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after deallocating the resource. The simplest way to track aliasing is to use
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that, contrary to common expectations, linear type systems can express aliasing
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1 Introduction
Type systems verify many important properties of programs. A type-safe program cannot
accidentally use a �oating point number as a �le, for instance, because �les and �oating-
point numbers have di�erent types. Some properties exceed the grasp of conventional type
systems, though, because the properties depend on the state of a resource. Ideally, a program
should not be able to write to a �le after closing the �le, but most type systems, including
those of Java, C#, and ML, assign the same type to an open �le and a closed �le, and thus
cannot distinguish between writing to an open �le and writing to a closed �le. As another
example, typical safe languages simply ban explicit heap object deallocation rather than
attempting to statically verify that a program never accesses a deallocated heap object.

Several recent languages [7][24][9][10][32] have extended conventional type systems to
track the state of resources, such as �les, sockets, hardware devices, regions, and heap
objects. In these languages, the type of an object changes as the object's state changes.
The central challenge in these languages is aliasing � if both x and y refer to the same
resource, then both x's type and y's type must change if the resource's state changes.

As an example, consider a simple interface to a �le system, together with two functions
hello and goodbye, expressed in an ML-like notation:

open : string → file
close : file → ()
write : file× string → ()
hello : file× file → ()
hello (x1 : file, x2 : file) = write (x1, “hello”); write (x2, “hello”)
goodbye : file× file → ()
goodbye (x1 : file, x2 : file) = write (x1, “bye”); close x1; write (x2, “bye”); close x2

The function goodbye behaves incorrectly if x1 and x2 refer to the same �le, because it tries
to write to x2 after closing x1:

byebye : file → ()
byebye (x : file) = goodbye (x, x)

In general, a type system's ability to track object state is limited by its ability to track
aliasing: unless the type system knows that goodbye requires x1 and x2 to refer to distinct
�les, it cannot know that “goodbye (x, x)” is a mistake.

Linear type systems [27][28] deal with aliasing in a simple way: programs are not allowed
to duplicate nor discard linear values (values having linear type). If file is a linear type,
for example, then the function byebye is ill-typed because it tries to duplicate the linear
variable x.

At �rst glance, it might seem that linear type systems prohibit the aliasing of linear
values entirely, which is a rather draconian way to track aliasing. In particular, it is now
impossible to call hello with arguments x1 and x2 bound to the same �le, even though it
would be safe to do so. This doesn't mean that it's impossible to write traditional nonlinear
functions at all in a linear type system; all practical linear type systems provide both linear
and nonlinear types (one common notation uses “ !” to indicate nonlinearity; if file is a linear
type, then !file is the corresponding nonlinear type), so hello could declare its arguments
to be nonlinear �les. What seems to be missing from linear type systems is a middle ground
between linearity and nonlinearity; the aliasing of linear values is prohibited entirely, and
the aliasing of nonlinear values is completely unrestricted.

This problem motivated the development of the capability calculus [7] and alias types
[24], which allow linear values to become aliased temporarily, but can later recover the
linearity of the aliased values. For example, a function in these systems can pass a single
linear �le as both the x1 and x2 arguments to hello, and later recover the linearity of the �le
in order to close the �le. Unfortunately, these systems require some fairly esoteric typing
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constructs, including non-idempotent capability joins, subcapabilities, bounded capability
quanti�cation, and a special stripping operator. This paper demonstrates that these esoteric
features are not necessary to achieve the power of the capability calculus and alias types.
In fact, standard linear type systems, with no special extensions, can encode the capability
calculus and alias types.

To substantiate this claim, this paper takes the capability calculus of Crary, Walker, and
Morrisett (modi�ed to handle generic linear �resources�, rather than memory regions) as a
source language, compiles it to two linear target languages, and proves that the compilation
translates any well-typed source program into well-typed target programs. The �rst target
language is identical to the source language except for the type system, which replaces
the unusual features of the capability calculus with a straightforward, decidable linear logic.
Since the compilation to the �rst target language a�ects only the types, it introduces no run-
time overhead. The second target language is the standard polymorphic lambda calculus
Fω, extended with linear types. While the compilation to linear Fω does not produce
e�cient programs, it does demonstrate that the non-trivial aliasing present in the capability
calculus and alias types is expressible even in a minimal linear type system. Furthermore,
the compilation to linear Fω provides a minimal semantic basis for alias types. Finally,
this paper also translates the unmodi�ed capability calculus (with memory regions) into a
third target language, which supports memory regions but uses the �rst target language's
decidable logic.

By replacing the capability calculus's types with standard linear types, these three com-
pilations reduce the complexity of the type system and thus reduce the trusted computing
base of systems that rely on type checking for security, such as typed assembly language[19].
Furthermore, the techniques in this paper increase the expressiveness of programs that ma-
nipulate linear resources: with a single type system, programs can combine the advantages
of the capability calculus and traditional linear types. Finally, by formalizing three partic-
ular encodings of aliasing within a linear type system, this paper helps dispel the common
wisdom that linearity implies non-aliasing: the central message of this paper is that linear
types can express aliasing of linear resources.

2 Aliasing with linear types
Sections 3-7 describe the complete encodings of the capability calculus. This section de-
scribes the intuition behind the encodings. After all, it seems counterintuitive at �rst that
linear types, which prohibit a program from duplicating references to linear values, could
express the aliasing of linear values. In fact, the ideas that underlie the encodings are fairly
simple, and are easy to express using the hello and goodbye examples from section 1. The
�rst step is to rewrite the examples using linear types:

open : string → file
close : file → ()
write : file⊗ string → file
hello : file⊗ file → file⊗ file
hello 〈x1 : file, x2 : file〉 = 〈write 〈x1, “hello”〉, write 〈x2, “hello”〉〉
goodbye : file⊗ file → ()
goodbye 〈x1 : file, x2 : file〉 = close (write 〈x1, “bye”〉); close (write 〈x2, “bye”〉)

Nonlinear pairs (e1, e2), of type τ1 × τ2, cannot contain linear values (otherwise, a program
could duplicate a linear value by storing it in a nonlinear pair and duplicating the nonlinear
pair). Therefore, the new versions of write, hello, and goodbye store �les in linear pairs
〈e1, e2〉 of linear type τ1 ⊗ τ2. In addition, the new version of write returns the linear �le
that it receives as an argument; this allows the caller to continue using the �le after writing
to it. For example, the following well-typed function writes to a linear �le twice, then closes
it:
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byebye : file → ()
byebye (x : file) =

letx′ = write 〈x, “bye”〉 in
letx′′ = write 〈x′, “bye”〉 in
close x′′

A program cannot continue using a linear �le after closing it, though, because close does
not return its argument back to the caller1.

The new version of hello can no longer be called with a single �le as both arguments
x1 and x2, as discussed in section 1. Section 2.1 rewrites hello to allow aliasing by using
function abstraction, and section 2.2 rewrites hello to allow aliasing by using the linear
choice operator.

2.1 Aliasing with function abstraction
The hello function takes two arguments x1 and x2, and it should be possible for these
arguments to be two di�erent �les or for them to be the same �le. Suppose that hello
does not receive x1 and x2 directly, but instead accesses them by invoking methods on an
object, whose private implementation might consist of two separate �les or might consist
of a single �le. Let α be the private implementation of the object; an implementer could
choose α = file in the case of a single �le or α = file ⊗ file in the case of separate �les.
Naively, the object's methods could be functions of type α → file, so that the method
gets a �le from the object's private implementation. If α = file ⊗ file, this type doesn't
work; a function of type file ⊗ file → file would have to discard one of the two �les. A
more appropriate type would be α → β ⊗ file, where β = () if α = file and β = file if
α = file ⊗ file. Furthermore, after hello gets one �le from α, it should be able to get the
other �le from α and then return α back to the caller. Therefore, there should be reverse
methods of type β⊗file → α. Altogether, the object consists of one private implementation
α, a method f1 : α → β ⊗ file to acquire the �le x1, a method g1 : β ⊗ file → α to release
x1, a method f2 : α → β⊗ file to acquire x2, and a method g2 : β⊗ file → α to release x2:

hello : ∀α.∀β.α⊗ (α → β ⊗ file)⊗ (β ⊗ file → α)
⊗(α → β ⊗ file)⊗ (β ⊗ file → α) → α

hello 〈a : α, f1 : α → β ⊗ file, g1 : β ⊗ file → α,
f2 : α → β ⊗ file, g2 : β ⊗ file → α〉 =

let 〈b1, x1〉 = f1 a in
let a′ = g1 〈b1, write 〈x1, “hello”〉〉 in
let 〈b2, x2〉 = f2 a′ in
let a′′ = g2 〈b2, write 〈x2, “hello”〉〉 in a′′

Since hello is polymorphic over all α and β, it works both when α consists of one �le and
when α consists of two �les. Nevertheless, hello's caller knows what α is, and hello returns
a value of type α, so that the caller recovers the linearity of the �le or �les after hello
returns; thus, hello is able to use x1 and x2 as if they were aliased, without the caller losing
track of the aliasing forever. Furthermore, if a devious reimplementation of hello's body
tried to acquire and close x1, it would have no way to subsequently acquire and close x2,
since acquiring x1 consumes α, and α is needed to acquire x2. This is both reassuring,
since it should be impossible to close both x1 and x2 if x1 and x2 refer to the same �le,
and expected, since the underlying linear type system never allows a program to close a
�le twice, no matter how deviously and cleverly the program employs function abstraction.
Finally, even though α, β, and file are linear types, the function types α → β ⊗ file and

1A note on notation: linear logic often de�nes τ1 → τ2 to mean ( !τ1) ( τ2, while this paper follows
a di�erent convention [27][17]: τ1 → τ2 means !(τ1 ( τ2); for example, a program can call the function
close : file → () many times, each time with a linear file argument.
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β ⊗ file → α are nonlinear, so that hello may use f1, g1, f2, and g2 as many times as it
likes, or never use them at all.

Invoking the functions f1, g1, f2, and g2 adds considerable syntactic overhead to hello's
implementation. It's possible to factor out some of this overhead. First, de�ne a type
abbreviation:

τ1 ↔ τ2 = (τ1 → τ2)× (τ2 → τ1)

Then create a wrapper around the write function:
writeAliased : ∀α.∀β.α⊗ (α ↔ β ⊗ file)⊗ string → α
writeAliased 〈a : α, 〈f : α → β ⊗ file, g : β ⊗ file → α〉, s : string〉 =

let 〈b, x〉 = f a in g 〈b, write 〈x, s〉〉
Then hello simpli�es to:

hello 〈a : α, y1 : α ↔ β ⊗ file, y2 : α ↔ β ⊗ file〉 =
let a′ = writeAliased 〈a, y1, “hello”〉 in
let a′′ = writeAliased 〈a′, y2, “hello”〉 in a′′

2.1.1 Capabilities and proofs
In addition to their syntactic overhead, the function calls to f1, g1, f2, and g2 add run-
time overhead to hello's implementation. A couple of well-known extensions to the type
system can eliminate this overhead. The �rst extension [7] splits linear resources into a
run-time handle, of nonlinear type “ρ handle”, and a compile-time capability, of linear type
�ρ cap�, where the type variable ρ ensures that a handle is always used with the appropriate
capability (a ρ1 handle is incompatible with a ρ2 cap). A compiler erases the capabilities
after type-checking, so that capabilities add no run-time space or time overhead. Each �le
operation requires both the capability and the handle for a �le:

open : string → ∃ρ.ρ cap⊗ ρ handle
close : ∀ρ.ρ cap⊗ ρ handle→ ()
write : ∀ρ.ρ cap⊗ ρ handle⊗ string → ρ cap
hello : ∀ρ1.∀ρ2.∀α.∀β1.∀β2.α⊗ (α → β1 ⊗ ρ1 cap)⊗ (β1 ⊗ ρ1 cap→ α)⊗ ρ1 handle

⊗(α → β2⊗ ρ2 cap)⊗ (β2⊗ ρ2 cap→ α)⊗ ρ2 handle→ α
hello 〈a : α, f1 : α → β1 ⊗ ρ1 cap, g1 : β1 ⊗ ρ1 cap→ α, h1 : ρ1 handle

f2 : α → β2 ⊗ ρ2 cap, g2 : β2 ⊗ ρ2 cap→ α, h2 : ρ2 handle〉 =
let 〈b1, x1〉 = f1 a in
let a′ = g1 〈b1, write 〈x1, h1, “hello”〉〉 in
let 〈b2, x2〉 = f2 a′ in
let a′′ = g2 〈b2, write 〈x2, h2, “hello”〉〉 in a′′

Since the handles are nonlinear, hello may alias them freely; the function abstraction is
only necessary for the linear capabilities. Since the capabilities ρ1 cap and ρ2 cap occupy
no memory at run-time, the types α, β1, and β2 also occupy no memory. (The new code
requires two variables β1 and β2 rather than a single β, because there are now two capability
types ρ1 cap and ρ2 cap rather than a single �le type file.) At run-time, the functions f1, g1,
f2, and g2 do nothing; they consume empty arguments and produce empty results. There's
no reason to actually call them. The second extension to the type system [6] formalizes
this observation by making f1, g1, f2, and g2 functions in a proof language rather than a
functions in a programming language (the proof functions perform no run-time computation,
perform no I/O, and always terminate, so there's no reason to actually call them at run
time; the compiler erases the proofs after type-checking, just as it erases the capabilities).
Section 6 describes a particular proof language in detail, but for the moment, assume that
there are types τ1 ⇒ τ2 for proof functions, so that hello has type:

hello : ∀ρ1.∀ρ2.∀α.∀β1.∀β2.α⊗ (α ⇒ β1 ⊗ ρ1 cap)⊗ (β1 ⊗ ρ1 cap⇒ α)⊗ ρ1 handle
⊗(α ⇒ β2⊗ ρ2 cap)⊗ (β2⊗ ρ2 cap⇒ α)⊗ ρ2 handle→ α
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2.2 Aliasing with choice
This section describes a second way to implement aliasing, based on previous work by Walker
[30] and O'Hearn [14]. As a starting point, consider the wrapper function writeAliased from
section 2.1, updated to use the proof functions and capabilities from section 2.1.1:

writeAliased : ∀ρ.∀α.∀β.(α⊗ (α ⇔ β ⊗ ρ cap))⊗ ρ handle⊗ string → α

Actually, the �le system's primitive write function could simply use this type in the �rst
place, eliminating the need for a wrapper:

write : ∀ρ.∀α.∀β.(α⊗ (α ⇔ β ⊗ ρ cap))⊗ ρ handle⊗ string → α

Furthermore, since write is a trusted built-in function (perhaps written in an unsafe language
like C), it can relax its type slightly. The write function requires a proof of type α ⇒ β⊗ρ cap
to know that ρ cap still exists, which proves that the �le pointed to by ρ handle is still open.
The caller relies on write's return value of α to ensure that write doesn't close the �le; the
caller passes in a proof of type β ⊗ ρ cap ⇒ α to allow write to reconstruct α after using
α ⇒ β ⊗ ρ cap. A trusted implementation of write needn't bother with β ⊗ ρ cap ⇒ α,
though; it can simply claim to return α, and the caller trusts this claim. The relaxed type
for write is:

write : ∀ρ.∀α.∀β.(α⊗ (α ⇒ β ⊗ ρ cap))⊗ ρ handle⊗ string → α

In the new version of write, the scope of β need not be so large; the following type works
just as well:

write : ∀ρ.∀α.(α⊗ (α ⇒ (∃β.β)⊗ ρ cap))⊗ ρ handle⊗ string → α

Abbreviating ∃β.β as “true”, the type for write becomes:

write : ∀ρ.∀α.(α⊗ (α ⇒ true⊗ ρ cap))⊗ ρ handle⊗ string → α

This relaxed type breaks with section 2.1 in a fundamental way � whereas the proof lan-
guage in section 2.1 was merely used to optimize away run-time calls to functions, the
soundness of the new version of write depends on the lack of side e�ects in the implemen-
tation of α ⇒ β ⊗ ρ cap. In other words, the following type would be unsound:

badWrite : ∀ρ.∀α.(α⊗ (α → true⊗ ρ cap))⊗ ρ handle⊗ string → α

Suppose a programmer passes a function f of type α → true ⊗ ρ cap to badWrite. If
badWrite doesn't actually call f at run time, then f can subvert soundness using non-
termination (f can produce a return type true ⊗ ρ cap by in�nitely recursing on itself,
regardless of what α is). If, on the other hand, badWrite does call f , then f can deallocate
some linear resource present in α, making it unsound for badWrite to return α. Either way,
badWrite is unsafe.

With the new version of write, the type for hello becomes:

hello : ∀ρ1.∀ρ2.∀α.(α⊗ (α ⇒ true⊗ ρ1 cap)
⊗(α ⇒ true⊗ ρ2 cap))⊗ ρ1 handle⊗ ρ2 handle→ α

One way to think about hello's type is that hello receives an α and a choice of how to use
α: hello can keep α as-is, it can turn it into true⊗ρ1 cap, or it can turn it into true⊗ρ2 cap.
This is reminiscent of the linear choice operator “&” in linear logic [28]: if you have a value
of type τ1&τ2, then you can choose either τ1 or τ2, but not both (in contrast to the linear
pair operator “⊗ ”, where τ1 ⊗ τ2 gives you both τ1 and τ2). The correspondence between
hello's type and the linear choice operator suggests an alternate version of hello, using “&”
rather than “ ⇒ ”:
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CC0 (section 3)
↓ eliminate stripping operator (section 4)

CC1↓ segregate unique and alias capabilities (section 5)
CC2↙ ↘ CC/CCL

LC LinearFω ↓(appendix D)
(section 6) (section 7) CC/SLL

Figure 1: Translating CC0 to LC, CC0 to Linear Fω, and CC/CCL to CC/SLL

hello′ : ∀ρ1.∀ρ2.∀γ.(γ&(true⊗ ρ1 cap)&(true⊗ ρ2 cap))⊗ ρ1 handle⊗ ρ2 handle→ γ

For example, if a caller has a pair of capabilities ρ1 cap⊗ ρ2 cap, then it can call hello′ with
γ = ρ1 cap⊗ ρ2 cap, because:

(ρ1 cap⊗ ρ2 cap) ⇒ (ρ1 cap⊗ ρ2 cap)&(true⊗ ρ1 cap)&(true⊗ ρ2 cap)

If, on the other hand, the caller has only a single capability ρ cap, it can choose γ = ρ cap,
because:

(ρ cap) ⇒ (ρ cap)&(true⊗ ρ cap)&(true⊗ ρ cap)

In fact, the types for hello and hello′ are interchangeable: hello can call hello′ by instanti-
ating γ with α, and hello′ can call hello by instantiating α with γ&(true⊗ ρ1 cap)&(true⊗
ρ2 cap). In section 6's encoding, “&” is strongly preferable to “ ⇒ ”, because a linear propo-
sitional logic with only linear operators is decidable, while nonlinear operators like “ ⇒ ”
can destroy decidability [16].

2.3 Outline

Sections 2.1 and 2.2 demonstrated that linear types can express aliasing, at least in a simple
example. The rest of the paper extends this expression to a complete language (see Figure
1). Section 3 introduces CC0, a slightly modi�ed version of the calculus of capabilities
[7]. Sections 6 and 7 present the translations of CC0 into two target languages. The
�rst target language, called LC, retains CC0's syntax for expressions but replaces CC0's
subcapability relation, bounded quanti�cation, join operator, and stripping operator with
a simple, decidable linear logic. To express aliasing, LC uses the linear choice operator, as
described in section 2.2. The translation from CC0 to LC leaves the run-time behavior of
a program unchanged: a CC0 program's type erasure is identical to the corresponding LC
program's type erasure. LC is based on a language developed by David Walker [30], and
the translation from CC0 to LC implements his suggested connection between linear types
and the capability calculus (see [30], pp. 37-41).

The second target language, linear Fω, is the higher-order polymorphic lambda calculus
extended with linear types. Since linear Fω lacks LC's distinction between a programming
language and a proof language, the translation uses the functional abstraction aliasing strat-
egy described in section 2.1. One surprise in the CC0-to-linear Fω encoding is the reliance
on type variables of kind Type→ Type, which is not required in the CC0-to-LC encoding;
the di�erence between the two encodings stems from the use of a proof language in LC but
not in linear Fω. It's an open question whether there is a CC0-to-linear F2 encoding (i.e.
an encoding using only type variables of kind Type).

Although the CC0-to-linear Fω translation signi�cantly changes all aspects of the source
program (types and expressions), the changes made by the CC0-to-LC translation focus on

6



kinds κ = Type | Res | Cap
constructors c = α | τ | C

ctor vars α, β, ε, ρ, . . .

types τ = α | ρ handle | ∀α :κ.τ | ∀α ≤ C.τ | (C, τ) → 0 | τ1 × τ2

capabilities C = ε | ∅ | {ρϕ} | C1 ⊕ C2 | C

multiplicities ϕ = 1 | +
ctor ctxts ∆ = · | ∆, α : κ | ∆, ε ≤ C

value ctxts Γ = · | Γ, x : τ

word values v = x | v[c : κ]
heap values h = λα :κ.h | λα ≤ C.h | λ(C, x : τ).e | (v1, v2)

declarations d = x = v | x = h | x = #n v | new ρ, x | free v | use v

expressions e = let d in e | v1 v2 | halt

Figure 2: CC0 syntax

the logic of capabilities inside CC0's type system. In fact, it's easy to adapt this transla-
tion to Crary, Walker, and Morrisett's original calculus of capabilities (referred to here as
�CC/CCL�), as shown in appendix D.

CC0 works with generic linear resources, assuming a few basic operations on resources.
Section 7.1 replaces CC0's generic resources with a speci�c resource (heap objects) in order
to implement alias types.

Sections 4 and 5 apply two preprocessing phases to the CC0 source program in prepa-
ration for the translations into LC and linear Fω. The �rst preprocessing phase eliminates
the stripping operator, which is a special type operator present in CC0 but not present in
LC and linear Fω. The second preprocessing phase deals with CC0's �exible polymorphism
over capabilities. From sections 2.1 and 2.2, it is clear that the translations to linear Fω
and LC will treat the functions hello and goodbye di�erently. The challenge for the transla-
tion is that CC0 allows polymorphic functions that can behave both like hello and goodbye,
depending on how their type arguments are instantiated. The second phase deals with this
problem by splitting all capabilities into separate unique and alias parts.

The two preprocessing phases generate programs in a languages CC1 and CC2, which
are variants of CC0. Unlike LC and linear Fω, CC1 and CC2 are not designed for elegance
and generality, and contain some ad-hoc features and restrictions that serve only to make
the ultimate translations into LC and linear Fω easier. It would be possible, of course, to
formulate the CC0-to-LC and CC0-to-linear Fω translations as single monolithic transfor-
mations, but this makes the translations less clear, and does not improve the quality of the
generated LC code and linear Fω code.
3 CC0, a calculus of capabilities
As a starting point for the translations into LC and linear Fω, this section describes CC0, a
language based on the calculus of capabilities [7]. There are two major di�erences between
CC0 and the calculus of capabilities:

• The calculus of capabilities supports a particular linear resource (regions), and an-
notates all heap value types with regions. This allows the calculus of capabilities to
replace garbage collection with safe manual memory management. CC0, by contrast,
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does not focus on any particular linear resource; it assumes some generic resource of
kind �Res�, with operations �new�, �free�, and �use�, which correspond to �newrgn�,
�freergn�, and hval/proj operations of the calculus of capabilities, and correspond to
the �open�, �close�, and �write� operations in the examples from section 2. There are
two reasons for not using regions in CC0. First, region annotations are orthogonal to
the central topic of this paper (aliasing), and would obscure the translation's treat-
ment of aliasing. Second, the successors to the calculus of capabilities [24][9] choose
di�erent linear resources, such as heap objects and sockets; there's no reason for this
paper to prefer one resource over any other resource.

• The calculus of capabilities provided both a compile-time syntax for programs and
a syntax for running programs. The latter includes the state of the heap, which is
empty at compile time. Although the translations in this paper would apply to the
run-time state as well as the compile-time state, the compile-time translation is of
more practical interest, so for brevity's sake, CC0 omits the run-time state.

In addition, there are several minor di�erences, none of which are essential to the translation:

• CC0 deliberately omits recursive functions, in order to show that CC0's remaining
features do not lead to non-termination. In particular, if the translation from CC0
to linear Fω preserves the run-time semantics of a program, then all well-typed CC0
programs terminate (because all well-typed linear Fω program terminate). The trans-
lation could easily accommodate recursion, assuming recursion is also added to the
target languages.

• For brevity, CC0 omits the integer type.

• For simplicity, CC0 assumes each function takes exactly one argument, rather than
multiple arguments.

• For clarity and notational consistency with LC and linear Fω, CC0 uses pairs τ1 × τ2

rather than n-tuples 〈τ1, . . . , τn〉.
• For clarity, CC0 breaks the ∀[∆].(C, τ) → 0 type into smaller primitives: ∀α :κ.τ and
∀α ≤ C.τ and (C, τ) → 0.

• To simplify the presentation of the translations into CC1 and CC2, CC0 requires a
kind annotation in the constructor application expression v[c : κ].

Otherwise, CC0 is identical to the capability calculus. In particular, CC0 retains the syn-
tax for capabilities, bounded polymorphism over capabilities, all of the capability equality
rules, and all of the subcapability rules. Figure 2 shows the complete CC0 syntax, and
appendix A contains CC0's complete static semantics. For more information about the
capability calculus, see [7]; this section recaps the most important aspects and gives some
short examples.

Consider the goodbye function from section 2. Figure 3 shows this function written in
CC0 syntax. The �rst di�erence between the two versions is that CC0 functions are written
in continuation-passing style (CPS). CPS functions do not return � they either halt the
program or call another function. The goodbye function, for example, takes a continuation
function k as an argument, and calls k when �nished (much like a RISC assembly language
program that jumps to an explicit return address upon completion).

