
Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi Sidd Puri Jose Oglesby
Microsoft Research

{dtarditi,siddpuri,joseogl}@microsoft.com

Abstract
GPUs are difficult to program for general-purpose uses. Program-
mers can either learn graphics APIs and convert their applications
to use graphics pipeline operations or they can use stream program-
ming abstractions of GPUs. We describe Accelerator, a system that
uses data parallelism to program GPUs for general-purpose uses
instead. Programmers use a conventional imperative programming
language and a library that provides only high-level data-parallel
operations. No aspects of GPUs are exposed to programmers. The
library implementation compiles the data-parallel operations on the
fly to optimized GPU pixel shader code and API calls. We describe
the compilation techniques used to do this. We evaluate the effec-
tiveness of using data parallelism to program GPUs by providing
results for a set of compute-intensive benchmarks. We compare
the performance of Accelerator versions of the benchmarks against
hand-written pixel shaders. The speeds of the Accelerator versions
are typically within 50% of the speeds of hand-written pixel shader
code. Some benchmarks significantly outperform C versions on a
CPU: they are up to 18 times faster than C code running on a CPU.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers

General Terms Measurement, Performance, Experimentation,
Languages

Keywords Graphics processing units, data parallelism, just-in-
time compilation

1. Introduction
Highly programmable graphics processing units (GPUs) became
available in 2001 [10] and have evolved rapidly since then [15].
GPUs are now highly parallel processors that deliver much higher
floating-point performance for some workloads than comparable
CPUs. For example, the ATI Radeon x1900 processor has 48 pixel
shader processors, each of which is capable of 4 floating-point op-
erations per cycle, at a clock speed of 650 MHz. It has a peak
floating-point performance of over 250 GFLOPS using single-
precision floating-point numbers, counting multiply-adds as two
FLOPs. GPUs have an explicitly parallel programming model and

c©ACM, 2006. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in ASPLOS’06 October 21–25, 2006, San Jose, California, USA.

their performance continues to increase as transistor counts in-
crease.

The performance available on GPUs has led to interest in using
GPUs for general-purpose programming [16, 8]. It is difficult,
however, for most programmers to program GPUs for general-
purpose uses.

In this paper, we show how to use data parallelism to program
GPUs for general-purpose uses. We start with a conventional im-
perative language, C# (which is similar to Java). We provide a li-
brary that implements an abstract data type providing data-parallel
arrays; no aspects of GPUs are exposed to programmers. The li-
brary evaluates the data-parallel operations using a GPU; all other
operations are evaluated on the CPU. For efficiency, the library
does not immediately perform data-parallel operations. Instead, it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls.

Data-parallel arrays only provide aggregate operations over en-
tire input arrays. The operations are a subset of those found in lan-
guages like APL and include element-wise arithmetic and compar-
ison operators, reduction operations (such as sum), and transfor-
mations on arrays. Data-parallel arrays are functional: each oper-
ation produces a new data-parallel array. Programmers must ex-
plicitly convert back and forth between conventional arrays and
data-parallel arrays. The lazy compilation is typically done when
a program converts a data-parallel array to a normal array.

Compiling data-parallel operations lazily to a GPU allows us to
implement the operations efficiently: the system can avoid creat-
ing large numbers of temporary data-parallel arrays and optimize
the creation of pixel shaders. It also allows us to avoid exposing
GPU details to programmers: the system manages the use of GPU
resources automatically and amortizes the cost of accessing graph-
ics APIs. Compilation at run time also allows the system to handle
properties and features that vary across GPU manufacturers and
models.

We have implemented these ideas in a system called Acceler-
ator. We evaluate the effectiveness of the approach using a set of
benchmarks for compute-intensive tasks such as image processing
and computer vision, run on several generations of GPUs from both
ATI and NVidia. We implemented the benchmarks in hand-written
pixel shader assembly for GPUs, C# using Accelerator, and C++ for
the CPU. The C# programs, including compilation overhead, are
typically within 2×of the speed of the hand-written pixel shader
programs, and sometimes exceed their speeds. The C# programs,
like the hand-written pixel shader programs, often outperform the
C++ programs (by up to 18×).

Prior work on programming GPUs for general-purpose uses ei-
ther targets the specialized GPU programming model directly or
provides a stream programming abstraction of GPUs. It is diffi-
cult to target the GPU directly. First, programmers need to learn
the graphics programming model, which is specialized to the set of



operations implemented in a typical graphics pipeline. Second, pro-
grammers need to learn about pixel shaders. Most of the general-
purpose computing power of GPUs is accessible from one part of
the graphics pipeline, pixel shading. Pixel shading refers to com-
puting the desired value of an output pixel (i.e., a location in mem-
ory). Pixel shaders have a highly restricted parallel programming
model in which each element of an output array is computed com-
pletely independently of every other element in the array. Third,
programmers need to learn specialized graphics APIs such as Di-
rectX or OpenGL, and new programming languages for program-
ming pixel shaders such as Cg [13], HLSL, and the OpenGL Shad-
ing Language. Finally, they must implement algorithms using this
programming model. The task is complicated by differences in
available resources, implemented features, and even versions of the
specialized graphics APIs implemented across models and manu-
facturers of GPUs.

A higher-level approach is to abstract GPUs as stream co-
processors that are programmed in tandem with CPUs. This is
the approach used by Brook [3]. In Brook, a stream is an array of
records. The GPU part of the program is organized as a collection
of kernels, each of which takes one or more streams as input and
writes one or more streams as output. Kernels are generalizations
of pixel shader programs. A kernel is a function that is applied to
each element in a set of input streams to produce elements for a set
of output streams. Kernels are restricted in their operations to avoid
side-effects between computations of different stream elements in
an output stream. Kernels are connected to each other in a dataflow
fashion.

Programmers use an extension of C that contains new stream
types and a new keyword that designates certain functions as ker-
nels. Brook uses a special C compiler to compile the kernels to Cg
and also generates C++ code to connect the kernels. Programmers
have to divide programs into kernels and handle GPU resource lim-
itations as well. It is possible for the system to generate Cg that will
not run on a given GPU.

Accelerator differs from Brook in two ways. First, it provides an
even higher-level programming model. Programmers do not have
to divide computations into kernels and no aspects of GPUs are ex-
posed to programmers. Accelerator automatically divides the com-
putation into pixel shaders. Accelerator also provides transforma-
tions on entire arrays. Second, Accelerator uses just-in-time com-
pilation instead of ahead-of-time compilation. This has two advan-
tages: the system can handle limitations and features that vary by
GPU model and it requires no changes to existing tool chains, re-
ducing the barriers to adoption.

The remainder of the paper is organized as follows. Section 2
describes additional related work. Section 3 provides background
information on GPUs, the graphics pipeline, and how to program
GPUs. Section 4 describes the high-level data-parallel arrays and
operations on those arrays. Section 5 describes how to translate
those operations to GPU operations. Section 6 provides perfor-
mance results. Finally, Section 7 concludes.

