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Preface

The 1st Workshop on Model-Based Testing for Object-Oriented Systems (M-
TOOS) was held as part of the 2006 Object-Oriented Programming Systems,
Languages, and Architectures (OOPSLA) Conference. This volume contains
the final version of five papers that were accepted for the workshop, among nine
which have been submitted.

Model-based testing of systems has long been a goal of the testing research
community, and many paradigms have been proposed and developed. However,
while model-based testing approaches are successfully used within portions of
the software industry, they have yet to be adopted as mainstream practices. The
M-TOOS workshop sought to explore the impact of object-orientation on model-
based testing, with two primary purposes: (1) developing an understanding of
the key challenges inhibiting widespread use of model-based testing approaches
for testing object oriented software, and (2) determining possible ways that
object-orientation (and related approaches) may be helpful in overcoming these
challenges.

The workshop was structured around three main activities. First, we heard
from the authors of the five accepted papers. Their contributions reflected an
interesting set of topics in testing, including: the influence of APIs on testing
(both from an object-oriented and multi-language point of view), testing from
specifications such as scenarios, state machines, and Petri nets, and generating
test data without specifications using dynamic analysis techniques.

Next, we had a panel with testing experts from both academia and industry.
The topic was ”How do we make model-based testing pervasive?”.

Finally, the workshop concluded with a brainstorming session that sought
to address the challenges that emerged from the papers and the panel.

We would like to thank our excellent program committee (listed below) as
well as all of the people who submitted papers to the workshop and who attended
it. Finally, we want to thank the OOPSLA organizers for their support as we
planned this workshop.

Wolfgang Grieskamp, Debra Richardson, and Clay Williams
October 2006
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ABSTRACT
Although model-based testing of systems has seen signifi-
cant amounts of research in academia, and modest success
in industry, the approach has not yet been widely adopted.
We discuss the reasons for this, amongst them the cost of
oracle building and the efficiency of test generation.

We describe potential solutions to these obstacles that we
have been experimenting with. We outline a tool, Rule-
Based Testing, which incorporates these solutions, and its
use in testing JavaTM APIs, and present some preliminary,
favourable results.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation Measurement Reliability

Keywords
Modelling, Java, Python, Test Selection, Test Generation,
Model-Based Testing, Model-Driven Testing, Category-Partition
Testing

1. INTRODUCTION
Model-based testing is not a specific enough term to describe
what we really mean. Bach et al pronounce ‘All testing is
based on models’[6], which means that any testing could be
labelled as model-based. When a tester creates a test suite
in the traditional manner, by forming tests from selected
inputs followed by the expected results, they use a mental
model of the system being tested to predict those results.

That mental model is built from any materials that the
tester has to hand. If they are lucky they may have some
clear specifications to work from. More commonly they

will extract information from a combination of sources: de-
sign documents, talking to people responsible for the design
and implementation directly, customers, user documenta-
tion, and experimentation. The resulting model is never
experienced directly by any other people than the creator.
It is expressed in the tests that arise from it.

What we mean by ‘Model-based testing’ (MBT) is that the
model is explicit, in the sense that it can be used by a
computer to generate individual test cases and compile test
suites. Some MBT tools require that the model be written
using a formal method, or the UML. We specify here only
that the model can serve as a test oracle, that is for any test
data inputs that we choose, it can automatically predict the
results to the degree of accuracy we need. This means we
are free to choose the most effective oracle, regardless of the
method of construction.

1.1 Java Programming Interfaces
We have used Application Programming Interfaces (APIs)
written in the Java programming language as subjects for
the projects described in this paper. This is primarily be-
cause many projects in our company, IBM, are implemented
in Java. The language has some capabilities and conventions
which make it more convenient to test with model-based
methods than older languages such as C++. Reflection al-
lows the structure of programs and APIs to be queried auto-
matically. The standard use of the Javadoc documentation
tool gives extra useful information such as the names of pa-
rameters as well as their types.

The JUnit test tool has brought about an upturn in unit
testing for systems written in Java. JUnit test cases are
mostly hand written sequences of inputs and expected re-
sults, the sort of test suites we are trying to move away
from in adopting model-based testing. We know of several
projects with a commendable focus on unit testing whose
JUnit test suites comprise more code than the implementa-
tions. One such example is included in the results section
6.

Adding constraints in the manner of Design by Contract
would be a logical step beyond Javadoc. This would allow
for some of the unit testing to be automated by enabling the
generation of test data which would be expected to violate or
be acceptable to preconditions. At the functional level the
constraints could help build the test oracle. Tool support
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would be crucial: one attempt to bring Design by Contract
to Java is the Java Modelling Language (JML), which in our
experience so far is hampered by the lack of a way to get
started easily.

2. RULE-BASED TESTING (RBT)
Instead of using a specialised modelling language, RBT uses
PythonTM (although this does not preclude the use of oth-
ers). Python is a modern programming language, with reli-
able interpreters courtesy of open-source development, tested
by the many people who download and use it. Python has
the advantages over specialised modelling languages of be-
ing relatively well known and therefore familiar, free, and
fully-featured. By many it is also viewed as easy to learn
and use.

The name Rule-Based Testing was chosen because the test
generator consists of a set of rules, one describing each pos-
sible operation. Each rule defines when that operation can
be selected, the data choices available, and how the results
of that operation are checked.

2.1 Test-Generator Generation
Information needed for test generation is extracted from the
Javadoc for the API to be tested. It includes:

• Classes and interfaces and inheritance relationships
between them.

• Methods, static methods and constructors.

• Parameters, their names and types.

• The types of return values.

In principle it makes no difference whether this information
is retrieved from program source, documentation (Javadoc)
or by reflection from compiled classes. It is purely a matter
of practicality to choose one or the other.

The structural information about the API is then combined
with test data selections for parameters and return values to
produce a test generator. Optionally usage models may be
constructed to further guide the test sequencing. All selec-
tions of the order of operations and the values of parameters
are made on the basis of the externals of the API. This is
akin to automating the approach of the black-box tester,
and means that the modelling language need not support
any form of automated structural analysis.

2.2 Test Generation
The aim of the test generation is to call all methods, use each
choice specified for each parameter, and elicit all choices for
return values, at least once. When several choices of test
inputs carry equal weight in achieving the coverage goals,
the choice is made randomly. Because we are using the API
externals only in our test input selection, the first aim is
easy to fulfil, the second moderately easy, and the last can
be difficult - hence the use of usage models.

To predict the results of operations, an oracle is needed. We
have allowed for a significant flexibility in the selection of an

oracle, ranging from a specially written Python program to
a another implementation (a previous release for instance).
We can use another implementation because we do not carry
out any analysis of the internal structure of the oracle. It is
our proposition that in the absence of a formal model writ-
ten before the test phase, this is desirable, notwithstanding
the resulting relative difficulty of achieving high output cov-
erage.

2.3 Test Execution
Tests can be selected on the fly at test generation time and
the chosen action executed against both the system under
test and the test oracle. Alternatively JUnit test programs
which include the expected results can be generated. Ei-
ther way the results, if any, are compared using the test
comparator and if there is a difference, this is reported.

When we get an error, there are several options for how to
go about resolving it depending on the cause:

Defect in the results predictor. Update the oracle so that
the test will pass in future.

Defect in the system. Have the defect fixed.

Results were actually equivalent. Fix the comparator.
An example of when this might be required would be
if a method returns an array where the ordering is
unspecified.

Finally, it may be decided that the results of this method
need not be tested, in which case we can omit the test on
future runs.

A significant help in the implementation of on the fly test
execution is the existence of Jython, a Python interpreter
written in Java. Jython makes using Java packages from
Python programs as easy as using external Python modules.
The cost of interfacing generated tests to the systems to be
tested drops to near zero.

3. ADOPTION CHALLENGES
There are many challenges which any model based testing
tool must meet if it is to become widely accepted. In this
section we will describe those which we feel are of most im-
portance and outline briefly how the RBT tool overcomes
them.

3.1 Measurement of Success
Learning a new tool or technique actually lowers program-
mer productivity and product quality initially. The eventual
benefit is achieved only after this learning curve is overcome,
Therefore it is worth adopting new tools and techniques, but
only (a) if their value is seen realistically and (b) patience
is used in measuring benefits[5].

Measuring the effect of using a new tool or technique presents
a significant challenge for software testing, because many or-
ganisations do not measure the effectiveness of what they do
now. Often the only metric is the percentage of successful
tests. If no attempt is made to measure the coverage of
the test suite, then the meaning of a percentage pass rate
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rests entirely on the content of the tests. Ultimately that
means the capability of the test designers. The accuracy of
the percentage pass rate figure may often be illusory, but
nevertheless many test managers rely on it heavily.

The best measure of the effectiveness of a model-based test-
ing technique would be to compare it directly to a traditional
testing approach in a side-by-side experiment. This is un-
likely to be carried out in an industrial context, because of
the extra cost. An alternative is to compare the quality of
test suites created by the two different approaches. As stan-
dard programming interfaces become more common with the
rise of Java and .Net environments for example, then the ex-
istence of standard test suites also becomes more common.
A standard test suite can be used as a benchmark against
which a model-based approach must compete. We intend to
carry out such a comparison in the near future.

3.2 Speed
Optimally the software design process would produce arti-
facts which could be used directly in model-based testing.
For instance, executable models of the system used for sim-
ulation and validation of the design could be used to predict
expected results for tests (that is, to be test oracles). How-
ever this is hardly, if ever the case at present, and for any
model-based testing approach to be successful, we must be
able to use only existing information sources.

This means that any models required by model-based testing
must be created or obtained within the timescales allowed
for existing software testing methods. Models created at
design time serve multiple purposes, one of the main ones
being to be a communication medium for ideas. Although
this is also a desirable aim for test models, the test model
ultimately has another absolutely crucial purpose; the gen-
eration of tests. The pursuit of one aim may have to be
sacrificed for the achievement of the other.

RBT addresses the challenge of speed by:

• Extracting as much information as possible from ex-
isting sources (Javadoc).

• Allowing many types of oracle building, so the most
effective method can be chosen.

• When an oracle needs to be written, allowing Python
to be used as the modelling language.

3.3 Scalability
Any test generation method should be fast enough to pro-
vide timely results, and not just on small examples, but
on industrial scale systems. It is possible for test genera-
tion methods based on model-checking techniques[4] to ex-
pend hours or days on model analysis and test generation.
Even then the resulting tests may be insufficient or non-
existent. For mainstream acceptance, model-based testing
approaches must be designed to work on an industrial scale
from the start[3]. RBT generates tests right from the start
of the test generation process. There is always some useful
output, even if this is a partially complete test suite.

The basic coverage measure we use in RBT scales linearly
relative to the size of the API, but is less comprehensive than
transition coverage of a state machine for example. Given
that existing test suites and methods usually achieve low
coverage by any measure, test suites generated by model-
based methods do not have to have perfect coverage to be
significantly better. RBT test suites have been shown to
be adequate in terms of coverage and bug finding ability,
certainly for the scale of systems we have experimented with
so far.

3.4 Reliability
For a tester there is nothing worse than trying to use an
unreliable test tool. We expect the system we are testing to
be unreliable to a certain extent, otherwise we would have
no need to test it. But if the test tool is unreliable, then
we have to deal with two sources of errors and be able to
differentiate between the two causes. Using an open source
language allows RBT to achieve modelling reliability for low
effort.

4. MODELS AND ORACLES
The first major component of a model-based testing system
is the test oracle, which answers the question, ”what are the
expected results of this test?”. If any amount of randomness
is used in the selection of test data, the lack of an automatic
test oracle would create the serious problem of having to
check all test results manually. The oracle can be divided
further into two component processes, a result generator
and a comparator[2]. The comparator can translate re-
sults from an imperfect results generator, or cope with non-
determinism where the results generator predicts more than
one possible outcome.

Building the perfect oracle, one that can predict the cor-
rect answers under all circumstances is both impossible and
undesirable. To do so would take comparable time and re-
sources to building the system under test (SUT) and could
take the place of that system. From that point of view it is
imperative for us to be able to make compromises in build-
ing or obtaining oracles. It is always possible to omit some
complex system behaviour from an oracle without sacrific-
ing its usefulness; some error handling can often be treated
this way. For example, a database system may be designed
to cope with disk full errors without losing committed data.
The oracle does not have to contain code to cope with the
disk full condition, merely be able to check that the SUT
does not lose data. For a system which can store persistent
state to disk on shutdown and restore its state on restart,
the oracle can omit the persistence behaviour and check that
before and after states are the same.

Binder[2] p. 924 classifies oracle patterns into four major
categories.

Judging. Non-automatic human judgement.

Prespecification. The expected results are calculated prior
to the test being run. The patterns in this group
are: Solved Example, Simulation, Approximation and
Parametric.
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Gold Standard. An existing trusted implementation - one
that has been used in production: Trusted System,
Parallel Test, Regression Test and Voting.

Organic. One relying on approximation or some ‘informa-
tional redundancy’ in the SUT: Smoke Test, Revers-
ing, Built-in Check, Built-in Test, Executable Speci-
fication, Generated Implementation and Different but
Equivalent.

Table 1 taken from[2] classifies each of the oracle patterns
by fidelity, generality and cost. Fidelity is the accuracy of
results prediction while generality is the scope of application.
The best oracle would be the one with the highest fidelity,
broadest range and lowest cost.

With RBT we have successfully used oracles in all categories
except the first manual one. It is an important factor in
the success of a model-based testing system, that the cost
of obtaining or creating an oracle can be minimized. The
following sections discuss the variety of approaches we have
taken in RBT.

4.1 Smoke Test
The ‘smoke test’ is one in which the only unexpected results
are obviously in error, and that depends on the system being
tested. For a graphical user interface, the program ending
because of an uncaught exception is obviously an error. For
a Java API call, null pointer exceptions are nearly always
an error. For those cases where they are not, this default
assumption can be changed.

In the case of Java we can also say that any exception thrown
which is not contained in the throwables list of a method is
also an error. The error could be that the exception is not
listed when it should be, or that the exception is thrown in
error. The automated test is unable to decide and just notes
the discrepancy.

These levels of checking are carried out entirely automati-
cally from the information provided in the Javadoc (or com-
piled class files or Java source). In this case the oracle is
lowest cost - with the appropriate tools, i.e. RBT, near
zero cost. By using extra information afforded to us by the
nature of the language, we extend the scope of an entirely
automatic smoke test.

4.2 Trusted System
Also at the lowest level of cost is the ability to use a trusted
system as an oracle. An implementation of a standard, such
as the Java Messaging Service (JMS) API, is likely to have
other, older and previously tested implementations which
can serve as the oracle. There may even be a reference
implementation which is probably the ideal case. In the case
of regression testing of a system which has had new features
added, the old function can be tested by using a previous
release as the oracle. An oracle for the new function would
have to be derived in an another way.

In both these cases, whether using an alternative imple-
mentation or a previous release as an oracle, neither will
be perfect; there will be bugs. As the previous release has

presumably been acceptable to customers in the past, and
satisfied their needs, it will not matter if this oracle causes
those bugs to be overlooked or reproduced. In the case of an
alternative implementation, it is unlikely that identical bugs
will be introduced into both oracle and SUT, so that bugs
in both will show up as discrepancies. We are currently us-
ing an alternative implementation oracle to test a new JMS
provider.

4.3 Simulation
Creating an alternative implementation for the purpose of
serving as a test oracle is a relatively high-cost option, and
one which has often been viewed as too expensive. This
would be the case if this simulation oracle had to adhere to
all the requirements of the SUT. But we have successfully
written simulation oracles in Python corresponding to Java
APIs at a productivity rate that is better than writing tradi-
tional test suites. We have also written oracles in Java and
a mixture of Java and Python. There is no reason why other
languages can not be used, apart from any work needed to
interface them to RBT.

The ability to successfully write oracles in a timely manner
is due to several reasons:

Simplicity. The oracle implementations leave out many de-
tails which are unnecessary to test, or can be avoided
(as described earlier).