The second di�erence between the two versions of goodbye is that section 2's version
passed linear capabilities ρ cap as �rst-class arguments, while the CC0 version tracks capa-
bilities in a special composite capability C = α⊕{ρ1

1}⊕{ρ1
2}. In general, every CC0 function

declares a capability in its type (C, τ) → 0. This capability is a precondition that callers
of the function must satisfy. For example, goodbye's capability speci�es that in addition
to some arbitrary α, which the caller chooses, the caller must provide capabilities for two
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linear resources ρ1 and ρ2. Since goodbye deallocates both ρ1 and ρ2, goodbye's continuation
k cannot include ρ1 and ρ2 in its capability; the type system would prohibit goodbye from
calling k if k had type (α⊕ {ρ1

1} ⊕ {ρ1
2}, ()) → 0.

CC0 types refer to unaliased linear resources using �unique� capabilities, denoted by the
syntax {ρ1}. For unique capabilities, the CC0 join operator �⊕� operator acts like the linear
pair operator �⊗�. CC0 also supports aliased linear resources, as shown in �gure 3's hello
function. An alias capability {ρ+} indicates that ρ may appear elsewhere in the composite
capability that contains {ρ+}. For example, the capability α⊕{ρ+

1 }⊕{ρ+
2 } in hello indicates

that ρ1 and ρ2 may occur in α, and that that ρ1 and ρ2 may be equal to each other. Since
ρ1 and ρ2 are marked as potentially aliased, the type system prohibits hello from freeing ρ1

and ρ2 (although hello can still use ρ1 and ρ2) � this ensures that the free operation leaves
no dangling capabilities to freed linear resources. A subcapability relation connects unique
capabilities with alias capabilities; in particular, a unique capability is a subcapability of an
alias capability: {ρ1} ≤ {ρ+}.

For example, suppose that a function f contains capability {ρ1
0} ⊕ {ρ1

1} ⊕ {ρ1
2}. Then

f can call hello by choosing β = {ρ1
0} ⊕ {ρ1

1} ⊕ {ρ1
2} and α = {ρ1

0}. These choices satisfy
hello's subcapability bound β ≤ α⊕ {ρ+

1 } ⊕ {ρ+
2 }:

{ρ1
0} ⊕ {ρ1

1} ⊕ {ρ1
2} ≤ {ρ1

0} ⊕ {ρ+
1 } ⊕ {ρ+

2 }
Alternately, suppose that f only contains a single capability {ρ1}. Then f can call hello
by choosing ρ1 = ρ and ρ2 = ρ, together with β = {ρ1} and α = ∅. Alias capabilities are
duplicable, so that {ρ+} = {ρ+} ⊕ {ρ+}. Therefore, these choices satisfy the subcapability
bound β ≤ α⊕ {ρ+

1 } ⊕ {ρ+
2 }:

{ρ1} ≤ ∅ ⊕ {ρ+} ⊕ {ρ+}
Both versions of f can choose a continuation k that frees f 's capabilities, since k takes β as
its capability, and β consists of unique capabilities. Thus the calculus of capabilities allows
hello to temporarily alias linear resources, without losing track of the linearity permanently.

4 From CC0 to CC1
The type variables α : Cap and β : Cap in section 3 demonstrate the capability calculus's
polymorphism over capabilities. Since a program can instantiate type variables of kind
Cap with both unique and alias capabilities, the type system must conservatively assume
that these type variables are non-duplicable. To allow duplicable capability variables, the
capability calculus introduces a stripping operator C, which replaces all unique capabilities
in C with alias capabilities (for example, {ρ1} = {ρ+}). Stripped capabilities are duplicable,
so that α = α⊕ α.

Traditional linear type systems contain no stripping operator. The � !� operator is similar,
but not quite the same: stripping acts recursively on a capability, so that C1 ⊕ C2 = C1⊕C2,
while !(τ1 × τ2) is not equal to !τ1× !τ2. Rather than adding the stripping operator to the
target languages LC and linear Fω, this section de�nes a translation C(C) that eliminates
the stripping operator from capabilities in CC0:

C(α) = α
C(∅) = ∅
C({αϕ}) = {αϕ}
C(C1 ⊕ C2) = C(C1)⊕ C(C2)
C(C) = S(C)

The de�nition of C(C) is trivial except for the case of C(C), which requires an auxiliary
de�nition S(C). For most cases, this auxiliary de�nition just follows CC0's equality rules
for the stripping operator, which say that {ρ1} = {ρ+} and C1 ⊕ C2 = C1 ⊕C2 and C = C
and ∅ = ∅:
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τx = τk × (ρ1 handle× ρ2 handle)
τk = (α, ()) → 0
goodbye : ∀ρ1 :Res.∀ρ2 :Res.∀α :Cap.(α⊕ {ρ1

1} ⊕ {ρ1
2}, τx) → 0

goodbye = λρ1 :Res.λρ2 :Res.λα :Cap.λ(α⊕ {ρ1
1} ⊕ {ρ1

2}, x : τx).
let (k, (h1, h2)) = x in
let useh1 in
let freeh1 in
let useh2 in
let freeh2 in k ()

τ ′x = τ ′k × (ρ1 handle× ρ2 handle)
τ ′k = (β, ()) → 0
hello : ∀ρ1 :Res.∀ρ2 :Res.∀α :Cap.∀β ≤ α⊕ {ρ+

1 } ⊕ {ρ+
2 }.(β, τ ′x) → 0

hello = λρ1 :Res.λρ2 :Res.λα :Cap.λβ ≤ α⊕ {ρ+
1 } ⊕ {ρ+

2 }.λ(β, x : τ ′x).
let (k, (h1, h2)) = x in
let useh1 in
let useh2 in k ()

type abbreviation : () = ∀α :Type.(∅, α) → 0
expression abbreviation : () = λα :Type.λ(∅, x : α).halt
expression abbreviation : (let (y, (z1, z2)) = x in e)=

(let y = #1 x in let z = #2 x in let z1 = #1 z in let z2 = #2 z in e)

Figure 3: CC0 examples

S(∅) = ∅
S({ρϕ}) = {ρ+}
S(C1 ⊕ C2) = S(C1)⊕ S(C2)
S(C) = S(C)

The only nontrivial case is S(α), since there's no equality rule to simplify α. For this case,
the translation invents a fresh type variable αS for each α in the source program:

S(α) = αS

CC0's subcapability rules require that C ≤ C for all well-formed C. In particular, the
translation must ensure that α ≤ αS in all contexts where α is a well-formed type of kind
Cap. This means that any types or expressions declaring α : Cap must also declare αS as a
supertype of α. For example, in the translations T (τ) of types below, a polymorphic source
type ∀α :Cap.τ turns into a target type that is polymorphic over both α and αS , with the
bound α ≤ αS :

T (α) = α
T (ρ handle) = ρ handle
T ((C, τ) → 0) = (C(C), T (τ)) → 0
T (τ1 × τ2) = T (τ1)× T (τ2)
T (∀α :Type.τ) = ∀α :Type.T (τ)
T (∀ρ :Res.τ) = ∀ρ :Res.T (τ)
T (∀α :Cap.τ) = ∀αS :Cap+.∀α :Cap ≤ αS .T (τ)

(Note that αS is only relevant to α of kind Cap, and does not a�ect the rules for T (α),
T (ρ handle), T (∀α : Type.τ), and T (∀ρ : Res.τ), which are only relevant to α : Type and
ρ : Res.)
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The de�nition of T (∀α ≤ C.τ) is similar to the de�nition of T (∀α : Cap.τ), in that α
must be a subcapability of αs, but also requires α to be a subcapability of C(C):

T (∀α ≤ C.τ) = ∀αS :Cap+ ≤ S(C).∀α :Cap ≤ C(C), αS .T (τ)

This requires the target language CC1 to support multiple bounds on capability variables. In
addition, CC1 supports a new kind Cap+ for capabilities that contain no unique capabilities
{ρ1}. Both of these new features persist into CC2, and are then eliminated in the translations
to LC and linear Fω.

The syntax of CC1's kinds, types, and capabilities is as follows:

kinds κ = Type | Res | Cap | Cap+

types τ = α | ρ handle | ∀α :κ.τ | (C, τ) → 0 | τ1 × τ2

| ∀α :Cap+ ≤ C.τ | ∀α :Cap ≤ C0, C1, . . . , Cn.τ

capabilities C = ε | ∅ | {ρϕ} | C1 ⊕ C2

Appendix A contains the complete syntax and rules for CC1, including additional rules and
minor changes to the syntax for h and ∆. Appendix C contains the CC0-to-CC1 translations
E(e) for expressions, D(d) for declarations, V(v) for values, H(h) for heap values, ∆(∆) for
type variable environments, and Γ(Γ) for variable environments, as well as lemmas for the
type-correctness of these translations (the proofs appear in [12]).

A particularly important lemma is that type equality persists from CC0 to CC1, so that
if ∆ ` C1 = C2 : Cap in CC0, then ∆(∆) ` C(C1) = C(C2) : Cap in CC1. The most
challenging rule for this lemma is the CC0 rule for duplication of stripped capabilities:

∆ ` C : Cap
∆ ` C = C ⊕ C : Cap

Clearly this rule should not apply to unstripped capabilities, because unique capabilities
{ρ1} should not be duplicable. What's not clear is how to write the rule without mentioning
the stripping operator, which CC1 lacks. CC1's solution is to introduce a new kind Cap+

for duplicable capabilities (i.e. capabilities containing no unique capabilities {ρ1}). The
kinding rules specify that alias capabilities {ρ+} have both kind Cap and Cap+, but unique
capabilities only have kind Cap:

∆ ` ρ : Res
∆ ` {ρ1} : Cap

∆ ` ρ : Res
∆ ` {ρ+} : Cap+

∆ ` C : Cap+

∆ ` C : Cap

Therefore, composite capabilities of kind Cap may contain both alias and unique capabilities,
but composite capabilities of kind Cap+ may contain only alias capabilities:

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊕ C2 : Cap

∆ ` C1 : Cap+ ∆ ` C2 : Cap+

∆ ` C1 ⊕ C2 : Cap+

With these rules (and a few others, in appendix A), all stripped capabilities in a CC0
program turn into CC1 capabilities of kind Cap+, which are duplicable via the following
CC1 rule:

∆ ` C : Cap+

∆ ` C = C ⊕ C : Cap+
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5 From CC1 to CC2
The capability calculus's polymorphism over capabilities presents a challenge to LC and
linear Fω. Consider the following CC1 function type:

∀α1 :Cap.∀α2 :Cap.(α1 ⊕ α2, (α1 ⊕ α2, ()) → 0) → 0

If α1 and α2 represent unique capabilities {ρ1
1} and {ρ1

2}, then α1 ⊕ α2 should turn into a
linear pair in LC and linear Fω. On the other hand, if α1 and α2 represent alias capabilities
{ρ+

1 } and {ρ+
2 }, then the LC representation of α1⊕α2 would involve the choice operator (as

described in section 2.2) and the linear Fω representation of α1 ⊕ α2 would involve extra
functions (as described in section 2.1). Since the function type shown above is polymorphic
over all capabilities α1 and α2, the translated function type must handle both the unique
case and the alias case.

To handle capability polymorphism, the CC1-to-CC2 translation splits every capability
C into two parts: a unique part U and an alias part A, which combine to form the complete
capability C = U ¢A, where ¢ is a pairing operator for joining unique and alias capabilities
together. In particular, each capability variable α becomes two variables αU and αA; the
former holds the unique part of α and the latter holds the alias part of α. The function
type shown above translates to:

T (∀α1 :Cap.∀α2 :Cap.(α1 ⊕ α2, (α1 ⊕ α2, ()) → 0) → 0) =
∀α1A :Cap+.∀α1U :Cap1.∀α2A :Cap+.∀α2U :Cap1.

((α1U ⊕ α2U ) ¢ (α1A ⊕ α2A), ((α1U ⊕ α2U ) ¢ (α1A ⊕ α2A), T (())) → 0) → 0

In this form, the subsequent translations into LC and linear Fω can deal with the unique
pair α1U ⊕ α2U separately from the alias pair α1A ⊕ α2A, and yet callers of the function
above can still instantiate α1 = α1U ¢ α1A and α2 = α2U ¢ α2A with arbitrary mixtures of
unique and alias capabilities.

The syntax of CC2's kinds, constructors, types, and capabilities is as follows (the com-
plete syntax and rules appear in appendix A):

kinds κ = Type | Res | Capϕ

constructors c = α | τ | Q

types τ = α | ρ handle | ∀α :κ.τ | (C, τ) → 0 | τ1 × τ2

| ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ

pure capabilities Q, A, U = α | ∅ | {ρϕ} | Q1 ⊕Q2

mixed capabilities C = U ¢ A

The letters Q, A, and U denote �pure capabilities�, which are only well-kinded if they
consist entirely of unique capabilities or entirely of alias capabilities. For example, in an
environment where ρ1 and ρ2 have kind Res, Q = {ρ1

1} ⊕ {ρ1
2} has kind Cap1 and Q =

{ρ+
1 } ⊕ {ρ+

2 } has kind Cap+, but Q = {ρ1
1} ⊕ {ρ+

2 } is not well-kinded. By convention, U
refers to pure capabilities of kind Cap1, A refers to pure capabilities of kind Cap+, and
Q refers to pure capabilities of either kind. The letter C is still used, but only as an
abbreviation for the �mixed capability� U ¢ A. There is no kind for mixed capabilities
(unlike CC0 and CC1, CC2 does not contain the kind Cap), but CC2's rules sometimes use
the syntax �∆ ` U ¢ A : Cap� as an abbreviation for �∆ ` U : Cap1 and ∆ ` A : Cap+�.
Similarly, there are no equality rules for mixed capabilities, but CC2's rules sometimes
use �∆ ` U ¢ A = U ′ ¢ A′ : Cap� as an abbreviation for �∆ ` U = U ′ : Cap1 and
∆ ` A = A′ : Cap+�. The subcapability relation does require some interaction between
the unique and alias capabilities, as discussed in section 5.1, but otherwise U and A live in
separate, isolated worlds.

The CC1-to-CC2 capability translation splits each capability C into its unique and alias
parts:
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C(C) = U(C) ¢A(C)
U(α) = αU A(α) = αA

U(∅) = ∅ A(∅) = ∅
U({ρ1}) = {ρ1} A({ρ1}) = ∅
U({ρ+}) = ∅ A({ρ+}) = {ρ+}
U(C1 ⊕ C2) = U(C1)⊕ U(C2) A(C1 ⊕ C2) = A(C1)⊕A(C2)

Given the de�nition of C(C), the CC1-to-CC2 type translation is straightforward for types
that do not involve subcapability bounds:

T (α) = α
T (ρ handle) = ρ handle
T ((C, τ) → 0) = (C(C), T (τ)) → 0
T (τ1 × τ2) = T (τ1)× T (τ2)
T (∀α :Type.τ) = ∀α :Type.T (τ)
T (∀α :Res.τ) = ∀α :Res.T (τ)
T (∀α :Cap.τ) = ∀αA :Cap+.∀αU :Cap1.T (τ)
T (∀α :Cap+.τ) = ∀αA :Cap+.[αU ← ∅]T (τ)

Notice that the rule for ∀α :Cap+.τ substitutes ∅ for αU rather than quantifying over all
possible αU . Any C substituted for α : Cap+ must have kind Cap+, and for any C of kind
Cap+, U(C) = ∅, so T (∀α :Cap+.τ) need not quantify over all αU . The lemmas describing
the type correctness of the CC1-to-CC2 translation (see appendix C) must account for the
substitution of ∅ into αU , so the translation de�nes a composite substitution [∆]:

[ · ] = []
[α : Type, ∆] = [∆]
[α : Res,∆] = [∆]
[α : Cap,∆] = [∆]
[α : Cap+, ∆] = [αU ← ∅][∆]

One important lemma is that the CC1-to-CC2 translation preserves capability equality: if
` ∆ and ∆ ` C1 = C2 : κ in CC1, where κ = Cap or κ = Cap+, then ∆(∆) ` [∆]U(C1) =
[∆]U(C2) : Cap1 and ∆(∆) ` [∆]A(C1) = [∆]A(C2) : Cap+ in CC2.

5.1 Subcapabilities in CC2
CC2's unique and alias capabilities have separate translations U(U) and A(A), separate
kinding judgments ∆ ` U : Cap1 and ∆ ` A : Cap+, and separate equality rules ∆ ` U =
U ′ : Cap1 and ∆ ` A = A′ : Cap+. The unique and alias parts cannot live in complete iso-
lation, though, because the subcapability relationship {ρ1} ≤ {ρ+} lets capabilities migrate
from the unique part to the alias part. Therefore, expecting all subcapability relations to
conform to either U ≤ U ′ or A ≤ A′ is too restrictive � the subcapability relation must
at least allow relations of the form U ≤ A in order to capture {ρ1} ≤ {ρ+}. The most
obvious solution is allow fully general subcapability relations of the form U ¢ A ≤ U ′ ¢ A′,
and to adapt CC0's subcapability rules to CC2's syntax. Surprisingly, this general form is
too permissive to support the CC2-to-LC and CC2-to-linear Fω translations. The problem
stems from CC0's congruence rule for subcapabilities:

∆ ` C1 ≤ C ′1 ∆ ` C2 ≤ C ′2
∆ ` C1 ⊕ C2 ≤ C ′1 ⊕ C ′2

The straightforward adaptation of this to CC2's syntax is:

∆ ` U1 ¢ A1 ≤ U ′
1 ¢ A′1 ∆ ` U2 ¢ A2 ≤ U ′

2 ¢ A′2
∆ ` (U1 ⊕ U2) ¢ (A1 ⊕A2) ≤ (U ′

1 ⊕ U ′
2) ¢ (A′1 ⊕A′2)
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There's no reason to believe that this rule is unsound; after all, it can be derived in CC0's
type system if ¢ is replaced by ⊕. Nevertheless, this rule is not very useful to the section
6's CC2-to-LC translation and section 7's CC2-to-linear Fω translation, because the cor-
responding judgment in LC would be incorrect (as would the corresponding judgment in
linear Fω):

U1 ⊗ (A1 ⊗ true) ⇒ U ′
1 ⊗ (A′1 ⊗ true),

U2 ⊗ (A2 ⊗ true) ⇒ U ′
2 ⊗ (A′2 ⊗ true)

` (U1 ⊗ U2)⊗ (((A1 ⊗ true)&(A2 ⊗ true))⊗ true) ⇒
(U ′

1 ⊗ U ′
2)⊗ (((A′1 ⊗ true)&(A′2 ⊗ true))⊗ true)

The following instance of this judgment shows why the judgment is not correct:

∅ ⊗ (X ⊗ true) ⇒ X ⊗ (∅ ⊗ true),
∅ ⊗ (Y ⊗ true) ⇒ Y ⊗ (∅ ⊗ true)
` (∅ ⊗ ∅)⊗ (((X ⊗ true)&(Y ⊗ true))⊗ true) ⇒

(X ⊗ Y )⊗ (((∅ ⊗ true)&(∅ ⊗ true))⊗ true)

The premises in this example are true, but the conclusion would require that (X⊗true)&(Y ⊗
true) imply X⊗Y , which is not correct: having a choice between X and Y does not give you
both X and Y . The other direction is correct � X ⊗ Y does imply (X ⊗ true)&(Y ⊗ true)
� so clearly this example reversed something. The culprit is the choice of A1 = U ′

1 = X
and A2 = U ′

2 = Y . These choices assume that capabilities migrate from aliased parts to
unique parts: ∅ ¢ X ≤ X ¢ ∅ and ∅ ¢ Y ≤ Y ¢ ∅. In other words, they assume that
{ρ+} ≤ {ρ1}, which is exactly backwards. CC0, CC1, and CC2 allow {ρ1} ≤ {ρ+} and
prohibit {ρ+} ≤ {ρ1}, which is why the congruence rule shown above works for CC2. By
contrast, LC and linear Fω have no explicit {ρ1} ≤ {ρ+} rule, because they lack an explicit
subcapability relation altogether.

Luckily, it is not di�cult to modify CC2's subcapability relation to make the CC2-to-LC
and CC2-to-linear Fω translations smoother. Although U ¢ A ≤ U ′ ¢ A′ is too permissive,
and segregated U ≤ U ′ and A ≤ A′ are too restrictive, there's a middle ground that allows
{ρ1} ≤ {ρ+} while still preventing {ρ+} ≤ {ρ1} from sneaking into LC and linear Fω. If
CC2 restricts subcapabilities to have the syntax U ¢ A ≤ ∅ ¢ A′, then it is syntactically
impossible to express {ρ+} ≤ {ρ1} (assuming that U , A, and A′ have the appropriate kinds).
For example, this syntax forces the U ′

1 and U ′
2 to be ∅ in the LC judgment above, so that

the judgment becomes:

U1 ⊗ (A1 ⊗ true) ⇒ ∅⊗ (A′1 ⊗ true),
U2 ⊗ (A2 ⊗ true) ⇒ ∅⊗ (A′2 ⊗ true)
` (U1 ⊗ U2)⊗ (((A1 ⊗ true)&(A2 ⊗ true))⊗ true) ⇒

(∅ ⊗ ∅)⊗ (((A′1 ⊗ true)&(A′2 ⊗ true))⊗ true)

This judgment is correct. There are other possible syntactic restrictions (e.g. U¢∅ ≤ U ′¢A′

or U ¢ ∅ ≤ ∅¢ A′), but U ¢ A ≤ ∅¢ A′ o�ers the cleanest way to encode the general case
U ¢ A ≤ U ′ ¢ A′:

(U ¢ A ≤ U ′ ¢ A′) ⇔ ∃UB .(U = UB ⊕ U ′ and UB ¢ A ≤ ∅¢ A′)

This encoding allows capabilities to migrate from U to A′ using the capability UB as a
conduit. For example, to express

({ρ1
1} ⊕ {ρ1

2}) ¢ {ρ+
3 } ≤ {ρ1

1}¢ ({ρ+
2 } ⊕ {ρ+

3 })

choose UB = {ρ1
2}:
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{ρ1
1} ⊕ {ρ1

2} = {ρ1
2} ⊕ {ρ1

1} and {ρ1
2}¢ {ρ+

3 } ≤ ∅¢ ({ρ+
2 } ⊕ {ρ+

3 })

Furthermore, the encoding does not allow capabilities to migrate the wrong way (from A
to U ′) � there is no way for the encoding to express ∅¢ {ρ+} ≤ {ρ1}¢ ∅, because there's
no way to satisfy U = UB ⊕ U ′ if U = ∅ and U ′ = {ρ1}.

Appendix C de�nes rules for a relation ∆ ` (C ≤ C ′) Ã UB that generate an appropriate
UB in CC2 for any subcapability derivation ∆ ` C ≤ C ′ in CC1. For example, the rules
produce:

∆ ` (({ρ1
1} ⊕ {ρ1

2}) ¢ {ρ+
3 } ≤ {ρ1

1}¢ ({ρ+
2 } ⊕ {ρ+

3 })) Ã {ρ1
2}

The key lemma for the subcapability relation states that if ` ∆ and ∆ ` (C ≤ C ′) Ã UB in
CC1, then ∆(∆) ` [∆]U(C) = [∆]UB ⊕ [∆]U(C ′) : Cap1 and ∆(∆) ` [∆]UB ¢ [∆]A(C) ≤
∅¢ [∆]A(C ′) in CC2.

To emphasize the syntactic restriction on CC2's subcapability relation, the rest of the
paper writes U ¢ A ≤ ∅¢ A′ simply as U ¢ A ≤ A′.

5.2 Bounded quanti�cation in CC2
CC1 de�nes two forms of bounded quanti�cation: ∀α : Cap+ ≤ C.τ and ∀α : Cap ≤
C0, C1, . . . , Cn.τ . To make the translation to CC2 easier, CC1 restricts C and C1, . . . , Cn

to have kind Cap+:

∆ ` C : Cap+ ∆, α : Cap+ ≤ C ` τ : Type
∆ ` ∀α :Cap+ ≤ C.τ : Type

∆ ` C0 : Cap ∆ ` C1 : Cap+ . . . ∆ ` Cn : Cap+

∆, α : Cap ≤ (C0, C1, . . . , Cn) ` τ : Type
∆ ` ∀α :Cap ≤ C0, C1, . . . , Cn.τ : Type

For any C of kind Cap+, U(C) = ∅. This means, for example, that the translation of
∀α :Cap+ ≤ C.τ need not worry about establishing a UB for U(α) and U(C), because both
U(α) and U(C) are equal to ∅. The simplest syntax for the translation would be:

T (∀α :Cap+ ≤ C.τ) = ∀αA :Cap+ ≤ A(C).[αU ← ∅]T (τ)

CC2 actually uses a more general syntax for bounded quanti�cation, allowing bounds of the
form U ¢ αA ≤ A′ on the variable αA, rather than just αA ≤ A′:

T (∀α :Cap+ ≤ C.τ) = ∀αA :Cap+ where ∅¢ αA ≤ A(C).[αU ← ∅]T (τ)

The more general syntax allows a translation of ∀α :Cap ≤ C0, C1, . . . , Cn.τ , where α and
C0 may have non-empty unique parts due to their kind Cap. This case requires encoding
α ≤ C0 as described in section 5.1:

U(α) = UB ⊕ U(C0) and UB ¢A(α) ≤ A(C0)

By de�nition, U(α) = αU and A(α) = αA. Since these are variables, UB must also be a
variable:

αU = αB ⊕ U(C0) and αB ¢ αA ≤ A(C0)

Because C1 . . . Cn all have kind Cap+, each of the α ≤ C1 . . . α ≤ Cn bounds already
conforms to CC2's subcapability syntax (U ¢ A ≤ A′) and needs no further encoding:

αU ¢ αA ≤ A(C1) . . . αU ¢ αA ≤ A(Cn)
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All told, there is one equality bound (αU = αB ⊕ U(C0)), one subcapability bound for C0,
and n subcapability bounds for C1 . . . Cn. The easiest way to handle the equality bound is
to substitute αB ⊕ U(C0) for αU . This changes each of the n subcapability bounds to:

(αB ⊕ U(C0)) ¢ αA ≤ A(C1) . . . (αB ⊕ U(C0)) ¢ αA ≤ A(Cn)

and yields a complete (and admittedly, complicated) translation of ∀α :Cap ≤ C0, C1, . . . , Cn.τ :

T (∀α :Cap ≤ C0, C1, . . . , Cn.τ) =
∀αB :Cap1.∀αA :Cap+ where αB ¢ αA ≤ A(C0),

(αB ⊕ U(C0)) ¢ αA ≤ A(C1),
...

