
Precise Race Detection and Efficient Model Checking
Using Locksets

Tayfun Elmas Shaz Qadeer Serdar Tasiran
Koc Univ Microsoft Koc Univ

telmas@ku.edu.tr qadeer@microsoft.com stasiran@ku.edu.tr

March 2006

Technical Report
MSR-TR-2005-118

In this paper, we present a new algorithm for detecting data-races in an execution of a concurrent program. Our algorithm is sound
and precise, that is, it reports a race in an execution iff there are two accesses to a shared variable along the execution that are
not ordered by the happens-before relation. Previous algorithms for computing the happens-before relation are based on clock
vectors. On the other hand, our algorithm is based solely on the concept of locksets and is able to capture all mutual-exclusion
synchronization idioms uniformly with one mechanism. Our lockset algorithm could be very useful for improving the precision
of flow-sensitive static analyses, particularly those for detecting data-races and atomicity violations in concurrent programs. We
present one such analysis, a model checking algorithm that uses our lockset algorithm both to check for races exhaustively and
perform partial-order reduction when races are absent. Our characterization of the happens-before relation in terms of locksets
rather than clock vectors is crucial for the fixpoint computation inherent in model checking and other flow-sensitive analyses. We
have implemented our algorithm and used it to prove the absence of data-races and assertion failures on a number of examples
containing a variety of synchronization idioms.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Many software systems depend critically on concurrent compo-
nents for performance. Such systems are used extensively, which
makes their functional correctness very important. To improve the
reliability of these systems, we need efficient and easy-to-use anal-
ysis and verification tools specific to concurrency-related problems.
Detection of race conditions on shared data is a central issue in such
tools. Even though some race conditions may be benign, awareness
of race conditions or their absence allows programmers to optimize
their programs and to make them safer. Numerous techniques and
tools have been developed to analyze races and to guard against
them [28, 32, 5, 3].

Race conditions on shared data variables are usually defined in
terms of the happens-before relation. The Java memory model [18],
for instance, defines the important notion of a race-free execution in
terms of the happens-before relation. An action α1 happens-before
another action action α2 in a concurrent execution if α1 occurs be-
fore α2 and either both α1 and α2 are performed by the same thread
or α1 is transitively connected to α2 by a series of synchronization
actions, such as acquire or release of a lock, or fork of a thread, or
join with a thread.

The connection between races, the happens-before relation, and
locks has given rise to two categories of race-detection algorithms:
vector-clock based and lockset-based. Vector-clock based race de-
tection algorithms are precise but, when a race is detected, they fail
to provide easy-to-interpret information for understanding and fix-
ing the race condition [32]. Moreover, as explained later in this
paper, these algorithms can not be naturally used as the basis for
flow-sensitive static analyses, such as stateful model checking.

Lockset-based race-detection algorithms are more intuitive and
capture directly the locking discipline employed by the program-
mer, but existing lockset algorithms have other shortcomings.
These algorithms are specific to a particular locking discipline. For
instance, the classic lockset algorithm popularized by the Eraser
tool [28], is based on the assumption that each potentially shared
variable must be protected by a single lock throughout the whole
computation. For many realistic programs this assumption is false
and leads to the reporting of a false race. Other similar algorithms
can handle more sophisticated locking mechanisms [2, 7] by incor-
porating knowledge of these mechanisms into the lockset inference
rules. They may still report false races when the particular locking
discipline they are tracking is violated.

In this paper we provide, for the first time, a precise characterization
of the happens-before relation in terms of locksets. This character-
ization enables us to formulate a necessary and sufficient condition
for race-freedom based solely on the well-understood and simple
concept of locksets. Our method can uniformly handle a variety of
synchronization idioms such as thread-local data that later becomes
shared, shared data protected by different locks at different points
in time, and data protected indirectly by locks on container objects.
Moreover, this generality is accomplished without explicit refer-
ence to the particular locking discipline into the lockset inference
rules.

The primary application of our lockset algorithm is flow-sensitive
analyses for concurrent software. We present one such analysis
based on systematic state exploration. Our lockset algorithm is used
continuously during state exploration, serving the dual purposes of
checking for races exhaustively and performing partial-order re-
duction when races are absent. In a spirit similar to the dynamic

partial-order reduction technique of Flanagan and Godefroid [12],
our algorithm performs partial-order reduction optimistically but
achieves soundness by exploring more thread interleavings when
a race is detected.

Our characterization of the happens-before relation in terms of
locksets (as opposed to clock vectors) is crucial because it allows
our model checking algorithm to cache visited states and perform
fixpoint computation. State caching is a fundamental optimiza-
tion for programs which naturally have cycles and reconvergence
in their state transition graphs. When a state is reached during an
execution, all the history information required for detecting races
and performing partial-order reduction is captured concisely by the
locksets associated with that state. When the same state is revis-
ited via a different path, it is possible to decide by comparing the
locksets in the two states whether the search needs to re-explore
executions starting from that state. Thus, in contrast to the purely
stateless approach of Flanagan and Godefroid [12] based on vector
clocks, our algorithm can perform both stateless and stateful search
efficiently.

We believe that our lockset algorithm is useful not just for model
checking but also for other dataflow and type-based analyses for
concurrent programs. Several static analysis techniques [5, 3, 11]
already use locksets and inherit the imprecision of the lockset infer-
ence algorithms they are based on. Since our algorithm is precise,
we think it, rather than the classic lockset algorithm, should form
the basis of such analyses.

This paper is organized as the following. Section 2 introduces our
lockset algorithm and its application to interesting scenarios in ex-
ample programs. Concurrent programs are formally described in
Section 3. Section 4 gives a formal description of the lockset al-
gorithm. The model checking algorithm that leverages the lockset
algorithm is presented in Section 5. Section 6 explains how the
lockset algorithm can be extended for locking disciplines that allow
concurrent reads. The related work on race detection and partial-
order reduction algorithms are given in Section 8 and the paper is
concluded with Section 9.

2 Overview

In this section, we present examples that illustrate our algorithm’s
novel features and contrast it with existing lockset algorithms. In
the following, s denotes a program state reached during an exe-
cution of the program, q denotes a shared variable, and t denotes
a thread. LHs

�
t � is the set of locks held by t at s, and LSalg

s
�
q �

is the set of locks that algorithm alg believes protect access to q.
Lockset-based race-detection algorithms declare the existence of a
race condition when LHs

�
t ��� LSalg

s
�
q � is empty. They differ in how

they infer locksets, i.e., how they compute LSalg
s

�
q � .

Lockset algorithms in the literature are too conservative in how they
update LSalg during an execution. For instance, the standard lockset
algorithm (denoted by std) is based on the assumption that each
shared variable is protected by a fixed unique lock throughout the
execution. It attempts to infer this lock by setting LSstd � q � to the
intersection LH

�
t ��� LSstd � q � at each access to q by thread t. If

this intersection becomes empty, it reports a race. Clearly, std is
too conservative since it reports a false race if the lock protecting a
variable changes over time. A toy example illustrating this scenario
is given below.

T1 T2 T3
------ ------- ------
acq(m1) acq(m2) acq(m1)
acq(m2) acq(m3) acq(m3)
x++ x++ x++
rel(m1) rel(m2) rel(m1)
rel(m2) rel(m3) rel(m3)

The code executed by each thread Ti is listed underneath the head-
ing Ti. In the interleaving in which all actions of T1 are com-
pleted followed by all actions of T2 followed by all actions of T3,
when T3 accesses x, the standard algorithm declares a race since
LSstd ��� ����� 2 before this access and T3 does not hold � 2.

A less conservative alternative, denoted by algorithm lsa, is to set
LSlsa � q � to LH

�
t � after a race-free access to q by a thread t. This

choice results in a less pessimistic sufficient condition but is still
too conservative. In the example above, lsa will not report a race,
but it will report a false race in the example below.

Class IntBox {
Int x;

}

IntBox a = new IntBox; // IntBox object o1 created
IntBox b = new IntBox; // IntBox object o2 created

Lock ma, mb;

T1 T2 T3
------ ------- ------
acq(ma) acq(ma); acq(mb);
a.x++; acq(mb); b.x++;
rel(ma); tmp = a; rel(mb);

a = b;
b = tmp;
rel(ma);
rel(mb);

Consider again the interleaving in which all actions of T1 are com-
pleted, followed by those of T2 and T3 as above. T2 swaps the
objects referred to by variables a and b, so that during T3’s actions,
b refers to o1. o1.x is initially protected by ma but is protected by
mb after T2’s actions. lsa is unable to infer the correct new lock for
o1.x since T2 makes no direct access to o1.x and LSlsa ��� 1 � x � is
not modified by T2’s actions.

Our algorithm’s lockset update rules allow LSour � q � to grow and
change during the execution and, in this way, we are able avoid
false alarms. For instance, in the example above, after T1 accesses
a.x, our algorithm would associate ma with o1.x. Then, when T2
acquires ma and mb, our algorithm would grow the lockset associ-
ated with o1.x (and all other objects with non-empty locksets at
that point) to include both ma and mb. As a result, during T3’s ac-
cess to o1.x, LSour �
	 � � � would include mb as well and no race will
be reported.

In the following subsection, we illustrate our algorithm’s lockset
update rules step by step on a task queue example.

2.1 The Task Queue

Consider the task queue example for which pseudocode is provided
in Figure 1. This example demonstrates a program that schedules
tasks through a queue named taskQueue and executes it one by
one. Each task of instance Task contains an array subTasks of
subtasks. The computation for a single subtask is represented by

a function Perform that takes a subtask and produces an integer
output. The sum of all the outputs are the final result of the task and
is also stored in its out field.

CreateTask, given an array of subtasks, creates a new task and
enqueues it in the task queue. PerformNextTask dequeue a task
from taskQueue and calls ParallelTaskHelper, which actually
performs the task. ParallelTaskHelper forks for each subtask
a new thread that runs PerformSubTask. PerformSubTask com-
putes the partial result for the given subtask and adds it to the final
result of the task.

This example is interesting because it makes use of thread locality,
dynamically changing locksets, fork and join operations to ensure
mutually exclusive access.

Consider the following interleaving of actions during a temporal
scenario, which begins with creation of two threads T1 and T2:

1. A thread T1, by running CreateTask with two subtasks as input,

(a) creates a new task task by calling its constructor (line 1),

(b) acquires Qlock and calls taskQueue.Enqueue (task) (lines 2-
4).

2. A second thread T2, by running PerformNextTask,

(a) acquires Qlock and calls taskQueue.Dequeue () that returns
task (lines 1-3), and

(b) calls ParallelTaskHelper (task) (line 4).
ParallelTaskHelper creates two threads T3 and T4,
each for one subtask (lines 1-2).

3. The first thread T3, by running PerformSubTask (task, 0),

(a) calls Perform (task.subTasks [0]) (line 1), acquires Tlock,
and

(b) adds subTaskResult to task.out (lines 2-4).

4. The second thread T4, by running PerformSubTask (task, 1),

(a) calls Perform (task.subTasks [1]) (line 1), acquires Tlock,
and

(b) adds subTaskResult to task.out (lines 2-4).

5. Thread T2, continuing running ParallelTaskHelper,

(a) joins both threads T3 and T4 (lines 3-4),

(b) prints task.out.

Let us focus on the shared variable ������� ��� � for a particular
task task. In the execution described above, there is no race on
��������� ��� � but the lock protecting it changes dynamically. For ex-
ample, task.out is local to T1 at the beginning and to T2 at the
end of the scenario. We now show how our lockset algorithm han-
dles this execution. Each item below explains how LS

� �������� ��� � �
changes after each action during the scenario. LS

� ��������� ��� � � is
initialized to the set of all locks and thread identifiers. Our algo-
rithm handles thread-locality by treating thread identifiers similar
to locks, and allowing LH and LS to contain thread identifiers.

1. (a) In the constructor of Task, task.out is first accessed by T1.
At this point LH � T1 ����� T1 � and LS ���� �!#"�$ %'&��(��� Addr) Tid.
Then we check LS ���� �!#"�$ %'&�����* LH � T1 �+�,� T1 � . Since the
intersection is not empty, LS �-�� �!#"�$ %'&���� is assigned LH � T1 � ,
such that LS �-�� �!#"$ %'&����.�/� T1 � .

(b) After T1 acquires Qlock, LH � T1 �0�1� T1 2�3�4�%�5#"�� . We check
LS �-�� �!#"�$ %'&��(�6* LH � T1 �(�7� T1 � . Since the intersection is not
empty, LS �-�� �!#"$ %'&���� is added LH � T1 � , such that
LS �-�� �!#"�$ %'&��(��/� T1 2�3�4�%�5#"� .