Performance. This is not a performance test. The oracle
is used for functional testing and does not need to run
as fast as the SUT. Parallel testing, in which oracle
and SUT are run side-by-side, is the slowest as results
checking is done on-the-fly as well. Prespecification,
in which JUnit test cases are generated, is faster in
execution as much of the results checking work has
already been done, and output as simpler assertions.

Language. For those written in Python, the language is
generally agreed by various informal studies to be sig-
nificantly (some say 3 to 5 times) more productive than
Java.

Many of the features of Python which make it more produc-
tive than Java are shared by other languages, such as Ruby.
They include interpretation, dynamic typing, easy to use
and comprehensive data structures, first-class functions, ob-
ject orientation, functional programming constructs, mod-
ules and packages.

4.4 Hybrid
This pattern is one of our own invention, characterized by
high fidelity, broad range and intermediate cost. If a trusted
system is at hand which is a close match to the oracle be-
haviour needed but varies in some of the details, we can write
a translation layer which sits over the trusted system and
alters its behaviour. We end up with a hybrid of simulation
and trusted system oracle patterns, hence the name.

In one instance (Fast Collections), we tested a reimplemen-
tation of one of the Java collection classes which was opti-
mized to handle integers only. The interface had also been
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Table 1: Oracles Ranked by Fidelity, Generality, and Cost [2]
Lower Cost Higher Cost

Narrow Range Broad Range Narrow Range Broad Range

High Fidelity Smoke Test Trusted System Generated Implementation Solved Example
Reversing Regression Testing Different but Equivalent Voting

Parallel Testing
Low Fidelity Built-in Test Judging Approximation

Simulation
Executable Specification

changed to take integer parameters specifically, so a small
Python layer was written to make the standard Java col-
lection class match the design of the new class. This layer
could have been written in any language which runs in the
Java Virtual Machine (JVM).

4.5 Incremental
This pattern is also one of our own invention, characterized
by varying fidelity, range and cost. Sometimes it may be
convenient to begin with a low cost oracle, so that testing
can start immediately. It is useful then to be able to add
details to that oracle incrementally, so that gradually it be-
comes more specific about the results it predicts, while still
being operational at every intermediate stage.

We aim to achieve this goal by encoding the smoke test de-
scribed above as a set of Design by Contract postconditions
on each method. If a method returns a value, its postcondi-
tion is simply ‘true’, meaning that no checking takes place.
Exceptional postconditions handle the cases where excep-
tions are raised. For methods that can throw exceptions,
the exceptional postcondition states that the only accept-
able postconditions are those in the throwables list.

Both types of postconditions can be strengthened as more
specific results predictions are added to the oracle. The
strongest postcondition is one that states that the result
of a method, the value returned, must be a specific value.
Intermediate strength postconditions could state that any
one of a set or range of values is acceptable. In RBT we
already have the capability of following this pattern, but
have not yet experimented with it.

4.6 Parallel vs. Prespecification
Any of the previously described oracle patterns can be used
in parallel or prespecification fashion. In parallel mode, the
oracle and SUT are run at the same time, the test inputs fed
to each and the results compared before moving on to the
next test inputs. Prespecification in our case means using
the oracle to generate Java test programs to fit into the
JUnit framework. Both test inputs and expected outputs
are encoded therein.

The ability to use the oracles in either way is valuable. The
parallel mode is useful for investigative work, and is the de-
fault in RBT. The prespecification method allows RBT to
produce a standalone, repeatable test that can be given to
a developer to recreate a defect. Creating JUnit test pro-
grams also demonstrates to the sceptical that this really is
test generation, and fits more closely with traditional test-
ing methods and measurements. This can help to lessen any

unease felt by testers with model-based testing.

5. TEST SELECTION
Given a suitable test oracle for a system a great deal of the
remaining test effort can be automated. In this section we
will discuss how our tool automatically generates:

Test Sequences. The actions i.e. method and constructor
calls that the test takes against the system and in what
order.

Input Data. The data used as input parameters to those
actions.

These test selections can then be used to automatically ex-
ecute tests and determine if they pass of fail using the test
oracle.

5.1 Test Data Generation
Essentially we use the Category-partition method[9] to gen-
erate test data. Every parameter in the system’s API is
represented by a class that models the partitions of that pa-
rameter. At run time when a parameter needs to be used,
i.e. as part of a method call, a value is chosen from the
parameter’s partitions. The choice is made according to the
input coverage criteria described below.

Java basic types are given sensible default partitions but
these can be customized on a parameter basis. For example,
an integer type will by default have values chosen from the
set:

{java.lang.Integer.MIN_VALUE,

java.lang.Integer.MAX_VALUE, -1, 0, 1}

If these defaults do not suit then they can be modified by
specifying an enumeration of values, a range of values, or
indeed both.

5.1.1 Coverage metrics
We define and make use of several coverage metrics in order
to drive data selection. These are:

Input Coverage The percentage of possible input values
that have been used.

Output Coverage The percentage of possible output val-
ues that have been seen.
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Data Coverage The combination of input and output cov-
erage.

These percentages must be measured against some metric.
The one that is currently used is the each-choice-used cri-
terion as defined by Ammann and Offutt[1] in which each
possible choice is used at least once. When selecting the next
value to use for any parameter we choose randomly from the
list of possibilities that have not yet been chosen and choose
entirely randomly only when all the input choices have been
used at least once. While we have found each-choice-used
to be surprisingly useful we intend to experiment further
with stronger measures such as base-choice-coverage[1], all-
pairs in which all combinations of possible pairs are used or
even all-values in which all possible combinations of input
are tried (though this is not feasible except for very tightly
constrained systems).

We believe that a high figure for data coverage during a test
run will tend to correspond to a high figure of decision code
coverage. So far we have driven data selection based only on
reaching 100% input coverage and as can be seen in section
6, high levels of input coverage alone already show promising
results. However in future we will investigate methods for
choosing input data that covers as much of the output space
as possible.

5.2 Test Sequence Generation
Work has been done on test sequence generation[7, 8] using
finite state machines (FSMs) which encompass both the pos-
sible sequencing and results predictor for a system. Instead
we build a separate results predictor, (section 4) and gener-
ate sequences based on the systems API. It is our hypothesis,
to be investigated, that a test with high levels of input and
output coverage using our method may be just as effective
as one with high levels of state transition coverage. Further-
more, we propose that building oracles using the techniques
we have described is both simpler than building an FSM and
that generating tests which reach high levels of input and
output coverage will take less time than exploring the full
state space of an FSM. Kim and Song[7] define two types of
errors that can be discovered via the FSM approach, namely:

Output Fault For the corresponding state and received in-
put the implementation provides an output different
from the one provided by the FSM’s output function.

Transfer Fault For the corresponding state and received
input the implementation enters a different state than
specified by the FSM’s next-state function.

In practice most transfer faults will be visible by an output
fault at a later stage and more importantly building the
results predictor as an FSM is only really applicable when
the system itself has been specified as a formal FSM. Since
this is not normally the case we believe that our approach
is much more amenable to testing typical object-oriented
systems.

Indeed, object-oriented languages such as Java prove to be
advantageous when trying to generate sequences of actions
from a system’s API:

• An API defined in machine readable format such as
that produced by a tool like Javadoc allows us to au-
tomatically build a list of all the possible operations in
the system. Each of these operations will form a rule
as described in section 2.

• The valid actions or rules at any given time can be
automatically inferred from the current state. For ex-
ample, an object’s methods can not be called until an
instance of that object exists and a method that has
an object as a parameter cannot be called until at least
one instance of the required object has been instanti-
ated.

With these two facts alone we can generate random test
sequences against the system. At each step a valid rule is
executed and its results may alter the set of rules available
for execution at the next step. The selection of the next rule
is guided by trying to choose input data values to match the
each-choice-used coverage criterion as described in section
5.1.1.

A key difference between our Rule Based Testing approach
and the FSM style is that the internal state of the RBT tool
at run time is not a precise state or node of some formally
defined FSM. Rather the state comprises the knowledge of
which objects are currently instantiated, the possible inputs
for each parameter and those inputs that have already been
used.

5.2.1 Usage Models
Purely random testing has proved to be thorough for small
systems under test and indeed is very useful because it tends
to try legitimate paths through a system that a manual
tester would not think of, thereby finding different bugs.
However, there are reasons why you may want to constrain
the test sequence selection choices. For instance, while test-
ing unexpected sequences of actions is useful for testing the
robustness of the system and can find many bugs, those bugs
are mostly irrelevant if no user will ever use the system in
that way. Therefore it makes sense to mostly test the ex-
pected paths through the system (while keeping an element
of pure randomness as users will always use a system in
unexpected ways).

Figure 1: An Example Usage Model

We support this notion with the concept of usage models[10]
which in our tool are essentially directed graphs where the
nodes are abstract ’states’ chosen by the test designer, such
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as the ’connected’ state in figure 1, and the edges are Rules
(operations) with a weighting. We call the nodes ’abstract’
because they are created and named manually by the test
designer as an aid to understanding the flow of execution in
the usage model and are therefore not directly mapped to
the underlying state of the system. At each step there must
be at least one Rule denoted by an edge from the current
node that it is executable given the current state.

In the example of figure 1 the usage model will be entered af-
ter an instance of the ’Example’ Class has been instantiated
and it will call the ’connectA’ method with 80% chance and
the ’connectB’ method 20% of the time. By giving only a
single edge from a node it is possible to guarantee that that
action will be taken allowing you to handle APIs which re-
quire particular sequences of method calls. We also support
several other features such as ’guarding’ out states based
on preconditions, selecting particular instances of a Class
to call methods on and specifying exact parameters thereby
overriding the data selection of section 5.1.

6. RESULTS
The Rule Based Testing tool is being used with considerable
success by several teams at IBM, Hursley Park. We present
here some preliminary results showing the efficiency of the
model based approach versus JUnit test suites in terms of
programming effort and code coverage for two APIs. Pro-
gramming effort was measured in terms of the number of
lines of code1 which while crude is at least measurable. Fig-
ure 2 shows the lines of code for the two APIs themselves,
their JUnit test suites and the oracle used by Rule-Based
Testing.

Figure 2: Programming Effort for Implementing and
Testing Two APIs

Both APIs are examples of data structures used within larger
systems. The Trie oracle was implemented using the simula-
tion approach of section 4.3 and the Fast Collections oracle
was a hybrid and is described in section 4.4. The test oracles
accounted for just 6% and 7% of the total effort respectively.
In fact, the Trie was an example of a system in which the

1All lines of code figures were generated using David A.
Wheeler’s ’SLOCCount’ program.

JUnit test suite was almost twice as large as the system it-
self. Beyond just lines of code, productivity has been very
impressive and the experience of using oracles and the RBT
tool very rewarding. In the case of the Trie we were able to
build a working model and report defects to the developer
within half an hour of receiving the code. Furthermore, as
the complexity of the systems increased to achieve higher
performance and add features, no changes were required to
the existing, already fully functional oracles.

Figure 3: Resulting Coverage

Given such a small amount of relative effort you might ex-
pect the JUnit suites to achieve much higher code coverage
but this was not the case. In fact, as can be seen in figure
3 the results were very similar. RBT was run over the two
APIs without any usage models constraining sequence se-
lection for a few minutes each and the figures also show the
amount of input and output coverage that were reached.
As can be inferred from figure 3, data selection currently
focuses on input coverage and while there appears to be a
positive correlation between input coverage and code cov-
erage we hope to investigate the relationship between data
coverage and code coverage further (see section 5.1.1).

Of course a high percentage of code coverage does not neces-
sarily correspond to effective testing but unfortunately the
real effectiveness of testing is harder to measure. Anecdo-
tally we can say that for these two APIs the use of model
based testing found around 30 defects beyond what were
discovered through unit testing. Moreover we have other
anecdotal evidence from situations were systems had ex-
ited functional testing using ’traditional’ means but addi-
tional testing using RBT found further significant defects.
We therefore believe that test suites developed using model
based techniques not only take less time to develop but may
also be more effective. In the future we will investigate this
further by testing systems that have existing standard test
suites as described in section 3.

7. CONCLUSIONS
The wide spread adoption of model based testing techniques
for object-oriented systems is both feasible and desirable
given the advantages offered both in productivity and test
effectiveness.
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The main inhibitors are:

• The difficulty of building oracles.

• The inefficiency of some forms of test generation.

• The lack of robust tools.

• A general reluctance for people to change processes
that already work ’well enough’.

• The difficulty for project managers to relate to meth-
ods which do not fit their existing methods for mea-
suring progress.

We are attempting to address these concerns by:

• Developing a useful, general purpose method which
automates existing test techniques.

• Developing specific tools (for Java APIs) which enables
users to get up to speed quickly.

• Spreading the word and using concrete examples to
show the effectiveness of the approach.

• Working with management to come up with ways to
measure test progress, which are both more relevant to
this approach and more generally useful than figures
such as the number of successful test cases.
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ABSTRACT 

The increasing complexity of software systems, the shortening 

development and release cycles and the demands for higher 

responsiveness and adaptability to changing requirements has 

made software testing a huge challenge. Even though model-based 

testing has demonstrated the potential to improve test coverage 

while reducing test effort, the adoption of these techniques in the 

industry has been very slow. 

This paper presents a model-based testing framework for testing 

multi-language object-oriented APIs. UML structural diagrams 

used during model-based design and development are combined 

with UML behavioural diagrams to build a semi-formal testable 

specification of the API. Experiences from a case study of the 

functional verification of messaging clients in four languages are 

presented to illustrate the benefits of model-based testing. 

Benefits include improved consistency and interoperability across 

the messaging client implementations and identification of many 

specification related defects as well as a significant reduction in 

the total cost of testing. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging – Testing 

Tools.  

General Terms 

Design, Reliability, Languages, Verification. 

Keywords 

Model-based testing, model-driven architecture, object-oriented 

design, UML, Java, .Net. 

1. INTRODUCTION 
Model-driven design and development are being increasingly 

adopted in mainstream software development as model 

transformation and code generation tools are becoming more 

robust and widely available. Models describe a system from a 

particular perspective and visual models of complex software 

systems are often used during design to describe different aspects 

of the system. The evolution of standards like UML have made 

modeling of object oriented systems an integral part of object 

oriented design.  

Conventional software testing has so far relied on mental models 

of the software. Even though model-based testing (MBT) has 

shown potential to improve test quality and reduce testing effort, 

MBT is not in widespread use in the industry today. MBT has 

been used to test many safety-critical systems where the overhead 

of building formal specifications of the systems is perceived as 

justifiable compared to the benefits of MBT, particularly 

measurable and improved test coverage. But the move towards 

MBT in mainstream commercial software has been slow due to 

the overhead associated with the move. The lack of easy-to-use 

tools, the steep learning curve and the difficulty of building 

formal and complete models have contributed to the slow 

adoption of MBT. 

This paper describes a model-based test framework for object-

oriented APIs which closely resembles the approach traditionally 

used by software testers. This enables a non-disruptive move 

towards model-driven development and testing at a very low cost. 

Semi-formal models based on UML activity and sequence 

diagrams are used to generate readable test code which can be run 

using existing test automation frameworks, enabling an 

incremental move towards MBT. A case study is used to 

demonstrate the advantages of using this MBT approach, 

especially for multi-language APIs. Improved consistency and 

interoperability testing across multiple implementations of the 

API was one of the primary goals of MBT in the case study. 

2. BACKGROUND 
Research has shown that software testing based on rigorous 

formal specification of software systems can achieve extensive 

and measurable test coverage [7][8]. MBT based on formal 

methods has been applied to many safety critical systems and in 

hardware testing. The experiments conducted by Farchi et al. 

show that behavioural models derived from software 

specifications can be used in conformance testing and that the 

generated test suites achieve higher levels of code coverage 

compared to traditional test suites [6].   

Bishop et al. present a technique for rigorous protocol 

specification that supports formal specification based testing [7]. 