(αB ⊕ U(C0)) ¢ αA ≤ A(Cn).[αU ← (αB ⊕ U(C0))]T (τ)

Any CC1 expression that applies a value v of type ∀α : Cap ≤ C0, C1, . . . , Cn.τ to some
capability argument C must, when translated into CC2, �nd an appropriate UB to plug in
for αB . Luckily, section 5.1 already established a relation ∆ ` (C ≤ C ′) Ã UB for choosing
UB , and this relation guides the translation of a CC1 value v[C : Cap] into a CC2 value
V(v[C : Cap]), where the translation is written as an annotation of v's typing judgment
∆;Γ ` v[C : Cap] : τ Ã V(v[C : Cap]):

∆;Γ ` v : ∀α :Cap ≤ C0, C1, . . . , Cn.τ Ã v′

∆ ` C ≤ C0 Ã UB

∆ ` C ≤ C1 ∆ ` C ≤ Cn

∆ ` C : Cap
∆;Γ ` v[C : Cap] : [α ← C]τ Ã v′[UB : Cap1][A(C) : Cap+]

Note that CC2 could generalize its bounded quanti�cation even further, allowing bounds
U¢A ≤ A′ instead of just U¢α ≤ A′, but would complicate the subsequent translations into
LC and linear Fω (in particular, the translation into LC relies on substitution for α). CC1
and CC2 must to be general enough to handle all well-typed CC0 programs, but restrictive
enough to support the �nal translations into LC and linear Fω. The path through CC1 and
CC2 is a thin and not-entirely-straight line.

6 From CC2 to LC
Figure 4 shows the syntax of LC, which is based on a language developed by Walker [30].
LC is identical to CC0 except that:

• LC lacks a subcapability relation (and therefore requires no bounded quanti�cation).

• LC lacks a stripping operator.

• LC lacks multiplicity �ags (it has {ρ} rather than {ρ1} and {ρ+}).
• LC uses standard linear logic operators ⊗, &, and ( in place of CC0's nonstandard

join operator (⊕).

Appendix A presents the complete typing rules for LC. Figure 5 shows the the linear sequent
logic rules that govern capabilities. In each rule, each of the premises is strictly smaller than
the conclusion Λ ` C, so that the height of any derivation of Λ ` C is bounded by a function
of the size of Λ ` C. This ensures that there is at least one algorithm for deciding the validity
of C under assumptions Λ = C1, ..., Cn: simply try all possible derivations with Λ ` C as
the conclusion [16]. Note that although the order of assumptions Λ = C1, ..., Cn is irrelevant

16



kinds κ = Type | Res | Cap
constructors c = α | τ | C

ctor varsα, β, ε, ρ, . . .

types τ = α | ρ handle | ∀α :κ.τ | (C, τ) → 0 | τ1 × τ2

capabilities C = ε | ∅ | {ρ} | C1 ⊗ C2 | C1&C2 | C1 ( C2 | true
cap ctxts Λ = C1, . . . , Cn

ctor ctxts ∆ = · | ∆, α : κ

value ctxts Γ = · | Γ, x : τ

word values v = x | v[c : κ]
heap values h = λα :κ.h | λ(C, x : τ).e | (v1, v2)

declarations d = x = v | x = h | x = #n v | new ρ, x | free v | use v

expressions e = let d in e | v1 v2 | halt

Figure 4: LC Syntax

C ` C ` ∅ Λ ` C

Λ, ∅ ` C
Λ ` true

Λ1 ` C1 Λ2 ` C2

Λ1, Λ2 ` C1 ⊗ C2

Λ ` C1 Λ ` C2

Λ ` C1&C2

Λ, C1 ` C2

Λ ` C1 ( C2

Λ, C1, C2 ` C3

Λ, C1 ⊗ C2 ` C3

Λ, Ck ` C3

Λ, C1&C2 ` C3
(k ∈ {1, 2}) Λ1 ` C1 Λ2, C2 ` C3

Λ1, Λ2, C1 ( C2 ` C3

Figure 5: Linear sequent logic (without �!�)
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(C1, C2 is equivalent to C2, C1), derivations cannot duplicate or discard assumptions: C, C
is not equivalent to C or C,C, C.

LC eliminates all of CC0's capability equality rules and subcapability rules, relying
entirely on logical judgments Λ ` C instead. LC de�nes capability equality in terms of logic
judgments:

∆ ` C1 : κ ∆ ` C2 : κ C1 ` C2 C2 ` C1

∆ ` C1 = C2 : κ

In place of CC0's subcapability judgment ∆ ` C1 ≤ C2, LC uses C1 ` C2. For example, the
CC0 rule for use

∆;Γ ` v : α handle ∆ ` C ≤ C ′ ⊕ {α+}
∆;Γ; C ` use v =⇒ ∆;Γ; C

becomes the following in LC:

∆;Γ ` v : α handle C ` {α} ⊗ true
∆;Γ; C ` use v =⇒ ∆;Γ; C

Translating unique CC2 capabilities U into LC is easy � just replace CC2's join operator
⊕ with LC's linear pair operator ⊗:

U(α) = α
U(∅) = ∅
U({ρϕ}) = {ρ}
U(U1 ⊕ U2) = U(U1)⊗ U(U2)

For alias capabilities A, the translation adopts the linear choice operator &, as described in
section 2.2:

A(α) = α
A(∅) = ∅
A({ρϕ}) = {ρ}
A(A1 ⊕A2) = (A(A1)⊗ true)&(A(A2)⊗ true)

To express the CC0 subcapability judgment {ρ1
1} ⊕ {ρ1

2} ≤ {ρ+
1 } ⊕ {ρ+

1 }, the translation
ensures that U({ρ1

1} ⊕ {ρ1
2}) ` A({ρ+

1 } ⊕ {ρ+
1 }):

{ρ1} ` {ρ1} {ρ2} ` true
{ρ1}, {ρ2} ` {ρ1} ⊗ true
{ρ1} ⊗ {ρ2} ` {ρ1} ⊗ true

{ρ2} ` {ρ2} {ρ1} ` true
{ρ1}, {ρ2} ` {ρ2} ⊗ true
{ρ1} ⊗ {ρ2} ` {ρ1} ⊗ true

{ρ1} ⊗ {ρ2} ` ({ρ1} ⊗ true)&({ρ2} ⊗ true)

Note that the the ⊗true is required for the derivation to absorb the excess linear assumptions
from the assumption list {ρ1}, {ρ2}, since a derivation cannot simply discard unwanted
assumptions. Indeed, there is no derivation of {ρ1} ⊗ {ρ2} ` {ρ1}&{ρ2}. In general, the
CC2 judgment U ¢ A ≤ A′ turns into an LC judgment:

U(U)⊗A(A) ` A(A′)⊗ true

(The ⊗true after the A(A′) is necessary for relations like ∅¢ {ρ+} ⊕ {ρ+} ≤ {ρ+}.)
Translation of types is straightforward, except for bounded quanti�cation:
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T (α) = α
T (ρ handle) = ρ handle
T ((U ¢ A, τ) → 0) = (U(U)⊗ (A(A)⊗ true), T (τ)) → 0
T (τ1 × τ2) = T (τ1)× T (τ2)
T (∀α :Type.τ) = ∀α :Type.T (τ)
T (∀α :Res.τ) = ∀α :Res.T (τ)
T (∀α :Capϕ.τ) = ∀α :Cap.T (τ)

The translation of bounded quanti�cation borrows from two alternate encodings of ∀α ≤ τ ′.τ
[2][20][5]:

(∀α ≤ τ ′.τ) = ∀α.(α → τ ′) → τ
(∀α ≤ τ ′.τ) = ∀α.[α ← (α ∧ τ ′)]τ

The �rst encoding uses a coercion function (α → τ ′) to make explicit the idea that any
subtype can be coerced to a supertype. This encoding suggests expressing ∀α ≤ C.τ using a
coercion implication (α ( C). The linearity of (α ( C) causes problems for the encoding
(a nonlinear implication !(α ( C) would be preferable), but the type (α ( C) still plays
a part in the translation described below.

The second encoding uses an intersection type τ1 ∧ τ2, which indicates a value that can
be coerced to type τ1 or τ2; as in the �rst encoding, every value of type α in τ can be
coerced to type τ ′, since (α∧ τ ′) can be coerced to type τ ′. Walker [30] observed that since
∧ corresponds to linear logic's & operator, ∀α ≤ C.τ can be encoded as ∀α.[α ← (α&C)]τ .
CC2's bounded quanti�cation isn't as simple as α ≤ C, though � the bounds have the
form U ¢ α ≤ A. Consider again the �rst encoding, which would turn U ¢ α ≤ A into a
coercion U(U) ⊗ α ( A(A) ⊗ true. Now change the order of the argument pair to form
α⊗U(U) ( A(A)⊗true, and then curry the implication to form α ( (U(U) ( A(A)⊗true).
This version of the coercion suggests an application of the second encoding to the bound
α ≤ (U(U) ( A(A)⊗ true), which results in a type ∀α.[α ← (α&(U(U) ( A(A)⊗ true))]τ .
More precisely, the encoding of CC2's bounded quanti�cation type is:

T (∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ) =
∀α :Cap.[α ← (α&(U(U1) ( A(A1)⊗true)& . . . &(U(Un) ( A(An)⊗true))]T (τ)

6.1 Incomplete collection
The capability calculus's most important property is its ability to safely track linear resource
state changes, such as resource deallocation. The translation from CC0 to LC maintains
this property. The capability calculus also guarantees a further property, known as complete
collection: when a program halts, the typing rule for the halt expression guarantees an empty
heap:

∆ ` C = ∅ : Cap
∆;Γ;C ` halt

Because the program can only terminate via the halt expression, this implies that programs
can only terminate with an empty heap. Unfortunately, although the CC0-to-CC1 and
CC1-to-CC2 translations preserve complete collection, the CC2-to-LC translation fails to
maintain this property, and LC must relax halt's typing rule to accommodate the translation:

∆;Γ;C ` halt

Consider, for example, the translation A(∅ ⊕ ∅) = (∅ ⊗ true)&(∅ ⊗ true). Because of the
⊗true that appears in each branch of the choice, (∅ ⊗ true)&(∅ ⊗ true) is not equivalent to
∅ (under LC's rules, ∅ implies true, but true does not imply ∅). The following CC2 function
accepts an A = ∅ ⊕ ∅ and then halts with an empty heap:
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λ(∅¢ (∅ ⊕ ∅), x : ()).halt

The corresponding LC function cannot guarantee an empty heap.
It's important to note that the CC0-to-LC translation does not introduce any extra

run-time garbage � if the CC0 program halts with an empty heap, then the corresponding
LC program will also halt with an empty heap (because the LC program performs exactly
the same sequence of allocations and deallocations as the CC0 program). The problem is
LC's type system doesn't guarantee complete collection for all programs � even though
programs translated from CC0 will halt with an empty heap, there are other well-typed LC
programs that may halt with a non-empty heap.

There are four strategies for dealing with LC's incomplete collection:

• Ignore incomplete collection. Most practical systems must have a way to stop non-
terminating programs or excessively long-running programs, and this requires that
the system have a mechanism for reclaiming memory from programs that do not
voluntarily halt. If this mechanism is already in place anyway, the system can also
use it to clean up programs that do voluntarily halt.

• Embrace incomplete collection. Without the requirement that programs halt with an
empty heap, the type system can make the subcapability more �exible, by adding a
rule ∆ ` C ≤ ∅. Alias types, for example, includes the rule ∆ ` C ≤ ∅ and abandons
complete collection [23].

• Recover complete collection by restricting the source language. For example, if CC2's
function type (U ¢ A, τ) → 0 is restricted to (U ¢ ∅, τ) → 0, then the translation into
LC no longer has to worry about A = ∅ ⊕ ∅ introducing spurious ⊗true capabilities
into the environment. It's not obvious, though, how to push this restriction on CC2
back into CC1 and CC0.

• Recover complete collection by making the translation more precise. Section 6.2 dis-
cusses this option. Unfortunately, section 6.2's solution adds nonlinear capabilities
to LC's logic, which probably makes the logic undecidable [16] unless the program
contains additional annotations to guide the decision procedure.

6.2 Complete collection
The translation into LC forfeited complete collection becauseA(A1⊕A2) = (A1⊗true)&(A2⊗
true) sloppily introduces ⊗true even when A1 and A2 are equivalent to ∅. The following
revised translation eliminates this sloppiness by replacing ⊗true with ⊗Z(A):

A(α) = α
A(∅) = ∅
A({ρϕ}) = {ρ}
A(A1 ⊕A2) = (A(A1)⊗Z(A1 ⊕A2))&(A(A2)⊗Z(A1 ⊕A2))

where Z(A) is de�ned to be ∅ for A that are equivalent to ∅, and true otherwise:

Z(α) = αZ

Z(∅) = ∅
Z({ρϕ}) = true
Z(A1 ⊕A2) = Z(A1)⊗Z(A2)

Under the revised de�nition, A(∅ ⊕ ∅) = (∅ ⊗ (∅ ⊗ ∅))&(∅ ⊗ (∅ ⊗ ∅)), which is equivalent to
∅. More subtly, A(α1 ⊕ α2) will be equivalent to ∅ if both α1 and α2 are instantiated with
∅ (or with any A equivalent to ∅). This requires a correlation between α and αZ : whenever
α is instantiated with A(A), αZ should be instantiated with Z(A). To capture the relation
between α and αZ , the translation embeds the following invariant in the target program:

20



kinds κ = Type | κ → κ

types τ = α | ∀α :κ.τ | τ1 ( τ2 | !τ | λα :κ.τ | τ1 τ2

expressions e = x | λα :κ.e | e τ | λ(φx) :τ.e | e1 e2 | !e
linearities φ = · | !
type ctxts ∆ = · | ∆, α : κ

value ctxts Γ = · | Γ, φ(x : τ)

Figure 6: Linear Fω Syntax

∃α :κ.τ = ∀β.(∀α :κ.τ ( β) ( β

τ1 ⊗ τ2 = ∀α.(τ1 ( τ2 ( α) ( α

τ1 × τ2 = !(τ1 ⊗ τ2)
τ1 → τ2 = !(τ1 ( τ2)
τ1 ⇒◦ τ2 = τ1 ( (τ2 ⊗ (τ2 ( τ1))
τ1 ⇒ τ2 = τ1 → (τ2 ⊗ (τ2 ( τ1))

(◦) = ∀α :Type.α ( α

() = !(◦)
true = ∃α :Type.α

Figure 7: Useful linear Fω type abbreviations

((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true)

This invariant uses nonlinear pairs C1×C2, the nonlinear disjunctions (unions) C1∨C2, and
nonlinear implications C1 ⇒ C2, where C1 ⇔ C2 is an abbreviation for (C1 ⇒ C2)× (C2 ⇒
C1). A nonlinear capability CN can appear with a linear capability CL inside a function
type ((CN ⊗CL), τ) → 0, but it's often convenient to split the nonlinear capability from the
function type. For example, currying ((CN ⊗CL), τ) → 0 yields the type CN ⇒ ((CL, τ) →
0), where the type C ⇒ τ is analogous to a function type τ1 → τ2. The translation of
∀α :Cap+.τ uses the type C ⇒ τ to ensure that the invariant above is satis�ed for every
instantiation of α and αZ :

T (∀α :Cap+.τ) = ∀α :Cap.∀αZ :Cap.(((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true)) ⇒ T (τ)

Further details of the translation appear in appendix C.
By using Z(A) to track precisely when A is equivalent to ∅, the revised translation

ensures that the program only halts when the current capability is equivalent to ∅.

7 From CC2 to linear Fω

Section 6 demonstrated that LC can express CC0's aliasing without relying on CC0's capa-
bility syntax and capability rules. Nevertheless, LC shares much of its syntax with CC0, and
this raises a theoretical question: which features in LC and CC0 are essential for expressing
CC0's aliasing? Does a target language powerful enough to encode CC0 in well-typed way
require...
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1. ...a distinction between handles and capabilities?

2. ...the linear choice operator (e.g. in the rule for the �use v� expression)?

3. ...separate proof and programming languages?

4. ...a large set of features?

This section demonstrates that (1), (2), and (3) are not essential (though they are useful
in practice), and that the target language can be very small. Figure 6 shows linear Fω
(the higher-order polymorphic lambda calculus Fω extended with linear types). Linear Fω
contains only 2 basic types for values: τ1 ( τ2 for linear functions and ∀α : κ.τ for linear
polymorphic abstractions. The �of course� operator ! turns linear types into nonlinear
types; !(τ1 ( τ2) is the type for nonlinear functions (abbreviated here as τ1 → τ2), and
!∀α : κ.τ is the type for nonlinear polymorphic abstractions. The polymorphic lambda
calculus has the remarkable ability to encode many other types just using function types
and polymorphic types; �gure 7 shows some standard encodings of standard types (as well
as a couple nonstandard types, τ1 ⇒◦ τ2 and τ1 ⇒ τ2, explained below).

Linear Fω lacks any built-in types for linear resources, such as �les, or expressions for
manipulating linear resources. Instead, the translation assumes that the type environment
contains an abstract type constructor χ for linear resources, and the value environment
contains variables new, free, and use that act on linear resources:

new : () → ∃ρ :Type.(χ ρ)
free : !∀ρ :Type.(χ ρ) → ()
use : !∀ρ :Type.(χ ρ) → (χ ρ)

Unlike CC0's operations, which manipulate linear capabilities and nonlinear handles, the
operations shown above do not distinguish between capabilities and handles (the linear
type χ ρ contains both the run-time information about a resource and the permission to
use the resource). Section 7.1 describes a particular instantiation of new, free, and use for
alias types; interestingly, implementing these operations for alias types, and even adding
operations for alias type mutation, requires no extensions to linear Fω.

The translation from CC2's unique capabilities U to linear Fω's types follows the strategy
from section 6, using linear pairs to implement CC2's join operator:

U(α) = α
U(∅) = ()
U({ρϕ}) = χ ρ
U(U1 ⊕ U2) = U(U1)⊗ U(U2)

The translation of alias capabilities A to linear Fω follows the hello example from section
2.1.1:

hello : ∀ρ1.∀ρ2.∀α.∀β1.∀β2.α⊗ (α → β1 ⊗ ρ1 cap)⊗ (β1 ⊗ ρ1 cap→ α)⊗ ρ1 handle
⊗(α → β2⊗ ρ2 cap)⊗ (β2⊗ ρ2 cap→ α)⊗ ρ2 handle→ α

In hello's type, the type variable α serves as a pool of capabilities from which the particular
capabilities ρ1 cap and ρ2 cap can be extracted. An equivalent way to write hello's type is:

hello : ∀ρ1.∀ρ2.∀α.α⊗ (α → ∃β1.β1 ⊗ ρ1 cap⊗ (β1 ⊗ ρ1 cap→ α))⊗ ρ1 handle
⊗(α → ∃β2.β2 ⊗ ρ2 cap⊗ (β2 ⊗ ρ2 cap→ α))⊗ ρ2 handle→ α

In this form, the β1 and β2 can hide inside linear functions, yielding a simpler type:

hello : ∀ρ1.∀ρ2.∀α.α⊗ (α → ρ1 cap⊗ (ρ1 cap ( α))⊗ ρ1 handle
⊗(α → ρ2 cap⊗ (ρ2 cap ( α))⊗ ρ2 handle→ α
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For convenience, the abbreviation τ1 ⇒ τ2 = τ1 → (τ2⊗(τ2 ( τ1)) expresses the idea that a
small linear resource τ2 can be temporarily extracted from a larger linear resource τ1 (note
that even though τ1 and τ2 may be linear, τ1 ⇒ τ2 is nonlinear). With this abbreviation,
hello's type becomes:

hello : ∀ρ1.∀ρ2.∀α.α⊗ (α ⇒ ρ1 cap)⊗ ρ1 handle
⊗(α ⇒ ρ2 cap)⊗ ρ2 handle→ α

The type for hello suggests a translation for CC2's join operator:

A({ρ+
1 } ⊕ {ρ+

2 }) = ∃α :Type.α⊗ (α ⇒ χ ρ1)⊗ (α ⇒ χ ρ2)

At �rst glance, this type satis�es the most crucial test for an encoding of CC0: unique
capabilities can be coerced to alias capabilities. For example, to encode {ρ1

1} ⊕ {ρ1
2} ≤

{ρ+
1 } ⊕ {ρ+

2 }, there is a function of type:

(χ ρ1)⊗ (χ ρ2) → (∃α :Type.α⊗ (α ⇒ χ ρ1)⊗ (α ⇒ χ ρ2))

Similarly, to encode {ρ1} ≤ {ρ+} ⊕ {ρ+}, there is a function of type:

(χ ρ) → (∃α :Type.α⊗ (α ⇒ χ ρ)⊗ (α ⇒ χ ρ))

In a proof language, this would be su�cient to express CC0's subcapability relation. A
programming language, though, has a harder task: it's not enough to say that (χ ρ1)⊗(χ ρ2)
can be coerced to type A({ρ+

1 } ⊕ {ρ+
2 }); a running program must actually perform the

coercion if it wants to use a run-time value of type A({ρ+
1 }⊕{ρ+

2 }). More onerously, it must
be able to get back the original value of type (χ ρ1)⊗ (χ ρ2) after using A({ρ+

1 }⊕{ρ+
2 }) �

the whole point of CC0's bounded quanti�cation is to view resources as temporarily aliased,
and then later restore the resources' uniqueness. Unfortunately, the reverse direction of the
functions shown above does not hold; there is no value of this type:

(χ ρ1)⊗ (χ ρ2) ↔ (∃α :Type.α⊗ (α ⇒ χ ρ1)⊗ (α ⇒ χ ρ2))

(Here, τ1 ↔ τ2 is an abbreviation (τ1 → τ2) × (τ2 → τ1).) On the other hand, there is a
value of the type shown below, where the scope of α is wide enough to ensure that both the
forward and reverse functions agree on the same α:

∃α :Type.(χ ρ1)⊗ (χ ρ2) ↔ (α⊗ (α ⇒ χ ρ1)⊗ (α ⇒ χ ρ2))

This small change in scope puts a large administrative burden on the encoding, because the
declaration of α now sits outside the de�nition ofA({ρ+

1 }⊕{ρ+
2 }). Therefore, A({ρ+

1 }⊕{ρ+
2 })

must be parameterized over α. In other words, A({ρ+
1 } ⊕ {ρ+

2 }) is no longer a type of kind
Type, but is instead a type constructor of kind Type→ Type:

A({ρ+
1 } ⊕ {ρ+

2 }) = λγ :Type.γ ⊗ (γ ⇒ χ ρ1)⊗ (γ ⇒ χ ρ2)

The translation turns CC2's kind Cap+ into kind Type→ Type, while all other CC2 kinds
become Type:

K(Cap1) = Type
K(Cap+) = Type→ Type
K(Type) = Type
K(Res) = Type

Once γ is a parameter to A({ρ+
1 }⊕{ρ+

2 }) and the �∃γ :Type.� sits outside A({ρ+
1 }⊕{ρ+

2 }),
it's convenient to pull the �γ⊗� outside as well, so that what's left inside A({ρ+

1 } ⊕ {ρ+
2 })

is purely nonlinear (and thus easier to manipulate):
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A({ρ+
1 } ⊕ {ρ+

2 }) = λγ :Type.(γ ⇒ χ ρ1)× (γ ⇒ χ ρ2)

The following de�nitions extend the A({ρ+
1 } ⊕ {ρ+

2 }) example to general A(A):

A(α) = λγ :Type. !(α γ)
A(∅) = λγ :Type.()
A({ρϕ}) = λγ :Type.(γ ⇒ χ ρ)
A(A1 ⊕A2) = λγ :Type.(A(A1) γ)× (A(A2) γ)

Two small improvements are worth making to these de�nitions. First, it is convenient to pull
the nonlinear �of course� operator (� !�) outside the de�nition of A(A), so that the de�nition
of A(α) becomes A(α) = λγ :Type.(α γ), or, more simply, just A(α) = α:

A(α) = α
A(∅) = λγ :Type.(◦)
A({ρϕ}) = λγ :Type.(γ ⇒◦ χ ρ)
A(A1 ⊕A2) = λγ :Type. !(A(A1) γ)⊗ !(A(A2) γ)

Second, forcing all the A(A) to use the same γ is overly restrictive, and makes it di�cult to
translate CC2's equality and subcapability rules. The following de�nitions give A(A1⊕A2)
the �exibility to re�ne γ so that A1 and A2 can use smaller pieces of γ. This �exibility
makes it easier to glue A(A1) and A(A2) together to form A(A1 ⊕A2).

A(A) = λγ :Type.∃δ :Type.(γ ⇒ δ)× !(A[A] δ)
A[α] = α
A[∅] = λγ :Type.(◦)
A[{ρϕ}] = λγ :Type.γ ⇒◦ χ ρ
A[A1 ⊕A2] = λγ :Type. !(A(A1) γ)⊗ !(A(A2) γ)

Given the de�nitions of U(U) and A(A), most of the type translation is straightforward:

T (α) = α
T (τ1 × τ2) = !T (τ1)⊗ !T (τ2)
T ((U ¢ A, τ) → 0) = ∀γ :Type.γ → U(U) ( !(A(A) γ) ( !T (τ) ( true
T (ρ handle) = (◦)
T (∀α :κ.τ) = ∀α :K(κ). !T (τ)

Since a resource's run-time information resides in a value of type χ ρ, there's no need for
a separate handle value for the resource, so the translation of type ρ handle is empty. The
translation T ((U ¢A, τ) → 0) de�nes a curried function that takes arguments of type U(U),
!(A(A) γ), and !T (τ), plus the pool γ from which !(A(A) γ) extracts capabilities. The func-
tion's return type �true� allows the function to discard the pool γ when the program halts;
this does not capture the complete collection property, but it's likely that the translation
could be revised to express complete collection using the techniques from section 6.2.