2. (a) After T2 acquires Qlock LH � T2 �0�8� T2 2�3�4�%�5#"�� . We check
LS �-�� �!#"�$ %'&��(��* LH � T2 ��9�63�4�%�5#"�� . Since the intersection is

class Task {
SubTask[n] subTasks;
int out;
Task(SubTask[] sT) { subTasks = sT; out = 0; }

}

Queue<Task> taskQueue;

CreateTask(subTask[] sTs)
1 oneTask = new Task(sTs);
2 acquire(Qlock)
3 taskQueue.Enqueue(oneTask);
4 release(Qlock);

PerformNextTask()
1 acquire(Qlock)
2 oneTask = taskQueue.Dequeue();
3 release(Qlock);
4 ParallelTaskHelper(oneTask);

ParallelTaskHelper(oneTask)
1 foreach (i < n)
2 children[i] = fork(PerformSubTask, oneTask, i);
3 foreach (i < n)
4 join(children[i]);
5 print(oneTask.out);

PerformSubTask(oneTask, i)
1 subTaskResult = Perform(oneTask.subTasks[i]);
2 acquire(Tlock);
3 oneTask.out += subTaskResult;
4 release(Tlock);

Figure 1. Pseudocode for the task queue example.

not empty, LS �-�� �!#"�$ %'&���� is added LH � T1 � such that
LS �-�� �!#"�$ %'&��(��/� T1 2 T2 2�3�4�%�5#"�� .

(b) After a T2 creates T3, we check LS �-�� �!#"�$ %'&�����* LH � T2 � �
� T2 � . Since the intersection is not empty, LS �-�� �!#"�$ %'&���� is
added � T3 � , such that LS �-�� �!#"($ %'&��(��/� T1 2 T2 2�3�4�%�5#"2 T3 � .
The same update applies when T2 creates T4 such that
LS �-�� �!#"�$ %'&��(��/� T1 2 T2 2�3�4�%�5#"2 T3 2 T4 � .

3. (a) After T3 acquires Tlock, LH � T3 �0�1� T3 2 � 4�%�5#"�� . We check
LS �-�� �!#"�$ %'&��(�6* LH � T3 ���7� T3 � . Since the intersection is not
empty, LS ���� �!#"�$ %'&��(� is added LH � T3 � such that
LS �-�� �!#"�$ %'&��(��/� T1 2 T2 2�3�4�%�5#"2 T3 2 T4 2 � 4�%�5#"�� .

(b) After task.out is written we check LS �-�� �!#"�$ %'&���� *
LH � T3 � �8� T3 2 � 4�%�5#"�� . Since the intersection is not empty,
LS �-�� �!#"�$ %'&��(� is assigned LH � T3 � such that LS �-�� �!#"�$ %'&�����
� T3 2 � 4�%�5#"� .

4. (a) After T4 acquires Tlock, LH � T4 �0�1� T4 2 � 4�%�5#"�� . We check
LS �-�� �!#"�$ %'&��(��* LH � T4 �� � � 4�%�5#"�� . Since the intersection is
not empty, LS �-�� �!#"�$ %'&���� is added LH � T4 � such that
LS �-�� �!#"�$ %'&��(��/� T3 2 � 4�%�5#"�2 T4 � .

(b) After task.out is written we check LS �-�� �!#"�$ %'&���� *
LH � T4 � �8� T4 2 � 4�%�5#"�� . Since the intersection is not empty,
LS �-�� �!#"�$ %'&��(� is assigned LH � T4 � such that LS �-�� �!#"�$ %'&�����
� T4 2 � 4�%�5#"� .

5. (a) After a T2 joins T4, we check LS �-�� �!#"$ %'&�����* LH � T4 ���
� T4 � . Since the intersection is not empty, LS �-�� �!#"�$ %'&���� is
added � T2 � such that LS �-�� �!#"�$ %'&������/� T4 2 � 4�%�5#"2 T2 � .

(b) After task.out is accessed by print, we check
LS �-�� �!#"�$ %'&��(� * LH � T2 � � � T2 � . Since the intersec-
tion is not empty, LS �-�� �!#"�$ %'&���� is assigned LH � T2 � such that
LS �-�� �!#"�$ %'&��(��/� T2 � .

The description above illustrates although LS
� �������� ��� � � shrinks at

an access to LS
� �������� ��� � � , it can grow whenever a thread executes

an acquire, fork, or join operation. It is this ability to grow the

pc � PC
a � Addr
t � Tid
v � Value � PC � Addr � Tid � Integer
f � Field�

a � f ��� HeapVariable � Addr � Field
x � y � z � LocalVar
α � α1 Action � x = new � y = x � f � x � f = y

� x = op
�
y1 � � � ��� ym �

� acq
�
x �	� rel

�
x �

� x = fork � join
�
x �

h � Heap � Addr
 Field
 Value
l � LocalStore � LocalVar
 Value� � LocalState � PC � LocalStore�
s � LocalStates � Tid
 LocalState� �

s � h ��� State � Heap � LocalStates
Figure 2. Domains

lockset that is fundamental to capturing dynamic locking idioms.

3 Concurrent programs

In this section, we present a simple formalization of concurrent pro-
grams that will allow us to describe our algorithms precisely and
succinctly. A concurrent program essentially consists of a set of
threads, each of which executes a sequence of operations. These op-
erations include local computation involving thread-local variables,
reading and writing shared variables on the heap, and synchroniza-
tion operations such as acquiring and releasing mutex locks, forking
a thread, and joining with a thread. We give more details below.

Program state: A state of a program is a pair
� �

s � h � . The partial
function

�
s : Tid
 LocalState maps a thread identifier t to the local

state of thread t. The set Tid is the set of thread identifiers. The
local state

�
s
�
t � is a pair � pc � l consisting of the control location pc

and a valuation l to the local variables of thread t. The heap h is a
collection of cells each of which has a unique address and contains
a finite set of fields. The set Addr is the set of heap addresses.
Formally, the heap h is a partial function mapping addresses to a
function that maps fields to values. Given address a � Addr and
field f � Field, the value stored in the field f of cell with address
a is denoted by h

�
a � f � . The pair

�
a � f � is called a heap variable

of the program. Heap variables are shared among the threads of
the program, and thus, operations on these are visible to all threads.
Each local variable or field of a cell may contain values from the
set Tid � Addr � Integer.

Actions: An action α � Actions is an operation that is guaranteed
to be performed atomically by the executing thread. The action
x = new allocates a new object on the heap and stores its address in
the local variable x. The action y = x � f reads into y the value con-
tained in the f field of the object whose address is in x. If x does
not contain the address of a heap object, this action goes wrong.
Similarly, the action x � f = y stores a value into a field of a heap ob-
ject. The action x = op

�
y1 � � � ��� yn � models local computation where

op
�
y1 � � � ��� yn � is either an arithmetic or boolean function over the

local variables y1 � � � ��� yn.

Every object on the heap has a lock associated with it. This lock
is modeled using a special field owner that is accessible only by
the acq and rel actions. The action acq

�
x � acquires the lock on the

object whose address is contained in x. This action is enabled only
if x � owner � 0 and it sets x � owner to the identifier of the execut-
ing thread. The action rel

�
x � releases the lock on the object whose

address is contained in x by setting x � owner to 0. This action goes
wrong if the value of x � owner is different from the identifier of the
executing thread.

The action x = fork creates a new thread and stores its identifier into
x. The local variables of the child thread are a copy of the local
variables of the parent thread. The action join

�
x � is enabled only if

the thread whose identifier is contained in x has terminated.

Control flow graph: The behavior of the program is specified by
a control flow graph over a set PC of control locations. A la-
beling function Label : PC
 LocalVar labels each location with
a local variable. The set of control flow edges are specified
by two functions Then : PC
 Action � �

PC ��� end � wrong � � and
Else : PC
 Action � � PC ��� end � wrong � � . Suppose Label

�
pc �0� x,

Then
�
pc �.� �

α1 � pc1 � , and Else
�
pc �.� �

α2 � pc2 � . When a thread is at
the location pc, the next action executed by it depends on the value
of x. If the value of x is nonzero, then it executes the action α1 and
goes to pc1. If the value of x is zero, then it executes the action α2
and goes to pc2. A thread terminates and cannot perform any more
actions if it reaches one of the special locations end or wrong. The
location end indicates normal termination and wrong indicates erro-
neous termination. The control location wrong may be reached, for
example, if the threads fails an assertion or if it attempts to access a
field of non-address value.

Transition relation: We now formally define the semantics of the
program as a transition relation

α�
 t � State � State, where t � Tid
is a thread identifier and α � Action is an action. This relation
gives the transitions of thread t. Program execution starts with a
single thread with identifier tI � Tid at control location pcI . The
initial state of the program is

� �
sI � hI � , where

�
sI
�
tI � � � pcI � lI

and undefined elsewhere, and the heap hI is not defined at any
address. The initial local store lI of thread tI assigns 0 to each
variable. In each step, a nondeterministically chosen thread t ex-
ecutes an action α and changes the state according to the transi-
tion relation

α�
 t . Let
� �

s � h � be a state such that
�
s
�
t � � � pc � l

and Label
�
pc � � z. Let � α � pc � � Then

�
pc � if l

�
z ���� 0 and

Else
�
pc � otherwise. Then, the relation

α�
 t is given by the rules
in Figure 3 where we do a case analysis on α. An execution σ
of the program is a finite sequence

� �
s1 � h1 � α1�
 t1

� �
s2 � h2 � α2�
 t2

� � � αn 	 1�
 tn 	 1
� �

sn � hn � αn�
 tn
� �

sn
 1 � hn
 1 � such that
� �

s1 � h1 � � � �
sI � hI �

and
� �

sk � hk � αk�
 tk
� �

sk
 1 � hk
 1 � for all 1 � k � n.

4 Lockset algorithm

In this section, we describe our algorithm for checking whether a
given execution σ has a data-race. We use the standard charac-
terization of data-races based on the happens-before relation. Our
algorithm is sound and precise, that is, it reports a data-race on an
execution iff there is a data-race in that execution. The novelty of
our algorithm is that it is based on locksets, in contrast with tradi-
tional algorithms that are based on clock vectors. We will show that
this aspect of our algorithm gives it significant advantages over tra-
ditional approaches. We first present the definition of the happens-
before relation.

DEFINITION 1. Let σ � � �
s1 � h1 � α1�
 t1

� �
s2 � h2 � α2�
 t2 � � � αn�
 tn� �

sn
 1 � hn
 1 � be an execution of the program. The happens-before

relation
hb�
 for σ is the smallest transitively-closed relation on

the set � 1 � 2 � � � � � n � such that for any k and l, we have k
hb�
 l if

1 � k � l � n and one of the following holds:

(ALLOCATE)
α ��� x = new � h � a ���

��� s 2 h � α���
t ��� s � t : ��� pc � 2 l � x : � a �����-2 h � a : � λI � �

(READHEAP)
α ��� y = x $ f � h � l � x � �����

��� s 2 h � α���
t ��� s � t : ��� pc � 2 l � y : � h � l � x � 2 f ������� 2 h �

(READHEAP FAIL)
α ��� y = x $ f � h � l � x � ����

��� s 2 h � α���
t ��� s � t : ��� wrong 2 l ��� 2 h �

(WRITEHEAP)
α ��� x $ f = y � h � l � x � �����

��� s 2 h � α���
t ��� s � t : ��� pc � 2 l ��� 2 h � � l � x � 2 f � : � l � y ��� �

(WRITEHEAP FAIL)
α � � x $ f = y 2 pc � � h � l � x ���.� �
��� s 2 h � α���

t ��� s � t : ��� wrong 2 l ��� 2 h �
(OPERATION)

α ��� x = op � y1 2 $ $ $ 2 ym ���
��� s 2 h � α���

t ��� s � t : ��� pc � 2 l � x : � op � l � y1 � 2 $ $ $ 2 l � ym � ������� 2 h �
(ACQUIRE)

α � acq � x � h � l � x � 2 owner �� 0

�!� s 2 h � α���
t ��� s � t : ��� pc � 2 l ��� 2 h � � l � x � 2 owner � : � t � �

(ACQUIRE FAIL)
α � acq � x � h � l � x ���.��

��� s 2 h � α���
t ��� s � t : ��� wrong 2 l ��� 2 h �

(RELEASE)
α � rel � x � h � l � x � 2 owner �� t

��� s 2 h � α���
t ��� s � t : ��� pc � 2 l ��� 2 h � � l � x � 2 owner � : � 0 � �

(RELEASE FAIL)
α � rel � x � � h � l � x �����"�$# h � l � x � 2 owner ���� t �

��� s 2 h � α���
t ��� s � t : ��� wrong 2 l ��� 2 h �

(FORK)
α ��� x = fork �%� s � u ��� �

�!� s 2 h � α���
t ��� s � t : ��� pc �-2 l ����� u : ��� pcI 2 l ��� 2 h �

(JOIN)
α � join � x �&� s � l � x ������� end 2 l � �
��� s 2 h � α���

t ��� s � t : �'� pc �-2 l ���-2 h �

Figure 3. Transition relation

Initialization:
LS = λq � HeapVariable � Addr � Tid

Let
� �

s � h � α�
 t
� �

s � � h � � , � s � t � � � pc � l and
�
s � � t ��� � pc � � l � .