2. Additional related work
The Sh toolkit [14] is also closely related to Accelerator. Sh al-
lows developers to write GPU applications within one environment
without the need to resort to GPU-specific tools like Cg or HLSL.
Like Brook, Sh provides a stream programming model for gen-
eral purpose computation on the GPU. Instead of compiling to Cg,
however, Sh provides its own code generators that can target ei-
ther GPUs or CPUs. Sh provides an interface that makes it possible
to extend the system to additional targets. Sh provides an immedi-
ate mode in which graphics operations are carried out immediately
and a retained mode in which operations are saved up for later ex-
ecution. The retained mode in Sh is most similar to Accelerator.

Retained mode makes it possible to build and manipulate stream
expressions at a high level.

The compilation of aggregate array expressions has a long his-
tory starting with APL [7]. Later on, it was recognized that these
ideas could be applied to vector machines [4]. The advent of data-
parallel high-performance computers such as the Connection Ma-
chine brought forth new language proposals such as the Paralation
model [18]. Over the years many specialized high-level languages
have been developed for numerically intensive computation includ-
ing NESL [1], ZPL [9] and Single Assignment C (SaC) [20]. Ac-
celerator shares the use of high-level aggregate data structures with
all of these approaches.

3. Background
GPUs are special-purpose processors designed to render three-
dimensional scenes quickly. A scene is divided into triangles and
a collection of images that provide the “texture” for each triangle.
The triangles are specified by vertices. Each triangle can be trans-
formed independently. The color of each output pixel for a triangle
can also be computed independently. This independence allows the
use of the GPU as a data-parallel array processor. GPUs also have
special-purpose hardware support for graphics operations such as
clipping and z-buffering. Even though GPUs are special-purpose
processors, they are in almost every desktop system today. Hun-
dreds of millions are sold yearly [15].

3.1 Processor architecture

A simplified block diagram of a GPU is shown in Figure 1. The
diagram shows the programmable parts of a GPU and omits some
non-programmable, graphics-specific parts. A complete description
of the operations available on GPUs can be found in [2]. An ar-
ray of vertex processors receives the vertices along with optional
properties such as their color and normal vectors. The processors
compute, via programs called vertex shaders, the output positions
of the vertices. The transformed vertices are used by the rasterizer
to produce the pixel address for each pixel in the triangles. These
pixel addresses are used by the pixel processors in programs called
pixel shaders to compute the final color of each pixel.

As an example, the Nvidia GeForce 6800 has 6 vertex proces-
sors and 16 pixel processors. Each vertex or pixel processor has a
4-way vector processing unit which is capable of 16-bit or 32-bit
floating-point operations. Each processor has constants and tempo-
rary registers. However, there is no temporary memory. That is, a
shader cannot write to memory other than by producing a return
value.

3.2 Steps in graphics rendering

The steps to rendering an image on the GPU are:

1. Fill a buffer with vertices for the triangles to be rendered.

2. Compile and set the vertex program that is to transform the
vertices.

3. Compile and set the pixel shader program that is to compute the
value of output pixels.

4. Render:

(a) Transfer the vertex buffer and shaders to video memory;

(b) Run the vertex shader given the vertex buffer as input;

(c) Run the rasterizer on the output of the vertex shader;

(d) Run the pixel shader on the output of the rasterizer and any
specified input textures;

(e) Pass the output value to display memory or texture memory,
as specified by the user.



Pixel 
Proce
ssor

Vertex Scheduler

Rasterizer

Vertices, Properties

Textures
(GPU memory)

Vertex 
Proce
ssor

Vertex 
Proce
ssor

Vertex 
Proce
ssor

Vertex 
Proce
ssor

Vertex 
Proce
ssor

Vertex 
Proce
ssor

Pixel 
Proce
ssor

Pixel 
Proce
ssor

Pixel 
Proce
ssor

Pixel 
Proce
ssor

Pixel 
Proce
ssor

Pixel 
Proce
ssor

Pixel 
Proce
ssor

GPU memory

Figure 1. Simplified block diagram for a GPU

A simple use of this graphics architecture is drawing a single
triangle with a given image painted on its surface. This is done
by storing the three vertices that represent the triangle in a vertex
buffer. Each vertex has an x, y, and z coordinate. A simple vertex
shader program is written that passes the vertices unaltered to the
output register. To apply the texture to the surface of the triangle, a
pixel shader program is written that does one texture lookup (from
the given image) and returns the fetched value directly to the output
register. The inputs to the pixel shader are the coordinates of the
output pixel. The system stores the result from the output register
at the memory location for the output pixel.

3.3 Programming model

The actual architectures of GPUs are hidden behind abstract virtual
machines provided via graphics APIs like DirectX or OpenGL. To
program the GPU, one targets those APIs.

DirectX and OpenGL provide processor-independent program-
ming languages for shaders. Both provide an assembly language
and higher-level C-like programming language. These languages
are just-in-time compiled. Neither virtualizes the resources of a
GPU, but requires the user to adhere to the strict register and mem-
ory limits of an underlying processor.

Programs are limited in the number of registers they can use and
the number of instructions they can contain. Even the length of a
chain of memory address calculations can be limited. There was
also no looping or branching allowed in the programmable shaders
until recently. Shader programs are strict SIMD programs. Many
shaders allow only a single output value to be computed per pixel.

For example, in DirectX Pixel Shader 2 there are 12 temporary
registers, 8 texture coordinate registers, 32 floating-point constant
registers, and 16 sampler registers. A texture coordinate register
contains a pixel address. These read-only registers are set by the
rasterizer from properties of the input vertices. A sampler register
is associated with an input texture and is used in memory lookup

instructions to indicate which texture to read. In addition to register
limits, there are instruction limits. A pixel shader program can
have at most 32 texture lookup and 64 arithmetic instructions. The
texture lookup instructions are limited further by restrictions on
how the address of the lookup is computed using other values read
from textures.

As an example, the pixel shader that follows is one that would be
run in the example above. It copies the input texture to the output:

ps_2_0
dcl_2d s0
dcl t0.xy
texld r0, t0, s0
mov oC0, r0

The first line declares the version of DirectX Pixel Shader As-
sembly language in use. The second line declares that there is an
input texture in the sampler register, s0, and that it has two dimen-
sions. The third line declares a two-dimensional texture coordinate
register, t0. The fourth line is a texture load instruction that loads
the temporary register, r0, with the value of the input texture that is
bound to the sampler register s0 at the location in t0. The final line
moves the value from r0 to the write-only output register oC0. For
each pixel, the rasterizer sets the value of the read-only texture co-
ordinate register t0 by interpolating the output values of the vertex
shader. For this pixel shader, we set up the interpolation process so
that t0 contains the coordinates of the output value. So the above
pixel shader means that the value to place in the output location in
t0 is the value in the input texture at that same location.

The number of registers and the number of instructions in pixel
shaders has continued to increase over time. For example, DirectX
Pixel Shader 3 allows 32 temporary registers, 10 texture coordinate
registers, 224 floating-point constant registers, and 16 sampler reg-
isters. It also allows 512 or more instructions in a pixel shader (the
limit depends on the target GPU). Note that the some of these limits
virtualize the underlying hardware and performance may degrade
if too many instructions or registers are used in practice.