Formal specification of complex protocols like TCP provide an 

unambiguous specification that can be directly used in testing the 

implementations.  Offutt  and Abdurazik  present a technique that 
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adapts pre-defined state-based specification test data generation 

criteria to generate test cases from UML statecharts [8]. The 

project attempts to provide a solid foundation for generating tests 

from system level software specifications of safety critical systems 

using new coverage criteria. Clarke describes the use of state 

based behavioural models in testing telecommunications systems 

and presents the techniques used to overcome the state explosion 

problem [9]. The comprehensive set of tests generated using path 

analysis of the models resulted in significant productivity gains. 

An architecture for model-based verification and testing using a 

UML profile is presented by Cavarra et al. [10]. Class, objects and 

state diagrams are used to define the models which can be 

compiled into a tool language and used to generate tests. Gresi et 

al. introduce a mathematical foundation for formal conformance 

testing and automatic test generation based on UML statecharts 

[11].  

While the techniques based on formal state-based semantics have 

proven to be very effective, the adoption of these techniques for 

testing commercial software has been very limited. The culture 

change and skills required to switch over to a revolutionary new 

testing methodology based on formal methods has limited the use 

of MBT in mainstream software testing. SeDiTeC is a tool which 

enables the use of UML sequence diagrams for testing [12]. 

However issues of concurrency, integration with other UML 

diagrams and integration with existing test frameworks are not 

addressed.  

The MBT framework described in this paper attempts to 

overcome the barriers to adopting MBT in mainstream testing by 

enabling incremental adoption of MBT using an approach that is 

familiar to most testers. A semi-formal specification of the API 

using UML behavioural diagrams is used so that existing informal 

specifications can be easily modeled. This approach is aimed at 

generating the same types of tests that are hand-crafted by 

experienced software testers. Unlike state diagrams, sequence and 

activity diagrams can be transformed to readable code that can be 

easily understood and debugged by developers who are not 

familiar with MBT. In addition, tests aim to reuse API models 

developed during the design process, making it possible to 

maintain a single source for design, API interfaces, API 

documentation as well as tests. 

Many object oriented languages are currently used to develop 

applications in different domains, and hence many APIs including 

the messaging API described in Section 4 have definitions and 

implementations in different languages. Conventional testing of 

multi-language APIs have so far relied on manual porting of tests 

into different languages since automated language translation 

tools are often inadequate. MBT is particularly suited for testing 

multi-language APIs since the goal of functional verification of 

the APIs includes uniform testing and consistency and 

interoperability tests. 

3. MBT USING UML 

3.1 Model-based tests 
The MBT framework described in this paper is based on semi-

formal models in UML and is targeted at testing mainstream 

commercial software and middleware where the complexity of 

building formal models and the steep learning curve associated 

with formal modeling have prevented the use of MBT. The use of 

visual models of tests combined with the generation of readable 

code which can be executed using existing test automation 

harnesses enable the incremental adoption of MBT in traditional 

test organizations. 

UML has been accepted as the standard graphical modeling 

language across the software industry for specifying, constructing, 

visualizing and documenting software systems [1]. Model-based 

design using UML has been used to build blueprints of software 

systems for nearly a decade [2][3][5].  UML is used to model 

APIs in many software projects, and these models are often 

transformed to generate the final interfaces and documentation. 

The use of these API specification models in testing will ensure 

that tests are always synchronized with the development or 

released API versions. This is a particularly significant advantage 

when using iterative development.  

The structural model of an API typically consists of a collection 

of classes containing operations and relationships which include 

dependencies as well as class hierarchies. Behavioural diagrams 

used to describe the dynamic behaviour of the API may be 

sequence diagrams, activity diagrams or state diagrams, 

depending on the particular behaviour that is being described. For 

example, multi-threaded or multi-process behaviour are easily 

visualizable using activity diagrams while certain state based 

systems are best described using state diagrams. A testing profile 

is used to add additional test specific information into the 

behavioural diagram. Stereotypes provided by this profile enable 

the definition of test suites, parameter value ranges and other test 

related information required for the generation and execution of 

tests. Run-time constraints are added to the behavioural model to 

define pre- and post-constraints and invariants. The constraints 

are transformed to assertions in the final test code, and these 

assertions are used to assign pass or fail verdicts to the tests. 

Differences in the APIs introduced due to language conventions 

can be easily encapsulated in the specification model of the API in 

such a way that transformations for different languages generate 

optimal code for each language. A language-specific UML profile 

is defined for each supported language to add language-specific 

details to the model. The use of unified models for testing multi-

language APIs results in consistent tests across the different 

implementations while reducing the total cost of testing. 

Test data can be specified in the model for data that is specific to 

the test. Data values can be specified for parameter values, initial 

values of variables, values used in conditional statements, loops 

etc. Ranges of values can also be specified, and the transformation 

can be instructed to generate random or boundary value tests.  

Test configuration and deployment information is also specified in 

the model. This information is used to define test suites, the 

different processes that make up each test, as well as their 

arguments. The configuration information is used to generate test 

execution scripts which can be used to run the tests standalone 

during development and debugging or inside existing test 

automation frameworks.  

3.2 MBT Transformation Framework 
The MBT transformation framework has been implemented as an 

Eclipse Plugin integrated into Rational Software Architect (RSA) 

[14]. RSA is an integrated design and development tool that 

leverages model-driven development using UML. RSA is built on 

the extensible Eclipse platform [17] and provides a model 

transformation framework that can be used to transform models 
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into other artifacts like a more refined model, code or 

documentation.  

The transformation framework consists of a generic multi-

language code transformation plugin which transforms models 

containing behavioural diagrams into source code. The 

transformation framework uses extensions to support test related 

code and data generation and the extensible architecture enables 

easy integration of other test generation tools. Transformations are 

currently implemented for Java, C++, C, C# and Managed C++ 

for .Net. Figure 1 shows the architecture of the multi-language 

code transformation framework.  

 

Figure 1. Code Generation Framework 

 

UML behavioural diagrams like sequence diagrams or activity 

diagrams are first converted into an abstract syntax tree (AST) to 

provide a common intermediate representation that can be 

converted to code in different languages. AST is then transformed 

to code in the chosen language(s).   

 
Figure 2. Test Generation Framework 

 

The multi-language code transformer is extended with a test 

transformer to generate tests from UML behavioural diagrams as 

shown in Figure 2. The test transformer generates appropriate data 

sets for tests based on the possible values specified in the model. 

The transformation architecture is extensible and provides three 

extension points.  

1. UML transformation – Each UML transformation 

transforms an UML diagram to intermediate code. New 

transformations can be added to transform other 

diagrams or provide alternative transformations, for 

instance for state diagrams. 

2. Code transformation – Each code transformer 

transforms the intermediate code representation to 

source code in one language. Code can be generated for 

a new language by adding a new transformer. 

3. Existing tools and algorithms which generate test 

behaviour from models or test data sets can be 

integrated into the UML transformation. Figure 2 shows 

the use of one such tool in test data generation. 

Combinatorial covering suites have been shown to lower the cost 

of testing while providing measurable coverage [4]. This approach 

involves identifying parameters that define the space of possible 

test scenarios and then selecting the set of test scenarios in such a 

way as to cover all pairwise (or t-wise) interactions between the 

parameters and their values. The IBM Intelligent Test Case 

Handler uses sophisticated combinatorial algorithms to construct 

test suites with given coverage properties over large parameter 

spaces [16]. The model-based test framework has been integrated 

with this test case handler to generate test data sets. Parameters 

and variables and their interactions as well as values to be used 

for testing can be specified in the test model. Test suites are 

generated by the transformation with the specified coverage 

property.  

4. MBT FOR MESSAGING CLIENTS – A 

CASE STUDY 

4.1 Java Message Service and IBM Message 

Service Clients 
The Java Message Service (JMS) API is a messaging standard 

which enables applications written using the Java 2 Platform 

Enterprise Edition (J2EE) to send and receive messages using any 

J2EE-enabled enterprise server [15]. IBM Message Service 

Clients (informally known as XMS) aim to provide a consistent 

cross-language API that brings the benefits of the JMS messaging 

standard to non-Java platforms. XMS is currently implemented 

for C, C++ and .Net. 

Unlike network protocols, JMS has a very flexible messaging 

specification, making it difficult to define a formal specification of 

JMS. In addition, the testing in the case study is aimed at four 

different implementations of JMS/XMS. The flexibility in the 

specification in exploited in different ways in the different 

implementations. Formal specification of JMS for these 

environments using standard state based specifications would 

require separate models for each of the implementations. In 

addition, lack of skills in formal methods in the industry makes it 

very expensive to introduce testing based on formal 

specifications. 
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Like most multi-language APIs, conventional testing of JMS and 

XMS APIs relied on manual porting of tests to different 

languages. This process has proved to be both expensive and 

error-prone. Even though consistency and interoperability across 

the clients is one of the main goals of the messaging standards, 

these proved to be the biggest challenge for test using 

conventional testing which relies on test teams skilled in 

individual programming languages.  

Concurrency testing is another area where conventional testing 

proved hard to implement. Skills in concurrent programming, 

particularly in languages like C where different code is required to 

create multi-threaded tests on different platforms and the 

difficulties in visualizing and debugging concurrent tests 

restricted the level of concurrent testing. 

In this case study, traditional testing for JMS and XMS was 

performed by two separate test teams, with team members 

assigned to testing the API for a specific language. This testing 

has been largely based on the informal JMS specification. MBT 

was introduced at a later stage with one developer assigned to 

develop the test framework and the models for specification and 

testing. The teams were not skilled in UML and UML modeling 

was introduced into development and test for the first time as part 

of this effort.  

4.2 MBT of JMS and XMS 
MBT of JMS and XMS is based on a unified specification of JMS 

and XMS APIs in different languages. The structural model of the 

API describes the interfaces in the different languages using the 

language-specific profiles. A semi-formal behavioural 

specification consisting of activity diagrams and sequence 

diagrams based on the informal JMS specification is used for test 

generation. Unified testing of the clients aims to ensure that the 

different implementations of the clients are consistent and 

interoperable. Behavioural differences in implementations 

introduced due to language differences and differences in 

transport are highlighted in the test models, and the 

transformation framework generates different tests in these cases. 

As an example consider the message ordering tests for JMS.  

JMS defines that messages sent by a session to a destination must 

be received in the order in which they were sent. This defines a 

partial ordering constraint on a session's input message stream 

[15].   

Figure 3 shows an activity diagram which sets the context for the 

test. It consists of two partitions, one for the producer which sends 

messages and another for the consumer. Figure 4 shows a simple 

sequence diagram which represents the consumer which receives 

messages and it shows the constraint about message ordering. The 

basic test generated in each language from these two diagrams 

creates two threads, and the test succeeds if the messages are 

received in the consumer thread in the same order as they were 

sent by the producer thread. Variations of this test can include  

1. Same test with different message types 

2. Same test with different message sizes 

3. Different combinations of message persistence, 

acknowledge modes of sessions and message priorities 

can be generated. Combinatorial coverage analysis can 

be used to generate the minimal set. 

4. The fork in the activity diagram can be transformed to 

generate multiple consumer threads using the same 

ordering constraint. 

5. The same model can be used to generate multi-process 

tests where the producer and consumer reside in 

different processes. The resulting multi-process tests can 

be used to verify that the constraint holds even when the 

producer and consumer are in different languages. 

6. Additional run-time constraints can be placed to ensure 

that all messages are received and in the correct order. 

The constraint can have a special case for high-

performance implementations where non-persistent 

messages are not guaranteed to be delivered. 

7. Large numbers of threads, large loop sizes and large 

message sizes can be used to generate stress tests using 

the same model. 

 

Figure 3. Activity Diagram 

 

 

Figure 4. Sequence Diagram 
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public void receiveMessages(MessageConsumer 

consumer, int messageCount) throws Exception { 

  int lastId = 0;   

  for (int i = 0; i < messageCount; i++) { 

    Message message = null; 

    int thisId = 0; 

    message = consumer.receive(1000); 

    thisId = message.getIntProperty("sequence"); 

    Assert.isTrue(thisId > lastId, "Constraint  

failed: return > lastId"); 

    lastId = thisId; 

  } 

} 

Figure 5. Generated Java Code 

Figure 5 shows the snippet of Java code generated from the 

sequence diagram in Figure 4 when logging and exception 

checking are turned off. When verbose logging is enabled, the 

generated code contains extensive logging which log method 

calls, parameters, return values and exceptions with the source 

line numbers. 

4.3 Advantages of MBT 

4.3.1 Test quality 
Model-based tests are currently implemented for JMS/XMS for 

Java, C, C++ and .Net for messaging clients running against three 

different enterprise messaging servers. Model-based tests for JMS 

and XMS have uncovered more than 80 defects related to the 

specification, consistency and interoperability across the clients, 

which were not discovered by the hand-crafted testing effort. 

Unified specification and testing for the different clients, the ease 

of generation of concurrency and interoperability tests and the 

improved behavioural specification of the API based on a visual 

semi-formal model rather than textual informal prose have 

contributed to the better quality of testing. Better test data 

generation algorithms are expected to improve this even further. 

A large number of defects found using MBT which were not 

discovered using hand-crafted testing were related to the 

interpretation of the specification of JMS. In the multi-language 

scenario, the discovery of the differences across the different 

implementations as a result of unified testing enabled the 

development of a cross-client  behavioural specification, which is 

more rigorous than the informal JMS specification. Improving the 

clarity of specifications using visual behavioural models will also 

benefit APIs which are targeted at a single language. 

4.3.2 Test resource 
Figure 6 shows the total test team size for functional verification 

of JMS and XMS, including the additional testing of new clients 

currently under development. The initial cost of implementing the 

model-based test framework and skill development for MBT are 

also included in the figures and the results demonstrate that the 

cost of deploying MBT can be easily recovered. The figures 

include estimates covering the period till the end of 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows the relative code size of the test code used for 

functional verification of JMS and XMS. The traditional code size 

refers to actual code size in kilo lines of code for existing code 

and estimated code size for testing the new client. MBT code size 

refers to the equivalent lines of hand written code that the model 

describes. The significant reduction in test code size, and 

consequently in test maintenance is achieved using MBT because 

of the use of the same tests for different languages and different 

versions of the messaging clients. The transformation plugin 

source (20 kloc) is not included in the MBT code size since the 

plugin is generic and can be potentially used with to test multiple 

APIs.  

 

 

 

 

 

 

 

 

 

 

Figure 8 shows the total test analysis effort in person months. The 

total test analysis remains roughly the same with MBT. The slight 

increase in the initial stages is a result of higher number of tests 

being run and the slight reduction in the later stages results from 

increasing consistency of tests and test results. 

Figure 9 shows the relative cost of developing new tests using 

model-based and traditional methods. There is a significant 

reduction in cost for adding new tests even when the additional 

cost of skill development for MBT is taken into account since the 

same tests are run against four languages and different versions of 

the API.  

 

 

Figure 7.  Estimated Test Code Size. 

 

Figure 6. Test Team Size 
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Figure 10 shows the relative cost of testing messaging clients for a 

new language. Traditional testing cost is based on the person 

months used to implement functional verification tests for XMS 

.Net using C#. MBT cost is based on the implementation of the 

transformation for generating C# code and the specification model 

for .Net. 

 

 

 

 

 

 

 

 

 

 

4.3.3 Model reusability 
Unified modeling of JMS and XMS has enabled a consistent 

definition of the API which can be used to generate interfaces in 

different languages as well as the documentation. The same 

models are used for functional verification. These models have 

been further used in unit testing the new IBM JMS client 

implementation using mock objects. The API specification models 

have also been used in conjunction with behavioural models of 

performance test scenarios to generate performance tests for 

messaging clients. The separation of test data from test behaviour, 

the ease of modeling and visualizing concurrent tests, and the use 

of a common API specification model have contributed to fast 

turnaround of performance tests. 

4.3.4 Other advantages of MBT 
MBT enables the separation of test behaviour from test data, 

enabling the generation of large numbers of tests from a small 

number of models. Existing combinatorial algorithms are used to 

generate minimal test suites with strong coverage properties. 