1. α � �
x = new � or α � �

x = op
�
y1 � � � ��� ym � � :

LS is not updated.

2. α � �
y = x � f � or α � �

x � f = y � :
let lh � LH

� � �
s � h � � t � in

LS = LS � � l � x � � f � : � lh �
3. α � acq

�
x � :

let lh � LH
� � �

s � � h � � � t � in
LS = λq � HeapVariable � � lh � LS

�
q � �� /0 �

? lh � LS
�
q �

: LS
�
q �

4. α � rel
�
x � :

LS is not updated.

5. α � �
x = fork � :

let lh � LH
� � �

s � h � � t � in
LS = λq � HeapVariable � � lh � LS

�
q � �� /0 �

? � l � � x � � � LS
�
q �

: LS
�
q �

6. α � join
�
x � :

let lh � LH
� � �

s � h � � l � x � � � lh � � LH
� � �

s � h � � t � in
LS = λq � HeapVariable � � lh � LS

�
q � �� /0 �

? lh � � LS
�
q �

: LS
�
q �Figure 4. Update rules for the lockset algorithm

1. tk � tl .

2. αk � rel
�
x � , αl � acq

�
y � , and

�
sk
�
tk �

�
x ��� � sl

�
tl �
�
y � .

3. αk � �
x = fork � and tl � � sk
 1

�
tk �

�
x � .

4. αl � join
�
x � and tk � � sl

�
tl �
�
x � .

We use the happens-before relation to define data-race free ex-
ecutions as follows. Consider an action αk in the execution σ
and a heap variable q � � �

sk
�
tk �

�
x � � f � . The thread tk reads q, if

αk � �
x = y � f � . The thread tk writes q, if αk � �

x � f = y � . The thread
tk accesses the variable q if it either reads or writes q. The execution
σ is race-free on q if for all k � l ��� 1 � n � such that αk and αl access

q, we have k
hb�
 l. For now, our definition does not distinguish

between read and write accesses. In Section 6, we will refine our
algorithm to make this distinction.

The Java memory model [18] also defines data-race free executions
in a manner similar to us. However, their definition of a happens-
before relation also includes all edges between accesses to a volatile
variable. Although our programming language does not include
volatile variables, their effect on the happens-before relation can be
modeled easily by introducing for each volatile variable q a new
lock p and inserting an acquire of p before and a release of p after
each access to q.

Our algorithm for detecting data races in an execution σ uses two
auxiliary functions, LH and LS. The function LH from Tid to
Powerset

�
Addr � Tid � provides for each thread t the set of locks

held by t. Apart from the locks present in the program, our algo-
rithm also considers each thread identifier t to be a lock that is held
by that thread for its lifetime. Given a state

� �
s � h � and a thread t, we

formally define LH
� � �

s � h � � t � � � t � �$� a � Addr � h � a � owner � � t � .
We often write LH

�
t � when the state

� �
s � h � is clear from the con-

text. The function LS from HeapVariable to Powerset
�
Addr � Tid �

provides for each variable q its lockset LS
�
q � which contains the set

of locks that potentially protect accesses to q. The algorithm up-
dates LS with the execution of each transition in σ. These updates
to LS maintain the invariant that if thread t holds at least one lock
in LS

�
q � at an access of q, then the previous access to q is related to

this access by the happens-before relation.

Our algorithm consists of the set of rules in Figure 4. Initially
LS

�
q � � Addr � Tid for all q � HeapVariable. Given as input a

transition
� �

s � h � α�
 t
� �

s � h � , the rules in the figure show how to
update LS by a case analysis on α. A race on the heap variable
q � �

l
�
x � � f � � is reported in Rule 2, if LS

�
q � � LH

� � �
s � h � � t �+� /0 just

before the update.

The computation of the function LH in any state requires a single
scan of the heap. If that is too expensive, the function LH can be
easily computed incrementally by the algorithm as follows. We ini-
tialize LH

�
t �0� � t � for all t � Tid. At an acquire operation by thread

t, we add the lock being acquired to LH
�
t � . At a release operation

by thread t, we remove the lock being released from LH
�
t � .

To present the intuition behind our algorithm, let us consider the
evolution of LS

�
q � for a particular heap variable q starting from an

access by thread t. According to Rule 2, this access sets LS
�
q � to

LH
�
t � . The other rules ensure that as the execution proceeds, the

lockset LS
�
q � grows or remains the same, until the next access to q

is performed by a thread t � , at which point LS
�
q � is set to LH

�
t � � .

In other words, the invariant LH
�
t � � LS

�
q � holds at the state af-

ter the access by t up to the state just before the next access by t � .
Suppose t � �� t. If LS

�
q � � LH

�
t � � �� /0 just before the second access,

then an argument based on the invariant shows that the two accesses
are related by the happens-before relation. The real insight of our
algorithm appears in ensuring the contrapositive, that is, in show-
ing that if the first access happens before the second access, then
LS

�
q � � LH

�
t � � �� /0.

To illustrate how our algorithm ensures the contrapositive, consider
the following scenario. Suppose q � �

o � f � and o is an object freshly
allocated by t. Further, at the access of q by thread t no program
locks were held so that LH

�
t � � � t � . Later on, thread t makes this

object visible by acquiring the lock of a shared object o � and as-
signing the reference o to a field in o � . After t releases the lock o � ,
thread t � acquires it, gets a reference to o, releases the lock o � , and
accesses the variable

�
o � f � . In this case, there is a happens-before

edge between the two accesses due to the release of o � by t and the
acquire of o � by t � .

Our algorithm detects this happens-before edge by growing the
lockset of q at each acquire operation. In Rule 3 for the acquire
operation, the set lh of locks held by thread t after the acquire op-
eration is added to the lockset LS

�
q � of any variable q if there is

a common lock between lh and LS
�
q � . As a consequence of this

rule, when thread t acquires the lock o � in the example described
above, the lock o � is added to LS

�
q � , updating it to � t � o ��� . Simi-

larly, when thread t � acquires the lock o � , the lockset LS
�
q � is up-

dated to � t � o � � t � � and thus LH
�
t � � � LS

�
q � �� /0 at the access of q by

t � . The rationale for growing the locksets at fork and join operations
in Rules 5 and 6 respectively is similar.

We have proved the following theorem about the correctness of our
algorithm. This theorem shows that our algorithm is both sound

record Node �
1 State state;
2

�
HeapVariable
 Powerset

�
Tid � Addr � � LS;

3
�
HeapVariable
 Node � la;

4
�
Tid �$� 0 � � tid;

5 Powerset
�
Tid � done;

6
� �

Addr � Tid �
 �
Addr � Tid � � f ;

7 Powerset
�
HeapVariable � races;

8 Powerset
�
HeapVariable � va;

9 boolean succOnStack;
10 � �

State
 HeapVariable
 �
Addr � Tid � � table;�

State
 Powerset
�
HeapVariable � � rtable;

Figure 5. Record Node

and precise.

THEOREM 1 (CORRECTNESS). Consider a program execution

σ � � �
s1 � h1 � LS1 � α1�
 t1 � � � αn�
 tn

� �
sn
 1 � hn
 1 � LSn
 1 � . Let a heap

variable q and i � � 1 � n � 1 � be such that αi and αn access q but
α j does not access q for all j � � i � 1 � n � 1 � . Then LSn

�
q � �

LH
� � �

sn � hn � � tn � �� /0 iff i
hb�
 n.

The proof of Theorem 1 depends on the following fundamental
lemma that formally characterizes the relationship between the cur-
rent lockset of each variable and the synchronization operations that
occurred in the history of the execution.

LEMMA 1. Let σ � � �
s1 � h1 � LS1 � α1�
 t1

� �
s2 � h2 � LS2 � α2�
 t2

� � � αn�
 tn
� �

sn
 1 � hn
 1 � LSn
 1 � be an execution of the program. Let
q be a variable that was last accessed by action αi in σ.

1. Let m � Addr be such that m �� LH
� � �

sn
 1 � hn
 1 � � t � for all t �
Tid. Then m � LSn
 1

�
q � iff there exists j such that 1 � j � n,

i
hb�
 j, α j � rel

�
x � , and

�
s j
�
t j �

�
x � � m.

2. Let m � Addr be such that m � LH
� � �

sn
 1 � hn
 1 � � t � for some
t. Then m � LSn
 1

�
q � iff there exists j such that 1 � j � n,

i
hb�
 j and t j � t.

3. Let t � Tid. Then t � LSn
 1
�
q � iff there exists j such that

1 � j � n, i
hb�
 j and either t j � t or α j � �

x = fork � and�
s j
 1

�
t j �

�
x � � t.

The proof of our correctness theorem appears in the appendix of the
full version of our paper [1].

In the next section, we will utilize our lockset algorithm to devise an
efficient model checking algorithm for concurrent programs. This
algorithm can be used to find data-races and safety violations in the
program by systematically exploring its state space.

5 Model checking using locksets

In this section, we present an application of the lockset algorithm
described in the previous section. We develop an algorithm to sys-
tematically and efficiently explore the state space of a concurrent
program. The main challenge in systematic exploration is to re-
duce the number of thread interleavings that need to be explored
while maintaining soundness. Partial-order techniques [23] have
employed the idea of selective search to achieve such a reduc-

Search
� � �

1 Node curr = new Node;
2 curr � state =

� �
sI � hI � ;

3 curr � LS = λq � HeapVariable � Addr � Tid;
4 curr � la = λq � HeapVariable � null;
5 curr � tid = 0;
6 curr � done = /0;

7 Stack � Node stack = new Stack � Node ;
8 stack � Push

�
curr � ;

9
�
Addr � Tid �
 �

Addr � Tid � f ;
10 curr � f = Canonize

�
curr � state � ;

11 table
�
curr � f � curr � state � � = curr � f � curr � LS � ;

12 curr � races = /0;
13 rtable

�
s � = /0;

14 curr � va = /0;
15 curr � succOnStack = false;

16 while
���

stack � IsEmpty
� � � �

17 Tid t;
18 curr = stack � Peek

� � ;
19 if

�
curr � tid � 0 � done � enabled

�
curr � state � �

20 t = choose
�
enabled

�
curr � state ��� curr � done � ;

21 elsif
�
curr � tid �� 0 � curr � tid �� curr � done �

22 t = curr � tid;
23 else �
24 stack � Pop

� � ;

25 if
�
curr � tid � 0 � curr � succOnStack � �

26 foreach
�
HeapVariable q � � curr � la � q � � �� null �

27 curr � la � q � �#� tid = 0;
28 curr � races = HeapVariable;
29 �
30 rtable

�
curr � f � curr � state � � = curr � f � curr � races � ;

31 Node prev = stack � Peek
� � ;

32 prev � races = prev � races � � curr � races � curr � va � ;

33 continue;
34 �
35 curr � done = curr � done �$� t � ;
36 curr � tid = t;
37 Node next = Successor

�
curr � t � ;

38
� �

Addr � Tid �
 �
Addr � Tid � � f = next � f ;

39 State s = f
�
next � state � ;

40 if
�
table

�
s � exists � �

41
�
HeapVariable
 �

Addr � Tid � � locksets;
42 locksets = f � 1 � table

�
s � � ;

43 if
�
locksets � next � LS � �

44 if
��	

n � stack � s � n � f � n � state � � �
45 curr � tid = 0;
46 curr � succOnStack = true;
47 �
48 continue;
49 �
50 next � LS = locksets � next � LS;
51 �
52 table

�
s � = f

�
next � LS � ;

53 stack � Push
�
next � ;

54 �
55 �

Figure 6. Procedure Search

tion. In each explored state s, these algorithms attempt to identify a
thread t such that the operation of t enabled in s is independent of all
operations in any execution from s consisting entirely of operations
by threads other than t. If such a thread t is identified, then it suf-
fices to schedule only t in s. The fundamental problem with these
algorithms is that, since the executions in the future of s have not
been explored, they are forced to make pessimistic guesses about
independence. For example, if the operation of thread t is an ac-
cess of a shared heap variable q, then a pessimistic analysis would
declare it to be not independent (or dependent). But if this access
by t and any future access by another thread consistently follow
the locking discipline associated with q, then these two accesses
are separated by the happens-before relation and consequently the
access by thread t can be classified as an independent operation.
The lockset algorithm described in the previous section is able to
track the happens-before relation precisely and therefore gives us a
powerful tool to identify such independent actions.