Accelerator supports DirectX Pixel Shader 2 and DirectX Pixel
Shader 3 and uses the most recent version of DirectX pixel shading
that is supported by a target GPU card.

3.4 Advantages and disadvantages of targeting GPUs

Using GPUs as targets has some key advantages. They are a read-
ily available parallel architecture, with one in almost every desktop
system. Because of their explicitly parallel programming model,
existing GPU programs are benefiting from the continued increase
in transistors due to Moore’s law. The performance of GPUs is
still increasing substantially and new GPUs come out every 9 to
18 months that deliver significantly higher performance than pre-
vious versions. GPUs also have much higher peak floating-point
performance than comparable CPUs.

In contrast, most CPU programs use a sequential programming
model and are not benefiting from the continued increase in tran-
sistors due to Moore’s law. They will need to be rewritten or modi-
fied substantially to obtain increased performance from new CPUs
with multiple cores on a chip. Furthermore, CPU clock speeds have
plateaued due to power concerns.

On the other hand, GPU architectures have a number of disad-
vantages for parallel programming. First, GPUs have a SIMD pro-
gramming model. Programs that fit the SIMD model map well and
other programs map less well. GPUs are moving toward a SPMD
model, although use of loops and control-flow instructions in GPU
pixel shaders may currently degrade performance, not improve it.
Second, the actual architectures of GPUs are hidden behind device
drivers that support APIs that implement virtual machines. This ab-
straction and lack of detail can hamper obtaining the most perfor-
mance out of a graphics processor. For example, the virtual ma-
chines have no model of caches and no easy way for programmers



to indicate how to traverse memory to facilitate memory reuse. This
can make it difficult to write parallel programs where memory lo-
cality is crucial to performance. In addition, we must target APIs
designed to support graphics that introduce extra complexity and
overhead. Third, the programmable parts of GPUs have had lim-
ited support for primitive types typically found on CPUs. Most no-
tably, they do not support 64-bit floating-point numbers. Current
programmable parts of GPUs support 32-bit floating-point numbers
and floating-point numbers with lower precision. Integers must be
encoded using floating-point numbers. However, the primitive type
support is improving: newer GPUs will have built-in support for 8,
16, and 32-bit integers and support for 32-bit floating-point num-
bers is evolving to be IEEE compliant [2].

4. Data-parallel programming model
The fundamental data type in Accelerator is a parallel array. The
parallel array is similar to a conventional array—it has rank and
dimensions—however, it does not provide an indexing operation
that allows access to an individual element. That is, if A is a parallel
array, it is not possible to access A2,3 directly from C# without first
converting A to a conventional array.

The elements within a parallel array must all have the same
primitive type. Each primitive type gives rise to a subtype of par-
allel array. Currently, Accelerator allows element types to be one
of the following: float, int, bool, float4 (a vector of 4 floating-point
values).

Operations on parallel arrays are functional in style: the result
of any operation is a new array and the parameters are not modified.
Operations do not allow any side-effects.

In the C# library, parallel arrays are implemented as an ab-
stract class ParallelArray with a subclass corresponding to each
element type. These subclasses are FloatParallelArray, IntParalle-
lArray, BoolParallelArray and Float4ParallelArray.

There are six general classes of operations on data-parallel
arrays:

• Construction: a parallel array is constructed from an object of
type System.Array. The dimensions of the parallel array and
values contained within are identical to those of the parameter
System.Array.

• Conversion back to a normal array

• Element-wise operations

• Reductions

• Transformations on arrays

• Linear algebra

The following sections explain the various operations, except for
construction and conversion back to a normal array. The operations
are summarized in Tables 1 to 4. Ri,j denotes the value of the result
array at location (i, j), given input arrays A, B, and C as needed.
For simplicity, only formulas for 2-dimensional arrays are given.

4.1 Element-wise operations

Many operations are element-wise operations. The value of the nth
location in the resulting array is computed by taking the value of
the nth location in each parameter array and applying a function
to the values. Table 1 shows some of the element-wise operations
provided by Accelerator.

4.2 Reductions

A useful array operation is a reduction by an operation across a
particular dimension. For example, the reduction of addition across
the first dimension of a two dimensional array is a row sum, i.e.,

Operation Definition
Add Ri,j = Ai,j + Bi,j

Subtract Ri,j = Ai,j − Bi,j

Multiply Ri,j = Ai,j × Bi,j

Divide Ri,j = Ai,j ÷ Bi,j

Max Ri,j = max
(
Ai,j , Bi,j

)
Min Ri,j = min

(
Ai,j , Bi,j

)
Select Ri,j =

{
Bi,j if Ai,j > 0
Ci,j otherwise

Cos Ri,j = cos Ai,j

Sqrt Ri,j =
√

Ai,j

And Ri,j = Ai,j ∧ Bi,j

Or Ri,j = Ai,j ∨ Bi,j

CompareEqual Ri,j =

{
true if Ai,j = Bi,j

false otherwise
CompareGreater Ri,j = Ai,j > Bi,j

CompareGreaterEqual Ri,j = Ai,j ≥ Bi,j

CompareLess Ri,j = Ai,j < Bi,j

CompareLessEqual Ri,j = Ai,j ≤ Bi,j

Cond Ri,j =

{
Bi,j if Ai,j = true
Ci,j otherwise

Table 1. Some element-wise operations

Operation Definition

Sum(1) Ri =
∑

j Ai,j

Product(1) Ri =
∏

j Ai,j

MaxVal(1) Ri = maxj Ai,j

MinVal(1) Ri = minj Ai,j

All(1) Ri =
∧

j Ai,j

Any(1) Ri =
∨

j Ai,j

Table 2. Reduction operations

Operation Definition
Section

(bi, ci, si, bj , cj , sj)
Ri,j = Abi+si×i, bj+sj×j

Shift(si, sj) Ri,j = Ai−si, j−sj

Rotate(si, sj)
Ri,j =

A(i−si) mod sizei, (j−sj ) mod sizej

Replicate(sizei, sizej) Ri,j = Ai mod sizei, j mod sizej

Expand(bi, ai, bj , aj)
Ri,j =

A(i−bi) mod sizei, (j−bj ) mod sizej

Pad(bi, ai, bj , aj , c) Ri,j =

{
Ai−bi, j−bj

if in bounds
c otherwise

Transpose(1, 0) Ri,j = Aj,i

Table 3. Transformation operations

Operation Definition
DropDimension(1) Ri = Ai,0

AddDimension(1) Ri,j,k = Ai,k

Table 4. Rank changing operations



it computes the one-dimensional array that contains the sum of all
of the elements in each row of the original array. Table 2 shows
examples of reducing in the 1st dimension (i.e., along j).

4.3 Transformations

4.3.1 Affine transformations

Accelerator provides a class of operations that select or duplicate
elements of the given parallel array according to a simple pattern.
This pattern can be specified by an affine transformation of the
coordinates of the input array and by a definition of the value when
the transformed coordinate is out of range. This out-of-range value
can be determined in one of three ways:

• A default return value can be specified.

• The value of the input array closest to the out-of-range coordi-
nates can be returned.