MBT enables language differences in APIs to be encapsulated 

into the API specification model so that the same behavioural 

specification of the API can be used to generate tests for different 

languages, or even different versions of the API. Object-oriented 

APIs implemented in non-object-oriented languages like C can 

also be handled if the API definition is consistent. 

Multi-process tests can be generated as multi-threaded tests for 

initial development and debugging. Tests can be generated with 

extensive logging or with customized selective logging. Tests can 

be generated to run within an automation harness or as standalone 

tests for debugging. Stress tests using large numbers of threads, 

long loops or large arrays can be easily generated from the same 

test models. 

The incremental adoption of MBT and the generation of readable 

code that is very similar to the code that is usually hand-crafted by 

experienced testers has made it practical to introduce models into 

the software development and testing process without causing any 

disruption. The success of MBT in functional verification has also 

encouraged the use of modeling during the design stage in the 

development of a new JMS client. The extensible architecture of 

the MBT framework will enable the integration of formal state-

based testing in future to test critical sections of the code. 

The visual modeling of API behaviour promotes better 

understanding of the API specification amongst both developers 

and testers, resulting in early identification of defects. UML state 

diagrams enable the precise modeling of parts of the API which 

are  formally specified. Sequence and activity diagrams enable the 

development of models that are easily understood and provide the 

flexibility to model parts of the API which have incomplete 

definition in order to allow high-performance flexible 

implementations. 

The use of models developed during the design process for testing 

enables tests to be generated even before the code is implemented. 

Combined with mock objects used in unit testing, generated tests 

can be used very early in the development cycle to discover not 

only implementation defects, but also specification and 

requirements defects.  

While MBT based on UML behavioural models is well suited to 

functional verification tests, scenario and system tests require 

models which can combine multiple behavioural models in 

different ways. Patterns for messaging clients enable the 

development of patterns and pattern transformations which can be 

used not only for system tests, but also for the generation of 

messaging application code [13]. These transformations also 

benefit from multi-language code generation, and in addition 

enable the generation of deployment scripts for different 

messaging servers. System test transformations for messaging 

clients using patterns are currently being developed. 

5. SUMMARY AND FUTURE WORK 
This paper explores the use of semi-formal models for MBT to 

enable the incremental adoption of MBT in test organizations 

which are currently reluctant to adopt MBT due to the high 
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overheads and lack of skills in formal modeling. The case study 

illustrates that the cost of implementing a MBT framework and 

skill development required for the implementation of MBT can be 

easily recovered in a single project, especially when testing 

multiple languages. Most of the results presented in this paper are 

equally valid for code targeted at a single language, even though 

the cost benefits may not be so dramatic.  

Visual modeling and the use of a common set of models 

throughout the software development lifecycle promote better 

understanding of the software and early identification of defects. 

The use of a familiar test paradigm and the generation of readable 

code which can be executed within existing test automation 

frameworks lower the initial investment in the adoption of MBT. 

The extensible architecture used by the test generation framework 

enables existing model-based code and data generation tools to be 

easily integrated into the framework.  

Scenario and system test generation using the model-based test 

framework and patterns for messaging clients are now being 

developed to support model-based system testing. Future 

enhancements to the toolset include limited round-trip 

engineering capability from Java to enable existing tests to be 

converted to models easily. Integration of the framework with 

tools supporting formal state-based specifications is also being 

explored. 
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ABSTRACT
In this paper we will describe our work on automatic gen-
eration of tests for Systems Under Test (SUT) described in
the CO-OPN specification language that has been developed
in our laboratory. CO-OPN (Concurrent Object Oriented
Petri Nets) is a formalism for describing concurrent software
systems that possesses most of the characteristics we can
find in mainstream semi-formal modeling languages. Given
its formal semantics, CO-OPN is a suitable formalism for
model-based test case generation.

Within our work we have developed a test selection lan-
guage for CO-OPN specifications which we have named SA-
TEL (Semi-Automatic Testing Language). The purpose of
SATEL is to allow the test engineer to express abstract test
intentions that reflect his/her knowledge about the seman-
tics of the SUT. Test intentions are expressed by execution
traces with variables that can expanded into full test cases
– this is done using the CO-OPN specification of the SUT
as a reference for calculating the oracles. We call our test
selection language semi-automatic because it allows explic-
itly choosing the shape of the test cases in a test intention,
while relying on automatic mechanisms for calculating the
equivalence classes of operations defined in the model.

1. INTRODUCTION
Many are the difficulties that arise when one tries to per-

form automatic test generation for a software system. Let
us start by defining what is meant by ”automatic”. The ap-
proaches and tools that exist today for performing test gen-
eration can be mostly divided into two categories: white-box
and black-box. While white-box testing is usually based on
covering certain execution paths of the SUT (System Under
Test) code, black-box testing is concerned about covering
functionalities of the SUT described in a model. In any of
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these cases the automatic aspect of test generation is made
difficult by the fact that the set of reachable states of either
the SUT or the model is, in the general case, infinite. In this
context, the notion of coverage of an SUT or a model by the
generated tests depends strongly on which restrictions were
made in order to ”intelligently” cover the given state space.
For example, if one is performing white-box testing, covering
all decision points in the code is a classic strategy [1] and
can automatically generate test cases. Using this kind of
reasoning, many other strategies for ”automatic” white-box
test case generation might be devised.

On the other hand, by introducing the notion of a model
of the SUT it might be expected that the problem of cover-
age of the SUT would be implicitly solved. Being that the
model is an abstraction of the system we pretend to test,
we could assume the abstractions introduced by the model
would make extensive testing – modulo those abstractions
– possible. In reality this is not true. Models of software
systems can be also very complex and mainly abstract from
having to deal with hardware, operating systems, software
libraries or specific algorithms (unless we are aiming at di-
rectly testing those entities). What the model introduces in
the chain of test generation is rather a form of redundancy
– a way of comparing the SUT with an abstraction of it-
self in order to find differences which are possibly errors in
the code. Again, we meet with the problem of reaching an
infinite set of states of the model.

1.1 Our Approach
In this paper we propose a semi-automatic approach to

test generation. The approach is semi-automatic in the sense
that we allow the test engineer to state test intentions, while
using unfolding techniques (introduced by Bernot, Gaudel
and Marre in [2]) for automatically finding equivalence classes
of inputs to operations of the model. It is our intention
to explicitly make use of the test engineer’s knowledge in
the test generation process. He/She will be able to express
which parts of the model are relevant for testing and to im-
pose limits on how that testing should be performed. How-
ever, given an operation of the model, he/she will also be
able to state that the generated tests should include inputs
that automatically cover the various behaviors (the equiva-
lence classes) of that operation. For example, while testing a
Banking application, the test engineer would be able to ex-
press that he/she wants a certain sequence of operations to
be executed during testing (e.g. login user / introduce pass-
word / deposit amount / withdrawal amount), but also to
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Figure 1: Testing Process

express that the generated tests should automatically cover
all the behaviors of the password operation – the password
is either correct or incorrect for a given user.

Figure 1 depicts the process of testing an SUT using our
approach. Assuming a CO-OPN [3] specification of the SUT
exists, the test engineer writes a script of test intentions.
These test intentions may make use of the semantics of the
model in order to automatically cover equivalence classes of
specifications’ operations (hence the dashed line). The test
cases produced by the test intentions are then confronted
with the specification for validation purposes. This step is
necessary in order to decide whether a test case is a valid or
an invalid behavior according to the specification. An exam-
ple of an invalid behavior would be expecting an incoherent
output while applying a given input to an operation of the
specification. Although valid behaviors are the most inter-
esting, invalid behaviors can also be used as test cases in the
sense that they depict scenarios of execution that should not
be allowed by the SUT. The rightmost arrow of figure 1 rep-
resents the verification of the SUT by submitting to it the
validated test cases. This step is by no means simple and
requires the existence of oracles for the generated test sets
and drivers actually apply those tests to the SUT. Given
that our current research is focused on producing test cases
and their oracles, we will not explore the test driver issue in
this paper.

1.2 Contribution
The novelty of our approach lies in the fact the we priv-

ilege the test engineer’s semantical knowledge of the SUT
rather than emphasizing pure automatic test generation as
for example in [4]. To our knowledge current research on
testing is either focused on test drivers without automatic
test generation abilities – e.g., the very successful TTCN-3
[5] – or on approaches which aim at building press-button
tools. In the latter category we can mention the CLPS-B for
limit testing approach from the university of Franche-Comté
[4] which tries to automatically reach possible outcomes of
the operations of a model expressed in the specification lan-
guage B. Although very effective in certain situations, this
approach implicitly requires a strong discretization of the
model so the state space can be searched. Another approach
with which we identify more is the AsmL Test Tool from Mi-
crosoft [6]. In this tool it is possible to generate a state space
for a specification in the AsmL language and the test engi-

neer can provide abstractions both for the state space itself
and for input values. Algorithms for searching the reduced
state space allow generating test cases that cover all or part
of those states. Although the approach is in certain aspects
similar to ours, we consider our test selection language to
be more appropriate for the test engineer to express seman-
tic knowledge about the SUT at a high level of abstraction.
The TOBIAS [7] tool is an automatic test generator based
on producing combinatorial test sets from test purposes [8].
The idea of using test purposes is similar to that of using
test intentions, although the TOBIAS tool suffers from the
problem of calculating the oracles for the test sets. This is
due to the fact that no semantically exploitable specification
exists – contrarily to our approach. Despite, the authors try
to overcome that difficulty by using VDM or JML assertions
as a means of filtering interesting test cases [8] from the large
combinatorial test sets.

Another aspect of our contribution lies in the fact that
we use CO-OPN as our specification language for model-
based test case generation. CO-OPN is based on Algebraic
Data Types for describing data types and on structured Ob-
ject Oriented Petri Nets for describing behavior (see [9] for
details). The Petri Nets semantics of our specification lan-
guages places us very near to such formalisms as Harel’s
statecharts [10] or the Behavioral State Machines introduced
in UML 2.0 [11] (which is in fact an object-based variant of
Harel’s statecharts). We are currently pursuing our research
in the sense of applying our test intention-based techniques
to test generation based on such mainstream models. We
accomplish this by translating those models into CO-OPN
and profiting from the partial equivalence of the semantics,
as explained in [12].

1.3 Organization of the paper
The remaining of this paper is organized as follows: sec-

tion 2 describes CO-OPN as a modeling language and in-
troduces its semantics by means of an example. Section 3
discusses some of the requirements for a test intention lan-
guage that will act over CO-OPN specifications. In section
4 we present the syntax and semantics of our test inten-
tion language SATEL. Finally, section 5 provides a concrete
example of usage of our language and section 6 concludes.

2. THE CO-OPN SPECIFICATION LANGUAGE
In this section we will introduce the CO-OPN specification

language. The objective is not to provide an exhaustive
definition of the language, but rather to explore issues that
are relevant while designing a language for semi-automatic
test generation using CO-OPN specifications as models. In
order to do this we establish an example of a Banking system
model in CO-OPN. This example will be used throughout
the paper.

Our Banking system is a multi-user centralized system
that provides to users the possibility of managing their ac-
counts via remote automatic teller machines. Before being
able to perform operations on his/her account, the user has
to authenticate in a two-step process: log in with a user-
name; if the username exists, the system asks the corre-
sponding password. If the user provides three wrong pass-
words, his/her account will become blocked and he/she will
no longer be able to connect to the system. After having
successfully authenticated, the operations available to a user
are balance display, money deposit and money withdrawal.
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Figure 2: ADT Password

The following subsections introduce the different kinds of
modules which can be present in a CO-OPN specification:
Algebraic Data Types (ADT for short) and Classes. ADT
correspond to data structures defined by algebraic sorts and
operations. The equational algebraic definition of the data
type’s operations allow us to perform the unfolding of the
behavior of those operations in a way that is useful for test
generation, as we will describe in this paper. CO-OPN’s
Classes are relatively compatible with the popular notion of
Class in the Object Oriented paradigm.

2.1 Algebraic Data Types
ADT are an instance of the well known notion of algebraic

specifications (interested readers are directed to [13]). An
ADT module includes generators and operations. Genera-
tors build the set of elements (the sort) of the ADT, while
operations are functions over that set. The behavior of the
operations is defined by algebraic equations.

Coming back to the Banking example, we can find in fig-
ure 2 a partial definition of an ADT for the Banking spec-
ification. The ADT defines the sort password, which is the
set of passwords the Banking system allows. In the figure it
is possible to see that that the single generator of the sort is
called newPassword and includes four elements of sort digit
as parameter (the sort digit – numbers from 0 to 9 – is de-
fined in a separate ADT module). For the password Sort
only the equality (”=”) operation is defined.

2.2 Classes
In figure 3 we have represented the class model of our

Banking system. The diagram models a system that con-
tains zero or multiple instances of class BankingUser. A
BankingUser object holds the user’s current state (not logged
/ waiting for password reply / logged / blocked) and a num-
ber of accounts. The user’s current state is held in one
instance of the eUserState class – the prefix 1 indicates only
one instance exists per instance of BankingUser. Each ac-
count is an instance of class Account and a user can own one
or multiple accounts.

2.2.1 Class Interface – Methods and Gates
In CO-OPN an instance of a class is seen as an entity

that can require and/or provide events inside a network of
objects. Required events are called methods and provided
events are called gates. Both method and gate events may
be parameterized.

Figure 4 depicts a graphical representation of a simplified
Account class of our Banking system. Methods and gates
are represented respectively by black and white rectangles
on the outside of the class. An object of type Account re-

Figure 3: Class Model for the Banking System

Figure 4: Account Class

quires (or is able to respond to) three outside events: bal-
ance?, withdraw amount : integer (meaning withdraw takes
an amount of money as parameter), deposit amount : integer
and checkAccId accId : string. An account is also able to
produce one event to the outside: the hasBalance : integer
gate outputs the amount of money present in the account.
In this particular case, the hasBalance : integer event is
produced as a response to the balance? one.

The method init accId : String corresponds to the initial-
ize method of the class. Although all classes in CO-OPN
have an implicit create method, in this case init is used in
order to initialize the identifier of a particular account.

2.2.2 Petri Nets for Behavior
The state of a CO-OPN object is held in a petri net.

For readers who are unfamiliar with the formalism, Petri
nets are a means for representing the behavior of concur-
rent systems. In a Petri net two concepts are fundamental:
places that hold resources and transitions that can consume
and produce resources. Newly produced resources are again
placed on the net. Typically places are represented by cir-
cles, transitions by solid rectangles and their interactions by
arcs.

A CO-OPN class can be seen as an encapsulation of a petri
net with methods and gates. In figure 4 the places of the
petri net are represented by the circles labeled balance and
accountId. In this particular case the existing transitions
are implicitly associated to methods and gates of the class1.
For example, the withdraw amount : integer method, when
activated, takes a resource bal (implicitely meaning an inte-

1It is also possible to have transitions inside the class which
are not associated to methods or gates
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ger representing the balance of the account) from the place
balance and puts it back subtracting the amount that was
withdrawn. In order for this event to happen the existing
balance has to be superior or equal to the amount of money
withdrawn – as the label in arc from the withdraw method
to the balance place indicates. Another interesting exam-
ple is the balance? method that checks the existing balance
(without changing it) and activates the gate hasBalance :
integer2 with the available balance as parameter. We pro-
vide in the following lines the textual representation (the
so called axioms) of the withdraw and balance? methods
depicted graphically in figure 4.

(b >= amount) = true => withdraw amount ::
balance b -> balance b - amount

balance? with hasBalance b :: balance b -> balance b

Briefly, the first axiom for the withdraw method is split
into three parts: the condition (b >= amount) = true, the
method (and parameter) withdraw amount and the neces-
sary pre- and post-conditions of the object’s petri net bal-
ance b → balance b - amount. The second axiom for the
balance? method has a slightly different form in the sense
that there is no condition and when the transition balance b
→ balance b is possible, the balance? method synchronizes
with the gate hasBalance b in order to output the account
balance.