The model checking algorithm is implemented by the procedure
Search in Figure 6 and procedure Successor in Figure 7. The pro-
cedure Search performs a depth-first search (DFS) of the state space
using the stack variable declared on line 7. The DFS stack consists
of a sequence of Node records each of which stores information as-
sociated with a state visited during the search. The state itself is
stored in the field state. The search keeps track of the locksets for
the heap variables in the field LS and executes the lockset algorithm
along every execution generated by the search. The field la provides
for each heap variable a reference to the node in the DFS stack from
which the last access to that variable was performed. The fields tid
and done determine the scheduling of threads from the node. The
field done contains the identifiers of those threads that have already
been scheduled from the node.

To schedule an action α of thread t from a node curr at the top of the
stack, the field curr � tid is set to t and the procedure Successor is in-
voked. This procedure returns the successor node next, which con-
tains the new state and locksets. The value of curr � la is copied over
to next � la, except if α accesses a variable q in which case next � la � q �
is updated to point to curr. In the procedure Search, the action α
is optimistically treated as an independent action. As the search
proceeds, the value of next � la � q � is copied to its successors on the
stack. If a later action creates a data-race on q with α, then a refer-
ence to curr is retrieved using la

�
q � and curr � tid is set to 0. When

curr is again at the top of the stack, the procedure Search observes
that curr � tid � 0 and schedules other threads from curr. If, on the
other hand, no race is discovered, then α is indeed an independent
action and it is unnecessary to schedule other threads from curr.

The fields f , races, va, and succOnStack of Node, the variables
table and rtable, lines 9–15, 25–32 and 38–52 of the procedure
Search, and lines 21 and 27–34 of the procedure Explore are used to
implement state caching in our algorithm. Indeed, by omitting these
lines Search becomes a stateless model checking [24] algorithm
which is sound but guaranteed to terminate only on finite acyclic
state spaces. If these lines are included, then Search is a stateful
model checking algorithm that is sound and guaranteed to termi-
nate on all finite state spaces. Flanagan and Godefroid [12] earlier
presented a stateless model checking algorithm, also based on opti-
mistic partial-order reduction algorithm. To compute the happens-
before relation, their algorithm augments the program state with
clock vectors. Since the clock values in the vectors monotonically
increase with the length of the execution, state caching would not
be effective and their algorithm is limited to systematic but stateless
execution. We significantly improve upon their work by giving the
ability to perform both stateless and stateful model checking. As

Node Successor
�
Node curr � Tid t � �

1 Heap h � h � ;
2 LocalStates

�
s � � s � ;

3 Action α;
4

�
h � � s � = curr � state;

5 let
�
h � � s � α�
 t

�
h � � � s � � ;

6 Node next = new Node;
7 next � state =

�
h � � � s � � ;

8 next � LS = Update
�
curr � LS � � h � � s � α�
 t

�
h � � � s � � � ;

9 next � la = curr � la;
10 next � f = Canonize

�
next � state � ;

11 next � races = /0;
12 next � va = /0;

13 switch
�
α � �

14 case y = x � f :
15 case x � f = y :
16 HeapVariable q =

� �
s
�
t � � x � � f � ;

17 next � va = � q � ;
18 next � la � q � = curr;
19 if

�
curr � LS

�
q � � LH

�
curr � state � t � � /0 � �

20 curr � la � q �#� tid = 0;

21 curr � races = curr � races �$� q � ;

22 �

23 case acq
�
x � :

24 case join
�
x � :

25 curr � tid = 0;
26 �

27
� �

Addr � Tid �
 �
Addr � Tid � � f = next � f ;

28 State s = f
�
next � state � ;

29 if
�
rtable

�
s � exists � �

30 next � races = f � 1 � rtable
�
s � � ;

31 foreach
�
HeapVariable q � � next � races �

32 next � la � q � �#� tid = 0;
33 curr � races = curr � races � � next � races � next � va � ;
34 �

35 next � tid =
�
t � enabled

�
next � state � � ? t : 0;

36 next � done = /0;
37 next � succOnStack = false;
38 return next;
39 �

Figure 7. Procedure Successor

described below, our characterization of the happens-before relation
in terms of locksets is crucial for this improvement. Our algorithm,
by virtue of being stateful, provides a guarantee of termination and
the possibility of avoiding redundant state exploration.

The variable table is a map from states to locksets and is used to
store the states together with the corresponding locksets explored
by the algorithm. The variable rtable maps a state to the set of heap
variables on which a race may occur in some execution starting
from that state. An entry corresponding to state s is added to table
when it is pushed on the stack (lines 11 and 52). Conversely, an
entry corresponding to state s is added to rtable when it is popped
from the stack (line 30).

The algorithm computes the canonical representatives of the initial
state

� �
sI � hI � and the initial locksets in lines 9–11. The canonical

representatives capture symmetries in the state space due to the re-
stricted operations allowed on the set Addr of heap addresses and
the set Tid of thread identifiers. The canonical representatives are
computed in two steps. First, the function Canonize is used to con-
struct a canonizer f , a one-one onto function on Addr � Tid. Then,
the states and the locksets are transformed by an application of this
function. The canonizer is stored in the f field of curr and an en-
try from the representative of the initial state to the representative
of the initial lockset is added to table. There are well-understood
techniques for performing canonization [13, 29, 30] and we omit
the details for lack of space.

The algorithm explores a transition on line 37 by calling the
Successor procedure. This function returns the next state in the
node next. If a race is detected on line 19 due to an access to a heap
variable q, then the tid field of the node from which the last access
to q was made is set to 0. In addition, lines 27–34 of Successor
check if the future races from the successor state have already been
computed. If they have, then those races are used to set the tid field
of other stack nodes to 0.

After generating the successor node next, the Search procedure
stores the canonizer of next � state in next � f . If there is no entry
corresponding to the canonical representative of next � state in table,
then it adds a new entry and pushes next on the stack. The most
crucial insight of the algorithm appears in the case when an en-
try exists. In that case, the corresponding locksets are retrieved
in the variable locksets. In line 43, the algorithm checks whether
locksets

�
q � � next � LS

�
q � for each heap variable q. If the check

succeeds, then it is unnecessary to explore from next � state since
any state reachable from next � state with locksets next � LS is also
reachable from next � state with locksets and any race that happens
from the state next � state with locksets next � LS also happens from
next � state with locksets.

Lines 44–47 take care of a well-known problem with partial-order
techniques [23]. By setting curr � tid to 0 in case next � state is on
the stack, the algorithm ensures that transitions of other threads get
scheduled in the next iteration of the loop on line 19–20. In this
case, the field curr � succOnStack is also set to true. When a node is
popped from the stack (line 24), if its tid field is 0 and succOnStack
field is true (line 25–29), then the algorithm considers all races to
be possible in the future and updates the tid fields of stack nodes
appropriately.

Finally, if the subset check on line 43 fails, then the algorithm up-
dates next � LS to be the pointwise intersection of locksets and the old
value of next � LS, updates table so it maps the canonical representa-
tive of next � state to the canonical representative of the new value of

Initialization:
LSW = λq � HeapVariable � Addr � Tid
LSR = λq � HeapVariable � λu � Tid � Addr � Tid

Let
� �

s � h � α�
 t
� �

s � � h � � , � s � t � � � pc � l and
�
s � � t � � � pc � � l � .

1. α � �
x = new � or α � �

x = op
�
y1 � � � ��� ym � � :

LSW and LSR are not updated.

2. α � �
y = x � f � :

LSW is not updated.
let lh � LH

� � �
s � h � � t � in

LSR = LSR � � � l � x � � f � � t � : � lh �
3. α � �

x � f = y � :
let lh � LH

� � �
s � h � � t � in

LSW = LSW � � l � x � � f � : � lh �
LSR = LSR � � l � x � � f � : � λu � Tid � lh �

4. α � acq
�
x � :

let lh � LH
� � �

s � � h � � � t � in
LSW = λq � HeapVariable � � lh � LSW

�
q � �� /0 �

? lh � LSW
�
q �

: LSW
�
q �

LSR = λq � HeapVariable � λu � Tid � � lh � LSR
�
q � u � �� /0 �

? lh � LSR
�
q � u �

: LSR
�
q � u �

5. α � rel
�
x � :

LSW and LSR are not updated.

6. α � �
x = fork � :

let lh � LH
� � �

s � h � � t � in
LSW = λq � HeapVariable � � lh � LSW

�
q � �� /0 �

? � l � � x � � � LSW
�
q �

: LSW
�
q �

LSR = λq � HeapVariable � λu � Tid � � lh � LSR
�
q � u � �� /0 �

? � l � � x � � � LSR
�
q � u �

: LSR
�
q � u �

7. α � join
�
x � :

let lh � LH
� � �

s � h � � l � x � � � lh � � LH
� � �

s � h � � t � in
LSW = λq � HeapVariable � � lh � LSW

�
q � �� /0 �

? lh � � LSW
�
q �

: LSW
�
q �

LSR = λq � HeapVariable � λu � Tid � � lh � LSR
�
q � u � �� /0 �

? lh � � LSR
�
q � u �

: LSR
�
q � u �Figure 8. Update rules for the extended lockset algorithm

next � LS, and finally pushes next on the stack.

The correctness of our algorithm is captured by the following theo-
rem.

THEOREM 2 (SOUNDNESS). Consider a program execution

σ � � �
s1 � h1 � LS1 � α1�
 t1 � � � αn�
 tn

� �
sn
 1 � hn
 1 � LSn
 1 � such that�

sn
 1
�
t � � � wrong � l for some t � Tid and l � LocalStore. Then

the algorithm in Figure 6 explores a state
� �

s � h � LS � such that�
s
�
t � � � wrong � l .

The proof of this theorem appears in the appendix of the full version
of our paper [1].

6 Extending the lockset algorithm for concur-
rent reads

The lockset algorithm described in Section 4 does not distinguish
between read and write accesses to a variable. To increase perfor-
mance while still guaranteeing race-freedom, many programs rely
on a locking discipline in which concurrent reads to a variable are
allowed. In this section, we extend the lockset algorithm to allow
for concurrent reads by treating reads and writes differently.

In the extended version of the algorithm, LS is divided into two sep-
arate maps LSR and LSW . The function LSW from HeapVariable
to Powerset

�
Addr � Tid � is similar to the earlier LS and provides for

each variable q the lockset LSW
�
q � containing the set of locks that

protect write accesses to q. The function LSR from HeapVariable �
Tid to Powerset

�
Addr � Tid � provides for each variable q and for

each thread t the lockset LSR
�
q � t � containing the set of locks that

protect read accesses to q by t.

The update rules for the extended algorithm are given in Figure 8.
Initially, we have LSW

�
q � � Addr � Tid for all q � HeapVariable,

and LSR
�
q � u � � Addr � Tid for all q � HeapVariable and for all

u � Tid. Given the maps LSW and LSR at state
� �

s � h � , we show how
to compute the maps at state

� �
s � � h � � by a case analysis on α. Let

q � �
l
�
x � � f � � be a variable. If thread t performs a read access to

q, Rule 2 only updates LSR
�
q � t � . But if thread t performs a write

access to q, Rule 3 updates LSW
�
q � and LSR

�
q � u � for all u � Tid. A

race at a read access for q is reported in Rule 2 if LH
�
t � � LSW

�
q � �

/0 just before the access. A race at a write access for q is reported in
Rule 3 if LH

�
t � � LSR

�
q � u ��� /0 for some u � Tid.

7 Implementation and evaluation

We have implemented the algorithm described in Section 5 using
the extended lockset algorithm described in Section 6. Our imple-
mentation is based on the Zing [30] model checking infrastructure.
The most interesting aspect of the implementation is the manage-
ment of locksets. Recall that the algorithm in Figure 6 augments
the program state with a lockset for each heap variable and runs the
lockset algorithm of Figure 4 as it explores the execution sequences
of the program. The implementation is not straightforward because
naively associating a lockset with each heap variable may increase
the size of the state vector by a large factor. Moreover, acquire,
fork, and join operations require the lockset of every variable to be
updated. Again, a naive implementation would require a scan of the
entire heap which can also be prohibitively expensive.

To solve these problems, we observed that although a typical pro-
gram might have a large number of heap variables it uses only a
small number of locks. Therefore the total number of distinct lock-
sets in use would also be small and we expect that a large number
of heap variables will have the same lockset associated with them.
Therefore, we separated the lockset management into an abstract
data type called the lockset table. All locksets for the program are
stored in the lockset table, and the program refers to these lock-
sets by integer indices. This strategy ensures that there is precisely
one copy of each distinct lockset in the state and allows sharing of
locksets among different heap variables. For each object created
by the program, the implementation also create a shadow object of
the same size. The i-th field of the shadow object contains the in-
dex of the lockset for the i-th field of the original object. Another
advantage of this implementation is that for acquire, fork, and join
operations, instead of iterating over the entire state vector, we only
need to iterate over the locksets in the lockset table and update each

distinct lockset according to the rules. Since we expect the lockset
table to be much smaller than the state vector, this approach is much
faster.