• The transformed coordinates can be taken modulo the size of
each dimension and the value from the input using the trans-
formed coordinates can be returned.

In Table 3, sizei denotes the extent of the array along the i axis.
The Expand and Pad operations enlarge the shape of the array such
that, for example, the extent of R along the i axis is ai + sizei + bi.

4.3.2 Rank-changing operations

There are two helpful rank-changing operations shown in Table 4.
The first drops a dimension of an array and the second adds a
dimension to an array.

4.4 Linear algebra

Accelerator provides the standard inner and outer products over two
arrays.

4.5 Other Operations

4.5.1 Arbitrary Selection

To select a subset of elements of a parallel array that can not
be expressed as an affine transformation, Accelerator provides a
Gather operation. Given integer-valued data-parallel arrays I and
J , the result R of Gather(A, I , J) is given by

Ri,j = AIi,j ,Ji,j

The result has the same shape as I and J .

4.5.2 Parallel array of indices

Given the dimensions of the output parallel array, a parallel array is
constructed where each element is the index along a given dimen-
sion.

4.6 Type conversions

Element-wise conversions are provided between parallel arrays
with floating-point elements and parallel arrays with integer ele-
ments. A FloatParallelArray can be converted to a Float4ParallelArray
by replicating the single float value across all 4 components of
the corresponding float4 element There are four ways to convert
a float4 parallel array to a float parallel array. We can select, for
each element, the first, second, third, or fourth component of the
corresponding float4 element.

4.7 Syntax and examples

The C# version of Accelerator provides a set of classes that imple-
ment parallel arrays for each of the supported element types. The
classes provide static functions and operator overloads where ap-
propriate.

using Microsoft.Research.DataParallelArrays;

static float[,] Blur(float[,] array, float[] kernel)
{

float[,] result;
DFPA parallelArray = new DFPA(array);

FPA resultX = new FPA(0f, parallelArray.Shape);
for (int i = 0; i < kernel.Length; i++) {

int[] shiftDir = new int[] { 0, i};
resultX += PA.Shift(parallelArray, shiftDir) * kernel[i];

}

FPA resultY = new FPA(0f, parallelArray.Shape);
for (int i = 0; i < kernel.Length; i++) {

int[] shiftDir = new int[] { i, 0 };
resultY += PA.Shift(resultX, shiftDir) * kernel[i];

}

PA.ToArray(resultY, out result);
parallelArray.Dispose();
return result;

}

Figure 2. 2-dimensional convolution implemented in Accelerator

Figure 2 shows an example of 2-D convolution implemented in
Accelerator. Given an image represented as 2-dimensional array,
2-D convolution computes the value of a pixel in a new image by
multiplying the pixel and its neighbors by weights and summing
the weighted values. The Blur function takes a C# array and 1-
dimensional array of weights as arguments. It converts the C#
array to a parallel array parallelArray. It then computes the
weighted values in the x direction by repeatedly shifting the entire
original image by i pixels and multiplying the shifted image by the
appropriate weight. Operator overloading of * is used here. This
process is then repeated in the y direction. This sample code is
equivalent to the code used in the Convolve benchmark.

5. Translation to the GPU
This section describes approaches for translating Accelerator oper-
ations into a set of GPU operations. We start by describing a simple
approach for translating Accelerator operations. We then refine it in
a step-by-step fashion to create a practical translation.

5.1 A simple approach

As described earlier, the GPU pipeline has two programmable
components—vertex shaders and pixel shaders. Vertex shaders re-
ceive a series of vertices as input and produce a series of vertices
as output. Pixel shaders, on the other hand, have easy access to tex-
ture memory. A pixel shader can read texture memory as inputs and
write to it as outputs, although a pixel shader cannot both read and
write to the same texture at the same time.

In Accelerator, we chose to target solely pixel shaders because
of their more general memory access properties. We implement
all Accelerator arrays as textures that reside in video memory
on the GPU. These textures serve as the inputs and outputs to
pixel shaders. We implement the Accelerator operators using pixel
shaders. The general compilation challenge is to combine multi-
ple operations into one pixel shader, for efficiency reasons that are
discussed in Section 5.2. Because not all operations can be com-
bined, we generally convert Accelerator operations into multiple
pixel shaders.

Pixel shaders, as discussed earlier, have a highly restricted pro-
gramming model. Generally, a pixel shader computes the value of
each output pixel as a function of the output location. The function
is described as a sequential program that may do arithmetic opera-
tions and read texture memory. A pixel shader has limited control-
flow capabilities, for example, only a certain number of branches,



+

secti
on

-

A

/
redu
ce

rotat
e

B

*

DC

Figure 3. Initial expression DAG

and looping that can be statically unrolled by the compiler. In any
case, using control flow may have a severe performance penalty, so
it is usually best to avoid it. The penalty arises from the SIMD ex-
ecution model: all pixel shaders can be considered to be evaluated
in lockstep.

More formally, a pixel shader can be modeled the following
way:

∀j.A[j] = f(B1[φ1(j)], B2[φ2(j)] . . .)

where A is the output texture, B1 to Bn are input textures, j is a
tuple representing a location in A (a singleton for 1-dimensional
arrays and a pair for 2-dimensional arrays), and f is a side-effect-
free function. The φ1, φ2 represent transformations that may be
applied to the output location to compute an input location in a
texture. The transformations are affine transformations combined
with simple rules for handling input locations that are out of bounds
(for example, by subsequently applying a modulus operator to
produce a valid input location or by always using a default value).
The input location transformations actually have hardware support
and may be set up before the pixel shader is evaluated.

Calls to most data-parallel array functions build an expression
DAG that represents the requested operation. This allows us to eval-
uate operations lazily, and to perform operations on the DAG it-
self. Specifically, each Accelerator operation allocates an expres-
sion node that holds the operator and parameter values. The param-
eter values may be child data-parallel arrays or constants.

Calls to operations that convert a data-parallel array to a normal
array trigger evaluation of the expression DAG. The evaluation
process will be described shortly.

Calls to operations that convert a normal array to a data-parallel
array produce textures. These textures are wrapped in an object so
that they can be leaves in an expression DAG. The system eagerly
copies the data from the C# array to a texture. This provides a clean
semantics for the system: subsequent changes to the C# array do
not affect the data-parallel array. The texture memory is reclaimed
when the resulting expression object is finalized by the garbage
collector. Because finalization is unpredictable and texture memory
is quite limited, we recommend that users use an explicit Dispose
operation or the C# using pattern.

Figure 3 shows an example expression DAG. A, B, C, D are
input arrays (represented as textures). The -, /, * and + are
element-wise operations on data-parallel arrays. The rotate,
reduce, and section operators also operate on entire data-
parallel arrays.

5.1.1 Evaluating the expression DAG: take 1

A simple approach to evaluating an expression DAG is to walk
the DAG in a post-order fashion, converting every node to a pixel
shader as we go. That is, every expression DAG node is converted
to a shader that reads the inputs to that node from memory and

writes its output to a newly allocated texture in memory. This
is highly inefficient but useful for understanding how the basic
operations work.

We divide expression operators into three categories and gener-
ate (or call) a different kind of pixel shader for each category.