To implement bounded quanti�cation, the translation uses the (∀α ≤ τ ′.τ) = ∀α.(α →
τ ′) → τ encoding from section 6:

T (∀α :Cap+ whereC1 ≤ A1, . . . , Cn ≤ An.τ) =
∀α :Type→ Type. !S(C1 ≤ A1) → . . . → !S(Cn ≤ An) → !T (τ)

This de�nition relies on an encoding !S(C1 ≤ A1) of CC2's subcapability relation, as de-
scribed below.

Linear Fω lacks the rich set of type equivalence, capability equivalence, and subcapa-
bility judgments found in CC0. Following [1], the translation into linear Fω encodes these
judgments as expressions. For example, if two CC2 types τ1 and τ2 are equivalent, then the
translation produces an expression e
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∆ ` τ1 = τ2 : Type Ã e

such e has type !T (τ1) ↔ !T (τ2). (See appendix C for the complete de�nition of ∆ ` τ1 =
τ2 : Type Ã e.) Similarly, the translation encodes capability equivalence U1 = U2 and
A1 = A2 as expressions of type U(U1) ↔ U(U2) and !∀γ :Type. !(A(A1) γ) ↔ !(A(A2) γ).

Encoding subcapabilities is slightly more interesting. Suppose that a function f1 of
type ((U ⊕ U1) ¢ A1, τ) → 0 wants to call a function f2 of type (U ¢ A2, τ) → 0, where
U1 ¢ A1 ≤ A2. The translations of f1's type and f2's type are

T (((U⊕U1)¢A1, τ) → 0) = ∀γ :Type.γ → U(U)⊗U(U1) ( !(A(A1) γ) ( !T (τ) ( true

T ((U ¢ A2, τ) → 0) = ∀γ′ :Type.γ′ → U(U) ( !(A(A2) γ′) ( !T (τ) ( true

While f2 accepts only two linear arguments, γ′ and U(U), f1 holds three linear values, γ,
U(U), and U(U1). Clearly, f1 should pass its own U(U) value as the U(U) argument to
f2. This leaves f1's other two values, γ and U(U1), to instantiate f2's γ′ argument, so
f1 should choose γ′ = γ ⊗ U(U1). Now f1 needs to instantiate f2's nonlinear argument
!(A(A2) (γ ⊗ U(U1))), but f1 only holds a value of type !(A(A1) γ). This is where the
translation of U1 ¢ A1 ≤ A2 comes in � to allow f1 to call f2, encode U1 ¢ A1 ≤ A2 as an
expression of type:

S(U1 ¢ A1 ≤ A2) = ∀γ :Type. !(A(A1) γ) → !(A(A2) (γ ⊗ U(U1)))

As an example, consider the CC2 typing rule for the �use v� expression:

∆;Γ ` v : α handle ∆ ` U = UB ⊕ U ′ : Cap1 ∆ ` UB ¢ A ≤ A′ ⊕ {α+}
∆;Γ; U ¢ A ` use v =⇒ ∆;Γ; U ¢ A

The encoded type for the UB ¢ A ≤ A′ ⊕ {α+} that appears in the typing rule is:

S(UB ¢ A ≤ A′ ⊕ {α+}) = ∀γ :Type. !(A(A) γ) → !(A(A′ ⊕ {α+}) (γ ⊗ U(UB)))

The de�nition of A(A′ ⊕ {α+}) (γ ⊗ U(UB)) is:

A(A′ ⊕ {α+}) (γ ⊗ U(UB)) = ∃δ :Type.((γ ⊗ U(UB)) ⇒ δ)× !(A[A′ ⊕ {α+}] δ)
A[A′ ⊕ {α+}] δ = !(A(A′) δ)⊗ !(A({α+}) δ)
A({α+}) δ = λε :Type.∃δ :Type.(δ ⇒ ε)× !(A[{α+}] ε)
A[{α+}] ε = ε ⇒◦ χ α

Using a value of type A(A′ ⊕ {α+}) (γ ⊗U(UB)), the translation of �use v� retrieves values
of type (γ ⊗ U(UB)) ⇒ δ, δ ⇒ ε, and ε ⇒ χ α. Because the extraction operator ⇒ is
transitive, the translation combines these into a single value of type (γ ⊗ U(UB)) ⇒ χ α,
from which it temporarily extracts the resource χ α so that it can call the use function:

use : !∀ρ :Type.(χ ρ) → (χ ρ)

7.1 Alias types in pure linear Fω

So far, this paper has treated resources as abstract, assuming only some generic operations
�new�, �free�, and �use� on resources. This section replaces abstract resources with a partic-
ular concrete resource, mutable linear heap objects, in order to implement the malloc, load,
store, and free operations of alias types [24]. For simplicity, each heap object will be a linear
pair, rather than an arbitrary-size linear tuple. To start with, consider the new, free, and
use functions targeted by section 7's translation:
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new : () → ∃ρ :Type.(χ ρ)
free : !∀ρ :Type.(χ ρ) → ()
use : !∀ρ :Type.(χ ρ) → (χ ρ)

De�ne the abstract type χ to be a linear pair:

χ = λρ :Type.τ1 ⊗ τ2

Suppose that τ1 = () and τ2 = (). Then the following de�nitions of new, free, and use are
correctly typed, though rather boringly implemented:

new = !λ !x : ().pack[(), 〈(), ()〉] as ∃ρ :Type.()⊗ ()
free = !λρ :Type. !λ〈 !x1, !x2〉 : ()⊗ ().()
use = !λρ :Type. !λx : ()⊗ ().x

(These de�nitions rely on encodings of �pack�, pair operations, and pattern matching, as
de�ned in appendix B.)

Unlike the capability calculus, whose capabilities only track the existence or non-existence
of a resource ρ, alias types associate a state with each resource, so that capabilities have the
form {ρ 7→ stateϕ}, rather than just {ρϕ}. For the example of linear heap pairs, the state
in each capability is the type of the two �elds of the pair: {ρ 7→ τ1 ⊗ τϕ

2 }. To track this
state, the resource type and resource operations must be parameterized over all possible τ1

and τ2:

χ = λρ :Type.λβ1 :Type.λβ2 :Type. !β1⊗ !β2

new : () → ∃ρ :Type.(χ ρ (◦) (◦))
free : !∀ρ :Type. !∀β1 :Type. !∀β2 :Type.(χ ρ β1 β2) → ()
use : !∀ρ :Type. !∀β1 :Type. !∀β2 :Type.(χ ρ β1 β2) → (χ ρ β1 β2)

Furthermore, it's useful to have use actually return a value from a heap object, rather than
simply touching the object. Replace use with two functions load1 and load2, which read
the �rst and second �elds of a heap pair:

loadk : !∀ρ :Type. !∀β1 :Type. !∀β2 :Type.(χ ρ β1 β2) → (χ ρ β1 β2)⊗ !βk

It's straightforward to update the CC0-to-linear Fω translations to target the new versions
of χ, new, free, and use (load). Furthermore, it's also easy to support another operation,
store:

store1 : !∀ρ :Type. !∀β1 :Type. !∀β2 :Type. !∀β′ :Type.(χ ρ β1 β2)⊗ !β → (χ ρ β′ β2)
store2 : !∀ρ :Type. !∀β1 :Type. !∀β2 :Type. !∀β′ :Type.(χ ρ β1 β2)⊗ !β → (χ ρ β1 β′)

where the CC0 typing rule for store is a slight variation on the rules for new and free:

∆;Γ ` v : ρ handle ∆;Γ ` v′ : τ ′

∆ ` C = C ′ ⊕ {ρ 7→ τ1 ⊗ τ1
2 } : Cap

∆; Γ;C ` store v[k] ← v′ =⇒ ∆;Γ;C ′ ⊕ {ρ 7→ τ ′1 ⊗ τ ′12 }
(τ ′k = τ ′, τ ′j = τj , j 6= k)

(Because the rule for store does not involve subcapabilities or alias capabilities, �store� is
no more di�cult to translate than �new� and �free�, and is much easier to translate than
�use�.) Given a revised translation targeting χ, new, free, load, and store, the following
de�nitions are correctly typed:

new = !λ !x : ().pack[(), 〈(), ()〉] as ∃ρ :Type.()⊗ ()
free = !λρ :Type. !λβ1 :Type. !λβ2 :Type. !λ〈 !x1, !x2〉 :!β1⊗ !β2.()
loadk = !λρ :Type. !λβ1 :Type. !λβ2 :Type. !λ〈 !x1, !x2〉 :!β1⊗ !β2.〈〈x1, x2〉, xk〉
storek = !λρ :Type. !λβ1 :Type. !λβ2 :Type. !λβ′ :Type. !λ〈〈 !x1, !x2〉, !x′〉 :
( !β1⊗ !β2)⊗ β′.〈x′1, x′2〉

where x′k = x′ andx′j = xj for j 6= k
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8 Related work
This paper demonstrates that linear type systems can encode aliasing (multiple references
to a linear resource) even if the linear type system forces the program to have only a single
reference to each linear resource at each step of the program's execution (as for example,
LC and linear Fω do). Other papers [4][26] have pointed out that some implementations
do not enforce the �single reference� property for some linear expressions, which leads to
another form of aliasing. Suppose that the expression �let !x = !〈2, 3〉 in !〈x, x〉� steps to a
new expression � !〈〈2, 3〉, 〈2, 3〉〉�. The new expression holds two linear values, both equal
to 〈2, 3〉, and both have a single reference to them. An e�cient implementation of this
expression, though, might only create a single 〈2, 3〉 value, rather than making two copies
of the value. In this case, there would be two references to the shared 〈2, 3〉 value. This
sharing does not apply to linear resources in general, though � if z has linear type File,
then �let !x = !z in !〈x, x〉� is ill-typed, because the linear variable z is not available when
type-checking the nonlinear expression !z. Therefore, it's not clear that this form of aliasing
is useful as a programming technique for general linear resources, even though it may have
an impact on compiler design and run-time system design, depending on the details of the
linear type system.

Wadler [27] described a �let!� expression that allowed temporary aliasing of a linear
resource. This expression's typing rule relied on an unusual constraint on the type of its
bound variable, so it would be interesting to see if there is an encoding of this expression
using conventional linear types.

Fluet and Morrisett [11] used monads to encode a variant of Tofte and Talpin's region
calculus [25]. In particular, they represented Tofte and Talpin's �letregion� construct using a
monadic operation �letRGN� that allows an expression to build arbitrary state transforma-
tions on a region s, which is allocated before the transformations take place and deallocated
after the transformations complete. The state transformers for s must be polymorphic over
all s, which is not in scope in the type of the transformation's �nal result. This guarantees
that the transformers cannot leak s to the outside world, so that no dangling references to s
are possible. If state transformers were only allowed to access one region at a time, then this
approach would just be monadic way of expressing s's linearity. However, the state trans-
formers for s also have access to s's enclosing regions, which may be aliased. E�ectively,
the transformers see s with kind Cap1 and s's enclosing regions r1, . . . , rn with kind Cap+.
This seems similar to section 2.1's approach of treating aliased �les (corresponding to the
aliased r1, . . . , rn) as nonlinear references into a linear pool α (corresponding to the linear
s). It also seems related to Fähndrich and Deline's idea of a linear object s �adopting� other
objects r1, . . . , rn [10]. This connection suggests that some of letRGN's limitations (such as
a LIFO ordering on region allocation/deallocation) are not fundamental.

Walker and Watkins [31] described how to use linear types to manipulate regions (as
an alternative to using the capability calculus for regions). On the positive side, �rst-class
linear types allowed many idioms, such as heterogeneous data structures, that were not
easily expressible in the capability calculus. On the negative side, unlike the capability
calculus, their language was not able to encode Tofte and Talpin's region calculus (although
it could, by using a form of Wadler's �let!� expression, encode a simpli�ed form of Tofte and
Talpin's �letregion� construct).

Crary and Vanderwaart [6] describe how to represent the capability calculus in their
language LTT. Like the CC0-to-LC encoding in this paper, their representation relies heavily
on linear types. Unlike the CC0-to-LC encoding, though, they introduce CC0's equality and
subcapability rules as axioms rather than deriving CC0's rules from linear type rules, so that
the soundness of their system requires a proof of CC0's soundness.

Morrisett, Ahmed, and Fluet [18] provide denotational semantics for L3, a subset of alias
types based on linear types. In addition to proving soundness, the semantics show that all
well-typed L3 programs terminate. The CC0-to-linear Fω translation could also serve as
denotational semantics for alias types (albeit a non-set-theoretic semantics). In particular,
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like the L3 semantics, the CC0-to-linear Fω translation demonstrates that well-typed pro-
grams terminate. The CC0-to-linear Fω translation is, admittedly, far more complicated
than the L3 semantics. Then again, L3 lacks CC0's duplicable capabilities, CC0's capability
equality rules, and CC0's subcapability rules; almost all of the work in the CC0-to-linear
Fω translation is devoted to handling these CC0 features.

Cheney and Morrisett [3] compile a nonlinear source language into a linear target lan-
guage. They eliminate aliasing by copying aliased data structures. Their copying technique
does not apply to general linear resources, though � a compiler can't generate copies of a
hardware device, for example, nor can it duplicate mutable data structures without chang-
ing the semantics of mutation. For these reasons, the CC0-to-LC and CC0-to-linear Fω
translations do not try to copy aliased linear resources.

Jia and Walker describe ILC- [15], a decidable program logic with support for linearity
(this was inspired partly by separation logic [14][22]). Hopefully, some of the techniques
in the CC0-to-LC translation are applicable to ILC-, so that programs based on ILC- can
employ CC0's style of aliasing.

Hawblitzel, Huang, and Wittie [13] use the technique from sections 2.1 and 2.1.1 to
encode aliased pointers inside a region [25]. Unfortunately, their mechanism for allocation
in regions prevented them from using an elegant proof language, such as LC's proof language.
They did not deal with CC0's capability equality and subcapability rules.

9 Conclusions
In a narrow, literal sense, linear type systems disallow aliasing of linear resources. The
semantics of the language can state and prove this literal prohibition precisely. In practice,
though, linear type systems can faithfully emulate common aliasing idioms. Therefore, it
is not necessary to add new type system features to support these idioms, as CC0 does;
programs can simply tap the aliasing already inherent in linear type systems.

Of course, the encodings presented in this paper are not simple. This complexity, though,
is mostly a re�ection of how elaborate CC0's rules are, and it's not clear that most programs
need the full power of CC0's type system. For example, the hello function in section 2 was
quite simple. As another example, alias types [23] omitted many of CC0's features, such as
a stripping operator. Encoding aliasing with linear types need not be complicated, but a
linear type system is powerful enough to let the encoding grow in complexity as needed.

In his pioneering 1990 paper [27], Wadler announced that �Linear types can change the
world!�. On the other hand, in a later tutorial [28], he used linear logic to express the dour
wisdom that you can't both have your cake and eat it (Cake ( Full, Cake 6` Cake⊗Full).
This paper concludes on a more upbeat sentiment: with linear types, you can have your
world and alias it, too.
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A Syntax and typing rules: CC0,CC1,CC2,LC
CC0, CC1, CC2, and LC are de�ned as extensions to a common sublanguage, CoreCC.

A.1 CoreCC

kinds κ = Type | Res | Cap
constructors c = α | τ | C

ctor varsα, β, ε, ρ, . . .

types τ = α | ρ handle | ∀α :κ.τ | (C, τ) → 0 | τ1 × τ2

30



capabilities C = ε | ∅

ctor ctxts ∆ = · | ∆, α : κ

value ctxts Γ = · | Γ, x : τ

word values v = x | v[c : κ]
heap values h = λα :κ.h | λ(C, x : τ).e | (v1, v2)

declarations d = x = v | x = h | x = #n v | new ρ, x | free v | use v

expressions e = let d in e | v1 v2 | halt

∆ ` · ∆ ` ∆′

∆ ` ∆′, α : κ
(α 6∈ domain(∆, ∆′))

∆ ` · ∆ ` Γ ∆ ` τ : Type
∆ ` Γ, x : τ

(x 6∈ domain(Γ))

. . . , α : κ, . . . ` α : κ
∆ ` α : Res

∆ ` α handle : Type
∆ ` τ1 : Type ∆ ` τ2 : Type

∆ ` τ1 × τ2 : Type

∆, α : κ ` τ : Type
∆ ` ∀α :κ.τ : Type (α 6∈ domain(∆))

∆ ` τ : Type ∆ ` C : Cap
∆ ` (C, τ) → 0 : Type

∆ ` c : κ

∆ ` c = c : κ

∆ ` c2 = c1 : κ

∆ ` c1 = c2 : κ

∆ ` c1 = c2 : κ ∆ ` c2 = c3 : κ

∆ ` c1 = c3 : κ

∆ ` τ1 = τ ′1 : Type ∆ ` τ2 = τ ′2 : Type
∆ ` τ1 × τ2 = τ ′1 × τ ′2 : Type

∆, α : κ ` τ = τ ′ : Type
∆ ` ∀α :κ.τ = ∀α :κ.τ ′ : Type (α 6∈ domain(∆))

∆ ` τ = τ ′ : Type ∆ ` C = C ′ : Cap
∆ ` (C, τ) → 0 = (C ′, τ ′) → 0 : Type

∆, α : κ; Γ ` h : τ

∆;Γ ` (λα :κ.h) : (∀α :κ.τ)
(α 6∈ domain(∆))

∆ ` C : Cap ∆ ` τ : Type ∆;Γ, x : τ ; C ` e

∆;Γ ` λ(C, x : τ).e : (C, τ) → 0
(x 6∈ domain(Γ))

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2

∆;Γ ` (v1, v2) : τ1 × τ2

∆;Γ ` h : τ ′ ∆ ` τ ′ = τ : Type
∆;Γ ` h : τ

∆; . . . , x : τ, . . . ` x : τ

∆;Γ ` v : ∀α :κ.τ ∆ ` c : κ

∆;Γ ` v[c : κ] : [α ← c]τ
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∆;Γ ` v : τ ′ ∆ ` τ ′ = τ : Type
∆;Γ ` v : τ

∆;Γ ` v : τ

∆;Γ; C ` x = v =⇒ ∆;Γ, x : τ ;C
(x 6∈ domain(Γ))

∆; Γ ` h : τ

∆; Γ;C ` x = h =⇒ ∆;Γ, x : τ ; C
(x 6∈ domain(Γ))

∆; Γ ` v : τ1 × τ2

∆;Γ; C ` x = #n v =⇒ ∆;Γ, x : τn; C
(x 6∈ domain(Γ) andn ∈ {1, 2})

∆; Γ; C ` d =⇒ ∆′; Γ′; C ′ ∆′; Γ′; C ′ ` e

∆;Γ; C ` let d in e

A.2 CC0
CC0 consists of CoreCC, plus the following.

types τ = . . . | ∀α ≤ C.τ

capabilities C = . . . | {ρϕ} | C1 ⊕ C2 | C

multiplicities ϕ = 1 | +
ctor ctxts ∆ = . . . | ∆, ε ≤ C

heap values h = . . . | λα ≤ C.h

∆ ` ∆′ ∆, ∆′ ` C : Cap
∆ ` ∆′, α ≤ C

(α 6∈ domain(∆, ∆′))

∆ ` C : Cap ∆, α ≤ C ` τ : Type
∆ ` ∀α ≤ C.τ : Type (α 6∈ domain(∆))

. . . , α ≤ C, . . . ` α : Cap ∆ ` ∅ : Cap ∆ ` α : Res
∆ ` {αϕ} : Cap

∆ ` C1 : κ ∆ ` C2 : κ

∆ ` C1 ⊕ C2 : κ
(κ = Cap)

∆ ` C : Cap
∆ ` C : Cap

∆ ` C1 = C ′1 : κ ∆ ` C2 = C ′2 : κ

∆ ` C1 ⊕ C2 = C ′1 ⊕ C ′2 : κ
(κ = Cap)
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∆ ` C : κ

∆ ` ∅ ⊕ C = C : κ
(κ = Cap)

∆ ` C1 : κ ∆ ` C2 : κ

∆ ` C1 ⊕ C2 = C2 ⊕ C1 : κ
(κ = Cap)

∆ ` C1 : κ ∆ ` C2 : κ ∆ ` C3 : κ

∆ ` (C1 ⊕ C2)⊕ C3 = C1 ⊕ (C2 ⊕ C3) : κ
(κ = Cap)

∆ ` C = C ′ : Cap
∆ ` C = C ′ : Cap

∆ ` C : Cap
∆ ` C = C ⊕ C : Cap

∆ ` ∅ = ∅ : Cap ∆ ` α : Res
∆ ` {α1} = {α+} : Cap

∆ ` C : Cap
∆ ` C = C : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊕ C2 = C1 ⊕ C2 : Cap

∆ ` C1 = C2 : κ

∆ ` C1 ≤ C2
(κ = Cap)

∆ ` C1 ≤ C2 ∆ ` C2 ≤ C3

∆ ` C1 ≤ C3

∆ ` C1 ≤ C ′1 ∆ ` C2 ≤ C ′2
∆ ` C1 ⊕ C2 ≤ C ′1 ⊕ C ′2

∆ ` C ≤ C ′

∆ ` C ≤ C ′
. . . , α ≤ C, . . . ` α ≤ C

∆ ` C : Cap
∆ ` C ≤ C

∆ ` C = C ′ : Cap ∆, α ≤ C ` τ = τ ′ : Type
∆ ` ∀α ≤ C.τ = ∀α ≤ C ′.τ ′ : Type (α 6∈ domain(∆))

∆ ` C : Cap ∆, α ≤ C; Γ ` h : τ

∆;Γ ` λα ≤ C.h : ∀α ≤ C.τ
(α 6∈ domain(∆))

∆; Γ ` v : ∀α ≤ C ′.τ ∆ ` C ≤ C ′

∆;Γ ` v[C : Cap] : [α ← C]τ

∆;Γ; C ` newα, x =⇒ ∆, α : Res; Γ, x : α handle;C⊕{α1} (α 6∈ domain(∆) andx 6∈ domain(Γ))

∆; Γ ` v : α handle ∆ ` C = C ′ ⊕ {α1} : Cap
∆;Γ; C ` free v =⇒ ∆;Γ; C ′

∆;Γ ` v : α handle ∆ ` C ≤ C ′ ⊕ {α+}
∆;Γ; C ` use v =⇒ ∆;Γ; C

∆; Γ ` v1 : (C ′, τ) → 0 ∆; Γ ` v2 : τ ∆ ` C ≤ C ′

∆; Γ;C ` v1 v2

∆ ` C = ∅ : Cap
∆;Γ;C ` halt
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A.3 CC1
CC1 consists of CoreCC, plus the following.

kinds κ = . . . | Cap+

types τ = . . . | ∀α :Cap+ ≤ C.τ | ∀α :Cap ≤ C0, C1, . . . , Cn.τ

capabilities C = . . . | {ρϕ} | C1 ⊕ C2

multiplicities ϕ = 1 | +
ctor ctxts ∆ = . . . | ∆, ε : Cap+ ≤ C | ∆, ε : Cap ≤ (C0, C1, . . . , Cn)

heap values h = . . . | λα :Cap+ ≤ C.h | λα :Cap ≤ C0, C1, . . . , Cn.h

∆ ` ∆′ ∆,∆′ ` C : Cap+

∆ ` ∆′, α : Cap+ ≤ C
(α 6∈ domain(∆,∆′))

∆ ` ∆′ ∆,∆′ ` C0 : Cap ∆,∆′ ` C1 : Cap+ . . . ∆,∆′ ` Cn : Cap+

∆ ` ∆′, α : Cap ≤ (C0, C1, . . . , Cn)
(α 6∈ domain(∆, ∆′))

. . . , α : Cap+ ≤ C, . . . ` α : Cap+

. . . , α : Cap ≤ (C0, C1, . . . , Cn), . . . ` α : Cap

∆ ` C : Cap+ ∆, α : Cap+ ≤ C ` τ : Type
∆ ` ∀α :Cap+ ≤ C.τ : Type

(α 6∈ domain(∆))

∆ ` C0 : Cap ∆ ` C1 : Cap+ . . . ∆ ` Cn : Cap+

∆, α : Cap ≤ (C0, C1, . . . , Cn) ` τ : Type
∆ ` ∀α :Cap ≤ C0, C1, . . . , Cn.τ : Type (α 6∈ domain(∆))

∆ ` α : Res
∆ ` {α1} : Cap

∆ ` α : Res
∆ ` {α+} : Cap+

∆ ` C : Cap+

∆ ` C : Cap

∆ ` ∅ : Cap+ ∆ ` C1 : κ ∆ ` C2 : κ

∆ ` C1 ⊕ C2 : κ
(κ ∈ {Cap,Cap+})

∆ ` C1 = C ′1 : κ ∆ ` C2 = C ′2 : κ

∆ ` C1 ⊕ C2 = C ′1 ⊕ C ′2 : κ
(κ ∈ {Cap,Cap+})

∆ ` C : κ

∆ ` ∅ ⊕ C = C : κ
(κ ∈ {Cap,Cap+}) ∆ ` C1 : κ ∆ ` C2 : κ

∆ ` C1 ⊕ C2 = C2 ⊕ C1 : κ
(κ ∈ {Cap,Cap+})
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∆ ` C1 : κ ∆ ` C2 : κ ∆ ` C3 : κ

∆ ` (C1 ⊕ C2)⊕ C3 = C1 ⊕ (C2 ⊕ C3) : κ
(κ ∈ {Cap,Cap+})

∆ ` C1 = C2 : Cap+

∆ ` C1 = C2 : Cap

∆ ` C : Cap+

∆ ` C = C ⊕ C : Cap+

∆ ` C1 = C2 : κ

∆ ` C1 ≤ C2
(κ ∈ {Cap,Cap+}) ∆ ` C1 ≤ C2 ∆ ` C2 ≤ C3

∆ ` C1 ≤ C3

∆ ` C1 ≤ C ′1 ∆ ` C2 ≤ C ′2
∆ ` C1 ⊕ C2 ≤ C ′1 ⊕ C ′2

. . . , α : κ ≤ (. . . , C, . . .), . . . ` α ≤ C

∆ ` α : Res
∆ ` {α1} ≤ {α+}

∆ ` C = C ′ : Cap+ ∆, α : Cap+ ≤ C ` τ = τ ′ : Type
∆ ` ∀α :Cap+ ≤ C.τ = ∀α :Cap+ ≤ C ′.τ ′ : Type

(α 6∈ domain(∆))

∆ ` C0 = C ′0 : Cap ∆ ` C1 = C ′1 : Cap+ . . . ∆ ` Cn = C ′n : Cap+

∆, α : Cap ≤ (C0, C1, . . . , Cn) ` τ = τ ′ : Type
∆ ` ∀α :Cap ≤ (C0, C1, . . . , Cn).τ = ∀α :Cap ≤ (C ′0, C

′
1, . . . , C

′
n).τ ′ : Type (α 6∈ domain(∆))

∆ ` ∀α :κ ≤ C1, . . . , Cn.τ : Type ∆, α ≤ (C1, . . . , Cn); Γ ` h : τ

∆;Γ ` (λα :κ ≤ C1, . . . , Cn.h) : (∀α :κ ≤ C1, . . . , Cn.τ)
(α 6∈ domain(∆))

∆; Γ ` v : ∀α :κ ≤ C1, . . . , Cn.τ
∆ ` C ≤ C1 ∆ ` C ≤ Cn

∆ ` C : κ

∆;Γ ` v[C : κ] : [α ← C]τ
(κ ∈ {Cap,Cap+})

Use CC0's typing rules for: (newα, x), (free v), (use v), (v1 v2), (halt).