We have evaluated our implementation on a number of interest-
ing examples that exhibit a variety of synchronization idioms.
Existing static techniques, described in Section 8, would find
it difficult to prove the absence of data-races on these exam-
ples. Our lockset algorithm can uniformly deal with all the syn-
chronization idioms and thus enables our model checker to ver-
ify the absence of data-races. For lack of space, we only give
brief descriptions of these examples below. We encourage the
reader to examine the source code available at the web address:
http://www.research.microsoft.com/˜qadeer/pldi06-examples.zip.

Indexer and FileSystem. These two examples were presented by
Flanagan and Godefroid [12]. Both these examples have global
variables that statically appear to be shared among the program
threads but are dynamically thread-local. The dynamic partial-order
reduction algorithm presented by them discovers the thread-locality
and consequently schedules exactly one interleaving of the threads.
Our algorithm works just as well and also schedules exactly one
interleaving of the threads.

IndependentWork1 and IndependentWork2. These two exam-
ples were presented by Robby et al. [19] to illustrate the need for
static and dynamic escape analysis for detecting independent ac-
tions in partial-order reduction. In IndependentWork1, the main
thread creates two different threads each of which creates and ini-
tializes a list and then traverses it. In IndependentWork2, the main
thread creates and initializes two lists and then creates two threads
each of which traverses one of the lists. For both examples, once a
thread starts accessing a list, the list becomes local to that thread.
Our analysis discovers this property and consequently does not
report any races. In addition, the model checking finishes after
scheduling exactly one interleaving of the threads.

HaltException. This example was presented by Havelund and
Presburger [16]. It contains a lock-protected buffer that is used by
a producer thread and a consumer thread to share work items. Both
during the initialization of the work item by the producer and its
processing by the consumer, the work item is local to the respective
thread. The ownership transfer happens when the item is queued
into the buffer. Our analysis verified the absence of data-races and
a variety of assertions.

BlinkTree. This example contains the implementation of a single
level of a concurrent B-link tree [31]. There is a linked list of con-
tainer nodes, each of which has references to a set of data nodes.
Each data node contains a pair consisting of a key and a datum.
The fields of the container node and the data nodes attached to it
are protected by the lock of the container node. The data struc-
ture supports three operations—Insert, Delete, and Lookup, each of
which is highly optimized to acquire as few locks as possible. To
keep the tree balanced, the Insert and Delete operations may move
data nodes from one container node to another. Thus, the lock pro-
tecting a data node may change dynamically. Our analysis verified
the absence of data-races and a variety of assertions.

IOManager. This example is concerned with the lifecycle of an
I/O Request Packet (IRP), a data structure that encapsulates a sin-
gle request for I/O from an application to the kernel. An IRP passes
through multiple ownership transfers from its creation to its com-
pletion. There could be as many as four threads potentially seeking
access to a single IRP—a thread that creates the IRP, a thread that

completes the IRP successfully, a thread that cancels the IRP, and a
thread that performs post-processing on a successfully completed or
canceled IRP. This example has the most sophisticated synchroniza-
tion among our examples and involves two lock-protected queues
and several volatile variables. Our tool proved the absence of race
conditions and assertion violations.

8 Related Work

We present related work along two axis: static and dynamic race
detection, and partial-order reduction in software model checking.

Race detection: Static approaches to race checking exploit
compile-time analysis on the program source, and report potential
sources of races. Warlock [22] and RacerX [11] use this approach.
Another approach is to augment the programming language’s type
system to express common synchronization mechanisms so that any
well-typed program is guaranteed to be race-free. This approach
requires a considerable amount of annotation into the source code
by the programmer and also restricts the kinds of synchronization
idioms that can be employed. The formal type systems used by
Flanagan et al. [5] and Boyapati et al. [3, 7] capture many com-
mon synchronization patterns including mutually exclusive locks,
thread-local objects, objects with internal synchronization, objects
with fields synchronized by external locks, etc. Inspired by [3],
Grossman et al. [7] extend Cyclone’s polymorphic type system with
threads and locks. Then their notion of type safety implies absence
of races. The main shortcoming of the static methods is the fact that
they are rather restrictive, i.e., they report many false positives and
require escape mechanisms to bypass benign race conditions.

Dynamic approaches aim to detect races at runtime by looking
at the history of memory accesses and synchronization operations
recorded along an execution of the program. Dynamic methods
are more accurate for analyzing individual executions and do not
suffer much from false positives as much as static methods. How-
ever, they are not exhaustive and thus cannot reason about race-
freedom of a whole program. There are two main classes of dy-
namic techniques: lockset analysis and happens-before analysis.
Lockset-based algorithms verify that the program execution con-
forms to a locking discipline – a programming methodology that
ensures the absence of data races. Eraser [28] is a tool for detect-
ing race conditions dynamically by enforcing the locking discipline
that every shared variable is protected by a unique lock. It han-
dles object initialization patterns using a state-based approach but
can not handle dynamically changing locksets since it only allows
a lockset to get smaller. There is much work [14, 6, 32] that refines
the Eraser algorithm by improving the state machine it uses and the
transitions to reduce the number of false positives. The approaches
that check a happens-before relation [20, 21, 10] are based on Lam-
port’s happens-before relation [17], which outputs a partial order-
ing on program statements. A data race occurs when there is no
temporal ordering provided by the happens-before relation between
two conflicting memory accesses. This technique is more general
than lockset-based methods, and it can be applied to programs with
fork/join or signal/wait synchronization in addition to locks. How-
ever, it is less efficient to implement than a lockset algorithm and
imprecise computation of the relation might lead to false negatives.
There are techniques [15, 9, 32] that combine lockset and happens-
before analysis that get advantages of both approaches. Our tech-
nique, for the first time, computes a precise happens-before relation
using an implementation that makes use of only locksets.

Partial-order reduction: Researchers have used synchronization

mechanisms to do partial-order reduction [23] for model check-
ing concurrent systems. Verisoft uses stateless search and partial
order reduction on actual code written in a full-blown implemen-
tation language. Verisoft [24] introduces a stateless exploration
technique that exploits persistent and sleep sets [23]. Stoller et
al. [27, 26] consider various kinds of exclusive access predicates
for shared variables that specify mutually-exclusive synchroniza-
tion disciplines. These predicates are used to perform partial-order
reduction on the state space, in the meanwhile inferring the as-
sumptions on the predicates. The work in [26] is interesting in
that their approach only requires checking if the reduced software
obeys the synchronization discipline. Unless the exclusive access
predicates are expressive enough, these techniques do not work
well when the synchronization discipline, e.g. the locksets protect-
ing a variable, changes over time along the execution. The Bogor
model checker [19] detects thread-local objects at each state vis-
ited by performing a heap traversal and dynamic escape analysis,
and exploits patterns of lock acquisitions and releases in order to
find ample sets [8]. Transaction based dynamic partial-order re-
duction method by Flanagan and Qadeer [4] is based on the theory
of reduction. One application of the lockset algorithm can be im-
proving their technique by detecting race-free variable accesses to
accurately infer transaction boundaries.

Flanagan and Godefroid [12] presents a stateless model checking
algorithm that dynamically tracks a dependency relation between
actions seen and computes an approximation of a persistent set at
each state visited during the exploration. Since it is stateless, their
algorithm runs only on acyclic state spaces. Their approach requires
efficient implementation of vector clocks for computing a happens-
before relation that captures the dependency relation. Furthermore
the dependency relation is tracked along the execution paths. There-
fore, their technique is hard to implement in a stateful setting, as
pruning a state reached through a different path may cause losing
part of the dependency relation.

9 Conclusions

In this paper, we present a new algorithm for detecting data-races in
an execution of a concurrent program. Our algorithm is sound and
precise, that is, it reports a race in an execution iff there are two ac-
cesses to a shared variable along the execution that are not ordered
by the happens-before relation. Our algorithm is based solely on the
concept of locksets and is able to capture all mutual-exclusion syn-
chronization idioms uniformly with one mechanism. Our lockset
algorithm can be used, both in the static or the dynamic context, to
develop analyses for concurrent programs, particularly those for de-
tecting data-races, atomicity violations, and failures of safety spec-
ifications.

We presented a model checking algorithm for concurrent software
that uses our lockset algorithm both to check for races exhaustively
and to perform partial-order reduction when races are absent. We
have implemented our algorithm and evaluated it by verifying the
absence of data-races and assertion failures on a number of exam-
ples exhibiting a variety of synchronization idioms. In future work,
we would like to tackle more examples, especially from operating
systems, which are notorious for having complicated synchroniza-
tion idioms. We would also like to evaluate the efficacy of our lock-
set algorithm in the context of dynamic data-race detection.

10 References

[1] Tayfun Elmas, Shaz Qadeer, Serdar Tasiran. Pre-
cise Race Detection and Efficient Model Checking Us-
ing Locksets. The full version of the paper with ap-
pendices. http://www.research.microsoft.com/˜qadeer/pldi06-
submission-fullversion.ps

[2] C. Boyapati, R. Lee, M. Rinard. A type system for preventing
data races and deadlocks in Java programs. In Proceedings of the
ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 211–230, 2002.

[3] C. Boyapati, M. Rinard. A parameterized type system for race-
free Java programs. In Proceedings of the 16th Annual Confer-
ence on Object-Oriented Programming Systems, Languages and
Applications, Tampa Bay, FL, Oct. 2001.

[4] C. Flanagan and S. Qadeer. Transactions for Software Model
Checking. In Proceedings of the Workshop on Software Model
Checking, pages 338–349, June 2003.

[5] C. Flanagan and S. Freund. Type-based race detection for java.
In Proceedings of the SIGPLAN ’00 Conference on Program
Language Design and Implementation, Vancouver, Canada, June
2000.

[6] C. Praun and T. Gross. Object race detection. In Proceed-
ings of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications (OOPSLA),
pages 70-82, 2001.

[7] D. Grossman. Type-safe multithreading in Cyclone. In Work-
shop on Types in Language Design and Implementation (TLDI),
January 2003.

[8] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, 2000.

[9] E. Pozniansky and A. Schuster. Efficient on-the-fly race de-
tection in multithreaded C++ programs. In Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP), 2003.

[10] E. Schonberg. On-the-fly detection of access anomalies. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 285-
297, 1989.

[11] Engler, D. and Ashcraft, K. RacerX: Effective, static detec-
tion of race conditions and deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles.
SOSP’03. ACM Press, New York, NY, 237-252.

[12] Flanagan, C. and Godefroid, P. Dynamic partial-order reduc-
tion for model checking software. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL’05. ACM Press, New York, NY,
110-121.

[13] Guillaume Brat, Klaus Havelund, Seung-Joon Park, and
Willem Visser. Model Checking Programs. In IEEE Interna-
tional Conference on Automated Software Engineering (ASE),
September 2000.

[14] H. Nishiyama. Detecting data races using dynamic escape
analysis based on read barrier. In Proceedings of the 3rd Vir-
tual Machine Research and Technology Symposium (VM), May
2004.

[15] J. J. Harrow. Runtime checking of multithreaded applications
with visual threads. In Proceedings of the 7th International SPIN

Workshop on SPIN Model Checking and Software Verification,
pages 331342, London, UK, 2000. Springer-Verlag.

[16] K. Havelund and T. Pressburger. Model Checking Java Pro-
grams using Java PathFinder. In the International Journal on
Software Tools for Technology Transfer (STTT), December
1998.

[17] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558565,
July 1978.

[18] Manson, J., Pugh, W., and Adve, S. V. The Java mem-
ory model. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.
POPL’05. ACM Press, New York, NY, 378-391.

[19] M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby. Exploit-
ing object escape and locking information in partial order reduc-
tions for concurrent object-oriented programs. Formal Methods
in System Designs, 2004.

[20] M. Christiaens and K. De Bosschere. TRaDe, a topological
approach to on-the-fly race detection in Java programs. In Pro-
ceedings of the Java Virtual Machine Research and Technology
Symposium (JVM), Apr. 2001.

[21] M. Ronsse and K. De Bosschere. RecPlay: A fully integrated
practical record/replay system. ACM Transactions on Computer
Systems, 17(2):133152, May 1999.

[22] Nicholas Sterling. Warlock: A static data race analysis tool.
In USENIX Winter Technical Conference, January 1993.

[23] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems - An Approach to the State-Explosion Prob-
lem. volume 1032 of Lecture Notes in Computer Science.
Springer-Verlag, January 1996.

[24] P. Godefroid. Model Checking for Programming Languages
using VeriSoft. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, pages 174–186, Paris,
January 1997.

[25] P. Godefroid and D. Pirottin. Refining dependencies im-
proves partial-order verification methods. In Proc. 5th Confer-
ence on Computer Aided Verification, volume 697 of Lecture
Notes in Computer Science, pages 438-449, Elounda, June 1993.
Springer-Verlag.