• Element-wise operators (for example, simple scalar operators
such as +, *, -, /).

• Operators that perform a linear transformation on memory such
as Shift, Rotate, Section, and Expand. These will be referred to
as texture coordinate operators.

• Operators that require several render passes or that access their
parameters’ memory with coordinates that are not an affine
transformation of the output coordinates. These include inner
product, outer product, gather, and reduction operators. We
refer to these informally as “random access” operators.

Element-wise operators are the easiest to handle: they read
several input textures (all of the same size) and write an output
texture of the same size. For them, the affine φ functions are all
identity operators, the inputs are simply the textures for the child
data-parallel arrays, and the output is simply the result of the
operation. For example, +(B1, B2) becomes a pixel shader that
merely implements

∀j.A[j] = +(B1[j], B2[j])

This is a straightforward to translate to a pixel shader.

ps_2_0
dcl_2d s0 // B_1
dcl_2d s1 // B_2
dcl t0.xy // j
texld r0, t0, s0 // r0 <- B_1[j]
texld r1, t0, s1 // r1 <- B_2[j]
add r1, r0, r1 // r1 <- B_1[j] + B_2[j]
mov oC0, r1 // output r1

Linear transformations are also straightforward to handle. One
merely sets the appropriate transformation from the output location
to the input location (i.e., a φ function) before executing a pixel
shader that moves its input to its output.

∀j.A[j] = B1[φ(j)]

This pixel shader for this is:

ps_2_0
dcl_2d s0 // B_1
dcl t0.xy // φ(j)
texld r0, t0, s0 // r0 <- B_1[φ(j)]
mov oC0, r0 // output r0

Note that one usually must invert the transformation for the
original Accelerator operation. For example, a replicate may
become an identity affine transformation combined with a modulus
operation on the output location (to handle the typical case where
the input array is smaller than the output array). The hardware
implements the modulus operation.

Finally, random-access operators are also easy to handle. They
simply call a set of pre-built shaders, using textures corresponding
to the operator parameters as their inputs. Accelerator has pre-
built shaders for inner product (matrix multiply), outer product, and
reduce. Note that matrix vector multiplication does not need a pre-
built shader because it can be expressed reasonably efficiently using
other Accelerator operations.



5.2 Combining multiple element-wise operations into one
pixel shader

The approach of using a pixel shader per expression node is highly
inefficient. It incurs the overhead of at least one render pass for
every operator in the expression, creates at least one intermediate
texture value for the result of every operator, and incurs a great deal
of memory traffic. In a system with limited memory, such an eval-
uation scheme may also quickly exhaust GPU memory. There is a
significant per-pass overhead associated with executing a shader.
For example, a pixel shader must be compiled on the CPU and
transferred to GPU memory. In addition, there is time for setting
up the graphics pipeline (on the order of several hundred thousand
cycles). The memory traffic is problematic because GPUs are opti-
mized to write output values to frame buffers—not to textures. This
makes it expensive to use the output of one pixel shader as the input
to another.

For example, consider evaluating the expression DAG in Fig-
ure 3 this way. This DAG would yield at least seven shaders and
seven arrays in GPU memory. A simple floating-point operation
such as multiply would require loading two values from GPU mem-
ory, writing the value to GPU memory, and a full render pass with
control starting and ending on the CPU. Any speed gained by the
parallelism of the GPU and fast floating-point operations would be
overwhelmed by the pass and memory overhead.

Thus, it is desirable to try to combine multiple data-parallel
operations into one pixel shader. This yields a new set of problems,
though. Recall from Section 3.3 that pixel shaders have a number of
limitations, including the number and types of registers, the length
of chains of memory address calculations, and instruction limits.

5.2.1 Representing combined operations

We first describe how to represent the combination of operations.
We do this by making it explicit where a new shader program
should be created when converting an expression DAG to a set of
shaders. (In Section 5.1.1 every node was converted to a shader.)

We add a new kind of expression node called a break node. A
break node has exactly one child, the root of the subexpression that
requires evaluation as a separate shader. This implies that the result
of the subexpression will be placed in memory. The parents of the
break node are all operation nodes that use the subexpression as a
parameter.

The approach in Section 5.1.1 can be modeled by inserting a
break node before every interior node in the expression graph.

5.2.2 Combining element-wise operations

It is straightforward to combine a tree (or DAG) of element-wise
operators into one pixel shader (ignoring resource constraints). This
can be defined in an inductive fashion.

Given A = op1(B, C) and D = op2(A,E), where op1 and op2

are element-wise operators, it is straightforward to combine them
into one pixel shader and avoid computing an intermediate array A.

∀j.A[j] = op1(B[j], C[j])

∀j.D[j] = op2(A[j], E[j])
can be turned into:

∀j.D[j] = f(B[j], C[j], E[j])

where
f(t1, t2, t3) = op2(op1(t1, t2), t3)

We can implement this partitioning by doing a pre-order traver-
sal of the expression DAG. Whenever a non-element-wise opera-
tion is encountered, we insert breaks between the operation and
all of its non-leaf children, forcing the children to be evaluated to
memory. Figure 4 shows the initial expression DAG with breaks
inserted according to this algorithm.

+

sectio
n

-

A

/

reduc
e

B

*

DC

rotate

break

break

Figure 4. Expression DAG with shader breaks marked

5.2.3 Generating a DAG of valid shaders

Resource limits are the primary obstacle to combining all of
the element-wise operations in a subgraph whose boundaries are
marked by shader breaks into one shader. We present a recursive
algorithm for traversing an expression DAG to produce a DAG of
valid shaders, taking into account resource constraints.

We first describe register allocation in a pixel shader, because
register limits are one of the constraints on adding operations to
pixel shader. There are four kinds of registers available: temporary
registers, texture coordinate registers, constant registers and sam-
pler registers.

Allocation of temporary registers is straightforward. Because
we can not spill values to memory and there is no control flow in
our pixel shaders, the temporary registers can be allocated with a
simple algorithm that assigns a register on first definition and frees
a register on last use. Certain pixel shader restrictions such as limits
to dependent memory operations sometimes prevent a register from
being added to the free list.

Texture coordinate registers, constant registers and sampler reg-
isters are defined outside of the pixel shader and are read-only. They
are simply assigned in order of use and cannot be re-allocated while
building a pixel shader.

The recursive algorithm for traversing an expression DAG pro-
duces a shader DAG and a register. A shader DAG is represented as
a shader together with child shader DAGs that provide inputs (i.e.,
textures) to the shader. The shader is incomplete. Specifically, to
complete the shader, we would need to move the value in the dis-
tinguished register to the output register for the shader. When the
algorithm hits a shader break, it completes the current shader. In
order to return a shader and register, it creates a new shader that
has the output of the newly completed shader as an input. More
specifically, it adds a sampler register for the output of the com-
pleted shader. The new shader loads the value of this sampler reg-
ister at the default location into a register. It returns this new shader
and register as its result. We will refer to this method of marking a
shader as complete and starting a new shader that loads its output
as finishing a shader.