It is important to mention that due to the usage of Petri
Nets as a way of expressing behavior, the concurrency in a
CO-OPN model is managed ”for free”. In fact, although
places in a CO-OPN class can be loosely associated to the
traditional notion of class attributes, its semantics is very
different. The consumption of a resource in a place means
the resource no longer exists – this makes it impossible, for
example, for two simultaneous calls to the same method to
succeed if they access the same resource.

2.2.3 Object Coordination Model and Transactional
Semantics

Apart from the underlying semantics of Petri Nets, the
CO-OPN language also employs a coordination model that
allows expressing that the execution of a given method re-
quires the simultaneous, sequential or disjunctive occurrence
of other events in the object network that composes the sys-
tem. As an example, let us imagine how we would implement
a withdraw : integer string method in class BankingUser
(refer to figure 3). This method including two parameters
(amount and account identifier) has as purpose to delegate
the activation of the money withdrawal to method withdraw
of an Account object with the given account identifier. This
can only happen if the user is already logged in. The CO-
OPN axiom that describes this behavior is:

withdraw am accId With us . isLogged // acc . checkAccId accId
// acc . withdraw am::

accounts acc, userState us -> accounts acc, userState us;

In this axiom we can see that the method withdraw is
synchronized with the occurrence of three other events: the
user has to be logged, the account has to have the correct
identifier and the withdraw method of that account object

2The underscore(s) after the name of the method represents
the position of the method parameters in the method call

has to be possible. The ”//” operator states that the events
must happen simultaneously. A CO-OPN method call can
be also synchronized with a simple event or with an event
sequence or disjunction – represented respectively by the
”..” and ”+” operators.

The execution of any CO-OPN method (synchronized or
not) is transactional in the sense that it is either fully exe-
cuted or the model’s state does not change.

3. CO-OPN, SUT AND TEST GENERATION
By choosing CO-OPN as a specification language for model-

based testing we naturally include into the set of SUTs
we can test concurrent, non-deterministic and transactional
systems. This section provides a discussion on how SUTs
with these features have influenced our choices while de-
signing SATEL and while producing CO-OPN specifications
that allow model-based testing.

3.1 Stimulations and Observations
Test cases are in principle sequences of stimulation/ ob-

servation pairs over the SUT’s interface signature. Given
that we are performing model-based testing, we require an
isomorphism to exist between the model’s interface and the
SUT’s interface. This is an essential assumption of the ap-
proach without which it becomes impossible to use the gen-
erated tests. In terms of the CO-OPN model we can map
the stimulations of the SUT into synchronizations (including
the ”//”, ”..” and ”+” operators) of method events and ob-
servations of the SUT into synchronizations of gate events.
This formalization of stimulations and observations has the
advantage of being straightforward. On the other hand we
entirely leave the complexity of applying stimulations and
calculating the test verdicts up to the test driver machinery.

3.2 Non-Determinism and Test Representation
Formalism

Taking into consideration that test cases are execution
traces of the SUT, their natural representation is as se-
quences of events (or stimulation/observation pairs, as we
have previously defined). Simple temporal logics such as
Traces [14] can describe such executions in a model, but are
insufficient to discriminate different non-deterministic be-
haviors. Given that CO-OPN allows non-determinism (we
can for example declare two different methods with the same
fire condition) we have chosen as test representation formal-
ism the HML (Hennessy Milner Logic) temporal branching
logic which includes and and not operators. The unit event
in our HML formulas is the stimulation/observation pair.
Leaving the formal equivalence relation issues outside the
scope of this paper [15], HML allows us to be precise enough
to test accurately non-deterministic aspects of the SUT.

As we have previously mentioned in the paper, we consider
both valid and invalid behaviors of the SUT as test cases.
In that sense we need to add to the HML formulas a logic
value true or false in order to distinguish valid from invalid
behaviors. Our test cases are thus pairs of the form < f, r >,
where f is an HML formula with stimulation/observation
pairs as events, and r ∈ {true, false}.

3.3 Transactional issues of CO-OPN
CO-OPN’s transactional semantics makes it possible to

automatically reject certain operations if the state of the

22



model does not allow executing them. For example, in fig-
ure 4, the withdraw amount: integer operation (or method)
is only successful if the condition (b >= amount) = true.
In case the state of the model is such that this condition
is false, the model will simply refuse the execution of the
operation. These semantics are interesting for modeling be-
cause they allow treating operations in a positive way – an
operation is executed if and only if the state of the model al-
lows it, otherwise nothing happens. All error situations and
inconsistent states are thus avoided. However, most pro-
gramming languages do not implement these semantics and
real SUTs usually react to (distinct) impossible operations
with (distinct) error codes. Methodologically speaking it is
thus important to model those impossible situations as ob-
servable events of the system. Coming back to the model in
figure 4, this means it would be interesting to add a second
behavior for the withdraw amount: integer method, such as:

(b >= amount) = false => withdraw amount // errorLowBalance ::
balance b -> balance b;

This axiom states that if we try to withdraw an amount of
money superior to the balance of the account a gate event
errorLowBalance would occur. Given this new operation
it would be possible to associate a stimulation withdraw
amount (where amount is superior to the current balance
of the account) with an observation errorLowBalance in or-
der to test this behavior.

4. SYNTAX AND SEMANTICS OF SATEL
SATEL is a language for expressing test intentions for CO-

OPN specifications. The language should be precise enough
to tackle in depth the model the test engineer wishes to
produce tests from, but at the same time generic and simple
enough to accomplish it without exposing the complexity
of the test generation engine itself. Given that different
test intentions can cover different functionalities expressed
in the model (we have relaxed the need for pertinence of
the test set as formalized in [16]), we have also designed the
language in a way that test intentions can be reused. In
fact we have defined test intentions as modules that may be
composed, giving rise to the possibility of devising in the
future a methodology for testing systems in a compositional
way, possibly reusing previously defined test intentions. A
formal description of the syntax and semantics of SATEL
may be found in [17].

4.1 Syntax of SATEL
A test intention is written as a set of HML formulas with

variables, which in the subsequent text we will call execution
patterns. The variables correspond to the three dimensions
of a test case, namely:

• the shape of the execution paths;

• the shape of each stimulation/observation pair inside
a path;

• the algebraic parameters of the methods or gates inside
the stimulation/ observation pairs.

A test intention is thus written as a set of partially instanti-
ated execution patterns, where the variables present in those
patterns are by default universally quantified. All the com-
bined instantiations of the variables will produce a (possibly
infinite) number of test cases.

By constraining the domains of the variables in an execu-
tion pattern, the test engineer is able to produce test cases
that accurately reflect his/her intuition behind a test inten-
tion. For each kind of domain we have devised a number of
functions and predicates that allow modeling test intentions.
The functions have as co-domains the integers and booleans,
which are native data types of SATEL. The predicates are
the typical binary predicates for integers (==,<>,>,<,<=,
>=) and for booleans (==,<>).

• Variables over the shape of execution paths:
these variables are constrained by using functions that
discriminate the of shape HML formulas. In particu-
lar we have implemented the following functions that
have HML formulas as domain: nbEvents – number
of events in an HML formula; depth – length of the
deepest branch of an HML formula; sequence – true if
the HML formula contains no and operators; positive
– true if the HML formula contains no not operators;
trace – true if the HML formula contains no and or
not operators.

• Variables over Stimulations/Observations: given
that stimulations and observations are respectively syn-
chronizations of method and gate events, we have de-
vised a number of functions that discriminate the shape
of those synchronizations. In particular we have im-
plemented the following functions that have stimula-
tions or observations as parameters: simpleEvent –
true if the stimulation or observation is composed re-
spectively of only one method or gate call; onlySimul-
taneity, onlySequence, onlyAlternative – true if there
are only respectively simultaneity (”//”), sequence (”..”)
or alternative (”+”) operators present in the synchro-
nization nbSynchronizations – number of simple events
in the synchronization.

• Variables over algebraic parameters of methods
or gates: given the fact that these variables represent
values of algebraically defined sets, we use algebraic
equations in order to limit the elements from those
sets. If we take the example of figure 2, a possible
algebraic constraint would be ((a = newChallenge 1 2
3 4) = true), which would limit an algebraic variable
called a to the only possible value of (newChallenge 1
2 3 4).

4.1.1 Declaring test intention rules
Each test intention may be given by several rules, each

rule having the form:

[ condition => ] inclusion

In the condition part of the rule (which is optional) the
test engineer is able to express constraints over variables –
those mentioned in the above list of items. In the inclu-
sion part of the rule the test engineer can express that a
given execution pattern is included in a named test inten-
tion. Assuming given a CO-OPN specification, consider the
following rule (where f is variable over execution paths):

nbEvents(f) < 5 => f in SomeIntention
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This rule would produce all possible test cases for that spec-
ification that include a number of events inferior to 5. These
test cases would become part of the test set generated by
the test intention SomeIntention.

On the other hand it is possible to declare multiple rules
for the same test intention. Let us add to the previous rule
the following one, where aMethod and aGate are respectively
ground stimulations and observations:

HML{<aMethod,aGate> T} in SomeIntention

The set of test cases produced by SomeIntention would now
become the one produced by the first rule united with the
one produced by the second rule. In fact only one test case is
produced by the second rule given that there are no variables
in the execution pattern HML{<someMethod,someGate>
T}.

An interesting feature of the language is that it allows
reusing rules by composition, as well as recursion between
rules. Consider the following set of rules where f and g are
variables over the shape of execution paths:

HML{<aMethod,aGate> T} in AnotherIntention

HML{<aMethod’,aGate’> T} in AnotherIntention

f in AnotherIntention, g in AnotherIntention => f . g

in AnotherIntention

These rules would produce an infinite amount of test cases
which include sequences of the stimulation/observation pairs
<aMethod,aGate> and
<aMethod’,aGate’> in any order and in any length. In fact,
the third rule for AnotherIntention chooses non-deterministically
any two test cases generated by any rule of the test intention
and builds a new test case based on their concatenation3.

The composition of test intentions is a very important
feature given that it allows establishing a methodology for
building test intentions that cover progressively larger parts
of the SUT. We are currently investigating these method-
ological issues and their impact on how to write test inten-
tions. A direction for this research is that, using SATEL,
top down or bottom up construction of test cases is possible.

4.1.2 Variable quantification constraints
All the variables used in a test intention rule are univer-

sally quantified, while satisfying the constraints expressed
in the condition of that rule. This will produce test sets
which are the combination of all the possible values the vari-
ables assume in the execution patterns on the right side of
the rule. In some cases this is not practical because we
may want to select randomly a value from a given domain
– this corresponds to uniformity hypothesis as described in
[16], whereas the previously presented constrains correspond
rather to regularity hypothesis.

In order to deal with this random aspect necessary for test
generation, we have included in SATEL two unary predi-
cates that may be seen as quantifiers for variables of our
language. These quantifiers may be applied to any variable
of the language (shape of execution paths, shape of synchro-
nizations or algebraic parameters of methods). However,
they will only quantify directly the variables which represent
the algebraic parameters of methods. In what concerns the

3The ”.” is the concatenation function between test pat-
terns.

remaining variable types, they will be quantified indirectly
in the sense that the quantification will propagate to all the
method parameters included in the execution patterns that
those variables stand for.

• uniformity(var): all method parameters directly or
indirectly in the scope of var will be attributed one
random value;

• subuniformity(var): all method parameters directly
or indirectly in the scope of var will be attributed one
random value for each of the equivalence classes in the
semantics of the method they belong to.

As an example, consider the following rule for the test
intention TestWithdraw where amount is a variable of the
ADT integer type and g is a variable of the type observation:

subuniformity(amount) =>

HML{<deposit(10),null><withdraw(amount),g> T} in

TestWithdraw

Using an object of type Account as specification (see fig-
ure 4), this test intention would generate for example the
following valid test cases:

<deposit(10),null4><withdraw(5),null>, true

<deposit(10),null><withdraw(15),errorLowBalance>, true

In fact the subuniformity predicate allows choosing two val-
ues for the amount variable, one for each fire condition of the
method withdraw. We have defined two axioms for withdraw
with the complementary conditions (b >= amount) = true
and (b >= amount) = false. Operationally we choose one
value satisfying each of those conditions, hence covering the
two equivalence classes of withdraw.

4.2 Semantics of SATEL
The abstract semantics of SATEL corresponds to three

consecutive steps:

1. Expansion of the test patterns defined in the test in-
tentions by instantiating the variables to their pos-
sible values. All variables are instantiated except for
the ones marked with the subuniformity quantifier and
the observation variables. All the combinations of all
instantiations yield a first batch of partially HML for-
mulas;

2. For all HML formulas generated in step 1, instanti-
ation of the variables marked with the subuniformity
predicate and the observation variables. The instan-
tiation of these variables provide the oracles for those
formulas.

3. Checking of the validity of the HML formulas produced
in step 2 w.r.t. the CO-OPN specification.

This abstract view of the semantics is not tractable opera-
tionally. In fact, to compute the semantics of SATEL’s test
intentions we use logic programming (which mixes the three
steps). In order to instantiate the remaining variables from
step 1, we have built a translator of CO-OPN specifications

4The null keyword corresponds to the absence of observa-
tion.
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to the logic programming language Prolog [18]. By com-
puting the Prolog translated specification with the partially
instantiated HML formulas, we are able to fully instantiate
them. In particular, to calculate the variables marked with
the subuniformity quantifier we make use of the unfolding
technique explained in [19]. The technique involves mark-
ing the Prolog translation of the equations specifying each
algebraic operation, at certain choice points. These choice
points correspond to goals in Prolog for which the solutions
will be values inside the equivalences classes of those op-
erations. For an example of application of the unfolding
technique, see [20].

We decide of the validity or invalidity of an HML formula
by checking its satisfaction in the CO-OPN specification.
The Prolog computation of the specification will only instan-
tiate variables in step 2 that lead valid behaviors according
to the specification. However, in step 1 we can already have
invalid behaviors given that the test intention rules are de-
fined by the test engineer and may include any sequence of
stimulation/observation events. In order to decide about the
satisfaction of an HML formula in a specification we proceed
in the following way:

• the HML formula is true if the stimulation/observation
pairs that compose the formula can be either computed
in the Prolog translation of the specification or instan-
tiated sequentially through all the branches until the
end of the formula;

• the HML formula is false if some stimulation/observation
pair of the formula is fully instantiated but cannot not
be computed in the Prolog translation of the specifi-
cation. In that case we discard the remaining of the
formula after that stimulation/observation pair.

5. CASE STUDY – TESTING THE BANK-
ING SYSTEM

In figure 5 we provide a full example of usage of our test
intention language for defining a test intentions module for
the Banking system. This example is written in the concrete
syntax of the language which we have implemented in a
toolset for experimentation.

While writing the test intentions we have assumed that for
each stimulation of the Banking CO-OPN model there are
two possible observations: the positive one means the oper-
ation was successful and starts with prefix OK ; the negative
one starts with prefix error.

The module TestBanking acts over Class Banking (as de-
fined in the Focus field) and defines several distinct test
intentions declared in the fields Intentions5. In figure 5 the
variable names are presented in bold font in order to make
explicit where the test patterns will be expanded. The types
for those variables are declared in the Variables field.

• axiom 1 is composed of only one stimulation/ obser-
vation pair with two variables, usr for the user login
and obs for the observed output. When instantiating
usr and obs we get all valid and invalid behaviors of
the login operation for all existing users. However, the

5The test intentions declared inside the body section are aux-
iliaries for building other test intentions and will not directly
produce test cases.

Figure 5: Test Intentions for the Banking SUT

subuniformity predicate allows making use of the se-
mantics of the model by performing equivalence anal-
ysis and picking only two values for the usr variable
– one for the case where the user exists and one for
when the user doesn’t exist. Four test cases are then
generated by axiom 1: the user exists and gets logged
in (valid test case); the user doesn’t exist and the SUT
issues an error code (valid test case); the user exists
but the SUT issues an error code (invalid test case);
the user doesn’t exist but the SUT allows him/her to
log in (invalid test case).