[26] Scott D. Stoller, Ernie Cohen. Optimistic Synchronization-
Based State-Space Reduction. In Proceedings of the 9th Inter-
national Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 2619 of Lecture
Notes in Computer Science, pages 489–504. Springer-Verlag,
April 2003.

[27] Scott D. Stoller. Model-Checking Multi-Threaded Distributed
Java Programs. International Journal on Software Tools for
Technology Transfer, 4(1):71-91. Springer-Verlag. October
2002.

[28] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas Anderson. Eraser: A dynamic data race
detector for multi-threaded programs. In Proceedings of the
16th ACM Symposium on Operating Systems Principles, Oc-
tober 1997.

[29] Robby, Matthew B. Dwyer, John Hatcliff Bogor: An Exten-
sible and Highly-Modular Model Checking Framework, March
2003. In the Proceedings of the Fourth Joint Meeting of the
European Software Engineering Conference and ACM SIG-

SOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2003).

[30] T. Andrews, S. Qadeer, J. Rehof, S.K. Rajamani, and Y. Xie.
Zing: A model checker for concurrent software. Proceedings of
the 16th International Conference on Computer-Aided Verifica-
tion, 2004.

[31] Y. Sagiv, Concurrent operations on B-trees with overtaking,
Proceedings of the fourth ACM SIGACT-SIGMOD symposium
on Principles of database systems, p.28-37, March 25-27, 1985,
Portland, Oregon, United States.

[32] Yu, Y., Rodeheffer, T., and Chen, W. RaceTrack: Efficient de-
tection of data race conditions via adaptive tracking. In Proceed-
ings of the Twentieth ACM Symposium on Operating Systems
Principles. SOSP’05. ACM Press, New York, NY, 221-234.

A Correctness proof of the lockset algorithm

LEMMA 1 Let σ � � �
s1 � h1 � α1�
 t1

� �
s2 � h2 � α2�
 t2 � � � αn�
 tn� �

sn
 1 � hn
 1 � be an execution of the program. For all 1 � j � n
�

1,
let LH j and LS j be the auxiliary variables associated with state� �

s j � h j � . Let q be a variable that was last accessed by action αi in
σ.

1. Let m � Addr be such that m �� LHn
 1
�
t � for all t � Tid. Then

m � LSn
 1
�
q � iff there exists j such that 1 � j � n, i

hb�
 j,
α j � rel

�
x � , and

�
s j
�
t j �

�
x ��� m.

2. Let m � Addr be such that m � LHn
 1
�
t � for some t. Then

m � LSn
 1
�
q � iff there exists j such that 1 � j � n, i

hb�
 j
and t j � t.

3. Let t � Tid. Then t � LSn
 1
�
q � iff there exists j such that

1 � j � n, i
hb�
 j and either t j � t or α j � �

x = fork � and�
s j
 1

�
t j �

�
x � � t.

PROOF. We prove the lemma by induction over the length of the
execution. When the execution length is 0, the lemma holds triv-
ially because there is no variable q that is accessed by an action

in the execution. Suppose the lemma holds for σ � � �
s1 � h1 � α1�
 t1� �

s2 � h2 � α2�
 t2 � � � αn 	 1�
 tn 	 1

� �
sn � hn � and

� �
sn � hn � αn�
 tn

� �
sn
 1 � hn
 1 � .

Fix a variable q that was last accessed by αi for some 1 � i � n. We
perform a case analysis on αn.

1. αn � �
x = new � or αn � �

x = op
�
y1 � � � ��� ym � � . Neither LH nor

LS changes and no heap variable is accessed. Therefore the
proof follows by a straightforward application of the inductive
hypothesis.

2. αn � �
y = x � f � or αn � �

x � f = y � . Let q �.� � �
sn
�
tn �

�
x � � f � be

the variable accessed by αn. We prove the two cases, i � n
and i �� n, separately.

First, suppose i � n. Then q � q � and LSn
 1
�
q �.� LSn
 1

�
q � �0�

LHn
 1
�
tn � .

(a) Suppose m �� LHn
 1
�
t � for all t � Tid. For the “if”

direction, suppose m � LSn
 1
�
q � . Since LSn
 1

�
q � �

LHn
 1
�
tn � , we get a contradiction. For the “only if”

direction, suppose there exists j such that 1 � j � n,

i
hb�
 j, α j � rel

�
x � , and

�
s j
�
t j �

�
x �+� m. Since i � n and

i
hb�
 j, we have j � n and we arrive at the contradic-

tion.

(b) Suppose m � LHn
 1
�
t � for some t � Tid. For the “if”

direction, suppose m � LSn
 1
�
q � . Since LSn
 1

�
q � �

LHn
 1
�
tn � and i � n, we get i

hb�
 n and t � tn. For
the “only if” direction, suppose there exists j such that

1 � j � n, i
hb�
 j, and t j � t. Since i � n, we get j � n

and t � tn. Therefore m � LHn
 1
�
t � � LHn
 1

�
tn � �

LSn
 1
�
q � .

(c) Suppose t � Tid. For the “if” direction, suppose t �
LSn
 1

�
q � . Then t � tn and i � n

hb�
 n. For the
“only if” direction, suppose there exists j such that

1 � j � n, i
hb�
 j and either t j � t or α j � �

x = fork �
and

�
s j
 1

�
t j �

�
x � � t. Since i � n, we get j � n. Since

tn � LSn
 1
�
q � , we are done.

Second, suppose i �� n. Then q �� q � and LSn
�
q ��� LSn
 1

�
q � .

(a) Suppose m �� LHn
 1
�
t � for all t � Tid. For the “if” direc-

tion, suppose m � LSn
 1
�
q � . We have m � LSn

�
q � and

we are done by the inductive hypothesis. For the “only
if” direction, suppose there exists j such that 1 � j � n,

i
hb�
 j, α j � rel

�
x � , and

�
s j
�
t j �

�
x � � m. Since αn is

not a release action, it must be that j � n. Then the in-
ductive hypothesis gives us that m � LSn

�
q � and we are

done.

(b) Suppose m � LHn
 1
�
t � for some t � Tid. The proof is

exactly the same as the case above.

(c) Suppose t � Tid. For the “if” direction, suppose t �
LSn
 1

�
q � . We have t � LSn

�
q � and we are done by the

inductive hypothesis. For the “only if” direction, let j

be the least integer such that 1 � j � n, i
hb�
 j and ei-

ther t j � t or α j � �
y = fork � and

�
s j
 1

�
t j �

�
y � � t. We

argue that j �� n. Since αn is not a fork action, we only
have to argue for the case t j � t. Suppose α j is the
first action of thread t. Then there exists l such that
i

hb�
 l � j and αl forked thread t, i.e., αl � �
y = fork �

and
�
sl
 1

�
tl �
�
y � � t, which contradicts the minimality

of j. Suppose α j is not the first action of thread t. Since
α j is not a synchronization action, there exists l such

that i
hb�
 l � j and αl � α j , which again contradicts the

minimality of j. Thus, we conclude that j � n and he in-
ductive hypothesis gives us that t � LSn

�
q � � LSn
 1

�
q � .

3. αn � acq
�
x � . Let p � � sn

�
tn �

�
x � be the lock acquired by αn.

We have that LSn
 1
�
q � � LSn

�
q � if LHn
 1

�
tn � � LSn

�
q � � /0

and LSn
 1
�
q � � LSn

�
q � � LHn
 1

�
tn � otherwise.

(a) Suppose m �� LHn
 1
�
t � for all t � Tid. For the “if” di-

rection, suppose m � LSn
 1
�
q � . Since m �� LHn
 1

�
tn � ,

we get that m � LSn
�
q � and we are done by the induc-

tive hypothesis. For the “only if” direction, suppose

there exists j such that 1 � j � n, i
hb�
 j, α j � rel

�
x � ,

and
�
s j
�
t j �

�
x � � m. Since αn is not a release action, it

must be that j � n. Then the inductive hypothesis gives
us that m � LSn

�
q � � LSn
 1

�
q � and we are done.

(b) Suppose m � LHn
 1
�
t � for some t � Tid. For the “if”

direction, suppose m � LSn
 1
�
q � . If m � LSn

�
q � , we

are done by the inductive hypothesis. Otherwise, m �
LHn
 1

�
tn � , t � tn, and either tn � LSn

�
q � or there exists

some m � � LHn
 1
�
tn � � LSn

�
q � . If tn � LSn

�
q � , then by

the inductive hypothesis there exists j such that 1 � j �
n � 1, i

hb�
 j and either t j � tn or α j � �
x = fork � and

�
s j
 1

�
t j �

�
x � � tn. Thus, we get i

hb�
 n and we are done.
If there exists some m � � LHn
 1

�
tn � � LSn

�
q � , there are

two cases: either m � � LHn
�
tn � or m �0� � sn

�
tn �

�
x � . If

m � � LHn
�
tn � , by the inductive hypothesis there exists j

such that 1 � j � n � 1, i
hb�
 j and t j � tn. Since tn � t,

we are done. If m � � � sn
�
tn �

�
x � , then m � �� LHn

�
u � for all

u � Tid. By the inductive hypothesis, there exists j such

that 1 � j � n � 1, i
hb�
 j, α j � rel

�
y � , and

�
s j
�
t j �

�
y �+�

m � . Since i
hb�
 j

hb�
 n and tn � t, we are done. For the
“only if” direction, suppose j is the least integer such

that 1 � j � n, i
hb�
 j, and t j � t. There are two cases:

either t �� tn or t � tn. If t �� tn, we have t j �� tn and
therefore j � n. By the inductive hypothesis, we have
m � LSn

�
q � � LSn
 1

�
q � . If t � tn, there are two cases:

j � n or j � n. If j � n, then by the inductive hypothesis
we have m � LSn

�
q � � LSn
 1

�
q � . If j � n, then there is a

k � n such that i
hb�
 k and one of two cases hold: Either

αk � �
y = fork � and

�
sk
 1

�
tk �

�
y �.� tn or αk � rel

�
y � , and�

sk
�
tk �

�
y � � � sn

�
tn �

�
x � . In the first case, the inductive

hypothesis gives us tn � LSn
�
q � . In the second case,

the inductive hypothesis gives us
�
sn
�
tn �

�
x � � LSn

�
q � .

Thus, in both cases we have LSn
�
q � � LHn
 1

�
tn � �� /0

and therefore m � LHn
 1
�
tn � � LSn
 1

�
q � .

(c) The proof for this case is very similar to the second case
above.

4. αn � rel
�
x � . It must be the case that

�
sn
�
tn �

�
x � � LHn

�
tn � ,

otherwise the action goes wrong.

(a) Suppose m �� LHn
 1
�
t � for all t � Tid. For the “if”

direction, suppose m � LSn
 1
�
q � . Then m � LSn

�
q � .

There are two cases: either m �� LHn
�
t � for all t � Tid

or m � � sn
�
tn �

�
x � . If m �� LHn

�
t � for all t � Tid, the in-

ductive hypothesis gives us that there exists j such that

1 � j � n � 1, i
hb�
 j, α j � rel

�
y � , and

�
s j
�
t j �

�
y � � m.

If m � � sn
�
tn �

�
x � , then m � LHn

�
tn � and the induc-

tive hypothesis gives us that there exists j such that

1 � j � n � 1, i
hb�
 j and t j � tn. Therefore, we get

i
hb�
 n, αn � rel

�
x � , and m � � sn

�
tn �

�
x � . For the “only

if” direction, suppose j is such that 1 � j � n, i
hb�
 j,

α j � rel
�
x � , and

�
s j
�
t j �

�
x � � m. If j � n, then the in-

ductive hypothesis gives us m � LSn
�
q � � LSn
 1

�
q � . If

j � n, then m � � sn
�
tn �

�
x � and therefore m � LHn

�
tn � .

Since tn must have acquired m before releasing it, αn
is not the first action of tn and there is k � n such that

tk � tn and i
hb�
 k. By the inductive hypothesis, we

have m � LSn
�
q ��� LSn
 1

�
q � and we are done.

(b) Suppose m � LHn
 1
�
t � for some t � Tid. For the “if”

direction, suppose m � LSn
 1
�
q � . Then m � LHn

�
t � and

m � LSn
�
q � , and we are done by the inductive hypothe-

sis. For the “only if” direction, let j be the least integer

such that 1 � j � n, i
hb�
 j, and t j � t. If j � n, t � tn.

But αn is not the first action of tn. So there must be k � n

such that i
hb�
 k and tk � tn and we get a contradiction.

Therefore j � n and by the inductive hypothesis we get
m � LSn

�
t ��� LSn
 1

�
t � .

(c) Suppose t � Tid. For the “if” direction, suppose t �
LSn
 1

�
q � . Then t � LSn

�
q � and we are done by the in-

ductive hypothesis. For the “only if” direction, let j be

the least integer such that 1 � j � n, i
hb�
 j and ei-

ther t j � t or α j � �
x = fork � and

�
s j
 1

�
t j �

�
x � � t. If

j � n, then t � tn. But αn is not the first action of tn.