The algorithm does a post-order traversal, evaluating the chil-
dren and then attempting to combine the children with the shader
for the parent node. In the absence of resource limits, the parent
node would concatenate the code for the child shaders to its code.
It would also merge the sets of registers in the child shaders. Fi-
nally, it would append instructions that compute its value from the
registers for the children.

In the presence of resource limits, we attempt to do the above
in a greedy fashion. If we reach a node where all parameters and
the parent can not be put into the same shader, we restrict the
combination as follows. If a child shader can not be combined
with the parent, the child shader is finished. Finishing creates a new



if (node is not a leaf or break node)

{

shaderOut = new Shader()

N = number of parameters to node

// create the child shaders

for i = 1 to N

{

ShaderRegister(i) = CreateShader(child(i))

}

// combine as many children as will fit with the parent

while (Shader(i) can be combined with Shader(node))

{

Append Shader(i) to shaderOut

i = i + 1

}

// finish off any remaining child shaders

if (i <= N)

{

while (i <= N)

{

Finish(ShaderRegister(i).Shader)

ShaderRegister(i).Shader.OutputRegister = ShaderRegister(i).Register

Append(Shader(i).Shader) as a Sampler of shaderOut

}

}

// add the parent code

AppendInstructionsFor(shaderOut, node, {ShaderRegister(i)})

}

if (node is a break node)

{

Finish the parameter shader

Create a new shader that loads the output of the break node

into a register

}

if (node is a leaf)

{

Create a new shader that loads the output of the leaf node

into a register

}

Figure 5. Pseudo-code for building a shader DAG

ps_2_0

dcl_2d s0

dcl_2d s1

dcl t0.xy

dcl t1.xy

texld r0, t0, s0

texld r1, t1, s1

sub r1, r0, r1

mov oC0, r1

ps_2_0

dcl_2d s0

dcl_2d s1

dcl_2d s2

dcl t0.xy

texld r0, t0, s0

texld r1, t0, s1

texld r2, t0, s2

mul r2, r1, r2

rcp r2, r2.x

mul r2, r0, r2

mov oC0, r2

ps_2_0

dcl_2d s0

dcl t0.xy

dcl t1.xy

dcl t2.xy

dcl t3.xy

texld r0, t0, s0

texld r1, t1, s0

add r0, r0, r1

texld r1, t2, s0

add r0, r0, r1

texld r1, t3, s0

add r0, r0, r1

mov oC0, r0

ps_2_0

dcl_2d s0

dcl_2d s1

dcl t0.xy

dcl t1.xy

texld r0, t0, s0

texld r1, t1, s1

add r1, r0, r1

mov oC0, r1

Figure 6. Actual pixel shader code generated for the example
graph in Figure 3.

shader that simply loads the output of the completed child shader
into a register. This new, small shader is combined with the parent.

We attempt to combine child shaders with the parent instead
of with each other because many GPUs support only one output.
If more than one child were combined into a single shader that
was separate from the parent, the combined shader would need an
output for each child—the parent requires one input for every child
in that shader.

To determine if a child shader can be combined with a parent
we estimate the number of additional registers and lines of code
that the parent would require and check if the combined shader is
within limits. If a register limit is exceeded, we actually run our
register allocator to get an exact register count and combine the
shaders if this new count is within the limits.

Pseudo-code for this technique is shown in Figure 5. The set
of shaders generated from Figure 4 is shown in Figure 6. Note
that column 3 contains the shader for the reduction operation,
which is actually executed multiple times to perform the log-height
reduction.

5.2.4 Evaluating the DAG of shaders

This step evaluates each shader on the GPU, invoking the target
graphics API to compile and run each pixel shader. It traverses
the shader DAG in a bottom-up fashion and evaluates each node
(i.e., shader) in the DAG. Evaluating a node requires a full render
pass that uses the entire graphics pipeline. The first step is triangle
setup, that is, sending a list of vertices for the output rectangle.
Accelerator sets up a vertex buffer with a single rectangle (two
triangles) and sets a vertex shader that simply copies its input to
the output register. The pixel processors simply receive as input the
locations of the pixels (or array elements) to be computed. The next
step is to set the textures that hold the results from child nodes as
input textures for the shader. Finally, the render pass is executed
which runs the pixel shader, and the resulting texture is returned.

5.3 Combining transformation operations with other
operations into one pixel shader

Transformation operators such as Rotate, Section, and Expand are
different from other operators: they perform no actual computation
on the values loaded from an input texture. They merely transform
the output location to an input location and load a value from the
input texture.

Some of these operators are distributive with respect to element-
wise operations. Also, some of these operators can be composed
with other transformation operators. As an example of distributiv-
ity, consider a Rotate of the sum of two arrays. This is equivalent
to a sum of the Rotate of the two arrays.

In general, transformation operations consist of an affine trans-
formation from output locations to input locations and a specifi-
cation of how out-of-bounds input locations are to be treated. For
example, if one shifts a 5×5 array to the left by 2 elements, there
are several choices as to how to fill in the 2 columns on the right of
the resulting array. The possibilities included in Accelerator are:

• Wrap–wrap the values from the left hand side of the array

• Default–fill in a specified default value such as 0

• Clamp–duplicate the value in the rightmost column

The treatment of out-of-bounds input locations can interfere with
distributivity of transformations with respect to simple operations.
Wrapping and clamping distribute with element-wise operations.
A transformation using a default value distributes only when the
default value is the identity element for the per-element operation.
For example, if the operation is addition, then a shift with a default
of 0 distributes with respect to the additions, but a default of any
other value does not.

We take advantage of the distributivity of some transformation
operations with respect to element-wise operations and the com-
posability of some transformation operations with other operations
to reduce the number of shader breaks inserted in the expression
DAG.

We subdivide the pass that inserts shader breaks into two passes.
The first pass inserts shader breaks only for random-access opera-
tions. The second pass is a top-down pass over the expression DAG
that handles transformation operations.

First, it attempts to push transformation operations (with respect
to element-wise operations) to leaf nodes and break nodes. These
nodes are data nodes whose results are read from memory. For
transformation operations that do not distribute with respect to
element-wise operations, it simply inserts a break node between
the transformation operation and the element-wise operation. The
transformation information is applied when reading the values for
the break node from memory and the transformation operation is
removed from the expression DAG.



Second, when it encounters two adjacent transformation nodes
(i.e., transformation nodes with a parent-child relationship), it at-
tempts to combine those transformations. The only restrictions to
this composition are when the handling of the boundary values does
not compose. If the transformation nodes do not compose, it again
inserts a break node between the two transformation nodes.

5.3.1 Refinements of the texture coordinate operation pass

The advantage to moving a transformation operation as far down
the DAG as possible is that it produces fewer shaders, which leads
to fewer render passes and, in general, faster performance. There
is one case when it is best to leave the transformation operation in
place, i.e., add a break node after the operation. This is when the
transformation increases the size of the array and the expression
below the texture coordinate operation is expensive to compute.