A.4 CC2
CC2 consists of CoreCC, plus the following.

kinds κ = Type | Res | Capϕ

constructors c = α | τ | Q

types τ = . . . | ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ

pure capabilities Q, A, U = α | ∅ | {ρϕ} | Q1 ⊕Q2

mixed capabilities C = U ¢ A

multiplicities ϕ = 1 | +
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ctor ctxts ∆ = . . . | ∆, α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An

heap values h = . . . | λα :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.h

Let �∆ ` U ¢ A : Cap� be an abbreviation for �∆ ` U : Cap1 and ∆ ` A : Cap+�.
Let �∆ ` U ¢ A = U ′ ¢ A′ : Cap� be an abbreviation for �∆ ` U = U ′ : Cap1 and

∆ ` A = A′ : Cap+�.

∆ ` ∆′

∆,∆′ ` U1 : Cap1 . . . ∆, ∆′ ` Un : Cap1

∆, ∆′ ` A1 : Cap+ . . . ∆, ∆′ ` An : Cap+

∆ ` ∆′, α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An

(α 6∈ domain(∆, ∆′))

. . . , α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An, . . . ` α : Cap+

∆ ` U1 : Cap1 . . . ∆ ` Un : Cap1

∆ ` A1 : Cap+ . . . ∆ ` An : Cap+

∆, α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An ` τ : Type
∆ ` ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ : Type

(α 6∈ domain(∆))

∆ ` ∅ : Capϕ ∆ ` α : Res
∆ ` {αϕ} : Capϕ

∆ ` Q1 : κ ∆ ` Q2 : κ

∆ ` Q1 ⊕Q2 : κ
(κ = Capϕ)

∆ ` Q1 = Q′
1 : κ ∆ ` Q2 = Q′

2 : κ

∆ ` Q1 ⊕Q2 = Q′
1 ⊕Q′2 : κ

(κ = Capϕ)

∆ ` Q : κ

∆ ` ∅ ⊕Q = Q : κ
(κ = Capϕ)

∆ ` Q1 : κ ∆ ` Q2 : κ

∆ ` Q1 ⊕Q2 = Q2 ⊕Q1 : κ
(κ = Capϕ)

∆ ` Q1 : κ ∆ ` Q2 : κ ∆ ` Q3 : κ

∆ ` (Q1 ⊕Q2)⊕Q3 = Q1 ⊕ (Q2 ⊕Q3) : κ
(κ = Capϕ)

∆ ` A : Cap+

∆ ` A = A⊕A : Cap+

. . . , (α :Cap+ where . . . , U ¢ α ≤ A, . . .), . . . ` U ¢ α ≤ A

∆ ` α : Res
∆ ` {α1}¢ ∅ ≤ {α+}

∆ ` A1 = A2 : Cap+

∆ ` ∅¢ A1 ≤ A2

∆ ` U1 ¢ A1 ≤ A2 ∆ ` U2 ¢ A2 ≤ A3

∆ ` U1 ⊕ U2 ¢ A1 ≤ A3

∆ ` U1 ¢ A1 ≤ A′1 ∆ ` U2 ¢ A2 ≤ A′2
∆ ` U1 ⊕ U2 ¢ A1 ⊕A2 ≤ A′1 ⊕A′2
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∆ ` U1 = U ′
1 : Cap1 . . . ∆ ` Un = U ′

n : Cap1

∆ ` A1 = A′1 : Cap+ . . . ∆ ` An = A′n : Cap+

∆, α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An ` τ = τ ′ : Type
∆ ` ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ
= ∀α :Cap+ whereU ′

1 ¢ α ≤ A′1, . . . , U
′
n ¢ α ≤ A′n.τ ′ : Type

(α 6∈ domain(∆))

∆ ` ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ : Type
∆, α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An; Γ ` h : τ

∆;Γ ` λα :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.h :
∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ

(α 6∈ domain(∆))

∆; Γ ` v : ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ
∆ ` U1 ¢ α ≤ A1 . . . ∆ ` Un ¢ α ≤ An

∆;Γ ` A : Cap+

∆;Γ ` v[A : Cap+] : [α ← A]τ

∆;Γ; U¢A ` newα, x =⇒ ∆, α : Res; Γ, x : α handle;U⊕{α1}¢A (α 6∈ domain(∆) andx 6∈ domain(Γ))

∆; Γ ` v : α handle ∆ ` U = U ′ ⊕ {α1} : Cap1

∆;Γ; U ¢ A ` free v =⇒ ∆;Γ; U ′ ¢ A

∆;Γ ` v : α handle ∆ ` U = UB ⊕ U ′ : Cap1 ∆ ` UB ¢ A ≤ A′ ⊕ {α+}
∆;Γ; U ¢ A ` use v =⇒ ∆;Γ; U ¢ A

∆;Γ ` v1 : (U ′ ¢ A′, τ) → 0 ∆; Γ ` v2 : τ ∆ ` U = UB ⊕ U ′ : Cap1 ∆ ` UB ¢ A ≤ A′

∆;Γ; U ¢ A ` v1 v2

∆ ` U = ∅ : Cap1 ∆ ` A = ∅ : Cap+

∆;Γ; U ¢ A ` halt

A.5 LC
LC consists of CoreCC, plus the following.

capabilities C = . . . | {ρ} | C1 ⊗ C2 | C1&C2 | C1 ( C2 | true
cap ctxts Λ = C1, . . . , Cn

∆ ` ∅ : Cap ∆ ` α : Res
∆ ` {α} : Cap ∆ ` true : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊗ C2 : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1&C2 : Cap
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∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ( C2 : Cap

C ` C ` ∅ Λ ` C

Λ, ∅ ` C
Λ ` true

Λ1 ` C1 Λ2 ` C2

Λ1, Λ2 ` C1 ⊗ C2

Λ ` C1 Λ ` C2

Λ ` C1&C2

Λ, C1 ` C2

Λ ` C1 ( C2

Λ, C1, C2 ` C3

Λ, C1 ⊗ C2 ` C3

Λ, Ck ` C3

Λ, C1&C2 ` C3
(k ∈ {1, 2}) Λ1 ` C1 Λ2, C2 ` C3

Λ1, Λ2, C1 ( C2 ` C3

∆ ` C1 : κ ∆ ` C2 : κ C1 ` C2 C2 ` C1

∆ ` C1 = C2 : κ

C ⊗ {α} ` C ′

∆;Γ;C ` newα, x =⇒ ∆, α : Res; Γ, x : α handle; C ′ (α 6∈ domain(∆) andx 6∈ domain(Γ))

∆; Γ ` v : α handle C ` C ′ ⊗ {α}
∆;Γ; C ` free v =⇒ ∆;Γ; C ′

∆;Γ ` v : α handle C ` {α} ⊗ true
∆;Γ; C ` use v =⇒ ∆;Γ; C

∆; Γ ` v1 : (C ′, τ) → 0 ∆; Γ ` v2 : τ C ` C ′

∆; Γ;C ` v1 v2

∆;Γ;C ` halt

B Linear Fω

Linear Fω extends standard Fω[21] with linear types. The syntax is straightforward:

kinds κ = Type | κ → κ

types τ = α | ∀α :κ.τ | τ1 ( τ2 | !τ | λα :κ.τ | τ1 τ2

expressions e = x | λα :κ.e | e τ | λ(φx) :τ.e | e1 e2 | !e
linearities φ = · | !
type ctxts ∆ = · | ∆, α : κ

value ctxts Γ = · | Γ, φ(x : τ)

The typing rules require some explanation, because obvious typing rules for the !e expression
lead to subtle problems. First, unrestricted use of !e would allows a program to copy linear
resources � if variable x has linear type file, then the expression !x would have nonlinear
type !file, which allows unrestricted duplication of a �le handle. More subtly, the nonlinear
function !λy : ().x has type !(() ( file), so the program may duplicate the function and then
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call each copy of the function separately to obtain multiple copies of the same �le handle;
in this case, each �le copy has linear type file, giving no indication that other copies of the
�le exist. The standard solution to this problem is to restrict the typing rules so that !e
only type-checks in a nonlinear environment !Γ, which contains no linear assumptions. This
rules out both the !x and !λy : ().x examples, since x : file is a linear assumption.

Unfortunately, this isn't the end of the story, because many systems have nonlinear
functions that create linear resources. Consider a nonlinear function open of type !(string (
file). Even with the nonlinear environment restriction described above, the expression
!(open “foo.c′′) is legal and has nonlinear type !file. One solution to this, at least in a call-
by-value system, is to restrict the expression e in !e to be a value [18] (this is occasionally
inconvenient � the nonlinear pair !〈2 + 2, 3〉 must be written as letx = 2 + 2 in !〈x, 3〉) .
The rules below follow Wadler's �steadfast types� [29][27], which limit the typing rules for
!e to particular forms of e, including functions !λx :τ.e and pairs !〈e1, e2〉, but not variables
!x and function applications !(e1 e2).

In addition to the problem with expressions creating linear resources, a non-call-by-value
linear system must address the reverse problem: expressions consuming linear resources.
Consider a nonlinear function close of type !(file ( ()). Assuming x has linear type
file, the expression (close x) has nonlinear type () and may therefore be copied, as in the
expression (λz : (). !〈z, z〉) (close x). A non-call-by-value language could copy the expression
�rst and evaluate the copied expressions later, thereby closing the linear �le x more than
once. Furthermore, the unevaluated copied expressions will be ill-typed, because they all
rely on a single linear variable x, which cannot be copied. The standard solution to this (see
[28]) restricts the operational semantics so that any expression substituted for a nonlinear
variable (such as (close x) for z) must �rst be evaluated to a form !e, which is freely
duplicable because, as described above, it type-checks using only nonlinear assumptions.
For example, the evaluation rule for function calls, assuming z is nonlinear, would be:

(λz :τ.eb) ( !ea) −→ [z ← !ea]eb

How does the evaluation rule know whether z is nonlinear? It could examine τ for
nonlinearity, but a cleaner solution [28] is to distinguish between linear variable bindings λz
and nonlinear variable bindings λ !z. A nonlinear parameter binding signals that a function
argument must have the form !e before substitution:

(λz :τ.eb) (ea) −→ [z ← ea]eb

(λ !z :τ.eb) ( !ea) −→ [z ← !ea]eb

(Note that [28] actually substitutes ea for z, while the rule above substitutes !ea for
z. In a non-steadfast type system, ea is more useful than !ea, and the program can easily
recover !ea after the substitution by using the expression !z. Steadfast types prohibit the
expression !z, though, making !ea is more useful than ea.)

The environment Γ tracks linearly bound variables using assumptions of the form x :
τ , and nonlinearly bound variables using assumptions of the form !(x : τ). A nonlinear
environment !Γ contains only nonlinearly bound variables.

The environments ∆, α : κ and Γ, x : τ are well-formed only if α 6∈ domain(∆) and
x 6∈ domain(Γ), respectively. The rules below apply only to well formed environments.

{. . . , α : κ, . . .} ` α : κ
∆, α : κ ` τ : Type
∆ ` ∀α :κ.τ : Type

∆ ` τ1 : Type ∆ ` τ2 : Type
∆ ` τ1 ( τ2 : Type

∆ ` τ : Type
∆ ` !τ : Type

∆, α : κ1 ` τ : κ2

∆ ` (λα :κ1.τ) : κ1 → κ2

∆ ` τ1 : κa → κb ∆ ` τ2 : κa

∆ ` τ1 τ2 : κb

∆ ` τ

∆ ` τ = τ

∆ ` τ2 = τ1

∆ ` τ1 = τ2

∆ ` τ1 = τ2 ∆ ` τ2 = τ3

∆ ` τ1 = τ3

∆ ` (λα :κ.τ1) τ2 = [α ← τ2]τ1
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∆ ` τ = τ ′

∆ ` !τ = !τ ′
∆ ` τ = τ ′

∆ ` ∀α :κ.τ = ∀α :κ.τ ′
∆ ` τ1 = τ ′1 ∆ ` τ2 = τ ′2

∆ ` τ1 ( τ2 = τ ′1 ( τ ′2

∆ ` τ = τ ′

∆ ` λα :κ.τ = λα :κ.τ ′
∆ ` τ1 = τ ′1 ∆ ` τ2 = τ ′2

∆ ` τ1 τ2 = τ ′1 τ ′2

∆; !Γ, φ(x : τ) ` x : φτ
∆, α : κ; φΓ ` e : τ

∆; φΓ ` (φλα :κ.e) : φ∀α :κ.τ

∆;Γ ` e : φ∀α :κ.τb ∆ ` τa : κ

∆;Γ ` e τa : [α ← τa]τb

∆; (φ′Γ), φ(x : τa) ` e : τb

∆; φ′Γ ` (φ′λ(φx) :φτa.e) : φ′(φτa ( τb)
∆; Γ1 ` e1 : φ(τa ( τb) ∆; Γ2 ` e2 : τa

∆;Γ1,Γ2 ` (e1 e2) : τb

∆;Γ ` e : τ ′ ∆ ` τ ′ = τ

∆;Γ ` e : τ

(φλα :κ.e) τ −→ [α ← τ ]e (φ′λ(φx) :τ.eb) (φea) −→ [x ← φea]eb

e −→ e′

e τ −→ e′ τ

e −→ e′

e e2 −→ e′ e2

e −→ e′

e1 e −→ e1 e′

B.1 Standard extensions
Figure 7 lists some type abbreviations used by the CC2-to-linear Fω translation. This
section de�nes expressions and patterns for these types, based on standard lambda calcu-
lus encodings [21]. Some expressions are simple abbreviations, while others use a typing
derivation to guide their encoding.

B.1.1 Let bindings

∆;Γ1 ` e1 : φτ1 Ã e′1 ∆;Γ2, φ(x : τ1) ` e2 : τ2 Ã e′2
∆;Γ1, Γ2 ` (letφx = e1 in e2) : τ2 Ã (λ(φx) :φτ1.e′2) e′1

B.1.2 Patterns

p = _ | φx | 〈p1, p2〉 | [α, p]

λp :τ.e = (λ(x) :τ.let p = x in e) where x is fresh
(let_ = e1 in e2) = (let !x = e1 in e2) where x is fresh
The sections below de�ne (let p = e1 in e2) for p = φx, p = 〈p1, p2〉, and p = [α, p].

B.1.3 Pairs

∆; φΓ1 ` e1 : φτ1 Ã e′1 ∆; φΓ2 ` e2 : φτ2 Ã e′2
∆;φΓ1, φΓ2 ` φ〈e1, e2〉 : φ(φτ1 ⊗ φτ2) Ã φλα.λf : (φτ1 ( φτ2 ( α).f e′1 e′2

∆; Γa ` ea : φ(φτ1 ⊗ φτ2) Ã e′a ∆; Γb, x1 : φτ1, x2 : φτ2 ` eb : τb Ã e′b
∆;Γa,Γb ` (letpairx1, x2 = ea in eb) : τb Ã e′a τb (λx1 :φτ1.λx2 :φτ2.e′b)
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(let 〈p1, p2〉 = ea in eb) =
(letx = ea in letpairx1, x2 = x in let p1 = x1 in let p2 = x2 in eb)

where x, x1, x2 are fresh

(e1, e2) = !〈e1, e2〉

#1 e = (let 〈x1,_〉 = e inx1)

#2 e = (let 〈_, x2〉 = e inx2)

B.1.4 Unit

() = !λα.λx :α.x

B.1.5 Existentials

∆; φΓ ` e1 : [α ← τ1](φτ2) Ã e′1 ∆ ` τ1 : κ

∆;φΓ ` φpack[τ1, e] asφ∃α :κ.φτ2 : φ∃α :κ.φτ2 Ã φλβ.λf : (∀α :κ.τ ( β).f τ1 e′

∆;Γa ` ea : φ∃α :κ.φτ2 Ã e′a ∆, α : κ; Γb, x : φτ2 ` eb : τb Ã e′b ∆ ` τb : Type
∆;Γa,Γb ` (unpackα, x = ea in eb) : τb Ã e′a τb (λα :κ.λx :φτ2.e′b)

(let [α, p] = e1 in e2) = (unpackα, x = e1 in let p = x in e2) where x is fresh

B.2 Some useful functions
Section C.4's CC2-to-linear Fω translation relies on the functions below.

frefl : τ → τ
frefl = !λx :τ.x
ftrans : (τ1 → τ2) ( (τ2 → τ3) ( τ1 → τ3

ftrans = λ !x :τ1 → τ2.λ !y :τ2 → τ3. !λz :τ1.y (x z)
irefl : τ ↔ τ
irefl = !〈frefl, frefl〉
isymm : (τ2 ↔ τ1) ( τ1 ↔ τ2

isymm = λ〈 !x1, !x2〉 :τ2 ↔ τ1. !〈x2, x1〉
itrans : (τ1 ↔ τ2) ( (τ2 ↔ τ3) ( τ1 ↔ τ3

itrans = λ〈 !x1, !x2〉 :τ1 ↔ τ2.λ〈 !y1, !y2〉 :τ2 ↔ τ3. !〈ftrans x1 y1, ftrans y2 x2〉
iexist : !(∀α :Type. !τ1 ↔ !τ2) ( !(∃α :Type. !τ1) ↔ !(∃α :Type. !τ2)
iexist = λ !x :!(∀α :Type. !τ1 ↔ !τ2). !〈 !λ[α, !z] :
!(∃α :Type. !τ1). !pack[α, (#1 x α) z] as∃α :Type. !τ2, !λ[α, !z] :
!(∃α :Type. !τ2). !pack[α, (#2 x α) z] as∃α :Type. !τ1〉
iall : !(∀α :Type. !τ1 ↔ !τ2) ( !(∀α :Type. !τ1) ↔ !(∀α :Type. !τ2)
iall = λ !x :!(∀α :Type. !τ1 ↔ !τ2). !〈 !λ !y :!(∀α :Type. !τ1). !λα :
Type.(#1x α) (y α), !λ !y :!(∀α :Type. !τ2). !λα :Type.(#2 x α) (y α)〉
iprod : ( !τ1 ↔ !τ3) ( ( !τ2 ↔ !τ4) ( !τ1× !τ2 ↔ !τ3× !τ4

iprod = λ〈 !x1, !x′1〉 :!τ1 ↔ !τ3.λ〈 !x2, !x′2〉 :!τ2 ↔ !τ4. !〈 !λ〈 !y1, !y2〉 :
!τ1× !τ2. !〈x1 y1, x2 y2〉, !λ〈 !y1, !y2〉 :!τ3× !τ4. !〈x′1 y1, x

′
2 y2〉〉

iprodleft : ( !τ1 ↔ !τ3) ( !τ1× !τ2 ↔ !τ3× !τ2

iprodleft = λx :!τ1 ↔ !τ3.iprod x irefl
ilprod : (τ1 ↔ τ3) ( (τ2 ↔ τ4) ( τ1 ⊗ τ2 ↔ τ3 ⊗ τ4

ilprod = λ !x1 :τ1 ↔ τ3.λ !x2 :τ2 ↔ τ4. !〈 !λy :τ1 ⊗ τ2.let 〈y1, y2〉 = y in
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〈(#1 x1) y1, (#1x2) y2〉, !λy :τ3 ⊗ τ4.let 〈y1, y2〉 = y in
〈(#2 x1) y1, (#2x2) y2〉〉
ilprodright : (τ2 ↔ τ3) ( τ1 ⊗ τ2 ↔ τ1 ⊗ τ3

ilprodright = λx :τ2 ↔ τ3.ilprod irefl x
ilfun : (τ1 ↔ τ3) ( (τ2 ↔ τ4) ( (τ1 ( τ2) ↔ τ3 ( τ4

ilfun = λ !x1 :τ1 ↔ τ3.λ !x2 :τ2 ↔ τ4. !〈 !λy :τ1 ( τ2.λz :
τ3.(#1x2) (y ((#2 x1) z)), !λy :τ3 ( τ4.λz :τ1.(#2x2) (y ((#1 x1) z))〉
ilfunleft : (τ1 ↔ τ3) ( (τ1 ( τ2) ↔ τ3 ( τ2

ilfunleft = λx :τ1 ↔ τ3.ilfun x irefl
ilfunright : (τ2 ↔ τ3) ( (τ1 ( τ2) ↔ τ1 ( τ3

ilfunright = λx :τ2 ↔ τ3.ilfun irefl x
ifun : (τ1 ↔ τ3) ( (τ2 ↔ τ4) ( (τ1 → τ2) ↔ τ3 → τ4

ifun = λ !x1 :τ1 ↔ τ3.λ !x2 :τ2 ↔ τ4. !〈 !λ !y :τ1 → τ2. !λz :
τ3.(#1x2) (y ((#2 x1) z)), !λ !y :τ3 → τ4. !λz :τ1.(#2 x2) (y ((#1x1) z))〉
ifunright : (τ2 ↔ τ3) ( (τ1 → τ2) ↔ τ1 → τ3

ifunright = λx :τ2 ↔ τ3.ifun irefl x
iinter : (τ1 ↔ τ3) ( (τ2 ↔ τ4) ( (τ1 ↔ τ2) ↔ τ3 ↔ τ4

iinter = λ !x1 :τ1 ↔ τ3.λ !x2 :τ2 ↔ τ4.iprod (ifun x1 x2) (ifun x2 x1)
iextractleft : (τ1 ↔ τ3) ( (τ1 ⇒ τ2) ↔ τ3 ⇒ τ2

iextractleft = λ !x1 :τ1 ↔ τ3.ifun x1 (ilprodright (ilfunright x1))
idup : !τ ↔ !τ× !τ
idup = !〈 !λ !x :!τ. !〈x, x〉, !λ !x :!τ× !τ.#1 x〉
iprodcomm : !τ1× !τ2 ↔ !τ2× !τ1

iprodcomm = !〈 !λ〈 !x1, !x2〉 :!τ1× !τ2. !〈x2, x1〉, !λ〈 !x2, !x1〉 :!τ2× !τ1. !〈x1, x2〉〉
ilprodcomm : τ1 ⊗ τ2 ↔ τ2 ⊗ τ1

ilprodcomm = !〈 !λ〈x1, x2〉 :τ1 ⊗ τ2.〈x2, x1〉, !λ〈x2, x1〉 :τ2 ⊗ τ1.〈x1, x2〉〉
iprodassoc : !τ1 × ( !τ2× !τ3) ↔ !τ1× !τ2× !τ3

iprodassoc = !〈 !λ〈 !x1, 〈 !x2, !x3〉〉 :!τ1 × ( !τ2× !τ3). !〈 !〈x1, x2〉, x3〉, !λ〈〈 !x1, !x2〉, !x3〉 :
!τ1× !τ2× !τ3. !〈x1, !〈x2, x3〉〉〉
ilprodassoc : τ1 ⊗ (τ2 ⊗ τ3) ↔ τ1 ⊗ τ2 ⊗ τ3

ilprodassoc = !〈 !λx :τ1 ⊗ (τ2 ⊗ τ3).let 〈x1, y〉 = x in
let 〈x2, x3〉 = y in
〈〈x1, x2〉, x3〉, !λx :τ1 ⊗ τ2 ⊗ τ3.let 〈y, x3〉 = x in
let 〈x1, x2〉 = y in
〈x1, 〈x2, x3〉〉〉
ilprodswapinner : τ1 ⊗ τ2 ⊗ (τ3 ⊗ τ4) ↔ τ1 ⊗ τ3 ⊗ (τ2 ⊗ τ4)
ilprodswapinner = !〈 !λx :τ1 ⊗ τ2 ⊗ (τ3 ⊗ τ4).let 〈y1, y2〉 = x in
let 〈x1, x2〉 = y1 in
let 〈x3, x4〉 = y2 in
〈〈x1, x3〉, 〈x2, x4〉〉, !λx :τ1 ⊗ τ3 ⊗ (τ2 ⊗ τ4).let 〈y1, y2〉 = x in
let 〈x1, x2〉 = y1 in
let 〈x3, x4〉 = y2 in
〈〈x1, x3〉, 〈x2, x4〉〉〉
iprodunitleftleft : ()× !τ ↔ !τ
iprodunitleftleft = !〈 !λ !x : ()× !τ.#2 x, !λ !x :!τ. !〈(), x〉〉
ilprodunitleftleft : ()⊗ τ ↔ τ
ilprodunitleftleft = !〈 !λ〈_, x〉 : ()⊗ τ.x, !λx :τ.〈(), x〉〉
ilprodunitrightleft : τ ↔ ()⊗ τ
ilprodunitrightleft = isymm ilprodunitleftleft
ilprodunitrightright : τ ↔ τ ⊗ ()
ilprodunitrightright = itrans ilprodunitrightleft ilprodcomm
eextractinter : (τ1 ↔ τ2) ( τ1 ⇒ τ2

eextractinter = λ〈 !x, !x′〉 :τ1 ↔ τ2. !λy1 :τ1.〈x y1, λy2 :τ2.x
′ y2〉

erefl : τ ⇒ τ
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erefl = eextractinter irefl
etrans : (τ1 ⇒ τ2) ( (τ2 ⇒ τ3) ( τ1 ⇒ τ3

etrans = λ !x1 :τ1 ⇒ τ2.λ !x2 :τ2 ⇒ τ3. !λy1 :τ1.let 〈y2, y
′
2〉 = x1 y1 in

let 〈y3, y
′
3〉 = x2 y2 in

〈y3, λz3 :τ3.y
′
2 (y′3 z3)〉

elprodassoccomm : τ2 ⊗ τ1 ⊗ τ3 ⇒ τ1 ⊗ (τ2 ⊗ τ3)
elprodassoccomm = !λ〈〈x2, x1〉, x3〉 :τ2 ⊗ τ1 ⊗ τ3.〈〈x1, 〈x2, x3〉〉, λ〈x1, 〈x2, x3〉〉 :
τ1 ⊗ (τ2 ⊗ τ3).〈〈x2, x1〉, x3〉〉
egetright : τ1 ⊗ τ2 ⇒ τ2

egetright = !λ〈x1, x2〉 :τ1 ⊗ τ2.〈x2, λy2 :τ2.〈x1, y2〉〉
egetleft : τ1 ⊗ τ2 ⇒ τ1

egetleft = etrans (eextractinter ilprodcomm) egetright
egetleftright : τ1 ⊗ τ2 ⊗ τ3 ⇒ τ2 ⊗ τ3

egetleftright = etrans (eextractinter (isymm ilprodassoc)) egetright
egetleftleft : τ1 ⊗ τ2 ⊗ τ3 ⇒ τ1 ⊗ τ3

egetleftleft = etrans (eextractinter (ilprod ilprodcomm irefl)) egetleftright
egetrightleft : τ1 ⊗ (τ2 ⊗ τ3) ⇒ τ1 ⊗ τ2

egetrightleft =
etrans (etrans (eextractinter ilprodcomm) egetleftleft) (eextractinter ilprodcomm)
egetrightright : τ1 ⊗ (τ2 ⊗ τ3) ⇒ τ1 ⊗ τ3

egetrightright =
etrans (etrans (eextractinter ilprodcomm) egetleftright) (eextractinter ilprodcomm)
elprod : (τ1 ⇒ τ3) ( (τ2 ⇒ τ4) ( τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4

elprod = λ !x1 :τ1 ⇒ τ3.λ !x2 :τ2 ⇒ τ4. !λ〈y1, y2〉 :τ1 ⊗ τ2.let 〈z1, z
′
1〉 = x1 y1 in

let 〈z2, z
′
2〉 = x2 y2 in

〈〈z1, z2〉, λ〈y′1, y′2〉 :τ3 ⊗ τ4.〈z′1 y′1, z
′
2 y′2〉〉

elprodleft : (τ1 ⇒ τ3) ( τ1 ⊗ τ2 ⇒ τ3 ⊗ τ2

elprodleft = λx :τ1 ⇒ τ3.elprod x erefl
elprodright : (τ2 ⇒ τ3) ( τ1 ⊗ τ2 ⇒ τ1 ⊗ τ3

elprodright = λx :τ2 ⇒ τ3.elprod erefl x

C Translations and lemmas
Sections C.1, C.2, C.3, and C.4 de�ne the CC0-to-CC1, CC1-to-CC2, CC2-to-LC, and
CC2-to-linear Fω translations. They also state the lemmas that constitute the proof of the
translation type correctness. The lemmas are proved in [12].