So there must be k � n such that i
hb�
 k and tk � tn

and we get a contradiction. Therefore j � n and we get
t � LSn

�
q ��� LSn
 1

�
q � from the inductive hypothesis.

5. αn � �
x = fork � . Let u � � sn
 1

�
tn �

�
x � be the thread forked by

αn. We have that LSn
 1
�
q � � LSn

�
q � if LHn

�
tn � � LSn

�
q � � /0

and LSn
 1
�
q � � LSn

�
q � �$� u � otherwise.

(a) Suppose m �� LHn
 1
�
t � for all t � Tid. Then m �� LHn

�
t �

for all t � Tid. For the “if” direction, suppose m �
LSn
 1

�
q � . Then m � LSn

�
q � and we are done by a

straightforward application of the inductive hypothe-
sis. For the “only if” direction, suppose j is such that

1 � j � n, i
hb�
 j, α j � rel

�
y � , and

�
s j
�
t j �

�
y � � m.

Since αn � �
x = fork � , we get j � n. By the inductive

hypothesis, we get m � LSn
�
q � � LSn
 1

�
q � .

(b) Suppose m � LHn
 1
�
t � for some t � Tid. Then m �

LHn
�
t � . For the “if” direction, suppose m � LSn
 1

�
q � .

Then m � LSn
�
q � and we are done by a straightforward

application of the inductive hypothesis. For the “only
if” direction, let j be the least integer such that 1 � j �
n, i

hb�
 j, and t j � t. If j � n, then αn must be the first
action of tn and therefore LHn

�
tn � � � tn � . Since tn �

t, we get a contradiction. Therefore j � n and by the
inductive hypothesis, we get m � LSn

�
q � � LSn
 1

�
q � .

(c) Suppose t � Tid. For the “if” direction, suppose t �
LSn
 1

�
q � . Then, either t � LSn

�
q � or t � u and LSn

�
q ���

LHn
�
tn � �� /0. In the first case, we are done by the in-

ductive hypothesis. In the second case, by the inductive

hypothesis, there exists j such that 1 � j � n, i
hb�
 j,

and t j � tn. Therefore i
hb�
 n and we are done. For the

“only if” direction, let j be the least integer such that

1 � j � n, i
hb�
 j and either t j � t or α j � �

y = fork �
and

�
s j
 1

�
t j �

�
y � � t. If j � n, then the inductive hy-

pothesis gives us t � LSn
�
q � � LSn
 1

�
q � . If j � n, then

αn must be the first action of tn and either t � tn or

t � u. Therefore, there is k such that 1 � k � n, i
hb�
 k,

αk � �
z = fork � , and

�
sk
 1

�
tk �

�
z ��� tn. By the inductive

hypothesis, we get that tn � LSn
�
q � � LSn
 1

�
q � . Since

tn � LHn
�
tn � , we have LSn

�
q � � LHn

�
tn � �� /0. Therefore

u � LSn
 1
�
q � . Since either t � tn or t � u, we are done.

6. αn � join
�
x � . Let u � � sn

�
tn �

�
x � be the thread joined by αn.

We have that LSn
 1
�
q ��� LSn

�
q � if LHn

�
u � � LSn

�
q � � /0 and

LSn
 1
�
q ��� LSn

�
q � � LHn

�
tn � otherwise.

(a) Suppose m �� LHn
 1
�
t � for all t � Tid. Then m �� LHn

�
t �

for all t � Tid. For the “if” direction, suppose m �
LSn
 1

�
q � . Then m � LSn

�
q � and we are done by a

straightforward application of the inductive hypothe-
sis. For the “only if” direction, suppose j is such that

1 � j � n, i
hb�
 j, α j � rel

�
y � , and

�
s j
�
t j �

�
y � � m.

Since αn � join
�
x � , we get j � n. By the inductive hy-

pothesis, we get m � LSn
�
q � � LSn
 1

�
q � .

(b) Suppose m � LHn
 1
�
t � for some t � Tid. Then m �

LHn
�
t � . For the “if” direction, suppose m � LSn
 1

�
q � .

Then, either m � LSn
�
q � or m � LHn

�
tn � , tn � t, and

LHn
�
u � � LSn

�
q � �� /0. In the first case, we are done by a

straightforward application of the inductive hypothesis.
In the second case, we know by the inductive hypothesis

that there is k such that 1 � k � n, i
hb�
 k, and tk � u.

Therefore i
hb�
 n and we are done. For the “only if”

direction, let j be the least integer such that 1 � j � n,

i
hb�
 j, and t j � t. There are two cases, j � n and j � n.

If j � n, then either αn is the first action of tn or there

is a k such that 1 � k � n, i
hb�
 k, and tk � u. If αn

is the first action of tn, we get LHn
�
tn � � � tn � . Since

tn � t and m � LHn
�
t � we get a contradiction. If there

is a k such that 1 � k � n, i
hb�
 k, and tk � u, then by

the inductive hypothesis u � LSn
�
q � . Since u � LHn

�
u � ,

we get LHn
�
u � � LSn

�
q � �� /0. Therefore m � LHn

�
t � �

LSn
 1
�
q � and we are done. If j � n then the inductive

hypothesis gives us m � LSn
�
q � � LSn
 1

�
q � .

(c) Suppose t � Tid. We prove the two cases, t � tn and
t �� tn, separately. First, suppose t � tn. For the “if” di-
rection, suppose t � LSn
 1

�
q � . Then, either t � LSn

�
q �

or LSn
�
q ��� LHn

�
u � �� /0. If t � LSn

�
q � , then we are done

by the inductive hypothesis. If LSn
�
q ��� LHn

�
u � �� /0,

then by the inductive hypothesis there exists j such that

1 � j � n, i
hb�
 j, and t j � u. Therefore i

hb�
 n
and we are done. For the “only if” direction, let j

be the least integer such that 1 � j � n, i
hb�
 j and

either t j � t or α j � �
y = fork � and

�
s j
 1

�
t j �

�
y � � t.

If j � n, then the inductive hypothesis gives us that
t � LSn

�
q � � LSn
 1

�
q � and we are done. If j � n,

then either there exists k such that 1 � k � n, i
hb�
 k,

and tk � u or αn is the first action of tn and there ex-

ists k such that 1 � k � n, i
hb�
 k, αk � �

z = fork � and�
sk
 1

�
tk �

�
z � � tn. In the first case, we have u � LSn

�
q �

by the inductive hypothesis. Since u � LHn
�
u � , we have

LSn
�
q � � LHn

�
u � �� /0. Therefore, we get tn � LHn

�
tn � �

LSn
 1
�
q � and we are done. In the second case, we have

tn � LSn
�
q � by the inductive hypothesis and we are done

since LSn
�
q � � LSn
 1

�
q � .

Second, suppose t �� tn. For the “if” direction, suppose
t � LSn
 1

�
q � . Then t � LSn

�
q � and we are done by the

inductive hypothesis. For the “only if” direction, let

j be such that 1 � j � n, i
hb�
 j and either t j � t or

α j � �
y = fork � and

�
s j
 1

�
t j �

�
y � � t. Then, it must be

that j � n. By the inductive hypothesis, we have t �
LSn

�
q � � LSn
 1

�
q � and we are done.

THEOREM 1 (Correctness). Let σ � � �
s1 � h1 � α1�
 t1

� �
s2 � h2 � α2�
 t2

� � � αn�
 tn
� �

sn
 1 � hn
 1 � be an execution of the program. Let q be a
variable and i � � 1 � n � 1 � be such that αi and αn access q but α j
does not access q for all j � � i � 1 � n � 1 � . Then LSn

�
q � � LHn

�
tn � ��

/0 iff i
hb�
 n.

PROOF. The proof follows easily from a simple application of
Lemma 1.

B Soundness proof of the stateful model
checking algorithm

For the proof, we will find it convenient to add LS to the state
which now becomes a triple

� �
s � h � LS � . A transition

� �
s � h � LS � α�
 t� �

s � � h � � LS � � is a mover if one of the following conditions is satisfied:

1. α � rel
�
x � .

2. α � �
x = fork � .

3. α � �
y = x � f � or α � �

x � f = y � and for any execu-

tion σ � � �
s1 � h1 � LS1 � α1�
 t1

� �
s2 � h2 � LS2 � α2�
 t2 � � � αn�
 tn� �

sn
 1 � hn
 1 � LSn
 1 � where
� �

s1 � h1 � LS1 � � � �
s � � h � � LS � � and

t j �� t for all j � � 1 � n � , we have that α j does not access the
variable

� �
s
�
t � � x � � f � for all j � � 1 � n � .

LEMMA 2. Let
� �

s1 � h1 � LS1 � α�
 t
� �

s �1 � h �1 � LS �1 � be a mover.

Let σ � � �
s1 � h1 � LS1 � α1�
 t1

� �
s2 � h2 � LS2 � α2�
 t2 � � � αn�
 tn� �

sn
 1 � hn
 1 � LSn
 1 � be an execution where t j �� t for all

j � � 1 � n � . Then there is a mover
� �

sn
 1 � hn
 1 � LSn
 1 � α�
 t� �
s �n
 1 � h �n
 1 � LS �n
 1 � and an execution σ � � � �

s �1 � h �1 � LS �1 �
α1�
 t1� �

s �2 � h �2 � LS �2 �
α2�
 t2 � � � αn�
 tn

� �
s �n
 1 � h �n
 1 � LS �n
 1 � such that the

following are true for all j � � 1 � n �
1 � :

1. If α � rel
�
x � , then

�
s j
�
u � � � s � j

�
u � for all u �� t and LS j

�
q � �

LS � j
�
q � for all q � HeapVariable.

2. If α � �
x = fork � , then

�
s j
�
u � � � s � j

�
u � for all u ���� t � � s �1

�
t � � x � �

and LS j
�
q � � LS � j

�
q � for all q � HeapVariable.

3. If α � �
y = x � f � or α � �

x � f = y � , then
�
s j
�
u � � � s � j

�
u � for all

u �� t and LS j
�
q ��� LS � j

�
q � for all q �� � �

s1
�
t � � x � � f � .

PROOF. The proof is by induction over the number n. The base
case n � 0 is trivial.

We now prove the inductive case. Suppose that the lemma is true for

an execution σ � � �
s1 � h1 � LS1 � α1�
 t1

� �
s2 � h2 � LS2 � α2�
 t2 � � � αn 	 1�
 tn 	 1� �

sn � hn � LSn � where t j �� t form j � � 1 � n � 1 � . The inductive case
involves a 3-way case analysis over αn. Our assumptions due to the
inductive hypothesis are the following:

� There is a mover
� �

s1 � h1 � LS1 � α�
 t
� �

s �1 � h �1 � LS �1 �
� There is an execution given by σ � � � �

s �1 � h �1 � LS �1 �
α1�
 t1� �

s �2 � h �2 � LS �2 �
α2�
 t2 � � � αn 	 1�
 tn 	 1

� �
s �n � h �n � LS �n � for which the

three facts above are true for all j ��� 1 � n � .
� There is a mover

� �
sn � hn � LSn � α�
 t

� �
s �n � h �n � LS �n �

1. α � rel
�
x � where

�
s
�
t � � x � � a for some object a. Since

lock release during the transition
� �

sn
 1 � hn
 1 � LSn
 1 � α�
 t� �
s �n
 1 � h �n
 1 � LS �n
 1 � only changes program counter of t, and

a � owner,
�
sn
 1

�
u ��� � s �n
 1

�
u � for all u �� t. Since lock release

does not update any LS
�
q � for any variable q, LS j

�
q �0� LS � j

�
q �

for all q � HeapVariable.

2. αn � �
x = fork � where

�
s
�
t � � x �1� t � for a new thread

t � . Since thread creation during
� �

sn
 1 � hn
 1 � LSn
 1 � α�
 t� �
s �n
 1 � h �n
 1 � LS �n
 1 � only changes program counter of t,

and
�
sn
 1

�
t � � , �

s j
�
u ��� �

s � j
�
u � for all u �� � t � � s �1

�
t � � x � � .

Because
� �

sn � hn � LSn � α�
 t
� �

s �n � h �n � LS �n � does not change

LS
�
q � for any q � HeapVariable,

� �
sn
 1 � hn
 1 � LSn
 1 � α�
 t� �

s �n
 1 � h �n
 1 � LS �n
 1 � does not change LS
�
q � , either. Then

LS j
�
q � � LS � j

�
q � for all q � HeapVariable.

3. αn � �
y = x � f � or α � �

x � f � y � . An access to variable� �
s1
�
t � � x � � f � � during

� �
sn
 1 � hn
 1 � LSn
 1 � α�
 t� �

s �n
 1 � h �n
 1 � LS �n
 1 � only changes program counter of t, and
either

�
sn
 1

�
t � � y � or

� �
sn
 1

�
t � � x � � f � , � s j

�
u � � � s � j

�
u � for all

u �� t and LS j
�
q ��� LS � j

�
q � for all variables q �� � �

s1
�
t � � x � � f � .

