proposed methods result in very close bounds in
the region where both the power and the rate are low.
Representative systems operating in this energy-limited
regime are sensor networks and UWB systems.

VII. R ELATED WORKS

Interpreted in the language of the current paper, pre-
vious work [2] gave the necessary condition (30) for
the realizability of a given capacity graph and proposed
searching overG2 to provide an upper bound ofRmax.

Previous work [3] by Jain et al introduced the conflict
graph and showed that findingRmax is NP-hard under
the interference model characterized by the conflict
graph. Interpreted in the language of the current paper,
they proposed to lower boundRmax by searching over
G(B) with a random construction ofB. The major
drawback with their method is that a more systematic
way of efficiently settingB is lacking.

Using the “free of secondary interference” model [13],
previous work [7] by Bhatia and Kodialam considered
minimizing the total power while providing different
rates for a single unicast session. They formulated the
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problem as a nonlinear optimization and proposed a
polynomial time 3-approximation algorithm.

Previous work [9] by Wu et al presented an iterative
optimization that alternates between a linear optimization
and heuristic schemes for updating the collection of
elementary capacity graphs.

VIII. C ONCLUSIONS

The power rate function models the tradeoff between
rate and energy efficiency for a given wireless network
with a given traffic pattern under a layered model of
wireless networks. Finding the power rate function in-
volves a cross-layer optimization. A supported capacity
graph describes a possible provision of bit-rate resources
on the links by the physical and link layers. The entire
set of supported capacity graphs of a wireless network
G0 is comprised of convex combinations of elementary
capacity graphs. Each supported capacity graphG is
capable of providing a maximum rateR(G) and has
an associated power consumptionP (G). The problem
is thus transformed into finding the optimal supported
capacity graph associated with each traffic rateR. How-
ever, the number of elementary capacity graphs to be
considered can grow exponentially, rendering a complete
search impractical.

In this paper, we propose a sufficient condition (The-
orem 4) and a necessary condition (Theorem 5) for a
given capacity graph to be realizable, each of which
can be characterized by a polynomial number of linear
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Fig. 17. Two upper bounds and a lower bound of the power rate
function for the second example network.

constraints. The conditions essentially identify a subset
G1 and a supersetG3 of G0. Searching overG1 while
minimizing power yields an upper bound ofP (R).
Searching overG3 while minimizing power yields a
lower bound ofP (R). We then propose to apply a greedy
coloring procedure to fine tune the obtained bounds.

Simulation results on example community mesh net-
works demonstrate that the proposed bounds are tight in
the low power and low rate regime.

In order to focus on the bounding techniques, in
this paper, we model the end-to-end traffic demands
as multiple unicast sessions. The proposed bounding
techniques can be extended to the case with multiple
multicast sessions, by replacing multicommodity flow
with multicommodity union of flows and taking physical
layer broadcast into account.
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