For example, consider a replicate that tiles a 100×100 array 10
times in each direction to produces an array that is 1000 ×1000.
If the expression below the operation is the sum of two 100 ×100
arrays, by leaving the operator in place we perform 20,000 mem-
ory accesses and 10,000 additions. Then we tile—which costs the
overhead of one render pass and the cost of writing a new array
of 1,000,000 elements. If we push the tiling to the data nodes, we
will perform 2,000,000 memory accesses and 1,000,000 additions.
If the cost of a render pass is less than the cost of the extra memory
accesses and additions, we are better off leaving the texture coordi-
nate operation in place.

5.4 Common subexpressions

Computing a common subexpression once and reusing the value
can be faster than recomputing the expression at each use. We
handle CSEs by introducing a pass over the expression DAG that
identifies CSEs for which reuse is cheaper than recomputation. The
pass inserts break nodes between those subexpressions and their
parents. It is trivial to identify some CSEs: they are expression DAG
nodes with multiple parents.

A heuristic for when to break at a CSE was developed experi-
mentally. It takes into account the size of the expression, the num-
ber of reuses, and the size of the inputs.

5.5 Managing graphics resources

GPU memory can be a limited resource when operating over large
data sets. A typical high-end GPU has 256 MBytes or 512 MBytes
of GPU memory and a 1000×1000 color image can use 16 MBytes
of memory when represented in red-green-blue-alpha format using
32-bit floating-point numbers. If memory is not managed carefully
during evaluation, it is possible to run out of memory quickly. In ad-
dition, requesting large blocks of memory can be costly. Because
of this, Accelerator manages a small pool of textures explicitly, in-
stead of always requesting textures from the graphics API. Interme-
diate textures created during the evaluation are reference counted
and returned to the pool as soon as possible.

Accelerator also caches compiled pixel shaders to avoid unnec-
essary compilation by the target graphics API. The graphics APIs
take pixel shader programs as strings. Accelerator keeps a hash ta-
ble from these strings to compiled pixel shader programs. It uses
the hash table to see if a program has already been compiled by the
graphics API.

6. Performance evaluation
We evaluated the performance of Accelerator by measuring the exe-
cution times of various programs, each written in three versions: C#
using Accelerator, hand-written Pixel Shader 3.0 assembly code,
and C++ running on a CPU. Figure 5 describes the benchmarks.
In the benchmarks, including the Accelerator and pixel shader as-

sembly code versions, all floating-point numbers used are single-
precision (32-bit) floating-point numbers.

The C# programs were compiled with Visual Studio 2005.
For the C++ versions of Sum, Matrix-vector multiplication, and
Matrix-matrix multiplication, we used BLAS routines from Intel’s
Math Kernel Library 7.0. We hand-optimized the other C++ pro-
grams with respect to memory access patterns, but did not tune
them to take full advantage of SSE or hyper-threading. We com-
piled the C++ programs with either Visual Studio 2005 (using /Ox
/fp:fast) or the Intel C++ Compiler 9.0 for Windows (using
/Ox), whichever was faster in each case. For each benchmark, the
three versions produce the same result. For the resulting arrays A
and A′,

(∀i)

∣∣A[i] − A′[i]
∣∣

maxj

∣∣A[j]
∣∣ < 10−6.

As a reference machine, we used a Dell Optiplex GX280 with
a 3.2GHz Pentium 4 CPU, 16KB of L1 cache, 1MB of L2 cache,
1GB of 400ns memory, and a PCI Express bus. The machine ran
Windows XP with Service Pack 2, DirectX 9.0 (June 2005 update),
and DirectX for Managed Code 1.0.2902.0.

We measured four GPUs, spanning two GPU generations

• NVIDIA GeForce 6800 Ultra, 256MB RAM, eVGA

• NVIDIA GeForce 7800 GTX, 256MB RAM, eVGA (newer)

• ATI x850 XT Platinum Edition, 256 MB RAM

• ATI x1800 (newer)

The Accelerator measurements include just-in-time compilation
overhead and other execution costs of the library (on average about
9% of the running time). The results for Accelerator and the hand-
coded pixel shaders do not include the transfer times for getting the
initial data onto the GPU and reading the final result back. For long-
running benchmarks, this makes little difference, e.g., < 2% for
motion estimation, < 20% for stereo matching); the short-running
benchmarks are meant to model small pieces of a computation,
and the communication time should be amortized over the whole
program.

Figure 7 shows the performance difference between Accelerator
and hand-coded pixel shader code, as speedups versus C++ running
on the CPU. The graph uses a logarithmic scale; higher bars means
better performance. Speedups of less than 1 imply that the CPU
outperforms the other systems. On six benchmarks, Accelerator
is within a factor of two of the performance of hand-coded pixel
shader code.

There are cases where there is room for further optimization
work. The most striking differences are in Rotate and Motion Es-
timation. These benchmarks involve non-uniform memory access
(gather), where out-of-bounds access needs to be treated specially.
While GPUs have direct hardware support for this operation, Ac-
celerator cannot access it through DirectX C# graphics APIs.

On the smaller benchmarks (Sum, Matrix-Vector and Matrix-
Matrix multiplication), we have had promising results when we
change our model for texture lookup, allowing us to elide the
vertex data that we currently send to the GPU before invoking the
generated pixel shader. We speculate that this is the main source
of discrepancy between the timing results for Accelerator and the
hand-coded shaders.

Figure 8 shows the speedup of the benchmarks running in Ac-
celerator versus those written in C++ and running on the CPU. We
show the speedup using each GPU. For the Life, Demosaic, and
Convolve benchmarks, where data access is regular and local, Ac-
celerator on the GeForce 7800 GTX is 10–18×faster than the C++
version. For Rotate, Corner Detection, and Stereo Matching, with
less localized data access, Accelerator is 3–4×faster. For the Sum
and Matrix-Vector multiplication benchmarks, we find that Accel-



Benchmark Name Size
C++

Time Description

Sum Primitive 1ms Compute the sum of absolute values of a 1000 × 1000 matrix. Corresponds to the SASUM primitive of BLAS.

Matrix-vector
multiplication Primitive 1ms Multiply a 1000 × 1000 matrix by a vector. Corresponds to the SGEMV primitive of BLAS.

Matrix-matrix
multiplication Primitive 303ms Multiply two 1000 × 1000 matrices. Corresponds to the SGEMM primitive of BLAS.

Life Method 45ms
Compute one iteration of Conway’s “Game of Life” [6] on a 1000 × 1000 grid. Cell values are represented by
single-precision floating-point numbers to model a general cellular automaton.

Demosaic Method 94ms
Compute an RGB image from a 1000×1000 pixel Bayer pattern. The RAW file produced by a typical CCD contains
information for only one color at each pixel, in what is known as a Bayer pattern. Reconstruction of the full-color
image, called “demosaicing,” is done by interpolation. We use a recent high-quality algorithm [12].

Convolve Method 86ms
Convolve a 1000×1000 monochromatic image with a 5×5 Gaussian filter. A Gaussian filter is separable, allowing
us to optimize this operation into a convolution with a 5 × 1 filter, followed by a convolution with a 1 × 5 filter.

Rotate Method 129ms Rotate a 1000 × 1000 color image by 10◦ , with bilinear inter-pixel interpolation and cropping.