• axioms 2 makes use of recursion in order to build a
sequence of erroneous introductions of passwords by
user ”mario”. We assume a user ”mario” exists in the
SUT and his password is (newPassword 1 2 3 4);

• axiom 3 uses the previously defined pattern nWrong-
Pins in order to build all possible test cases for be-
haviors of the loginUserPassword operation. Note the
usage of the nbEvents predicate to constrain the num-
ber of stimulation/observation pairs in the sequence of
erroneous logins;

• axiom 4 produces test for the behaviors of the with-
draw operation. Variable f of type HML (in the sim-
plest case, an execution trace) is not instantiated, which
means the compiler should generate all possible paths
in order for the SUT to reach a state where a deposit
operation can be executed. Afterwards the subunifor-
mity predicate over variable am will find two values
for this variable: one under 100 (the amount of the
deposit) and another over 100;

• axiom 5 produces tests for the simultaneous login of
two users.
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6. CONCLUSION
In this paper we have explored CO-OPN as a modeling

language for model-based test case generation. We started
by analyzing the CO-OPN and discussing its properties. Af-
terwards, we have presented the language SATEL which is
suitable for producing test cases in a semi-automatic fash-
ion. In the paper we have applied SATEL to a hypothetical
Banking system and the results point to a balanced level
of abstraction of the language. We are currently validating
the approach with an industrial partner and should have
reach clearer conclusions in a near future. As future work
we plan on broadening the scope of SATEL to other mod-
eling formalisms (e.g., Statecharts), as well as investigating
and proposing a methodology for test intention design and
reuse.
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Abstract

A test input for an object-oriented program typically consists
of a sequence of method calls that use the API defined by the pro-
gram under test. Generating legal test inputs can be challenging
because, for some programs, the set of legal method sequences is
much smaller than the set of all possible sequences; without a for-
mal specification of legal sequences, an input generator is bound
to produce mostly illegal sequences.

We propose a scalable technique that combines dynamic analy-
sis with random testing to help an input generator create legal test
inputs without a formal specification, even for programs in which
most sequences are illegal. The technique uses an example execu-
tion of the program to infer a model of legal call sequences, and
uses the model to guide a random input generator towards legal
but behaviorally-diverse sequences.

We have implemented our technique for Java, in a tool called
Palulu, and evaluated its effectiveness in creating legal inputs for
real programs. Our experimental results indicate that the tech-
nique is effective and scalable. Our preliminary evaluation indi-
cates that the technique can quickly generate legal sequences for
complex inputs: in a case study, Palulu created legal test inputs in
seconds for a set of complex classes, for which it took an expert
thirty minutes to generate a single legal input.

1. Introduction
This paper addresses the challenge of automatically generat-

ing test inputs for unit testing object-oriented programs [23, 24,
16, 9, 21]. In this context, a test input is typically a sequence of
method calls that creates and mutates objects via the public inter-
face defined by the program under test (for example,List l =

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
M-TOOS’06 Portland, OR, USA
Copyright 2006 ACM ...$5.00.

TextFileDriver d = new TextFileDriver();
Conn con = d.connect("jdbc:tinySQL",null);
Stmt s1 = con.createStmt();
s1.execute(

"CREATE TABLE test (name char(25), id int)");
s1.executeUpdate(

"INSERT INTO test(name, id) VALUES(’Bob’, 1)");
s1.close();
Stmt s2 = con.createStmt();
s2.execute("DROP TABLE test");
s2.close();
con.close();

Figure 1. Example of a manually written client code using the tinySQL
database engine. The client creates a driver, connection, and statements,
all of which it uses to query the database.

new List(); l.add(1); l.add(2) is a test input for a class
that implements a list).

For many programs, most method sequences are illegal; for
correct operation, calls must occur in a certain order with specific
arguments. Techniques that generate unconstrained sequences of
method calls are bound to generate mostly illegal inputs. For
example, Figure 1 shows a test input for the tinySQL database
server1. Before a query can be issued, a driver, a connection, and a
statement must be created, and the connection must be initialized
with a meaningful string (e.g.,"jdbc:tinySQL" ). As another ex-
ample, Figure 7 shows a test input for a more complex API.

Model-based testing [10, 14, 20, 6, 12, 19, 13, 18, 7, 15] of-
fers a solution. A model can specify legal method sequences (e.g.,
close() cannot be called beforeopen() , or connect() must
be called with a string that starts with"jdbc:" ). But as with
formal specifications, most programmers are not likely to write
models (except perhaps for critical components), and thus non-
critical code may not take advantage of model-based input gener-
ation techniques.

To overcome the problem of illegal inputs, we developed a
technique that combines dynamic analysis and random testing.
Our technique creates a model of method sequences from an ex-
ample execution of the program under test, and uses the model to
guide a random test input generator towards the creation of legal
method sequences. Because the model’s sole purpose is aiding a

1http://sourceforge.net/projects/tinysql
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random input generator, our model inference technique is different
from previous techniques [8, 22, 1, 25] which are designed primar-
ily to create small models for program understanding. Our models
must contain information useful for input generation, and must
handle complexities inherent in realistic programs (for example,
nested method calls) that have not been previously considered. At
the same time, our models need not contain any information that
is useless in the context of input generation such as methods that
do not mutate state.

A random generator uses the model toguide its input genera-
tion strategy. The emphasis on “guide” is key: to create behav-
iorally diverse inputs, the input generator may diverge from the
model, which means that the generated sequences are similar to,
but not identical to, the sequences used to infer the model. Gener-
ating such sequences is desirable because it permits our test gen-
eration technique to construct new behaviors rather than merely
repeating the observed ones. Our technique creates diverse in-
puts by (i) generalizing observed sequences (inferred models may
contain paths not observed during execution), (ii) omitting certain
details from models (e.g., values of non-primitive, non-string pa-
rameters), and (iii) diverging from models by randomly inserting
calls to methods not observed during execution. (Some of the gen-
erated inputs may be illegal—our technique uses heuristics that
discard inputs that appear to be illegal based on the result of their
execution [17].)

In this paper, we make the following contributions:

• We present a dynamic model-inference technique that infers
call sequence models suitable for test input generation. The
technique handles complexities present in real programs such
as nested method calls, multiple input parameters, access
modifiers, and values of primitives and strings.

• We present a random test-input generation technique that
uses the inferred models, as well as feedback obtained from
executing the sequences, to guide generation towards legal,
non-trivial sequences.

• We present Palulu, a tool that implements both techniques
for Java. The input to palulu is a program under test and
an example execution. Palulu uses the example execution to
infer a model, then uses the model to guide random input
generation. Palulu’s output is a collection of test inputs for
the program under test.

• We evaluate Palulu on a set of real applications with con-
strained interfaces, showing that the inferred models assist
in generating inputs for these programs. Our technique achieves
better coverage than purely random test generation.

The remainder of the paper is organized as follows. Section 2
presents the technique. Section 3 describes an experimental eval-
uation of the technique. Section 4 surveys related work, and Sec-
tion 5 concludes.

2. Technique
The input to our technique is an example execution of the pro-

gram under test. The output is a set of test inputs for the program
under test. The technique has two steps. First, it infers a model

that summarizes the sequences of method calls (and their input ar-
guments) observed during the example execution. Section 2.1 de-
scribes model inference. Second, the technique uses the inferred
models to guide random input generation. Section 2.2 describes
test input generation.

2.1 Model Inference

For each class observed during execution, our technique con-
structs a model called acall sequence graph. Call sequence graphs
are rooted, directed, and acyclic. The edges represent method calls
and their primitive and string arguments. Each node in the graph
represents a collection of object states, each of which may be ob-
tained by executing the method calls along some path from the
root to the node. In other words, a node describes the history of
calls. Each path starting at the root corresponds to a sequence of
calls that operate on a specific object—the first method constructs
the object, while the rest of the methods mutate the object (possi-
bly as one of their parameters). Note that when two edges point
to the same node, it does not necessarily mean that the underlying
state of the program is the same.

For each class, the model inference algorithm constructs a model
in two steps. First, it constructs a call sequence graph for each ob-
ject of the class, observed during execution (Section 2.1.1). Sec-
ond, it creates the model for the class by merging all call sequence
graphs of objects of the class (Section 2.1.2). Thus, the call se-
quence graph for the class is a summary of call sequence graphs
for all instances of the class.

For example, part (b) of Figure 2 shows the call sequence for
s1, an object of class ofStmt in the program of Figure 1. Part
(c) of Figure 2 shows the call sequence graph corresponding to the
call sequence in part (b). The graph in part (c) indicates, for exam-
ple, that it is possible to convert state A to state C either by calling
s1.execute() or by callingTS.parse(s1, DR) and then call-
ing s1.setStmt(SQLStmt) .

Figure 3 shows merging of call sequence graphs. The left and
center parts show the graphs fors1 ands2 , while the right part
shows the graph that merges thes1 ands2 graphs.

2.1.1 Constructing the Call Sequence Graph
A call sequenceof an object contains all the calls in which

the object participated as the receiver or a parameter, with the
method nesting information for sub-calls. Figure 2(b) shows a call
sequence. Acall sequence graphof an object is a graph repre-
sentation of the object’s call sequence—each call in the sequence
has a corresponding edge between some nodes, and calls nested
in the call correspond to additional paths between the same nodes.
Edges are annotated with primitive and string arguments of the
calls, collected during tracing. (Palulu records method calls, in-
cluding arguments and return values, and field/array writes in a
trace file created during the example execution of the program un-
der test.)

The algorithm for constructing an object’s call sequence graph
has three steps. First, the algorithm removes state-preserving calls
from the call sequence. Second, the algorithm creates a call se-
quence graph from the call sequence. For nested calls, the algo-
rithm creates alternative paths in the graph. Third, the algorithm
removes non-public calls from the graph.

1. Removing state-preserving calls.The algorithm removes
from the call sequence all calls that do not modify the state of the
(Java) object.
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TS≡tinySQL Conn≡Connection

Stmt≡Statement

DR≡"DROP TABLE test"

CR≡"CREATE TABLE test (name

char(25), id int)"

DR≡"DROP TABLE test"

IB≡"INSERT INTO test (name, id)

VALUES(’Bob’, 1)"

(a) Class and string literal abbreviations

1. s1 = Conn.createStmt()
2.→ s1 = new Stmt(Conn)
3. s1.execute(DR)
4.→ TS.parse(s1, DR)
5.→→ TSParser.DropTable(s1)
6.→→→ new DropTableStmt(s1)
7.→ s1.setStmt(SQLStmt)
8. s1.close()

A

s1=Conn.createStmt() s1=new Stmt(Conn)

C

s1.execute(DR) B

TS.parse(s1,DR)

D

s1.close()

s1.setStmt(SQLStmt)

A

s1=Conn.createStmt() s1=new Stmt(Conn)

C

s1.execute(DR) B

TS.parse(s1,DR)

D

s1.close()

(b) Call sequence for objects1 (c) Call sequence graph fors1 (d) Public-call sequence graph fors1

Figure 2. Constructing a call sequence graph for an object. (a) Abbreviations used in Figures 2 and 3. (b) Call sequence involving objects1 in the code
from Figure 1. Indented lines (marked with arrows) represent nested calls, shaded lines represent state-preserving calls, and lines in bold face represent
non-public calls. (c) Call sequence graph fors1 inferred by the model inference phase; it omits state-preserving calls. The path A-B-C represents two calls
(lines 4 and 7) nested in the call in line 3. (d) Public call sequence graph, after removing from (b) an edges corresponding to a non-public call.

A

s1=Conn.createStmt() s1=new Stmt(Conn)

C

s1.execute(DR) B

TS.parse(s1,DR)

D

s1.close()

+

A

s2=Conn.createStmt() s2=new Stmt(Conn)

C

s2.execute(CR)

B

TS.parse(s2,CR)

E

s2.executeUpdate(IB) s2.execute(IB)

F

TS.parse(s2,IB)

G

s2.close()

→
A

s=Conn.createStmt() s= new Stmt(Conn) 

C

s.execute(DR|CR) (edge A)

B

TS.parse(s, DR|CR)

D

s.close()

E

s.executeUpdate(IB) s.execute(IB) 

F

TS.parse(IB, s) 

G

s.close()

Figure 3. Call sequence graphs fors1 (from Figure 2(c)),s2 (not presented elsewhere), and the merged graph for classStatement .

State-preserving calls are of no use in constructing inputs, and
omitting them reduces model size and search space without ex-
cluding any object states. Use of a smaller model containing only
state-changing calls makes test generation more likely to explore
many object states (which is one goal of test generation) and aids
in exposing errors. State-preserving calls can, however, be useful
as oracles for generated inputs, which is another motivation for
identifying them. For example, the call sequence graph construc-
tion algorithm ignores the calls in lines 5 and 6 in Figure 2(b).

To discover state-preserving calls, the technique performs a
dynamic immutability analysis [3] on the example execution. A
method parameter (including the receiver) is considered immutable
if no execution of the method changes the state of the object passed
to the method as the actual parameter. The “state of the object” is
the part of the heap that is reachable from the object by following
field references.

2. Constructing call sequence graph. The call sequence
graph construction algorithm is recursive and is parameterized by
the call sequence, a starting node, and an ending node. The top-
level invocation (for the whole history of an object) uses the root
as the starting node and a dummy as the ending node2.

Figure 4 shows a pseudo-code implementation of the algorithm.
The algorithm processes the call sequence call by call, while keep-
ing track of the last node it reached. When a call is processed, a
new edge and node are created and the newly created node be-
comes the last node. The algorithm annotates the new edge with
primitive and string arguments of the call.

Nested calls are handled by recursive invocations of the con-
struction algorithm and give rise to alternative paths in the call
sequence graph. After a call to methodc is processed (i.e., an
edge between nodesn1 andn2 is added to the graph), the algo-

2Dummy nodes are not shown in Figures 2 and 3.
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// Insert sequence cs between nodes start and end.
createCallSequenceGraph(CallSequence cs,

Node start, Node end) {
Node last = start;
for (Call c : cs.topLevelCalls()) {

Node next = addNewNode();
addEdge(c, last, next); // add "last --c--> next"
CallSequence nestedCalls = cs.getNestedCalls(c);
createCallSequenceGraph(nestedCalls, next, last);
last = next;

}
replaceNode(last, end); // replace last by end

}

Figure 4. The call sequence graph construction algorithm written in Java-
like pseudo-code. The algorithm is recursive, creating alternative paths in
the graph for nested calls.

rithm creates a path in the graph starting fromn1 and ending in
n2, containing all calls invoked byc.

For example, part (c) of Figure 2 contains two paths from state
A to state C. This alternative path containingTS.parse(s1, DR)
and s1.setStmt(SQLStmt) was added because the call to
s1.execute() (line 3) in part (b) of Figure 2 invokes those two
calls (lines 4 and 7).

3. Removing non-public calls.After constructing the object’s
call sequence graph, the algorithm removes from the graph each
edge that corresponds to a non-public method. Thus, each path
through the graph represents a sequence of method calls that a
client (such as a test case) could make on the class. Ignoring non-
public calls in the same way as state-preserving calls would not
yield a graph with the desired properties.

For example, in part (c) of Figure 2, the edge corresponding
to the non-public methods1.setStmt(SQLStmt) gets removed,
which results in the graph presented in part (d) of Figure 2.

2.1.2 Merging Call Sequence Graphs
After the algorithm creates call sequence graphs for all ob-

served objects of a class, it merges them into the class’s model
as follows. First, merge their root nodes. Whenever two nodes are
merged, merge any pair of outgoing edges (and their target nodes)
if (i) the edges record the same method, and (ii) the object appears
in the same parameter positions (if the object is the receiver of
the first method it must be the receiver of the second, similarly for
the parameters); other parameters, including primitives and strings
may differ. When two edges are merged, the new edge stores their
combined set of primitives and strings.

For example, the call graphs fors1 and s2 can be found in
left and center parts of Figure 3, while the combined model is
on the right. The edges corresponding tos1.execute(DR) and
s2.execute(CR) are merged to create the edges.execute(DR|CR) .