The following lemmas prove the correctness of the stateful version
of the algorithm.

Let � be the total order between the states explored by our model
checking algorithm.

� �
s � h � LS � � � �

s � � h � � LS � � iff a node z such that
z � state � � �

s � h � LS � is popped from the stack before a node z � such
that z ��� state � � �

s � � h � � LS � � is popped from the stack. In this or-
der each state

� �
s � h � LS � corresponds to a unique node z such that

z � state � � �
s � h � LS � that is actually pushed on the stack. Note that

the algorithm creates some temporary nodes that are never pushed
on the stack. For example, a node that is created at line 37 is thrown
away if control reaches line 48. Those temporary nodes do not par-
ticipate in the induction.

We say a transition
� �

s � h � LS � α�
 t
� �

s � � h � � LS � � or just the state� �
s � � h � � LS � � hits the stack if there is a node z � stack such that

z � state � � �
s � � h � � LS � � .

LEMMA 3. Let the stack in the algorithm contain the sequence
z1 � � � ��� zn of nodes corresponding to the program execution σ �� �

s1 � h1 � LS1 � α1�
 t1
� �

s2 � h2 � LS2 � α2�
 t2 � � � αn 	 1�
 tn 	 1

� �
sn � hn � LSn � at

a time when zn is about to be popped. Let σ � � � �
sn � hn � LSn � αn�
 tn� �

sn
 1 � hn
 1 � LSn
 1 � αn � 1�
 tn � 1 � � � αk�
 tk
� �

sk
 1 � hk
 1 � LSk
 1 � be an ex-
tension of σ. If q is a variable such that αi accesses q for some
i ��� 1 � n � 1 � , α j does not access q for all j � � i � 1 � k � 1 � , and αk

accesses q, then either i
hb�
 k or zi � tid � 0.

PROOF. We prove the lemma by induction over the total order � .
Let z be the node being popped from the stack.

Base case: zn is the first node to be popped from the stack.
All the transitions from zn are explored such that zn � done �
enabled

�
zn � state � . If enabled

�
zn � state � � /0, then we are done im-

mediately. Otherwise, there is at least one transition that hits both
on the stack and in the hashtable (otherwise, zn is not the first node
to be popped). Therefore, z � succOnStack is true. The code between
lines 25–30 in Search takes care of the proof.

Inductive case: There are two cases:

1. All the transitions from zn are explored such that zn � done �
enabled

�
zn � state � . There are two sub-cases, some transition

hits on the stack or no transition hits on the stack.

(a) A transition
� �

sn � hn � LSn � αn�
 tn
� �

sn
 1 � hn
 1 � LSn
 1 �
hits on the stack; there is another node z � in the stack
such that z � � state � � �

sn
 1 � hn
 1 � LSn
 1 � . Then, we have
z � succOnStack � true and the code between lines 25–30
in Search takes care of the proof.

(b) No transitions from z � state hits on the stack: Then for
each transition

� �
sn � hn � LSn � αn�
 tn

� �
sn
 1 � hn
 1 � LSn
 1 � ,

there must be a node z � that must have been popped
before zn such that z � � state � � �

sn
 1 � hn
 1 � LSn
 1 � . If
k � n, we then invoke the inductive hypothesis be-
cause zn � state � zn
 1 � state. Otherwise, k � n and the
lockset algorithm whose correctness is given in Theo-

rem 1 guarantees that either i
hb�
 n or zi � 0 for all

i � � 1 � n � 1 � .

2. Not all the transitions from zn are explored. In this case, we
have (

	
u � enabled

�
zn � state �#� u �� zn � done) and zn � tid � t for

some t � Tid.
� �

sn
 1 � hn
 1 � LSn
 1 � does not hit on the stack
because otherwise line 45 in Search will set z � tid � 0. There-
fore,

� �
sn
 1 � hn
 1 � LSn
 1 � �

� �
sn � hn � LSn � .

Let us consider the transition given by
� �

sn � hn � LSn � α�
 t� �
sn
 1 � hn
 1 � LSn
 1 � . Since zn � tid � t, we know that the tran-

sition
� �

sn � hn � LSn � α�
 t
� �

sn
 1 � hn
 1 � LSn
 1 � is a mover by
definition. Either α � rel

�
x � or α � �

x = fork � or α � �
y = x � f �

or α � �
x � f � y � .

Let
� �

sn � hn � LSn � αn�
 tn
� �

sn
 1 � hn
 1 � LSn
 1 � αn � 1�
 tn � 1 � � � αl�
 tl� �
sl
 1 � hl
 1LSl
 1 � be the longest sub-execution of σ � such

that t j �� t for all j � � n � l � . From Lemma 2, we get a transi-

tion
� �

sl
 1 � hl
 1 � LSl
 1 � α�
 t
� �

s �l
 1 � h �l
 1 � LS �l
 1 � and another

execution
� �

s �n � h �n � LS �n � αn�
 tn
� �

s �n
 1 � h �n
 1 � LS �n
 1 �
αn � 1�
 tn � 1

� � � αl�
 tl
� �

s �l
 1 � h �l
 1LS �l
 1 � such that the following are true
for all j � � n � l � 1 � :

(a)
�
s j
�
u ��� � s � j

�
u � for all u �� t.

(b) If α � rel
�
x � or α � �

x = fork � , then LS j
�
q � � LS � j

�
q �

for all q.

(c) If α � �
y = x � f � or α � �

x � f = y � , then LS j
�
q ��� LS � j

�
q �

for all q �� � s1
�
t � � x � .

There are two cases: l � k and l � k (if l � k, it suffices to
check the case l � k).

(a) l � k: We have tl
 1 � t, αl
 1 � α, and σ � � �� �
sl
 2 � hl
 2 � LSl
 2 � � � �

s �l
 1 � h �l
 1 � LS �l
 1 � . Thus, we

get an execution
� �

sn � hn � LSn � α�
 t
� �

s �n � h �n � LS �n � αn�
 tn� �
s �n
 1 � h �n
 1 � LS �n
 1 �� � �

� �
s �l
 1 � h �l
 1 � LS �l
 1 ���� �

sl
 2 � hl
 2 � LSl
 2 � αl � 2�
 tl � 2

� �
sl
 2 � hl
 2 � LSl
 2 �������� �

s �k � h �k � LS �k �
α �k�
 t �k

� �
sk
 1 � hk
 1 � LSk
 1 � .

(b) l � k: We get an execution σ � ��� � �
sn � hn � LSn � α�
 t� �

s �n � h �n � LS �n � αn�
 tn
� �

s �n
 1 � h �n
 1 � LS �n
 1 �������

� �
s �k � h �k � LS �k �

αk�
 tk
� �

s �k
 1 � h �k
 1 � LS �k
 1 � .
In both cases above, the inductive hypothesis is true for

the extension
� �

s �n � h �n � LS �n � αn�
 tn � � � due to zn
 1 � state �� �
s �n � h �n � LS �n � and

� �
s �n
 1 � h �n
 1 � LS �n
 1 � �

� �
sn � hn � LSn � .

There are two cases: α accesses q or α does not access q.

(a) Suppose α accesses q. Because zn � tid �� 0, we

know that n
hb�
 k for σ � � by the inductive hypothe-

sis for
� �

sn
 1 � hn
 1 � LSn
 1 � . By definition of mover,

LSk
 1
�
q � � LS �k
 1

�
q � . If i

hb�
 n for σ � , then LS �n
�
q � �

LHn
�
t � �� /0. Then LS �k
 1

�
q ��� LHk
 1

�
t � �� /0 and i

hb�
 n

for σ � . i
hb�
 k for σ � by transitivity of

hb�
 . Otherwise

(i
hb� n), due to Theorem 1, we get that the lockset algo-

rithm sets zi � tid to 0.

(b) Suppose α does not access q. Now the inductive
hypothesis for

� �
sn
 1 � hn
 1 � LSn
 1 � applies as follows.

By definition of mover, LSk
 1
�
q � � LS �k
 1

�
q � . If

LS �k
 1
�
q � � LHk
 1

�
t � � /0 then i

hb� k for σ � � and so
zi � tid � 0. Then LSk
 1

�
q ��� LHk
 1

�
t � � /0 and zi � tid � 0

is obtained. If LS �k
 1
�
q ��� LHk
 1

�
t � �� /0 then i

hb�
 k for
both σ � � and σ � .

Let len
�
σ � be the number of transitions in σ. We define a well-

founded order
�

over execution sequences starting from states
explored by the algorithm as follows: For two executions σ �� �

sn � hn � LSn � αn�
 tn ����� and σ �0� � �
sm � hm � LSm � αm�
 tm ����� , σ � σ �

if either len
�
σ � � len

�
σ � � or len

�
σ � � len

�
σ � � and

� �
sn � hn � LSn � �

� �
sm � hm � LSm � .

LEMMA 4. Suppose the algorithm explores a state
� �

s1 � h1 � LS1 �
and σ � � �

s1 � h1 � LS1 � α1�
 t1
� �

s2 � h2 � LS2 � α2�
 t2 � � � αn 	 1�
 tn 	 1� �
sn � hn � LSn � is an execution such that

�
sn
�
t ��� � wrong � l for some

t and l. Then, the algorithm explores a state
� �

s � h � LS � such that�
s
�
t � � � wrong � l .

PROOF. We perform induction over the
�

on executions with in-
creasing lengths.

Base case: For the executions of length 0, the state
� �

s1 � h1 � LS1 �
itself is an erroneous state and the proof is trivial.

Inductive case 1: Suppose we know that the lemma holds for all
executions of length up to n. Consider an erroneous execution of
length n

�
1 from

� �
s1 � h1 � LS1 � where

� �
s � h � LS � is the first state

ever popped.

Let z � stack be the node containing the state
� �

s � h � LS � . If
enabled

�
zn � state � � /0, then we are done immediately. Otherwise,

since z is the first node to be popped from the stack, all transitions
explored from z must hit on the stack. Therefore z � tid � 0 after
each hit on the stack, and in the end all the transitions from z are
explored such that z � done � enabled

�
z � state � . Suppose that a tran-

sition
� �

s � h � LS � α�
 t
� �

s � � h � � LS � � hits on the stack. If
� �

s � � h � � LS � �
is an error state, we are done. Otherwise, we have an erroneous ex-
ecution of length � n from a state

� �
s � � h � � LS � � on the stack and we

can apply the inductive hypothesis.

Inductive case 2: Suppose, we know that the lemma holds for all
executions of length up to n and for all executions of length n

�
1

from states popped at time x or less. Now consider a state
� �

s � h � LS �
that is being popped at time x

�
1. Let z be the node such that

z � state � � �
s � h � LS � . There are two cases:

1. All the transitions from z are explored such that
z � done � enabled

�
z � state � . Therefore, the first transi-

tion
� �

s � h � LS � α�
 t
� �

s � � h � � LS � � , say of the erroneous
extension is explored. If

� �
s � � h � � LS � � hits on the stack, then

we are done because we have an erroneous execution from� �
s � � h � � LS � � on the stack of length � n and we can apply the

inductive hypothesis. The same reasoning applies even if the
transition hits in the hashtable but not on the stack.

2. Suppose not all the transitions from z are explored. In this
case, we have (

	
u � enabled

�
z � state �#� u �� z � done) and z � tid � t

for some t � Tid. From Lemma 3, we can conclude that
the transition

� �
s � h � LS � α�
 t

� �
s � � h � � LS � � of thread t explored

from z is a mover.
� �

s � h � LS � does not hit on the stack be-
cause otherwise line 45 in Search would set z � tid � 0 and the
case above would apply. Therefore,

� �
s � h � LS � � � �

s � � h � � LS � � .
Since

� �
s � h � LS � α�
 t

� �
s � � h � � LS � � is a mover, there is an erro-

neous execution of length � n from
� �

s � � h � � LS � � (according to
Lemma 2). We make an appeal to the inductive hypothesis on� �

s � � h � � LS � � .

THEOREM 2 (Soundness). Let σ � � �
s1 � h1 � LS1 � α1�
 t1 � � � αn�
 tn� �

sn
 1 � hn
 1 � LSn
 1 � be an execution of the program where�
sn
 1

�
t � � � wrong � l for some t � Tid and l � LocalStore. Then the

algorithm explores a state
� �

s � h � LS � such that
�
s
�
t � � � wrong � l .

PROOF. The proof is by a straightforward application of Lemma 3
on the initial state

� �
sI � hI � LSI � . When

� �
s1 � h1 � LS1 � is popped from

the stack and the exploration terminates, all states
� �

s � h � LS � such
that

	
t � Tid � l � LocalStore � � sn
 1

�
t � � � wrong � l have been vis-

ited.