Corner detection Module 152ms

Find corner-like features in a 1000 × 1000 monochromatic image, using the KLT algorithm [11, 21, 5]. The
computation has these steps:

1. Convolve with a 5 × 5 Gaussian filter to reduce noise.
2. Compute C , the Hessian of the image, at each point.
3. Convolve C with a 9 × 9 Gaussian filter.
4. Find the eigenvalues λ1, λ2 of C .
5. The “cornerness” is γλ1 + λ2 , where γ = 0.5.

Motion estimation Module 69ms

Perform MPEG-style hierarchical motion estimation on two 512 × 512 monochromatic images, with quarter-pixel
accuracy [17]. For each 16 × 16 pixel “macroblock,” estimate a motion vector that takes the block in the first image
to the most similar one in the second image. Start by searching a 7 × 7 pixel region in a 4×downsampled image.
Refine this result by searching a smaller neighborhood in a 2×downsampled image, then in the original image, and
finally in a 2×and a 4×subsampled image.

Stereo matching Module 702ms
Given two pictures, taken by cameras separated by a small horizontal distance, compute the distance at each pixel
[19]. This is a brute-force image registration solver. At each pixel, find the offset that produces the least SSD over a
7 × 7 pixel neighborhood.

Table 5. Benchmark descriptions

0.01

0.10

1.00

10.00

100.00

Su
m

M
at

rix
Ve

ct
or

M
at

rix
M

ul
tip

ly

Li
fe

D
em

os
ai

c

C
on

vo
lv

e

R
ot

at
e

D
et

ec
tC

or
ne

rs

M
ot

io
nE

st

St
er

eo
M

at
ch

Accelerator 7800
Pixel Shader 7800
Accelerator x1800
Pixel Shader x1800

Figure 7. Performance of Accelerator versus hand-coded pixel
shader programs on a GeForce 7800 GTX and an ATI x1800.
Performance is shown as speedup relative to the C++ versions of
the programs.

erator is 4–5×slower than the CPU. This is because the GPU com-
putation model does not allow accumulation of results across dif-
ferent pixels, forcing us instead to use a log-height reduction, i.e.,
the number of render passes is logarithmic in the size of the input.

7. Conclusion
We have demonstrated how to translate high-level data-parallel op-
erations to efficient GPU programs. The data-parallel operations

0.01

0.10

1.00

10.00

100.00

Su
m

M
at

rix
Ve

ct
or

M
at

rix
M

ul
tip

ly

Li
fe

D
em

os
ai

c

C
on

vo
lv

e

R
ot

at
e

D
et

ec
tC

or
ne

rs

M
ot

io
nE

st

St
er

eo
M

at
ch

6800
7800
x850
x1800

Figure 8. Speedup of Accelerator programs on various GPUs com-
pared to C++ programs running on a CPU

are provided as a data type in a conventional imperative language,
making them easily accessible to programmers. The operations are
translated on the fly to GPU pixel shader code and graphics API
calls. We have developed a set of techniques to partition the op-
erations into GPU pixel shader programs. Due to the high over-
head of running a pixel shader compared to the cost of floating-
point computation, minimizing these boundaries can be key to per-
formance. The techniques include combining element-wise opera-
tions, pushing transformation operations across element-wise op-
erations to leaves, combining transformation operations, and iden-



tifying common subexpressions. The performance of some bench-
marks is comparable to hand-written pixel shader programs.

Our work demonstrates that it is possible to compile high-level
data-parallel language extensions to mass-market parallel proces-
sors that are available today. It suggests a number of interesting di-
rections to pursue. First, there is further work to be done on improv-
ing compilation of programs to current GPU programming models.
Second, it is worthwhile to explore compiling language extensions
for data parallelism to GPUs. This would allow ahead-of-time com-
pilation and the use of generalized reduction and map operations.
Finally, it suggests that it is worth investigating changing instruc-
tion sets used for distributing programs to represent parallelism ex-
plicitly at a higher level than today’s processor ISAs, for example,
by using virtual machine ISAs.

References
[1] BLELLOCH, G. E. NESL: A Nested Data-Parallel Language. Tech.

Rep. CMU-CS-93-129, April 1993.

[2] BLYTHE, D. The Direct3D 10 System. Transactions on Graphics 25,
3 (Aug. 2006), 724–734.

[3] BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. Brook for GPUs: Stream
computing on graphics hardware. Transactions on Graphics 23, 3
(Aug. 2004).

[4] BUDD, T. A. An APL compiler for a vector processor. ACM
Transactions on Programming Languages and Systems 6, 3 (July
1984), 297–313.

[5] E.TRUCCO, AND VERRI, A. Introductory Techniques for 3-D
Computer Vision. Prentice Hall, 1998.

[6] GARDNER, M. The fantastic combinations of John Conway’s new
solitaire game “life”. Scientific American 223 (1970), 120–123.

[7] GUIBAS, L. J., AND WYATT, D. K. Compilation and delayed
evaluation in APL. In POPL ’78: Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages (New York, NY, USA, 1978), ACM Press, pp. 1–8.

[8] LASTRA, A., LIN, M., AND MONOCHA, D., Eds. 2004 ACM
Workshop on General-Purpose Computing on Graphics Processors
(August 2004). http://www.cs.unc.edu/Events/Conferences/GP2/.

[9] LIN, C., AND SNYDER, L. ZPL: An array sublanguage. In
Languages and Compilers for Parallel Computing (1993), pp. 96–
114.

[10] LINDHOLM, E., KILGARD, M. J., AND MORETON, H. A user-
programmable vertex engine. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques
(2001), ACM, pp. 149–158.

[11] LUCAS, B., AND KANADE, T. An iterative image registration
technique with an application to stereo vision. In IJCAI81 (1981),
pp. 674–679.

[12] MALVAR, H. S., WEI HE, L., AND CUTLER, R. High-quality linear
interpolation for demosaicing of bayer-patterned color images. In
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (2004).

[13] MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD,
M. J. Cg: A system for programming graphics in a c-like language.
Transactions on Graphics 22, 3 (2003), 896–907.

[14] MCCOOL, M., AND TOIT, S. D. Metaprogramming GPUs with Sh.
A K Peters, 2004.

[15] MONTRYM, J., AND MORETON, H. The GeForce 6800. IEEE Micro
(March—April 2005), 41—51.

[16] PHARR, M., AND FERNANDO, R., Eds. GPUGems2: Programming
Techniques for High-Performance Graphics and General-Purpose
Computation. Addison-Wesley, 2005.

[17] RICHARDSON, I. E. G. Video Codec Design. John Wiley & Sons,
2002.

[18] SABOT, G. W. The Paralation Model : Architecture-Independent
Parallel Programming (Artificial Intelligence). The MIT Press, 1988.

[19] SCHARSTEIN, D., SZELISKI, R., AND ZABIH, R. A taxonomy
and evaluation of dense two-frame stereo correspondence algorithms,
2001.

[20] SCHOLZ, S.-B. Single assignment C - Functional programming
using imperative style. In Proceedings of the 6th International
Workshop on Implementation of Functional Languages (IFL94)
(1994), pp. 21.1–21.13.

[21] SHI, J., AND TOMASI, C. Good features to track. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’94)
(Seattle, June 1994).