2.2 Generating Test Inputs
The input generator uses the inferred call sequence models to

guide generation towards legal sequences. The generator has three
arguments: (1) a set of classes for which to generate inputs, (2)
call sequence models for a subset of the classes (those for which
the user wants test inputs generated using the models), and (3) a
time limit. The result of the generation is a set of test inputs for
the classes under test.

The input generator works by mixing pure random generation
and model-based generation, as we explain below. The genera-
tor is incremental: it maintains an (initially empty)component set

of previously-generated method sequences, and creates new se-
quences by extending sequences from the component set with new
method calls.

Generating test inputs works in two phases, each using a spec-
ified fraction of the overall time limit. In the first phase, the gen-
erator does not use the models and creates test inputs in a random
way. The purpose of this phase is initializing the component set
with sequences that can be used during model-based generation.
This phase may create sequences that do not follow the models,
which allows for creation of more diverse test inputs. In the sec-
ond phase, the generator uses the models to guide the creation of
new test inputs.

An important challenge in our approach is creating tests that
differ sufficiently from observed execution. Our technique achieves
this goal by (i) generalizing observed sequences (inferred models
may contain paths not observed during execution), (ii) omitting
certain details from models (e.g., values of non-primitive, non-
string parameters), and (iii) diverging from models by randomly
inserting calls to methods not observed during execution (such se-
quences are created in the first, random, phase of generation and
may be inserted in the second, model-based, phase).

2.2.1 Phase 1: Random generation
In this phase, the generator executes the following three steps

in a loop, until the time limit expires [17].

1. Select a method.Select a methodm(T0, . . . , TK) at ran-
dom from among the public methods declared in the classes
under test (T0 is the type of the receiver). The new sequence
will have this method as its last call.

2. Create a new sequence.For typeTi of each parameter of
methodm, attempt to find, in the component set, an argu-
ment of typeTi for methodm. The argument may be either
a primitive value or a sequencesi that creates a value of type
Ti. There are two cases:

• If Ti is a primitive (or string) type, then select a prim-
itive value at random from a pool of primitive inputs
(our implementation seeds the pool with inputs like0,
1, -1 , ’a’ , true , false , "" , etc.).

• If Ti is a reference type, then usenull as the argu-
ment, or select a random sequencesi in the component
set that creates a value of typeTi, and use that value
as the argument. If no such sequence exists, go back
to step 1.

Create a new sequence by concatenating thesi sequences
and appending the call ofm (with the chosen parameters) to
the end.

3. Add the sequence to the component set.Execute the new
sequence (our implementation uses reflection to execute se-
quences). If executing the sequence does not throw an ex-
ception, then add the sequence to the component set. Other-
wise, discard the sequence. Sequences that throw exceptions
are not useful for further input generation. For example, if
the one-method inputa = sqrt(-1); throws an exception
because the input argument must be non-negative, then there
is no sense in building upon it to create the two-method in-
put a = sqrt(-1); b = log(a); .
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Example. We illustrate random input generation using thetinySQL
classes. In this example, the generator creates test inputs for classes
Driver andConn. In the first iteration, the generator selects the
static methodConn.create(Stmt) . There are no sequences in
the component set that create a value of typeStmt , so the gener-
ator goes back to step 1. In the second iteration, the generator se-
lects the constructorDriver() and creates the sequenceDriver
d = new Driver() . The generator executes the sequence, which
throws no exceptions. The generator adds the sequence to the
component set. In the third iteration, the generator selects the
methodDriver.connect(String) . This method requires two
arguments: the receiver or typeDriver and the argument of type
String . For the receiver, the generator uses the sequenceDriver
d = new Driver(); from the component set. For the argument,
the generator randomly selects"" from the pool of primitives. The
new sequence isDriver d = new Driver(); d.connect("") .
The generator executes the sequence, which throws an exception
(i.e., the string"" is not valid a valid argument). The generator
discards the sequence.

2.2.2 Phase 2: Model-based generation
Model-based generation is similar to random generation, but

the generator uses the model to guide the creation of new se-
quences. We call the sequences that the model-based generator
createsmodeled sequences, which are distinct from the sequences
generated by the random generator. The model-based generator
keeps two (initially empty) mappings. Once established, the map-
pings never change for a given modeled sequence. Themo (mod-
eled object) mapping maps each modeled sequence to the object,
for which the sequence is being constructed. Thecn (current node)
mapping maps each modeled sequence to the node in the model
that represents the current state of the sequence’smo-mapped ob-
ject.

Similarly to the random generator from Phase 1 (Section 2.2.1),
the model-based generator attempts to create a new sequences by
repeatedly extending (modeled) sequences from the component
set. The component set is initially populated with the sequences
created in the random generation phase. The model-based gen-
erator repeatedly performs one of the following two actions (ran-
domly selected), until the time limit expires.

• Action 1: create a new modeled sequence.Select a class
C and an edgeE that is outgoing from the root node in
the model ofC (select both class and edge at random). Let
m(T0, . . . , Tk) be the method that edgeE represents. Cre-
ate a new sequences′ that ends with a call tom, in the same
manner as random generation (Section 2.2.1)—concatenate
sequences from the component set to create the arguments
for the call, then append the call tom at the end. Execute
s′ and add it to the component set if it terminates without
throwing an exception. Create themo mapping fors′—
the s′ sequencemo-maps to the return value of the call
to m (model inference ensures thatm does have a return
value). Finally, create the initialcn mapping fors′—thes′

sequencecn-maps to the target node of theE edge.

• Action 2: extend an existing modeled sequence.Select a
modeledsequences from the component set and an edgeE
outgoing from the nodecn(s) (i.e., from the node to which
smaps bycn). These selections are done at random. Create
a new sequences′ by extendings with a call to the method

that edgeE represents (analogously to Action 1). If a pa-
rameter ofm is of a primitive or string type, randomly select
a value from among those that decorate edgeE. Execute
s′ and add it to the component set if it terminates without
throwing an exception. Create themo mapping fors′—
thes′ sequencemo-maps to the same value as sequences.
This means thats′ models an object of the same type ass.
Finally, create thecn mapping fors′—thes′ sequencecn-
maps to the target node of theE edge.

Example. We usetinySQL classes to show an example of how
the model-based generator works. The generator in this exam-
ple uses the model presented in the right-hand side of Figure 3.
In the first iteration, the generator selects Action 1, and method
createStmt . The method requires a receiver, and the generator
finds one in the component set populated in the random genera-
tion phase (Section 2.2.1). The method executes with no excep-
tion thrown and the generator adds it to the component set. The
following shows the newly created sequence together with themo
andcn mappings.

sequences mo(s) cn(s)

Driver d = new Driver();
Conn c = d.connect("jdbc:tinySQL");
Statement st = c.createStmt();

st A

In the second iteration, the generator selects Action 2 and method
execute . The method requires a string parameter and the model
is decorated with two values for this call (denoted byDRandCRin
the right-most graph of Figure 3). The generator randomly selects
CR. The method executes with no exception thrown and the gener-
ator adds it to the component set. The following shows the newly
created sequence together with themo andcn mappings.

sequences mo(s) cn(s)

Driver d = new Driver();
Conn c = d.connect("jdbc:tinySQL");
Statement st = c.createStmt();
st.execute("CREATE TABLE test name\

char(25), id int)");

st C

3. Evaluation
This section presents an empirical evaluation of Palulu’s abil-

ity to create test inputs. Section 3.1 shows that Palulu yields better
coverage than undirected random generation. Section 3.2 illus-
trates how Palulu can create a test input for a complex data struc-
ture.

3.1 Coverage
We compared using our call sequence models to using univer-

sal models (that allow any method sequence and any parameters)
to guide test input generation in creating inputs for programs that
define constrained APIs. Our hypothesis is that tests generated by
following the call sequence models will be more effective, since
the test generator is able to follow method sequences and use in-
put arguments that emulate those seen in an example input. We
measure effectiveness via block and class coverage, since a test
suite with greater coverage is generally believed to find more er-
rors. (In the future, we plan to extend our analysis to include an
evaluation of error detection.)
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classes for which technique block coverage
tested generated at least one input

Program classes Universal model Call sequence model Universal model Call sequence model
tinySQL 32 19 30 19% 32%
HTMLParser 22 22 22 34% 38%
SAT4J 22 22 22 27% 36%
Eclipse 70 46 46 8.0% 8.5%

Figure 5. Classes for which inputs were successfully created, and coverage achieved, by using following call sequence models and universal models.

3.1.1 Subject programs
We used four Java programs each of which contains a few

classes with constrained APIs, requiring specific method calls and
input arguments to create legal input.

• tinySQL 3 (27 kLOC) is a minimal SQL engine. We used
the program’s test suite as an example input.
• HTMLParser 4 (51 kLOC) is real-time parser for HTML.

We used our research group’s webpage as an example input.
• SAT4J5 (11 kLOC) is a SAT solver. We used a file with a

non-satisfiable formula, taken from DIMACS6, as an exam-
ple input.
• Eclipse compiler7 (98 kLOC) is the Java compiler supplied

with the Eclipse project. We wrote a 10-line program for the
compiler to process, as an example input.

3.1.2 Methodology
As the set of classes to test, we selected from the program’s

public non-abstract classes, those classes that were touched during
the sample execution. For classes not present in the execution, call
sequence models are not created and therefore the input generated
by the two techniques will be the same.

The test generation was run in two phases. In the first phase,
seeding, it generated components for 20 seconds using universal
models for all the classes in the application. In the second phase,
test input creation, it generated test inputs for 20 seconds for the
classes under test using either the call sequence models or the uni-
versal models.

Using the generated tests, we collected block and class cover-
age information with emma8.

3.1.3 Results
Figure 5 shows the results. The test inputs created by follow-

ing the call sequence models achieve better coverage than those
created by following the universal model.

The class coverage results differ only for tinySQL. For exam-
ple, without the call sequence models, a valid connection or a
properly-initialized database are never constructed, because of the
required initialization methods and specific input strings.

The block coverage improvements are modest for Eclipse (6%,
representing 8.5/8.0) and HTMLParser (12%). SAT4J shows a
33% improvement, and tinySQL, 68%. We speculate that pro-
grams with more constrained interfaces, or in which those inter-
faces play a more important role, are more amenable to the tech-
nique. Future research should investigate these differences fur-

3http://sourceforge.net/projects/tinysql
4http://htmlparser.sourceforge.net
5http://www.sat4j.org
6ftp://dimacs.rutgers.edu
7http://www.eclipse.org
8http://emma.sourceforge.net

Class Description Requires
VarInfoName Variable name
VarInfo variable description VarInfoName

PptTopLevel

PptSlice2 Two variables from a pro-
gram point

VarInfo
PptTopLevel
Invariant

PptTopLevel Program point PptSlice2
VarInfo

LinearBinary Linear invariant
(y = ax+ b) over two
scalar variables

PptSlice2

BinaryCore Helper class LinearBinary

Figure 6. Some of the classes needed to create a valid test input for
Daikon’sBinaryCore class. For each class, therequires column contains
the types of all valid objects one needs to construct to create an object of
that class.

ther in order to characterize the programs for which the technique
works best, or to improve its performance on other programs.

The results are not dependent on the particular time bound cho-
sen. For example, generation using the universal models for 100
seconds achieved less coverage than generation using the call se-
quence models for 10 seconds.

3.2 Constructing a Complex Input
To evaluate the technique’s ability to create structurally com-

plex inputs, we applied it to theBinaryCore class within Daikon
[11], a tool that infers program invariants.BinaryCore is a helper
class that calculates whether or not the points passed to it form a
line. Daikon maintains a complex data structure involving many
classes to keep track of the valid invariants at each program point.

An undirected input generation technique (whether random or
systematic) would have little chance of generating a valid Binary-
Core instance. Some of its constraints are (see Figure 6):

• The constructor to aBinaryCore takes an argument
of type Invariant , which has to be of run-time type
LinearBinary or PairwiseLinearBinary , subclasses
of Invariant . Daikon contains 299 classes that extend
Invariant , so the state space of type-compatible but in-
correct possibilities is very large.
• To create a legalLinearBinary , one must first create a le-

gal PptTopLevel and a legalPptSlice2 . Both of these
classes require an array ofVarInfo objects. TheVarInfo
objects passed toPptSlice2 must be a subset of those
passed toPptTopLevel . In addition, the constructor for
PptTopLevel requires a string in a specific format; in
Daikon, this string is read from a line in the input file.
• The constructor toVarInfo takes five objects of different

types. Similar toPptTopLevel , these objects come from
constructors that take specially-formatted strings.
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Manually-written test input (written by an expert) Palulu-generated test input
VarInfoName namex = VarInfoName.parse("x"); VarInfoName name1 = VarInfoName.parse("return");
VarInfoName namey = VarInfoName.parse("y"); VarInfoName name2 = VarInfoName.parse("return");
VarInfoName namez = VarInfoName.parse("z");
ProglangType inttype = ProglangType.parse("int"); ProglangType type1 = ProglangType.parse("int");
ProglangType filereptype = ProglangType.parse("int"); ProglangType type2 = ProglangType.parse("int");
ProglangType reptype = filereptype.fileToRepType();
VarInfoAux aux = VarInfoAux.parse(""); VarInfoAux aux1 =

VarInfoAux.parse(" declaringClassPackageName=, ");
VarInfoAux aux2 =

VarInfoAux.parse(" declaringClassPackageName=, ");
VarComparability comp = VarComparability comp1 =
VarComparability.parse(0, "22", inttype); VarComparability.parse(0, "22", type1);

VarComparability comp2 =
VarComparability.parse(0, "22", type2);

VarInfo v1 = VarInfo v1 =
new VarInfo(namex, inttype, reptype, comp, aux); new VarInfo(name1, type1, type1, comp1, aux1);

VarInfo v2 = VarInfo v2 =
new VarInfo(namey, inttype, reptype, comp, aux); new VarInfo(name2, type2, type2, comp2, aux2);

VarInfo v3 =
new VarInfo(namez, inttype, reptype, comp, aux);

VarInfo[] slicevis = new VarInfo[] {v1, v2 }; VarInfo[] vs = new VarInfo[] {v1, v2 };
VarInfo[] pptvis = new VarInfo[] {v1, v2, v3 };
PptTopLevel ppt = PptTopLevel ppt1 =

new PptTopLevel("StackAr.StackAr(int):::EXIT33", new PptTopLevel("StackAr.push(Object):::EXIT", vs);
pptvis);

PptSlice2 slice = new PptSlice2(ppt, slicevis); PptSlice slice1 = ppt1.gettempslice(v1, v2);
Invariant proto = LinearBinary.getproto(); Invariant inv1 = LinearBinary.getproto();
Invariant inv = proto.instantiate(slice); Invariant inv2 = inv1.instantiate(slice1);
BinaryCore core = new BinaryCore(inv); BinaryCore lbc1 = new BinaryCore(inv2);

Figure 7. The first code listing is a test input written by an expert developer of Daikon. It required about 30 minutes to write. The second listing is a test input
generated by the model-based test generator when following the call sequence models created by a sample execution of Daikon. For ease of comparison, we
renamed automatically-generated variable names and grouped method calls related to each class (but we preserved any ordering that affects the results).

• None of the parameters involved in creating aBinaryCore
or any of its helper classes may benull .

We used our technique to generate test inputs forBinaryCore .
To create the model, we used a trace from an example supplied
with the Daikon distribution. We gave the input generator a time
limit of 10 seconds. During this time, it generated 3 sequences that
createBinaryCore objects, and about 150 helper sequences.

Figure 7 (left) shows a test input that creates aBinaryCore
object. This test was written by a Daikon developer, who spent
about 30 minutes writing the test input. We are not aware of a
simpler way to obtain aBinaryCore .

Figure 7 (right) shows one of the three inputs that Palulu gener-
ated forBinaryCore . For ease of comparison between the inputs
generated manually and automatically, we renamed automatically-
named variables and reordered method calls when the reordering
did not affect the results. Palulu successfully generated all the
helper classes involved. Palulu generated some objects in a way
slightly different from the manual input; for example, to generate a
Slice , Palulu used the return value of a method inPptTopLevel
instead of the class’s constructor.