C.1 Translation: CC0→CC1

C(α) = α
C(∅) = ∅
C({αϕ}) = {αϕ}
C(C1 ⊕ C2) = C(C1)⊕ C(C2)
C(C) = S(C)
S(α) = αS

S(∅) = ∅
S({αϕ}) = {α+}
S(C1 ⊕ C2) = S(C1)⊕ S(C2)
S(C) = S(C)
T (α) = α
T (ρ handle) = ρ handle
T ((C, τ) → 0) = (C(C), T (τ)) → 0
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T (τ1 × τ2) = T (τ1)× T (τ2)
T (∀α :Type.τ) = ∀α :Type.T (τ)
T (∀ρ :Res.τ) = ∀ρ :Res.T (τ)
T (∀α :Cap.τ) = ∀αS :Cap+.∀α :Cap ≤ αS .T (τ)
T (∀α ≤ C.τ) = ∀αS :Cap+ ≤ S(C).∀α :Cap ≤ C(C), αS .T (τ)
∆(·) = ·
∆(α : Type, ∆) = α : Type,∆(∆)
∆(α : Res, ∆) = α : Res,∆(∆)
∆(α : Cap,∆) = αS : Cap+, α : Cap ≤ αS ,∆(∆)
∆(α ≤ C, ∆) = αS : Cap+ ≤ S(C), α : Cap ≤ (C(C), αS),∆(∆)
Γ(·) = ·
Γ(x : τ, Γ) = x : T (τ),Γ(Γ)
V(x) = x
V(v[τ : Type]) = V(v)[T (τ) : Type]
V(v[α : Res]) = V(v)[α : Res]
V(v[C : Cap]) = V(v)[S(C) : Cap+][C(C) : Cap]
H(λα :Type.h) = λα :Type.H(h)
H(λα :Res.h) = λα :Res.H(h)
H(λα :Cap.h) = λαS :Cap+.λα :Cap ≤ αS .H(h)
H(λα ≤ C.h) = λαS :Cap+ ≤ S(C).λα :Cap ≤ C(C), αS .H(h)
H(λ(C, x : τ).e) = λ(C(C), x : T (τ)).E(e)
H((v1, v2)) = (V(v1),V(v2))
D(x = v) = (x = V(v))
D(x = h) = (x = H(h))
D(x = #n v) = (x = #nV(v))
D(newα, x) = newα, x
D(free v) = freeV(v)
D(use v) = useV(v)
E(let d in e) = letD(d) in E(e)
E(v1 v2) = V(v1) V(v2)
E(halt) = halt

C.1.1 Lemmas for CC0→CC1
• If ∆ ` C : Cap then ∆(∆) ` S(C) : Cap+

• If ∆ ` C : Cap then ∆(∆) ` C(C) : Cap

• If ∆ ` τ : Type then ∆(∆) ` T (τ) : Type

• If ∆ ` ∆′ then ∆(∆) ` ∆(∆′)

• If ∆ ` C1 = C2 : Cap then ∆(∆) ` S(C1) = S(C2) : Cap+

• If ∆ ` C1 = C2 : Cap then ∆(∆) ` C(C1) = C(C2) : Cap

• If ∆ ` τ1 = τ2 : Type then ∆(∆) ` T (τ1) = T (τ2) : Type

• If ∆ ` C : Cap then ∆(∆) ` C(C) ≤ S(C)

• If ∆ ` C1 ≤ C2 then ∆(∆) ` S(C1) ≤ S(C1)

• If ∆ ` C1 ≤ C2 then ∆(∆) ` C(C1) ≤ C(C2)

• If ` ∆ and ∆ ` α′ : Cap and ∆ ` C : Cap then S([α′ ← C ′]C) = [α′ ← C(C ′), α′S ←
S(C ′)]S(C)
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• If ` ∆ and ∆ ` α′ : Cap and ∆ ` C : Cap then C([α′ ← C ′]C) = [α′ ← C(C ′), α′S ←
S(C ′)]C(C)

• If ` ∆ and ∆ ` α′ : Cap and ∆ ` τ : Type then T ([α′ ← C ′]τ) = [α′ ← C(C ′), α′S ←
S(C ′)]T (τ)

• If ` ∆ and ∆ ` α′ : Type and ∆ ` τ : Type then T ([α′ ← τ ′]τ) = [α′ ← T (τ ′)]T (τ)

• If ` ∆ and ∆ ` Γ then ∆(∆) ` Γ(Γ)

• If ` ∆ and ∆ ` Γ then:

� If ∆;Γ ` v : τ then ∆(∆);Γ(Γ) ` V(v) : T (τ)

� If ∆;Γ ` h : τ then ∆(∆);Γ(Γ) ` H(h) : T (τ)

� If ∆;Γ; C ` d =⇒ ∆′; Γ′;C ′ then ∆(∆);Γ(Γ); C(C) ` D(d) =⇒ ∆(∆′);Γ(Γ′); C(C ′)
� If ∆;Γ; C ` e then ∆(∆);Γ(Γ); C(C) ` E(e)

C.2 Translation: CC1→CC2

C(C) = U(C) ¢A(C)
U(α) = αU

U(∅) = ∅
U({ρ1}) = {ρ1}
U({ρ+}) = ∅
U(C1 ⊕ C2) = U(C1)⊕ U(C2)
A(α) = αA

A(∅) = ∅
A({ρ1}) = ∅
A({ρ+}) = {ρ+}
A(C1 ⊕ C2) = A(C1)⊕A(C2)
T (α) = α
T (ρ handle) = ρ handle
T ((C, τ) → 0) = (C(C), T (τ)) → 0
T (τ1 × τ2) = T (τ1)× T (τ2)
T (∀α :Type.τ) = ∀α :Type.T (τ)
T (∀α :Res.τ) = ∀α :Res.T (τ)
T (∀α :Cap.τ) = ∀αA :Cap+.∀αU :Cap1.T (τ)
T (∀α :Cap+.τ) = ∀αA :Cap+.[αU ← ∅]T (τ)
T (∀α :Cap+ ≤ C.τ) = ∀αA :Cap+ where ∅¢ αA ≤ A(C).[αU ← ∅]T (τ)
T (∀α :Cap ≤ C0, C1, . . . , Cn.τ) =

∀αB :Cap1.∀αA :Cap+ where αB ¢ αA ≤ A(C0),
(αB ⊕ U(C0)) ¢ αA ≤ A(C1),

...
(αB ⊕ U(C0)) ¢ αA ≤ A(Cn).[αU ← (αB ⊕ U(C0))]T (τ)

∆(·) = ·
∆(α : Type, ∆) = α : Type,∆(∆)
∆(α : Res, ∆) = α : Res,∆(∆)
∆(α : Cap,∆) = αA : Cap+, αU : Cap1,∆(∆)
∆(α : Cap+, ∆) = αA : Cap+, [αU ← ∅]∆(∆)
∆(α : Cap+ ≤ C, ∆) = αA :Cap+ where ∅¢ αA ≤ A(C), [αU ← ∅]∆(∆)

45



∆(α : Cap ≤ (C0, C1, . . . , Cn),∆) =
αB : Cap1, αA :Cap+ where αB ¢ αA ≤ A(C0),

(αB ⊕ U(C0)) ¢ αA ≤ A(C1),
...

(αB ⊕ U(C0)) ¢ αA ≤ A(Cn), [αU ← (αB ⊕ U(C0))]∆(∆)
[ · ] = []
[α : Type,∆] = [∆]
[α : Res,∆] = [∆]
[α : Cap,∆] = [∆]
[α : Cap+,∆] = [αU ← ∅][∆]
[α : Cap+ ≤ C, ∆] = [αU ← ∅][∆]
[α : Cap ≤ (C0, C1, . . . , Cn),∆] = [αU ← αB ⊕ U(C0)][∆]
Γ(·) = ·
Γ(x : τ, Γ) = x : T (τ),Γ(Γ)
The translations of v, h, d, and e are directed by typing judgments:

• ∆;Γ ` v : τ Ã V(v)

• ∆;Γ ` h : τ Ã H(h)

• ∆;Γ; C ` d =⇒ ∆′; Γ′; C ′ Ã D(d)

• ∆;Γ; C ` e Ã E(e)

For conciseness, though, most of the de�nitions below suppress the typing judgment when
it is not immediately relevant.

V(x) = x
V(v[τ : Type]) = V(v)[T (τ) : Type]
V(v[α : Res]) = V(v)[α : Res]

∆; Γ ` v : ∀α :κ.τ Ã v′ ∆ ` c : κ

∆;Γ ` v[c : κ] : [α ← c]τ Ã v′[A(C) : Cap+][U(C) : Cap1]
(κ = Cap)

∆; Γ ` v : ∀α :κ.τ Ã v′ ∆ ` c : κ

∆;Γ ` v[c : κ] : [α ← c]τ Ã v′[A(C) : Cap+]
(κ = Cap+)

∆; Γ ` v : ∀α :κ ≤ C0.τ Ã v′

∆ ` C ≤ C0

∆ ` C : κ

∆;Γ ` v[C : κ] : [α ← C]τ Ã v′[A(C) : Cap+]
(κ = Cap+)

∆; Γ ` v : ∀α :κ ≤ C0, C1, . . . , Cn.τ Ã v′

∆ ` C ≤ C0 Ã UB

∆ ` C ≤ C1 ∆ ` C ≤ Cn

∆ ` C : κ

∆; Γ ` v[C : κ] : [α ← C]τ Ã v′[UB : Cap1][A(C) : Cap+]
(κ = Cap)

∆; Γ ` v : τ ′ Ã v′ ∆ ` τ ′ = τ : Type
∆;Γ ` v : τ Ã v′

H(λα :Type.h) = λα :Type.H(h)
H(λα :Res.h) = λα :Res.H(h)
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H(λα :Cap.h) = λαA :Cap+.λαU :Cap1.H(h)
H(λα :Cap+.h) = λαA :Cap+.[αU ← ∅]H(h)
H(λα :Cap+ ≤ C.h) = λαA :Cap+ where ∅¢ αA ≤ A(C).[αU ← ∅]H(h)
H(λα :Cap ≤ C0, C1, . . . , Cn.h) =

λαB :Cap1.λαA :Cap+ where αB ¢ αA ≤ A(C0),
(αB ⊕ U(C0)) ¢ αA ≤ A(C1),

...
(αB ⊕ U(C0)) ¢ αA ≤ A(Cn).[αU ← (αB ⊕ U(C0))]H(h)

H(λ(C, x : τ).e) = λ(C(C), x : T (τ)).E(e)
H((v1, v2)) = (V(v1),V(v2))

∆; Γ ` h : τ ′ Ã h′ ∆ ` τ ′ = τ : Type
∆;Γ ` h : τ Ã h′

D(x = v) = (x = V(v))
D(x = h) = (x = H(h))
D(x = #n v) = (x = #nV(v))
D(newα, x) = newα, x
D(free v) = freeV(v)
D(use v) = useV(v)
E(let d in e) = letD(d) in E(e)
E(v1 v2) = V(v1) V(v2)
E(halt) = halt

∆ ` C1 = C2 : κ

∆ ` C1 ≤ C2 Ã ∅ (κ ∈ {Cap,Cap+})

∆ ` C1 ≤ C2 Ã U ∆ ` C2 ≤ C3 Ã U ′

∆ ` C1 ≤ C3 Ã U ⊕ U ′

∆ ` C1 ≤ C ′1 Ã U1 ∆ ` C2 ≤ C ′2 Ã U2

∆ ` C1 ⊕ C2 ≤ C ′1 ⊕ C ′2 Ã U1 ⊕ U2

. . . , α : Cap+ ≤ C, . . . ` α ≤ C Ã ∅

. . . , α : Cap ≤ (C0, . . .), . . . ` α ≤ C0 Ã αB

. . . , α : Cap ≤ (C0, . . . , Ck, . . .), . . . ` α ≤ Ck Ã αB ⊕ U(C0)

∆ ` α : Res
∆ ` {α1} ≤ {α+} Ã {α1}

C.2.1 Lemmas for CC1→CC2
• If ` ∆ and ∆ ` C : κ and κ ∈ {Cap,Cap+} then ∆(∆) ` [∆]U(C) : Cap1

• If ` ∆ and ∆ ` C : κ and κ ∈ {Cap,Cap+} then ∆(∆) ` [∆]A(C) : Cap+

• If ` ∆ and ∆ ` C1 ≤ C2 Ã U then ∆(∆) ` [∆]U : Cap1

• If ∆ ` ∆′ then ∆(∆) ` [∆]∆(∆′)
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• If ` ∆ and ∆ ` τ : Type then ∆(∆) ` [∆]T (τ) : Type

• If ` ∆ and ∆ ` C : Cap+ then ∆(∆) ` [∆]U(C) = ∅ : Cap1

• If ` ∆ and ∆ ` C1 = C2 : κ and κ ∈ {Cap,Cap+} then ∆(∆) ` [∆]U(C1) =
[∆]U(C2) : Cap1

• If ` ∆ and ∆ ` C1 = C2 : κ and κ ∈ {Cap,Cap+} then ∆(∆) ` [∆]A(C1) =
[∆]A(C2) : Cap+

• If ` ∆ and ∆ ` τ1 = τ2 : Type then ∆(∆) ` [∆]T (τ1) = [∆]T (τ2) : Type

• If ` ∆ and ∆ ` C1 ≤ C2 Ã U then ∆(∆) ` [∆]U(C1) = [∆]U ⊕ [∆]U(C2) : Cap1 and
∆(∆) ` [∆]U ¢ [∆]A(C1) ≤ [∆]A(C2)

• If ` ∆ and ∆ ` α′ : κ′ and κ′ ∈ {Cap,Cap+} and ∆ ` C : κ and κ ∈ {Cap,Cap+}
then A([α′ ← C ′]C) = [α′U ← U(C ′), α′A ← A(C ′)]A(C)

• If ` ∆ and ∆ ` α′ : κ′ and κ′ ∈ {Cap,Cap+} and ∆ ` C : κ and κ ∈ {Cap,Cap+}
then U([α′ ← C ′]C) = [α′U ← U(C ′), α′A ← A(C ′)]U(C)

• If ` ∆ and ∆ ` α′ : κ′ and κ′ ∈ {Cap,Cap+} and ∆ ` τ : Type then T ([α′ ← C ′]τ) =
[α′U ← U(C ′), α′A ← A(C ′)]T (τ)

• If ` ∆ and ∆ ` α′ : Type and ∆ ` τ : Type then T ([α′ ← τ ′]τ) = [α′ ← T (τ ′)]T (τ)

• If ` ∆ and ∆ ` Γ then ∆(∆) ` [∆]Γ(Γ)

• If ` ∆ and ∆ ` Γ then:

� If ∆;Γ ` v : τ Ã v′ then ∆(∆); [∆]Γ(Γ) ` [∆]v′ : [∆]T (τ)

� If ∆;Γ ` h : τ Ã h′ then ∆(∆); [∆]Γ(Γ) ` [∆]h′ : [∆]T (τ)

� If ∆; Γ;C ` d =⇒ ∆′; Γ′; C ′ Ã d′ then ∆(∆); [∆]Γ(Γ); [∆]C(C) ` [∆]d′ =⇒
∆(∆′); [∆]Γ(Γ′); [∆]C(C ′) and [∆] = [∆′]

� If ∆;Γ; C ` e Ã e′ then ∆(∆); [∆]Γ(Γ); [∆]C(C) ` [∆]e′

C.3 Translation: CC2→LC

K(Type) = Type
K(Res) = Res
K(Capϕ) = Cap
T (α) = α
T (ρ handle) = ρ handle
T ((C, τ) → 0) = (C(C), T (τ)) → 0
T (τ1 × τ2) = T (τ1)× T (τ2)
T (∀α :κ.τ) = ∀α :K(κ).T (τ)
T (∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ) =

∀α :Cap.[α ← (α&(U(U1) ( A(A1)⊗ true)& . . . &(U(Un) ( A(An)⊗ true))]T (τ)
C(U ¢ A) = U(U)⊗ (A(A)⊗ true)
U(α) = α
U(∅) = ∅
U({ρϕ}) = {ρ}
U(U1 ⊕ U2) = U(U1)⊗ U(U2)
A(α) = α
A(∅) = ∅
A({ρϕ}) = {ρ}
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A(A1 ⊕A2) = (A(A1)⊗ true)&(A(A2)⊗ true)
∆(·) = ·
∆(α : κ,∆) = α : K(κ),∆(∆)
∆(α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An, ∆) = α : Cap,

[α ← (α&(U(U1) ( A(A1)⊗ true)& . . . &(U(Un) ( A(An)⊗ true))]∆(∆)
[ · ] = []
[α : κ, ∆] = [∆]
[α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An,∆] =

[α ← (α&(U(U1) ( A(A1)⊗ true)& . . . &(U(Un) ( A(An)⊗ true))][∆]
Γ(·) = ·
Γ(x : τ, Γ) = x : T (τ),Γ(Γ)
V(x) = x
V(v[τ : Type]) = V(v)[T (τ) : Type]
V(v[α : Res]) = V(v)[α : Res]
V(v[U : Cap1]) = V(v)[U(U) : Cap]
V(v[A : Cap+]) = V(v)[A(A) : Cap]
H(λα :κ.h) = λα :K(κ).H(h)
H(λα :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.h) =

λα :Cap.[α ← (α&(U(U1) ( A(A1)⊗ true)& . . . &(U(Un) ( A(An)⊗ true))]H(h)
H(λ(C, x : τ).e) = λ(C(C), x : T (τ)).E(e)
H((v1, v2)) = (V(v1),V(v2))
D(x = v) = (x = V(v))
D(x = h) = (x = H(h))
D(x = #n v) = (x = #nV(v))
D(newα, x) = newα, x
D(free v) = freeV(v)
D(use v) = useV(v)
E(let d in e) = letD(d) in E(e)
E(v1 v2) = V(v1) V(v2)
E(halt) = halt

C.3.1 Lemmas for CC2→LC
• If ` ∆ and ∆ ` U : Cap1 then ∆(∆) ` [∆]U(U) : Cap

• If ` ∆ and ∆ ` A : Cap+ then ∆(∆) ` [∆]A(A) : Cap

• If ` ∆ and ∆ ` τ : Type then ∆(∆) ` [∆]T (τ) : Type

• If ` ∆ and ∆ ` U1 = U2 : Cap1 then ∆(∆) ` [∆]U(U1) = [∆]U(U2) : Cap

• If ` ∆ and ∆ ` A1 = A2 : Cap+ then ∆(∆) ` [∆]A(A1)⊗true = [∆]A(A2)⊗true : Cap

• If ` ∆ and ∆ ` C ≤ A then [∆]C(C) ` [∆]A(A)⊗ true

• If ` ∆ and ∆ ` τ1 = τ2 : Type then ∆(∆) ` [∆]T (τ1) = [∆]T (τ2) : Type

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` A : Cap+ then A([α′ ← A′]A) = [α′ ← A(A′)]A(A)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` U : Cap1 then U([α′ ← A′]U) = [α′ ← A′′]U(U)
for any A′′

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` A : Cap+ then A([α′ ← U ′]A) = [α′ ← U ′′]A(A)
for any U ′′

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` U : Cap1 then U([α′ ← U ′]U) = [α′ ← U(U ′)]U(U)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` τ : Type then T ([α′ ← A′]τ) = [α′ ← A(A′)]T (τ)
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• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` τ : Type then T ([α′ ← U ′]τ) = [α′ ← U(U ′)]T (τ)

• If ` ∆ and ∆ ` α′ : Type and ∆ ` τ : Type then T ([α′ ← τ ′]τ) = [α′ ← T (τ ′)]T (τ)

• If ` ∆ and ∆ ` Γ then:

� If ∆;Γ ` v : τ then ∆(∆); [∆]Γ(Γ) ` [∆]V(v) : [∆]T (τ)

� If ∆;Γ ` h : τ then ∆(∆); [∆]Γ(Γ) ` [∆]H(h) : [∆]T (τ)

� If ∆;Γ; C ` d =⇒ ∆′; Γ′;C ′ then ∆(∆); [∆]Γ(Γ); [∆]C(C) ` [∆]D(d) =⇒ ∆(∆′); [∆]Γ(Γ′); [∆]C(C ′)
and [∆] = [∆′]

� If ∆;Γ; C ` e then ∆(∆); [∆]Γ(Γ); [∆]C(C) ` [∆]E(e)

C.3.2 Complete collection in extended LC
Extensions to LC for nonlinear capabilities:

types τ = . . . | !C ⇒ τ

capabilities C = . . . | C1 ∪ C2 | !C
nonlinear cap ctxts [Λ] = [ !C1], . . . , [ !Cn]

cap ctxts Λ = C1, . . . , Ck, [ !Ck+1], . . . , [ !Cn]

word values v = . . . | v[!]
heap values h = . . . | λ !C.h

Abbreviations:

C1 × C2 = !(C1 ⊗ C2)
C1 ⇒ C2 = !(C1 ( C2)
C1 ⇔ C2 = (C1 ⇒ C2)× (C2 ⇒ C1)
C1 ∨ C2 = !(C1 ∪ C2)

New and modi�ed rules:
∆ ` C1 : Cap ∆ ` C2 : Cap

∆ ` C1 ∪ C2 : Cap
∆ ` C : Cap
∆ ` !C : Cap

∆ ` C : Cap ∆ ` τ : Type
∆ `!C ⇒ τ

[Λ], C ` C [Λ], [ !C] ` C [Λ] ` ∅

Λ, [ !C], [ !C] ` C ′

Λ, [ !C] ` C ′
Λ ` C ′

Λ, [ !C] ` C ′

[Λ] ` C

[Λ] ` !C
Λ, [ !C] ` C ′

Λ, !C ` C ′
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Λ ` Ck

Λ ` C1 ∪ C2
(k ∈ {1, 2}) Λ, C1 ` C3 Λ, C2 ` C3

Λ, C1 ∪ C2 ` C3

In ∆;Γ ` v : τ and ∆;Γ ` h : τ rules, replace ∆; Γ with ∆; Γ; [Λ].
In ∆;Γ;C ` d =⇒ ∆′; Γ′; C ′ rules, replace ∆;Γ; C with ∆;Γ; [Λ];C.
In ∆;Γ;C ` e rules, replace ∆;Γ; C with ∆;Γ; [Λ];C.

∆ ` C1 : κ ∆ ` C2 : κ [Λ], C1 ` C2 [Λ], C2 ` C1

∆; [Λ] ` C1 = C2 : κ

∆;Γ; [Λ] ` v :!C ⇒ τ [Λ] `!C
∆;Γ; [Λ] ` v[!] : τ

∆ ` C : Cap ∆;Γ; [Λ], [ !C] ` h : τ

∆;Γ; [Λ] ` λ !C.h :!C ⇒ τ

[Λ], C ⊗ {α} ` C ′

∆;Γ; [Λ]; C ` newα, x =⇒ ∆, α : Res; Γ, x : α handle; [Λ]; C ′
(α 6∈ domain(∆) andx 6∈ domain(Γ))

∆; Γ; [Λ] ` v : α handle [Λ], C ` C ′ ⊗ {α}
∆; Γ; [Λ]; C ` free v =⇒ ∆;Γ; [Λ];C ′

∆;Γ; [Λ] ` v : α handle [Λ], C ` {α} ⊗ true
∆; Γ; [Λ]; C ` use v =⇒ ∆;Γ; [Λ];C

∆;Γ; [Λ] ` v1 : (C ′, τ) → 0 ∆; Γ; [Λ] ` v2 : τ [Λ], C ` C ′

∆;Γ; [Λ]; C ` v1 v2

∆; [Λ] ` C = ∅ : Cap
∆;Γ; [Λ];C ` halt

Modi�cations to CC2-to-LC translation:

A(α) = α
A(∅) = ∅
A({ρϕ}) = {ρ}
A(A1 ⊕A2) = (A(A1)⊗Z(A1 ⊕A2))&(A(A2)⊗Z(A1 ⊕A2))
Z(α) = αZ

Z(∅) = ∅
Z({ρϕ}) = true
Z(A1 ⊕A2) = Z(A1)⊗Z(A2)
C(U ¢ A) = U(U)⊗ (A(A)⊗Z(A))
S(U1 ¢ A1 ≤ A2) = (C(U1 ¢ A1) ⇒ A(A2)⊗Z(A2))× (U(U1) ∪ Z(A1) ⇒ Z(A2))
T (∀α :Cap+.τ) = ∀α :Cap.∀αZ :Cap.(((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true)) ⇒ T (τ)
T (∀α :Cap+ whereC1 ≤ A1, . . . , Cn ≤ An.τ) =

∀α :Cap.∀αZ :Cap.((((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true))×
S(C1 ≤ A1)× . . .× S(Cn ≤ An)) ⇒ T (τ)

∆(α : Cap+, ∆) = α : Cap, αZ : Cap,∆(∆)
∆(α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An, ∆) = α : Cap, αZ : Cap,∆(∆)
[∆] = []
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Λ(·) = ·
Λ(α : κ, ∆) = Λ(∆)where κ 6= Cap+

Λ(α : Cap+, ∆) = [((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true)],Λ(∆)
Λ(α :Cap+ whereC1 ≤ A1, . . . , Cn ≤ An, ∆) =

[(((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true))×
S(C1 ≤ A1)× . . .× S(Cn ≤ An)],Λ(∆)

V(v[A : Cap+]) = V(v)[A(A) : Cap][Z(A) : Cap][!]
H(λα :Cap+.h) = λα :Cap.λαZ :Cap.

λ(((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true)).H(h)
H(λα :Cap+ whereC1 ≤ A1, . . . , Cn ≤ An.h) = λα :Cap.λαZ :Cap.

λ((((α ⇔ ∅)× (αZ ⇔ ∅)) ∨ (αZ ⇔ true))×
S(C1 ≤ A1)× . . .× S(Cn ≤ An)).H(h)

• If ` ∆ and ∆ ` U : Cap1 then ∆(∆) ` U(U) : Cap
• If ` ∆ and ∆ ` A : Cap+ then ∆(∆) ` A(A) : Cap and ∆(∆) ` Z(A) : Cap
• If ` ∆ and ∆ ` A : Cap+ then Λ(∆) ` ((A(A) ⇔ ∅)× (Z(A) ⇔ ∅)) ∨ (Z(A) ⇔ true)
• If ` ∆ and ∆ ` τ : Type then ∆(∆) ` T (τ) : Type
• If ` ∆ and ∆ ` U1 = U2 : Cap1 then ∆(∆);Λ(∆) ` U(U1) = U(U2) : Cap
• If ` ∆ and ∆ ` A1 = A2 : Cap+ then ∆(∆);Λ(∆) ` A(A1)⊗Z(A1) = A(A2)⊗Z(A2) :

Cap
• If ` ∆ and ∆ ` U ¢ A ≤ A′ then Λ(∆),U(U) ∪ Z(A) ` Z(A′)

• If ` ∆ and ∆ ` C ≤ A then Λ(∆), C(C) ` A(A)⊗Z(A)

• If ` ∆ and ∆ ` τ1 = τ2 : Type then ∆(∆);Λ(∆) ` T (τ1) = T (τ2) : Type
• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` A : Cap+ then A([α′ ← A′]A) = [α′ ←
A(A′), α′Z ← Z(A′)]A(A)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` A : Cap+ then Z([α′ ← A′]A) = [α′ ←
A(A′), α′Z ← Z(A′)]Z(A)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` U : Cap1 then U([α′ ← A′]U) = [α′ ← A′′, α′Z ←
A′′Z ]U(U) for any A′′,A′′Z

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` A : Cap+ then A([α′ ← U ′]A) = [α′ ← U ′′]A(A)
for any U ′′

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` A : Cap+ then Z([α′ ← U ′]A) = [α′ ← U ′′]Z(A)
for any U ′′

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` U : Cap1 then U([α′ ← U ′]U) = [α′ ← U(U ′)]U(U)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` τ : Type then T ([α′ ← A′]τ) = [α′ ← A(A′), α′Z ←
Z(A′)]T (τ)

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` τ : Type then T ([α′ ← U ′]τ) = [α′ ← U(U ′)]T (τ)

• If ` ∆ and ∆ ` α′ : Type and ∆ ` τ : Type then T ([α′ ← τ ′]τ) = [α′ ← T (τ ′)]T (τ)

• If ` ∆ and ∆ ` Γ then:

� If ∆;Γ ` v : τ then ∆(∆);Γ(Γ);Λ(∆) ` V(v) : T (τ)
� If ∆;Γ ` h : τ then ∆(∆);Γ(Γ);Λ(∆) ` H(h) : T (τ)
� If ∆;Γ; C ` d =⇒ ∆′; Γ′;C ′ then ∆(∆);Γ(Γ);Λ(∆); C(C) ` D(d) =⇒ ∆(∆′);Γ(Γ′);Λ(∆′); C(C ′)
� If ∆;Γ; C ` e then ∆(∆);Γ(Γ);Λ(∆); C(C) ` E(e)
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C.4 Translation: CC2→linear Fω

K(Cap1) = Type
K(Cap+) = Type→ Type
K(Type) = Type
K(Res) = Type
U(α) = α
U(∅) = ()
U({αϕ}) = χ α
U(U1 ⊕ U2) = U(U1)⊗ U(U2)
A(A) = λγ :Type.∃δ :Type.(γ ⇒ δ)× !(A[A] δ)
A[α] = α
A[∅] = λγ :Type.(◦)
A[{αϕ}] = λγ :Type.γ ⇒◦ χ α
A[A1 ⊕A2] = λγ :Type. !(A(A1) γ)⊗ !(A(A2) γ)
C(U ¢ A) = λγ :Type.U(U)⊗ !(A(A) γ)
S(U ¢ A ≤ A′) = ∀δ :Type. !(A(A) δ) → !(A(A′) (δ ⊗ U(U)))
T (α) = α
T (τ1 × τ2) = !T (τ1)⊗ !T (τ2)
T ((U ¢ A, τ) → 0) = ∀γ :Type.γ → U(U) ( !(A(A) γ) ( !T (τ) ( true
T (α handle) = (◦)
T (∀α :κ.τ) = ∀α :K(κ). !T (τ)
T (∀α :Cap+ whereC1 ≤ A1, . . . , Cn ≤ An.τ) =

∀α :Type→ Type. !S(C1 ≤ A1) → . . . → !S(Cn ≤ An) → !T (τ)
∆(·) = ·
∆(α : κ,∆) = α : K(κ),∆(∆)
∆(α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An, ∆) = α : Type→ Type,∆(∆)
Γ(·; ·) = ·
Γ(·; x : τ, Γ) = !(x : T (τ)),Γ(·; Γ)
Γ(α : κ, ∆;Γ) = Γ(∆; Γ)
Γ(α :Cap+ where (C1 ≤ A1, . . . , Cn ≤ An), ∆;Γ) =

!(xA1 : S(C1 ≤ A1)), . . . , !(xAn : S(Cn ≤ An)),Γ(∆; Γ)
The translations of v, h, and e are directed by typing judgments:

• ∆;Γ ` v : τ Ã V(v)

• ∆;Γ ` h : τ Ã H(h)

• ∆;Γ; C ` e Ã E(e)

For conciseness, though, some of the de�nitions below suppress the typing judgment when
it is not immediately relevant.

V(x) = x
V(v[τ : Type]) = V(v) T (τ)
V(v[α : Res]) = V(v) α
V(v[U : Cap1]) = V(v) U(U)
V(v[A : Cap+]) = V(v) A(A)

∆; Γ ` v : ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ Ã e
∆ ` U1 ¢ α ≤ A1 Ã e1 . . . ∆ ` Un ¢ α ≤ An Ã en

∆;Γ ` A : Cap+

∆;Γ ` v[A : Cap+] : [α ← A]τ Ã e A[A] e1 . . . en

∆;Γ ` v : τ ′ Ã e ∆ ` τ ′ = τ : Type Ã e′

∆;Γ ` v : τ Ã (#1 e′) e
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H(λα :κ.h) = !λα :K(κ).H(h)
H(λα :Cap+ whereC1 ≤ A1, . . . , Cn ≤ An.h) =

!λα :Type→ Type. !λ !xA1 :!S(C1 ≤ A1). . . . !λ !xAn :!S(Cn ≤ An).H(h)
H(λ(U ¢ A, x : τ).e) = !λγ :Type. !λzP :γ.λzU :U(U).λ !zA :!(A(A) γ).λ !x :!T (τ).E(e)
H((v1, v2)) = (V(v1),V(v1))

∆; Γ ` h : τ ′ Ã e ∆ ` τ ′ = τ : Type Ã e′

∆;Γ ` h : τ Ã (#1 e′) e

E(letx = v in e) = let !x = V(v) in E(e)
E(letx = h in e) = let !x = H(h) in E(e)
E(letx = #n v in e) = let !x = #nV(v) in E(e)
E(let newα, x in e) =

let [α, xA] = new () in
let zU = 〈zU , xA〉 in
let !x = () in
E(e)

∆; Γ ` v : α handle ∆ ` U = U ′ ⊕ {α1} : Cap1 Ã e1 ∆;Γ; U ′ ¢ A ` e Ã e′

∆;Γ; U ¢ A ` let free v in e Ã expfree

expfree =
let 〈zU , xA〉 = (#1 e1) zU in
let_ = free α xA in
e′

∆;Γ ` v : α handle ∆ ` U = UB ⊕ U ′ : Cap1 Ã e1

∆ ` UB ¢ A ≤ A′ ⊕ {α+} Ã e2 ∆;Γ; U ¢ A ` e Ã e′

∆;Γ;U ¢ A ` let use v in e Ã expuse

expuse =
let 〈zU1, zU2〉 = (#1 e1) zU in
let !z′A = e2 γ zA in
let [δ, 〈 !xPQ, !z′′A〉] = z′A in
let 〈_, !z′′′A 〉 = z′′A in
let [ε, 〈 !xQR, !xRA〉] = z′′′A in
let !xPR = etrans xPQ xQR in
let !xPA = etrans xPR xRA in
let 〈xA, xAP 〉 = xPA 〈zP , zU1〉 in
letxA = use α xA in
let 〈zP , zU1〉 = xAP xA in
let zU = (#2 e1) 〈zU1, zU2〉 in
e′

∆;Γ ` v1 : (U ′ ¢ A′, τ) → 0 Ã e1 ∆;Γ ` v2 : τ Ã e2

∆ ` U = UB ⊕ U ′ : Cap1 Ã e′1 ∆ ` UB ¢ A ≤ A′ Ã e′2
∆; Γ;U ¢ A ` v1 v2 Ã expcall

expcall =
let 〈zU2, z

′
U 〉 = (#1 e′1) zU in

let !z′A = e′2 γ zA in
e1 γ ⊗ u2 〈zP , zU2〉 z′U z′A e2

∆ ` U = ∅ : Cap1 Ã e1 ∆ ` A = ∅ : Cap+ Ã e2

∆; Γ;U ¢ A ` halt Ã let_ = (#1 e1) zU in pack[γ, zP ] as true
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∆ ` Q1 = Q′1 : κ Ã e1 ∆ ` Q2 = Q′2 : κ Ã e2

∆ ` Q1 ⊕Q2 = Q′1 ⊕Q′2 : κ Ã ilprod e1 e2
(κ = Cap1)

∆ ` Q : κ

∆ ` ∅ ⊕Q = Q : κ Ã ilprodunitleftleft
(κ = Cap1)

∆ ` Q1 : κ ∆ ` Q2 : κ

∆ ` Q1 ⊕Q2 = Q2 ⊕Q1 : κ Ã ilprodcomm
(κ = Cap1)

∆ ` Q1 : κ ∆ ` Q2 : κ ∆ ` Q3 : κ

∆ ` (Q1 ⊕Q2)⊕Q3 = Q1 ⊕ (Q2 ⊕Q3) : κ Ã isymm ilprodassoc
(κ = Cap1)

∆ ` Q1 = Q′1 : κ Ã e1 ∆ ` Q2 = Q′2 : κ Ã e2

∆ ` Q1 ⊕Q2 = Q′
1 ⊕Q′2 : κ Ã aeqcong

(κ = Cap+)

aeqcong = !λγ :Type.iexist ( !(λδ :Type.iprod irefl (iprod (e1 δ) (e2 δ))))

∆ ` Q : κ

∆ ` ∅ ⊕Q = Q : κ Ã aequnit
(κ = Cap+)

aequnit = !λγ :Type. !〈
!λ[δ, 〈 !xPQ, 〈_, [ε, 〈 !xQR, !x〉]〉〉] :!A(∅ ⊕A) γ.

!pack[ε, !〈etrans xPQ xQR, x〉] asA(A) γ,
!λ !x :!A(A) γ.

!pack[γ, !〈erefl, !〈 !pack[γ, !〈erefl, ()〉] asA(∅) γ, x〉〉] asA(∅ ⊕A) γ〉
∆ ` Q1 : κ ∆ ` Q2 : κ

∆ ` Q1 ⊕Q2 = Q2 ⊕Q1 : κ Ã aeqcomm
(κ = Cap+)

aeqcomm = !λγ :Type.iexist ( !(λδ :Type.iprod irefl iprodcomm))

∆ ` Q1 : κ ∆ ` Q2 : κ ∆ ` Q3 : κ

∆ ` (Q1 ⊕Q2)⊕Q3 = Q1 ⊕ (Q2 ⊕Q3) : κ Ã aeqassoc
(κ = Cap+)

aeqassoc = !λγ :Type. !〈
!λ[δ, 〈 !xPQ, 〈 !x12, !x3〉〉] :!A(A1 ⊕A2 ⊕A3) γ.

let [ε, 〈 !xQR, 〈 !x1, !x2〉〉] = x12 in
let [η, 〈 !xRS , !xA2〉] = x2 in
let [η′, 〈 !x′RS , !xA1〉] = x1 in
let !y1 = !pack[η′, !〈etrans xQR x′RS , xA1〉] asA(A1) δ in
let !y2 = !pack[η, !〈etrans xQR xRS , xA2〉] asA(A2) δ in
let !y23 = !pack[δ, !〈erefl, !〈y2, x3〉〉] asA(A2 ⊕A3) δ in
!pack[δ, !〈xPQ, !〈y1, y23〉〉] asA(A1 ⊕ (A2 ⊕A3)) γ,

!λ[δ, 〈 !xPQ, 〈 !x1, !x23〉〉] :!A(A1 ⊕ (A2 ⊕A3)) γ.
let [ε, 〈 !xQR, 〈 !x2, !x3〉〉] = x23 in
let [η, 〈 !xRS , !xA2〉] = x2 in
let [η′, 〈 !x′RS , !xA3〉] = x3 in
let !y3 = !pack[η′, !〈etrans xQR x′RS , xA3〉] asA(A3) δ in
let !y2 = !pack[η, !〈etrans xQR xRS , xA2〉] asA(A2) δ in
let !y12 = !pack[δ, !〈erefl, !〈x1, y2〉〉] asA(A1 ⊕A2) δ in
!pack[δ, !〈xPQ, !〈y12, y3〉〉] asA(A1 ⊕A2 ⊕A3) γ〉
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∆ ` A : Cap+

∆ ` A = A⊕A : Cap+ Ã aeqidem

aeqidem = !λγ :Type. !〈
!λ !x :!A(A) γ.

!pack[γ, !〈erefl, !〈x, x〉〉] asA(A⊕A) γ,
!λ[δ, 〈 !xPQ, 〈_, [ε, 〈 !xQR, !x〉]〉〉] :!A(A⊕A) γ.

!pack[ε, !〈etrans xPQ xQR, x〉] asA(A) γ〉

. . . , (α :Cap+ where . . . , Uk ¢ α ≤ Ak, . . .), . . . ` Uk ¢ α ≤ Ak Ã xAk

∆ ` α : Res
∆ ` {α1}¢ ∅ ≤ {α+} Ã subres

subres =
!λγ :Type. !λ_ :!A(∅) γ.
let !x1 = egetright in
let !x2 = erefl in
!pack[X α, !〈x1, x2〉] asA({A+}) (γ ⊗X α)

∆ ` A1 = A2 : Cap+

∆ ` ∅¢ A1 ≤ A2 Ã subaeq

subaeq =
!λγ :Type. !λ !x1 :!A(A1) γ.
let !x2 = (#1 e γ) x1 in
let [δ, 〈 !xPQ, !xA〉] = x2 in
let !y1 = egetleft in
let !y2 = etrans y1 xPQ in
!pack[δ, !〈y2, xA〉] asA(A2) (γ ⊗ ())

∆ ` U1 ¢ A1 ≤ A2 ∆ ` U2 ¢ A2 ≤ A3

∆ ` U1 ⊕ U2 ¢ A1 ≤ A3 Ã subtrans

subtrans =
!λγ :Type. !λ !x1 :!A(A1) γ.
let !x2 = e1 γ x1 in
let !x3 = e2 γ ⊗ u1 x2 in
let [δ, 〈 !z, !xA〉] = x3 in
let !y = eextractinter ilprodassoc in
let !z′ = etrans y z in
!pack[δ, !〈z′, xA〉] asA(A3) (γ ⊗ U(U1 ⊕ U2))

∆ ` U1 ¢ A1 ≤ A′1 ∆ ` U2 ¢ A2 ≤ A′2
∆ ` U1 ⊕ U2 ¢ A1 ⊕A2 ≤ A′1 ⊕A′2 Ã subcong

subcong =
!λγ :Type. !λ !x :!A(A1 ⊕A2) γ.
let [δ, 〈 !xPQ, !xA12〉] = x in
let 〈 !xA1, !xA2〉 = xA12 in
let !x′1 = e1 δ xA1 in
let !x′2 = e2 δ xA2 in
let [δ1, 〈 !xQ1, !x′A1〉] = x′1 in
let [q2, 〈 !xQ2, !x′A2〉] = x′2 in
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let !xR1 = egetrightleft in
let !xR2 = egetrightright in
let !xS1 = etrans xR1 xQ1 in
let !xS2 = etrans xR2 xQ2 in
let !y1 = !pack[δ1, !〈xS1, x

′
A1〉] asA(A′1) (δ ⊗ U(U1 ⊕ U2)) in

let !y2 = !pack[q2, !〈xS2, x
′
A2〉] asA(A′2) (δ ⊗ U(U1 ⊕ U2)) in

let !z = elprodleft xPQ in
!pack[δ ⊗ U(U1 ⊕ U2), !〈z, !〈y1, y2〉〉] asA(A′1 ⊕A′2) (γ ⊗ U(U1 ⊕ U2))

∆ ` c : κ

∆ ` c = c : κ Ã irefl
κ = Type

∆ ` c2 = c1 : κ Ã e

∆ ` c1 = c2 : κ Ã isymm e
κ = Type

∆ ` c1 = c2 : κ Ã e1 ∆ ` c2 = c3 : κ Ã e2

∆ ` c1 = c3 : κ Ã itrans e1 e2
κ = Type

∆ ` c : κ

∆ ` c = c : κ Ã irefl
κ = Cap1

∆ ` c2 = c1 : κ Ã e

∆ ` c1 = c2 : κ Ã isymm e
κ = Cap1

∆ ` c1 = c2 : κ Ã e1 ∆ ` c2 = c3 : κ Ã e2

∆ ` c1 = c3 : κ Ã itrans e1 e2
κ = Cap1

∆ ` c : κ

∆ ` c = c : κ Ã λγ :Type.irefl
κ = Cap+

∆ ` c2 = c1 : κ Ã e

∆ ` c1 = c2 : κ Ã λγ :Type.isymm (e γ)
κ = Cap+

∆ ` c1 = c2 : κ Ã e1 ∆ ` c2 = c3 : κ Ã e2

∆ ` c1 = c3 : κ Ã λγ :Type.itrans (e1 γ) (e2 γ)
κ = Cap+

∆ ` τ1 = τ ′1 : Type Ã e1 ∆ ` τ2 = τ ′2 : Type Ã e2

∆ ` τ1 × τ2 = τ ′1 × τ ′2 : Type Ã iprod e1 e2

∆, α : κ ` τ = τ ′ : Type Ã e

∆ ` ∀α :κ.τ = ∀α :κ.τ ′ : Type Ã iall ( !(λα :K(κ).e))
(α 6∈ domain(∆))

∆ ` U1 = U ′
1 : Cap1 Ã eU1 . . . ∆ ` Un = U ′

n : Cap1 Ã eUn

∆ ` A1 = A′1 : Cap+ Ã eA1 . . . ∆ ` An = A′n : Cap+ Ã eAn

∆, α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An ` τ = τ ′ : Type Ã e

∆ ` ∀α :Cap+ whereU1 ¢ α ≤ A1, . . . , Un ¢ α ≤ An.τ
= ∀α :Cap+ whereU ′

1 ¢ α ≤ A′1, . . . , U
′
n ¢ α ≤ A′n.τ ′ : Type Ã teqbound

(α 6∈ domain(∆))

teqbound = iall ( !(λα :Type→ Type.ifun s1 (. . . (ifun sn e) . . .)))
sk = (iall ( !(λγ :Type.ifunright (itrans (eAk γ ⊗ u1)

(iexist ( !(λδ :Type.iprodleft (iextractleft (ilprodright eUk)))))))))

∆ ` τ = τ ′ : Type Ã eτ ∆ ` U = U ′ : Cap1 Ã eU ∆ ` A = A′ : Cap+ Ã eA

∆ ` (C, τ) → 0 = (C ′, τ ′) → 0 : Type Ã teqfun

teqfun = iall ( !(λγ :Type.ifunright (ilfun eU (ilfun (eA γ) (ilfunleft eτ )))))
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C.4.1 Lemmas for CC2→linear Fω

• If ` ∆ and ∆ ` U : Cap1 then ∆(∆), χ : Type→ Type ` U(U) : Type

• If ` ∆ and ∆ ` A : Cap+ then ∆(∆), χ : Type→ Type ` A(A) : Type→ Type

• If ` ∆ and ∆ ` τ : Type then ∆(∆), χ : Type→ Type ` T (τ) : Type

• If ` ∆ and ∆ ` U1 = U2 : Cap1 Ã e then ∆(∆), χ : Type → Type,Γ(∆; ·) ` e :
U(U1) ↔ U(U2)

• If ` ∆ and ∆ ` A1 = A2 : Cap+ Ã e then ∆(∆), χ : Type → Type,Γ(∆; ·) ` e : !∀γ :
Type. !(A(A1) γ) ↔ !(A(A2) γ)

• If ` ∆ and ∆ ` U1 ¢ A1 ≤ A2 Ã e then ∆(∆), χ : Type → Type,Γ(∆; ·) ` e :
!S(U1 ¢ A1 ≤ A2)

• If ` ∆ and ∆ ` τ1 = τ2 : Type Ã e then ∆(∆), χ : Type → Type,Γ(∆; ·) ` e :
!T (τ1) ↔ !T (τ2)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` A : Cap+ then A([α′ ← A′]A) = [α′ ← A[A′]]A(A)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` U : Cap1 then U([α′ ← A′]U) = [α′ ← A′′]U(U)
for any A′′

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` A : Cap+ then A([α′ ← U ′]A) = [α′ ← U ′′]A(A)
for any U ′′

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` U : Cap1 then U([α′ ← U ′]U) = [α′ ← U(U ′)]U(U)

• If ` ∆ and ∆ ` α′ : Cap+ and ∆ ` τ : Type then T ([α′ ← A′]τ) = [α′ ← A[A′]]T (τ)

• If ` ∆ and ∆ ` α′ : Cap1 and ∆ ` τ : Type then T ([α′ ← U ′]τ) = [α′ ← U(U ′)]T (τ)

• If ` ∆ and ∆ ` α′ : Type and ∆ ` τ : Type then T ([α′ ← τ ′]τ) = [α′ ← T (τ ′)]T (τ)

• If ` ∆ and ∆ ` Γ then:

� If ∆;Γ ` v : τ then ∆(∆), χ : Type→ Type;Γ(∆; Γ), Γ′ ` V(v) : !T (τ)

� If ∆;Γ ` h : τ then ∆(∆), χ : Type→ Type;Γ(∆; Γ), Γ′ ` H(h) : !T (τ)

� If ∆; Γ;U ¢A ` e then ∆(∆), χ : Type→ Type, γ : Type;Γ(∆; Γ),Γ′, Γ′′ ` E(e) :
true

where Γ′ = !(new : () ( ∃ρ : Type.χ ρ), !(free : ∀ρ : Type.χ ρ → ()), !(use : ∀ρ :
Type.χ ρ → χ ρ)

where Γ′′ = zP : γ, zU : U(U), !(zA : A(A) γ)

D Translating CC/CCL to CC/SLL
This section applies the techniques from the CC0-to-LC translation to the original calculus
of capabilities [7] (referred to here as �CC/CCL�). Sections D.1 and D.2 de�ne CC/CCL in
two pieces: a small logic inside the type system, called CCL (section D.2), and the logic-
independent part of the language (section D.1). Section D.3 de�nes an alternate logic, SLL,
based on LC, and adapts the soundness proof of Walker, Crary, and Morrisett [8] to show
the soundness of CC/SLL. Section D.4 translates CC/CCL to CC/SLL and describes the
proof of the translation's type correctness.
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D.1 Calculus of capabilities (logic-independent portion)
The syntax and rules are taken directly from [7] and [8].

kinds κ = Type | Res | Cap
constructors c = α | τ | r | C

ctor vars α, β, ε, ρ, . . .

types τ = α | int | r handle | ∀[∆](C, τ1, . . . , τn) → 0 at r | 〈τ1, . . . , τn〉 at r

regions r = ρ | ν

ctor ctxts ∆ = · | ∆, α : κ

value ctxts Γ = · | Γ, x : τ

region types Υ = {`1 : τ1, . . . , `n : τn}
memory types Ψ = {ν1 : Υ1, . . . , νn : Υn}

word values v = x | i | ν.` | handle(ν) | v[c]
heap values h = �x f [∆](C, x1 : τ1, . . . xn : τn).e | 〈v1, . . . , vn〉

arithmetic ops p = + | − | ×
declarations d = x = v | x = v1 p v2 | x = h at v | x = #n v | newrgn ρ, x | freergn v

expressions e = let d in e | if0 v then e2 else e3 | v(v1, . . . , vn) | halt v

memory regions R = {`1 7→ h1, . . . , `n 7→ hn}
memories M = {ν1 7→ R1, . . . , νn 7→ Rn}

machine states P = (M, e)

∆ ` · ∆ ` ∆′

∆ ` ∆′, α : κ
(α 6∈ domain(∆, ∆′))

∆ ` · ∆ ` Γ ∆ ` τ : Type
∆ ` Γ, x : τ

(x 6∈ domain(Γ))

. . . , α : κ, . . . ` α : κ ∆ ` int : Type ∆ ` r : Res
∆ ` r handle : Type

∆ ` ν : Res ∆ ` τ1 : Type . . . ∆ ` τn : Type ∆ ` r : Res
∆ ` 〈τ1, . . . , τn〉 at r : Type

∆ ` ∆′ ∆,∆′ ` τ1 : Type . . . ∆, ∆′ ` τn : Type ∆, ∆′ ` C : Cap ∆ ` r : Res
∆ ` ∀[∆′](C, τ1, . . . , τn) → 0 at r : Type

` Υ1 . . . ` Υn

` {ν1 : Υ1, . . . , νn : Υn}
· ` τ1 : Type . . . · ` τn : Type

` {`1 : τ1, . . . , `n : τn}

∆ ` · = · ∆ ` ∆1 = ∆2

∆ ` ∆1, α : κ = ∆2, α : κ
(α 6∈ domain(∆,∆1))
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∆ ` c : κ

∆ ` c = c : κ

∆ ` c2 = c1 : κ

∆ ` c1 = c2 : κ

∆ ` c1 = c2 : κ ∆ ` c2 = c3 : κ

∆ ` c1 = c3 : κ

∆ ` τ1 = τ ′1 : Type . . . ∆ ` τn = τ ′n : Type
∆ ` 〈τ1, . . . , τn〉 at r = 〈τ ′1, . . . , τ ′n〉 at r : Type

∆′′ ` ∆ = ∆′ ∆′′, ∆ ` C = C ′ : Cap
∆′′, ∆ ` τ1 = τ ′1 : Type . . . ∆′′, ∆ ` τn = τ ′n : Type

∆′′ ` ∀[∆](C, τ1, . . . , τn) → 0 at r = ∀[∆′](C ′, τ ′1, . . . , τ ′n) → 0 at r : Type

∆ ` ∆′ ∆, ∆′ ` C : Cap
∆,∆′ ` τ1 : Type . . . ∆, ∆′ ` τn : Type ∆ ` r : Res

Ψ;∆,∆′; Γ, f : τf , x1 : τ1, . . . , xn : τn; C ` e
τf = ∀[∆′](C, τ1, . . . , τn) → 0 at r

Ψ;∆; Γ ` �x f [∆′](C, x1 : τ1, . . . , xn : τn).e at r : τf
(f, x1, . . . , xn 6∈ domain(Γ))

Ψ; ∆; Γ ` v1 : τ1 . . . Ψ;∆; Γ ` vn : τn ∆ ` r : Res
Ψ;∆; Γ ` 〈v1, . . . , vn〉 at r : 〈τ1, . . . , τn〉 at r

Ψ;∆; Γ ` h at r : τ ′ ∆ ` τ ′ = τ : Type
Ψ;∆; Γ ` h at r : τ

Ψ;∆; . . . , x : τ, . . . ` x : τ

Ψ;∆; Γ ` i : int

∆ ` 〈τ1, . . . , τn〉 at ν : Type
Ψ; ∆; Γ ` ν.` : 〈τ1, . . . , τn〉 at ν

(ν 6∈ domain(Ψ))

∆ ` ∀[∆′](C, τ1, . . . , τn) → 0 at ν : Type
Ψ;∆; Γ ` ν.` : ∀[∆′](C, τ1, . . . , τn) → 0 at ν

(ν 6∈ domain(Ψ))

Ψ;∆; Γ ` ν.` : Ψ(ν.`)

Ψ;∆; Γ ` handle(ν) : ν handle

Ψ;∆; Γ ` v : ∀[α : κ,∆′](C, τ1, . . . , τn) → 0 at r ∆ ` c : κ

Ψ;∆; Γ ` v[c] : [α ← c](∀[∆′](C, τ1, . . . , τn) → 0 at r)

Ψ;∆; Γ ` v : τ ′ ∆ ` τ ′ = τ : Type
Ψ;∆; Γ ` v : τ

Ψ;∆; Γ ` v : τ

Ψ; ∆; Γ; C ` x = v =⇒ ∆;Γ, x : τ ; C
(x 6∈ domain(Γ))
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Ψ; ∆; Γ ` v1 : int Ψ;∆; Γ ` v2 : int
Ψ;∆; Γ; C ` x = v1 p v2 =⇒ ∆;Γ, x : int; C (x 6∈ domain(Γ))

Ψ;∆; Γ; C ` d =⇒ ∆′; Γ′; C ′ Ψ;∆′; Γ′;C ′ ` e

Ψ;∆; Γ; C ` let d in e

Ψ;∆; Γ ` v : int Ψ;∆; Γ; C ` e2 Ψ;∆; Γ; C ` e3

Ψ;∆; Γ; C ` if0 v then e2 else e3

` Ψ Ψ ` R1 at ν1 : Υ1 . . . Ψ ` Rn at νn : Υn Ψ = {ν1 : Υ1, . . . , νn : Υn}
` {ν1 7→ R1, . . . , νn 7→ Rn} : Ψ

Ψ; ·; · ` h1 at ν : τ1 . . . Ψ; ·; · ` hn at ν : τn

Ψ ` {`1 7→ h1, . . . , `n 7→ hn} at ν : {`1 : τ1, . . . , `n : τn}

` M : Ψ Ψ ` C sat Ψ; ·; ·; C ` e

` (M, e)

D.2 CC/CCL
CC/CCL extends section D.1 with the following. The syntax and rules are taken directly
from [7] and [8]. Note that [7] includes a rule ∆ ` {r+} = {r+} : Cap, while the technical
report [8] omits this rule. This section omits the rule as well, since the rule can be derived
from ∆ ` C = C : Cap and ∆ ` {r1} = {r+} : Cap and the congruence rule for C:

∆ ` {r+} = {r1} : Cap
∆ ` {r+} = {r1} : Cap

∆ ` {r1} : Cap
∆ ` {r1} = {r1} : Cap ∆ ` {r1} = {r+} : Cap
∆ ` {r+} = {r+} : Cap

capabilities C = ε | ∅ | {rϕ} | C1 ⊕ C2 | C

multiplicities ϕ = 1 | +
ctor ctxts ∆ = . . . | ∆, ε ≤ C

∆ ` ∆′ ∆, ∆′ ` C : Cap
∆ ` ∆′, α ≤ C

(α 6∈ domain(∆, ∆′))

. . . , α ≤ C, . . . ` α : Cap ∆ ` ∅ : Cap ∆ ` r : Res
∆ ` {rϕ} : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊕ C2 : Cap

∆ ` C : Cap
∆ ` C : Cap

∆ ` ∆1 = ∆2 ∆,∆1 ` C1 = C2 : Cap
∆ ` ∆1, α ≤ C1 = ∆2, α ≤ C2

(α 6∈ domain(∆, ∆1))
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∆ ` C1 = C ′1 : Cap ∆ ` C2 = C ′2 : Cap
∆ ` C1 ⊕ C2 = C ′1 ⊕ C ′2 : Cap

∆ ` C : Cap
∆ ` ∅ ⊕ C = C : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊕ C2 = C2 ⊕ C1 : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap ∆ ` C3 : Cap
∆ ` (C1 ⊕ C2)⊕ C3 = C1 ⊕ (C2 ⊕ C3) : Cap

∆ ` C = C ′ : Cap
∆ ` C = C ′ : Cap

∆ ` C : Cap
∆ ` C = C ⊕ C : Cap

∆ ` ∅ = ∅ : Cap ∆ ` r : Res
∆ ` {r1} = {r+} : Cap

∆ ` C : Cap
∆ ` C = C : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊕ C2 = C1 ⊕ C2 : Cap

∆ ` C1 = C2 : Cap
∆ ` C1 ≤ C2

∆ ` C1 ≤ C2 ∆ ` C2 ≤ C3

∆ ` C1 ≤ C3

∆ ` C1 ≤ C ′1 ∆ ` C2 ≤ C ′2
∆ ` C1 ⊕ C2 ≤ C ′1 ⊕ C ′2

∆ ` C ≤ C ′

∆ ` C ≤ C ′
. . . , α ≤ C, . . . ` α ≤ C

∆ ` C : Cap
∆ ` C ≤ C

Ψ;∆; Γ ` v : ∀[α ≤ C ′′, ∆′](C ′, τ1, . . . , τn) → 0 at r ∆ ` C ≤ C ′′

Ψ;∆; Γ ` v[C] : [α ← C](∀[∆′](C ′, τ1, . . . , τn) → 0 at r)

Ψ;∆; Γ ` v : r handle Ψ;∆; Γ ` h at r : τ ∆ ` C ≤ C ′ ⊕ {r+}
Ψ;∆; Γ; C ` x = h at v =⇒ ∆;Γ, x : τ ; C

(x 6∈ domain(Γ))

Ψ;∆; Γ ` v : 〈τ0, . . . τn−1〉 at r ∆ ` C ≤ C ′ ⊕ {r+}
Ψ;∆; Γ; C ` x = #k v =⇒ ∆; Γ, x : τk; C

(x 6∈ domain(Γ) and 0 ≤ k < n)

Ψ;∆; Γ; C ` newrgnα, x =⇒ ∆, α : Res; Γ, x : α handle;C ⊕ {α1}
(α 6∈ domain(∆) and x 6∈ domain(Γ))

Ψ;∆; Γ ` v : r handle ∆ ` C = C ′ ⊕ {r1} : Cap
Ψ;∆; Γ; C ` freergn v =⇒ ∆;Γ; C ′

Ψ;∆; Γ ` v : ∀[](C ′, τ1, . . . , τn) → 0 at r
Ψ;∆; Γ ` v1 : τ1 . . . Ψ;∆; Γ ` vn : τn

∆ ` C ≤ C ′′ ⊕ {r+} ∆ ` C ≤ C ′

Ψ;∆; Γ; C ` v(v1, . . . , vn)

Ψ;∆; Γ ` v : int ∆ ` C = ∅ : Cap
Ψ;∆; Γ; C ` halt v

· ` C = {νϕ1
1 } ⊕ . . .⊕ {νϕn

n } : Cap
{ν1 : Υ1, . . . , νn : Υn} ` C sat

(all νi distinct)
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D.3 CC/SLL
CC/SLL extends section D.1 with the following.

capabilities C = . . . | {ρ} | C1 ⊗ C2 | C1&C2 | C1 ( C2 | true
cap ctxts Λ = C1, . . . , Cn

∆ ` ∅ : Cap ∆ ` r : Res
∆ ` {r} : Cap ∆ ` true : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊗ C2 : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1&C2 : Cap

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ( C2 : Cap

C ` C ` ∅ Λ ` C

Λ, ∅ ` C
Λ ` true

Λ1 ` C1 Λ2 ` C2

Λ1, Λ2 ` C1 ⊗ C2

Λ ` C1 Λ ` C2

Λ ` C1&C2

Λ, C1 ` C2

Λ ` C1 ( C2

Λ, C1, C2 ` C3

Λ, C1 ⊗ C2 ` C3

Λ, Ck ` C3

Λ, C1&C2 ` C3
(k ∈ {1, 2}) Λ1 ` C1 Λ2, C2 ` C3

Λ1, Λ2, C1 ( C2 ` C3

∆ ` C1 : κ ∆ ` C2 : κ C1 ` C2 C2 ` C1

∆ ` C1 = C2 : κ

∆ ` C1 : κ ∆ ` C2 : κ C1 ` C2

∆ ` C1 ≤ C2

Ψ;∆; Γ ` v : r handle Ψ;∆; Γ ` h at r : τ ∆ ` C ≤ {r} ⊗ true
∆;Γ;C ` x = h at v =⇒ ∆;Γ, x : τ ; C

(x 6∈ domain(Γ))

Ψ;∆; Γ ` v : 〈τ0, . . . τn−1〉 at r ∆ ` C ≤ {r} ⊗ true
Ψ;∆; Γ; C ` x = #k v =⇒ ∆; Γ, x : τk; C

(x 6∈ domain(Γ) and 0 ≤ k < n)

∆ ` C ⊗ {α} = C ′ : Cap
Ψ;∆; Γ; C ` newrgnα, x =⇒ ∆, α : Res; Γ, x : α handle;C ′ (α 6∈ domain(∆) and x 6∈ domain(Γ))

Ψ;∆; Γ ` v : r handle ∆ ` C = C ′ ⊗ {r} : Cap
Ψ;∆; Γ; C ` freergn v =⇒ ∆;Γ; C ′

Ψ;∆; Γ ` v : ∀[](C ′, τ1, . . . , τn) → 0 at r
Ψ;∆; Γ ` v1 : τ1 . . . Ψ;∆; Γ ` vn : τn

∆ ` C ≤ {r} ⊗ true ∆ ` C ≤ C ′

Ψ;∆; Γ; C ` v(v1, . . . , vn)
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Ψ; ∆; Γ ` v : int
Ψ;∆; Γ; C ` halt v

De�ne Ψ = Ψ1, Ψ2 i� Ψ = Ψ1 ∪Ψ2 and the domains of Ψ1 and Ψ2 are disjoint.

{} ` ∅ sat

{ν : Υ} ` {ν} sat

Ψ1 ` C1 sat Ψ2 ` C2 sat

Ψ1, Ψ2 ` C1 ⊗ C2 sat

Ψ ` C1 sat Ψ ` C2 sat

Ψ ` C1&C2 sat

for all Ψ1 and Ψ2.((Ψ2 = Ψ, Ψ1 and Ψ1 ` C1 sat) implies Ψ2 ` C2 sat)
Ψ ` C1 ( C2 sat

Ψ ` true sat

Ψ1 ` C1 sat . . . Ψn ` Cn sat

Ψ1, . . . , Ψn ` C1, . . . , Cn sat

D.3.1 CC/SLL lemmas
• If Ψ ` Λ sat and Λ ` C then Ψ ` C sat. Proof: see [12].

• If ` (M, e) and (M, e) 7−→∗ (M ′, e′) then either e′ = halt v or there is some (M ′′, e′′)
such that (M ′, e′) 7−→ (M ′′, e′′). Proof: based on proof in [8]; see [12].

D.4 Translation: CC/CCL→CC/SLL

From the CC0→CC1 translation, keep C(), S(), ∆(), changing {ρϕ} to {rϕ}. Call these
C1 (), S1 (), ∆1 ().

From the CC1→CC2 translation, keep U(), A(), ∆(), [], changing {ρϕ} to {rϕ}. Call
these U2 (), A2 (), ∆2 (), []2 .

From the CC2→LC translation, keep U(), A(), ∆(), [], changing {ρϕ} to {rϕ} and {ρ}
to {r}. Call these U3 (), A3 (), ∆3 (), []3 .

C(∆, C) = [∆]C(C)
C(C) = U3 (U2 (C1 (C)))⊗A3 (A2 (C1 (C)))⊗ true
∆(∆) = ∆3 (∆2 (∆1 (∆)))
[∆] = [∆2 (∆1 (∆))]3U3 ([∆1 (∆)]2 )
U3 ([α1 ← U1, . . . , αn ← Un]) = [α1 ← U3 (U1), . . . , αn ← U3 (Un)]
T (α) = α
T (int) = int
T (r handle) = r handle
T (∀[∆](C, τ1, . . . , τn) → 0 at r) = ∀[∆(∆)]([∆]C(C), [∆]T (τ1), . . . , [∆]T (τn)) → 0 at r
T (〈τ1, . . . , τn〉 at r) = 〈T (τ1), . . . , T (τn)〉 at r

64



Γ(·) = ·
Γ(x : τ, Γ) = x : T (τ),Γ(Γ)
Υ({`1 : τ1, . . . , `n : τn}) = {`1 : T (τ1), . . . , `n : T (τn)}
Ψ({ν1 : Υ1, . . . , νn : Υn}) = {ν1 : Υ(Υ1), . . . , νn : Υ(Υn)}
The translations of v, h, d, and e are directed by typing judgments:

• Ψ;∆; Γ ` v : τ Ã V(v)

• Ψ;∆; Γ ` h at r : τ Ã H(h at r)

• Ψ;∆; Γ; C ` d =⇒ ∆′; Γ′;C ′ Ã D(d)

• Ψ;∆; Γ; C ` e Ã E(e)

For conciseness, though, most of the de�nitions below suppress the typing judgment when
it is not immediately relevant.

V(x) = x
V(i) = i
V(ν.`) = ν.`
V(handle(ν)) = handle(ν)

Ψ;∆; Γ ` v : ∀[α : κ,∆′](C, τ1, . . . , τn) → 0 at r Ã v′ ∆ ` c : κ

Ψ;∆; Γ ` v[c] : [α ← c](∀[∆′](C, τ1, . . . , τn) → 0 at r) Ã v′[c]
(κ = Res)

Ψ;∆; Γ ` v : ∀[α : κ,∆′](C, τ1, . . . , τn) → 0 at r Ã v′ ∆ ` c : κ

Ψ;∆; Γ ` v[c] : [α ← c](∀[∆′](C, τ1, . . . , τn) → 0 at r) Ã v′[T (c)]
(κ = Type)

Ψ;∆; Γ ` v : ∀[α : κ,∆′](C, τ1, . . . , τn) → 0 at r Ã v′ ∆ ` c : κ

Ψ;∆; Γ ` v[c] : [α ← c](∀[∆′](C, τ1, . . . , τn) → 0 at r)
Ã v′[A3 (A2 (S1 (c)))][U3 (U2 (C1 (c)))][A3 (A2 (C1 (c)))]

(κ = Cap)

Ψ;∆; Γ ` v : ∀[α ≤ C ′′,∆′](C ′, τ1, . . . , τn) → 0 at r Ã v′ ∆ ` C ≤ C ′′

∆1 (∆) ` C1 (C) ≤ C1 (C ′′) Ã UB

Ψ;∆; Γ ` v[C] : [α ← C](∀[∆′](C ′, τ1, . . . , τn) → 0 at r)
Ã v′[A3 (A2 (S1 (C)))][U3 (UB)][A3 (A2 (C1 (C)))]

Ψ;∆; Γ ` v : τ ′ Ã v′ ∆ ` τ ′ = τ : Type
Ψ; ∆; Γ ` v : τ Ã v′

Ψ;∆; Γ ` h at r : τ ′ Ã h′ ∆ ` τ ′ = τ : Type
Ψ;∆; Γ ` h at r : τ Ã h′

H(�x f [∆](C, x1 : τ1, . . . xn : τn).e at r) =
�x f [∆(∆)]([∆]C(C), x1 : [∆]T (τ1), . . . xn : [∆]T (τn)).E(e)

H(〈v1, . . . , vn〉 at r) = 〈V(v1), . . . ,V(vn)〉
D(x = v) = (x = V(v))
D(x = v1 p v2) = (x = V(v1) pV(v2))

Ψ;∆; Γ ` v : r handle Ã v′ Ψ;∆; Γ ` h at r : τ Ã h′ ∆ ` C ≤ C ′ ⊕ {r+}
Ψ;∆; Γ; C ` x = h at v =⇒ ∆;Γ, x : τ ;C Ã (x = h′ at v′)

(x 6∈ domain(Γ))

D(x = #n v) = (x = #nV(v))
D(newrgn ρ, x) = newrgn ρ, x
D(freergn v) = freergnV(v)
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E(let d in e) = letD(d) in E(e)
E(if0 v then e2 else e3) = if0V(v) then E(e2) else E(e3)
E(v(v1, . . . , vn) = V(v)(V(v1), . . . ,V(vn)))
E(halt v) = haltV(v)

` Ψ Ψ ` R1 at ν1 : Υ1 Ã R′1 . . . Ψ ` Rn at νn : Υn Ã R′n
Ψ = {ν1 : Υ1, . . . , νn : Υn}

` {ν1 7→ R1, . . . , νn 7→ Rn} : Ψ Ã {ν1 7→ R′1, . . . , νn 7→ R′n}

Ψ; ·; · ` h1 at ν : τ1 Ã h′1 . . . Ψ; ·; · ` hn at ν : τn Ã h′n
Ψ ` {`1 7→ h1, . . . , `n 7→ hn} at ν : {`1 : τ1, . . . , `n : τn} Ã {`1 7→ h′1, . . . , `n 7→ h′n}

D.4.1 Lemmas for CC/CCL→CC/SLL
• If ` ∆ and ∆ ` r : Res then [∆]r = r

• If ` ∆ and ∆ ` C : Cap then ∆(∆) ` [∆]C(C) : Cap

• If ` ∆ and ∆ ` C1 = C2 : Cap then ∆(∆) ` [∆]C(C1) = [∆]C(C2) : Cap

• If ` ∆ and ∆ ` C1 ≤ C2 then ∆(∆) ` [∆]C(C1) ≤ [∆]C(C2)

� If in addition ∆1 (∆) ` C1 (C1) ≤ C1 (C2) Ã U
then ∆(∆) ` [∆]U3 (U2 (C1 (C1))) = [∆]U3 (U ⊕ U2 (C1 (C2))) : Cap
and ∆(∆) ` [∆]U3 (U)⊗[∆]A3 (A2 (C1 (C1)))⊗true ≤ [∆]A3 (A2 (C1 (C2)))⊗true

• If ` ∆ and ∆ ` C = C ′ ⊕ {r1} : Cap then ∆(∆) ` [∆]C(C) = ([∆]C(C ′))⊗ {r} : Cap

• If ` ∆ and ∆ ` C ≤ C ′ ⊕ {r+} then ∆(∆) ` [∆]C(C) ≤ {r} ⊗ true

• If ` ∆ then ` [∆]C(∅)
• If ` ∆ and ∆ ` τ : Type then ∆(∆) ` [∆]T (τ) : Type

• If ` ∆ and ∆ ` τ1 = τ2 : Type then ∆(∆) ` [∆]T (τ1) = [∆]T (τ2) : Type

• If ` Ψ and Ψ(ν.`) exists then Ψ(Ψ)(ν.`) = [∆]T (Ψ(ν.`))

• If ` ∆ and ∆ ` α′ : Cap and ∆ ` C : Cap then
C([α′ ← C ′]C) = [α′U ← U3 (U2 (C1 (C ′))), αA ← A3 (A2 (C1 (C ′))),
α′SU ← U3 (U2 (S1 (C ′))), αSA ← A3 (A2 (S1 (C ′)))]C(C)

• If ` ∆ and ∆ ` α′ : Cap and ∆ ` τ : Type then
T ([α′ ← C ′]τ) = [α′U ← U3 (U2 (C1 (C ′))), αA ← A3 (A2 (C1 (C ′))),
α′SU ← U3 (U2 (S1 (C ′))), αSA ← A3 (A2 (S1 (C ′)))]T (τ)

• If ` ∆ and ∆ ` α′ : Type and ∆ ` τ : Type then T ([α′ ← τ ′]τ) = [α′ ← T (τ ′)]T (τ)

• If ` Ψ and ` ∆ and ∆ ` Γ then:

� If Ψ;∆; Γ ` v : τ Ã v′ then Ψ(Ψ);∆(∆); [∆]Γ(Γ) ` [∆]v′ : [∆]T (τ)
� If Ψ;∆; Γ ` h at r : τ Ã h′ then Ψ(Ψ);∆(∆); [∆]Γ(Γ) ` [∆]h′ at r : [∆]T (τ)
� If Ψ;∆; Γ; C ` d =⇒ ∆′; Γ′; C ′ Ã d′ then Ψ(Ψ);∆(∆); [∆]Γ(Γ); [∆]C(C) `

[∆]d′ =⇒ ∆(∆′); [∆]Γ(Γ′); [∆]C(C ′) and [∆] = [∆′]
� If Ψ;∆; Γ; C ` e Ã e′ then Ψ(Ψ);∆(∆); [∆]Γ(Γ); [∆]C(C) ` [∆]e′

• If ` Ψ and ∆ ` M : Ψ Ã M ′ and Ψ ` C sat and Ψ; {}; {}; C ` e Ã e′ then
` M ′ : Ψ(Ψ) and Ψ(Ψ) ` C(C) sat and Ψ(Ψ); {}; {}; C(C) ` e′

For proofs, see [12].
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