4. Related Work
Palulu combines dynamic call sequence graph inference with

test input generation. This section discusses related work in each
area in more detail.

4.1 Dynamic Call Sequence Graph Inference
There is a large literature on call sequence graph inference; we

discuss some techniques most closely related to our work. Cook
and Wolf [8] generate a FSM from a linear trace of atomic, parameter-
less events using grammar-inference algorithms [2]. Whaley and

Lam [22] combine dynamic analysis of a program run and static
analysis of the program’s source to infer pairs of methods that can-
not be called consecutively. Ammons et al. [1] use machine learn-
ing to generate the graph; like our technique, Ammon’s is inexact
(i.e., the inferred state machine allows more behaviors than those
observed in the trace).

In all the above techniques, the intended consumer of the in-
ferred graphs is a person wanting to gain program understanding.
Our end goal is generating test inputs for object-oriented APIs;
the consumer of our graphs is a mechanical test input generator,
and the model is only as good as it is helpful in generating in-
puts. This fact imposes special requirements that our inference
technique addresses. To be useful for real programs, our call se-
quence graph inference technique must handle program traces that
include methods with multiple input parameters, nested calls, pri-
vate calls, primitive parameters, etc. On the other hand, the size
of the graph is less crucial to us. In addition, the models of the
above techniques mostly discover rules affecting one object (for
instance, opening a connection before using it). In contrast, our
model inference discovers rules consisting of many objects and
method calls.

Another related project is Terracotta [25], which dynamically
infers temporal properties from traces, such as “eventE1 always
happens beforeE2.” Our call sequence graphs encode specific
event sequences, but do not generalize the observations. Using
inferred temporal properties could provide even more guidance to
a test input generator.

After we publicized our algorithm and experimental results [4],
Yuan and Xie [26] presented a very similar algorithm that creates
per-object state machines, then combines them. However, they do
not present any experimental results.

33



4.2 Generating Test Inputs with a Model

A large body of existing work addresses the problem of gener-
ating test inputs from a specification or model; below we survey
the most relevant.

Most of the previous work on generating inputs from a speci-
fication of legal method sequences [10, 14, 20, 6, 12, 19, 13, 18,
7, 15] expects the user to write the specification by hand, and as-
sumes that all inputs derived from the specification are legal. In
addition, many of these techniques are designed primarily for test-
ing reactive systems or single classes such as linked lists, stacks,
etc. whose methods typically can take any objects as parameters.
This greatly simplifies input generation—there are fewer decisions
to make, such as how to create an object to pass as a parameter.

Like Palulu, the Agedis [13] and Jartege [15] tools use random
test input generation; Agedis requires the user to write a model as a
UML diagram, and Jartege requires the user to provide JML speci-
fications. The tools can generate random inputs based on the mod-
els; the user also provides an oracle to determine whether an input
is legal, and whether it is fault-revealing. Compared to Palulu,
these tools represent a different trade-off in user control versus au-
tomation.

Since we use an automatically-generated model and apply our
technique to realistic programs, our test input generator must ac-
count for any lack of information in the generated model and still
be able to generate inputs for data structures. Randomization helps
here: whenever the generator faces a decision (typically due to
under-specification in the generated model), a random choice is
made. As our evaluation shows, the randomized approach leads
to legal inputs. Of course, this process can also lead to creation of
illegal structures. In future work, we plan to investigate techniques
to minimize this problem.

An alternative approach to creating objects is via direct heap
manipulation (e.g., Korat [5]). Instead of using the public interface
of an object’s class, Korat constructs an object by directly setting
values of the object’s fields (public and private). To ensure that
this approach produces legal objects, the user provides a detailed
object invariant specifying legal objects. Our approach does not
require a manually-written invariant to create test inputs. Instead,
it infers a model and uses it to guide the random search towards
legal object states.

5. Conclusion

We have presented a technique that automatically generates
structurally complex inputs for object oriented programs.

Our technique combines dynamic model inference with ran-
domized, model-based test input generation to create high-quality
test suites. The technique is targeted for programs that define con-
strained APIs for which random generation alone cannot generate
useful tests that satisfy the constraints. It guides random genera-
tion with a model that summarizes method sequencing and method
input constraints seen in an example execution.

We have implemented our technique for Java. Our experimen-
tal results show that test suites generated by our tool achieve better
coverage than randomly generated ones. Our technique is capable
of creating legal tests for data structures that take a human signifi-
cant effort to test.
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ABSTRACT 
Practitioners regard software testing as the central means for 
ensuring that a system behaves as expected. Recently, with the 
widespread adoption of modeling notations for OO systems, 
academia and industry are looking at model-based testing as a 
possible way to complement existing testing techniques.  

As a result of this effort, many model-based testing approaches 
have been proposed. However, the suitability of such approaches 
for industrial projects is unclear, and their level of adoption is 
still limited. To better understand their suitability for industrial 
projects, this paper summarizes a survey that studies automated 
model-based testing approaches from two perspectives: level of 
automation (of each testing activity) and ability to track 
information among test-related artifacts (e.g. from models to 
code and vice-versa).  

1. INTRODUCTION 
Practitioners regard software testing as the central means for 
ensuring that a system behaves as expected. In traditional 
software development processes, the source code was the only 
artifact to be used for testing purposes and many code-level 
testing techniques have been introduced.  

The introduction of automated code-based testing techniques has 
strongly facilitated the introduction of software testing into 
practice; automation has reduced the amount of effort spent on 
technical testing activities and also increased the precision of 
activities, like result evaluation, often performed by humans and 
thus more error-prone. Many solutions are currently available in 
the industry [23] and in the academia [7, 35] that automate some 
testing activities and reduce testers efforts.  

However, since source code is produced at the latest step in the 
software production process, testing activities are left to the end 
of the software life cycle. In consequence, schedule slippage, 
time-to-market pressures, and cost-constraints results in 
neglected testing. Moreover, since code-based testing uses the 
implementation to derive test cases it cannot be used alone to 
test the original expectations about the system. 

With the recent widespread adoption of model-driven 
development, source code is no longer the single source for 
selecting test cases. Testing techniques can be applied all along 
the development process, by basing test selection on different 
pre-code artifacts. Testing against original expectations can be 
done with model-based testing that adopts high-level models as 
the basis for test derivation.  

Many model-based testing approaches have been proposed so 
far. However, the suitability of such approaches for industrial 
projects is unclear, and their level of adoption is still limited. 
Orientation towards “industrial contexts” imposes, in fact, some 
extra requirements and constraints over a purely academic 
testing approach. First, it is not reasonable to assume existence 
of a formal, complete, and consistent model of the software 
system. It is, instead, reasonable to assume existence of semi-
formal models, such as UML-based models. Second, testing in 
industrial projects can be effective only when the testing effort is 
“affordable”: the testing approaches should support creation of 
test plans sooner, and they should automate most of the testing 
activities. A new challenge specific to model-based testing 
consists in automating not only the testing phases, but also the 
transition between phases, while tracking information among 
test-related artifacts. As discussed in [14], model-based testing 
requires the ability to “relate the abstract values of the 
specification to the concrete values of the implementation”. 
Explicit relationships need to be devised between specifications 
and their implementation (sometimes called mapping), or 
between specifications and test results (sometimes called traces). 
The first supports generation of concrete test scripts or execution 
of abstract test scripts, while the second supports coverage 
analysis based on the specifications. 
Based on such considerations, this paper summarizes a survey 
that studies automated model-based testing approaches from two 
perspectives: the first perspective evaluates the level of 
automation, which is done by evaluating the support for each 
testing activity. The second perspective aims at understanding 
the kinds relationships used by the approaches, and how they 
manage these relationships.  

The paper is organized so to introduce related work on Section 
2. Section 3 describes motivations and goals of this paper. 
Section 4 proposes our evaluation framework while Section 5 
applies the framework over many automated model-based 
testing approaches. Section 6 concludes the paper.  

2. RELATED WORK 
In their work, Utting et. al. [33] describe model-based testing as 
the automatic derivation of concrete test cases from abstract 
formal models, and their execution. They place model-based 
testing approaches into a seven-dimension orthogonal 
taxonomy. The dimensions characterize the approaches with 
regards to the nature of the model used (e.g. what is modeled, 
notation used), to the nature of the test generation techniques 
used  (e.g. test selection coverage) and to the nature of the test 
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execution (e.g. on-line, or off-line). Our survey differs from 
Utting et. al. [33] since we consider model-based testing as 
consisting of other activities such as coverage analysis and 
regression testing. Additionally, this survey evaluates scenario-
based and state machine-based approaches, whereas Utting et. 
al. evaluates approaches based on a large variety of paradigms. 
Moreover, this paper looks into approaches with another 
perspective: how (and if) these approaches use relationships 
(mapping among models at different levels of abstraction, and 
traces among artifacts) to support the different testing activities. 

In their work, Prasanna et. al. [27] survey test case generation 
approaches. They classify these approaches into two categories: 
specification-based approaches and model-based approaches. 
However, the description of the difference between these 
categories is not clear from the paper. Their work provides a 
shallow description of many approaches, some of which were 
evaluated in depth and from a different perspective in this paper.  
Hartman [12] presents a survey on model based test generation 
tools. He defines a model based test generator as an automated 
process that receives as input a formal model of the system 
under test and a set of directives used to guide the tool in the 
generation process. He distinguishes between test generators and 
model based input generators. He also distinguishes between test 
generators and test automation framework, where the 
automation framework executes the test sequences without 
human supervision. The objective of Hartman’s survey is to 
place the AGEDIS project in relation to other tools. He groups 
the tools into academic and commercial and succinctly describes 
each of them. It is therefore, a good reference to a list of tool 
supported approaches, but not an in-depth survey on particular 
approaches.  

In his book, Poston [26] provides a comprehensible explanation 
on specification-based testing and its technical activities. He 
includes generation, execution, and evaluation, and 
measurement as the technical activities that define specification-
based testing. In our survey, we also include regression testing 
as part of the testing activities.  

In their book chapter [5], Belinfante et. al. provides an in-depth 
evaluation of test case generation tools. The book, however, is 
on model-based testing for reactive systems. It concentrates on 
approaches that support test case generation and not approaches 
that automate other testing activities. The approaches included 
are based on models suitable for describing reactive systems, 
protocols and distributed systems. These models are in their 
majority described with formal specification languages. Our 
survey differs from this one because it includes approaches that 
accept other (less formal) modeling languages and automates 
other testing activities. 

3. GOALS FOR THIS PAPER 
Differently from the previous surveys available in the literature, 
this paper explores model-based automated approaches with two 
high level objectives (automation and relationships) discussed in 
the following paragraphs. 

Not arguably, automation is largely responsible for reducing the 
amount of effort spent on testing activities. Automated tasks are 
performed with better precision. For instance, test result 
evaluation, is more error-prone if done by humans then if 
automated. Reducing the effort spent on any activity makes it 
more appealing from the practitioners’ perception. For that 

reason, this survey aims at evaluating the level of automation 
existent in current model-based testing approaches. 

The role played by relationships among artifacts to support 
automation of testing activities had long been recognized [8, 
28]. Relationships can be established with different purposes: 
generation of test scripts based on models requires a mapping 
relationship from concepts in the model to concepts in the 
implementation; similar relationships are used to support 
execution of abstract test scripts; measurement of coverage 
achieved by test suites with respect to models requires 
relationships from models to the generated test suites, and 
relationships from test suites to test results. The previous 
relationships are also used to identify test scripts impacted by 
modifications to models, so they support selective regression 
testing.  

Creation of some relationships can happen in parallel to 
creation of artifacts (models, code, test scripts). Other 
relationships are inferred from existing ones by transitivity . 
Regardless how they are created, relationships are largely 
explored for supporting testing activities. Due to their 
recognized importance, this survey aims at understanding the 
kinds of relationships used by model-based approaches, and 
how they support relationship management. 

3.1 Scope 
Scenarios and state machines have emerged as important 
modeling perspectives. Approaches evaluated in this paper are a 
representative subset of automated scenario-based and state-
based testing approaches.  
Scenario-based approaches were selected because scenarios had 
been adopted as a means to express requirements and 
specifications. Scenarios are considered a kind of modeling 
perspective that faithfully describes requirements. Thus, they are 
the original expectations about the system, against which the 
system should be tested. Another influencing factor for 
evaluating scenario-based approaches is the likelihood that 
stakeholders would find them easier to understand.  

State-based approaches were selected because there is an 
infrastructure in place for automated testing support based on 
finite state machines and its variations. State-based languages 
have often a high degree of formalism, which reduces their 
likelihood of adoption by practitioners. Thus, approaches and 
tools based on formal specifications of the system (like 
AutoFocus, tools accepting as input publicly available 
specification languages such as SDL or LTS, TestComposer and 
AutoLink, Cooper, TGV and TorX) are outside the scope of this 
survey and will be not included in the subset of evaluated 
approaches. Instead, since UML is the industry’s de-facto 
modeling language, UML-based testing approaches based on 
state-based models (namely AGEDIS, UMLAUT/Simulator, 
TESTOR) as are integral part of this study. 

4. EVALUATION FRAMEWORK 
Figure 1 depicts the evaluation framework. It describes model-
based testing as comprised of the following activities: test 
generation, execution, evaluation [26], coverage analysis and 
regression testing. With some exceptions, each activity receives 
as input and provides as output artifacts and relationships among 
artifacts.  Artifacts and relationships output from one activity 
can be input to the next activity (e.g. a concrete test script output 
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by the test generation activity is used as input to the execution 
and evaluation activity).  

Test generation, execution and evaluation are commonly 
considered as the main activities that comprise the testing 
automated process [26]. Coverage analysis and regression 
testing, however, are not always considered as part of the 
automated testing process. Coverage analysis informs 
stakeholders (testers, developers, managers) about the extent to 
which a set of test scripts covered the artifacts. This information 
helps them make informed decisions regarding the testing 
process effectiveness. It is created based on results obtained 
from test execution and evaluation. Selective regression testing 
potentially reduces the amount of test scripts to be run after a 
change to any software artifact is in place. Software is often 
subject to changes. As a result, new faults can be inserted, so the 
software needs to be re-tested. The information used to select 
test scripts is based on previously created test scripts, and on 
results obtained from the test execution, evaluation, and 
coverage analysis. As explained, the information used for 
coverage analysis and for regression testing is produced by the 
other testing activities. Thus, they have the potential of being 
integrated into one single approach. Therefore, in addition to 
supporting test generation, test execution and evaluation, a fully 
automated model-based testing approach is expected to also 
support coverage analysis and regression testing (both based on 
models).  

To understand the level of automation, the framework evaluates 
if (and to what extent) the approaches automate each activity in 
figure 1 with questions particular to each activity. It is expected 
that the evaluated approaches will provide an integrated, 
practical, and tool-supported solution. Details are discussed in 
the sections below. In addition, to understand the ability to track 
information among test-related artifacts, the framework 
evaluates the kinds of relationships used by each activity 
(represented by 2-way arrows in figure 1), and the support for 
relationship management. Relationships in the context of the 
evaluation framework are further discussed in section 4.5. Given 
their importance for software testing automation, it is expected 
that relationships will be used to support each activity. 
Additionally, given the effort required to establish some of those 
relationships, it is expected that the approaches will provide 
support for relationship management. 

       
Figure 1 – Model-based Automated Testing 

4.1 Test Generation 
The test generation activity receives models as input and 
produces test scripts as output. Test scripts (sometimes named 
test sequences) are comprised of: (1) set of steps to be followed 
when testing a program, (2) input and output values. Test scripts 
are either abstract or concrete. Abstract test scripts describe the 
steps a tester should follow when using the system, the inputs to 
provide and the outputs to expect. In this case, the tester will 
also evaluate results. Concrete test scripts can be compiled and 
automatically executed. They consist of calls to methods in the 
code, the inputs to provide, and the outputs to expect. The 
evaluation is either made manually by the tester, or 
automatically by an oracle.  

In scenario-based and state machine based approaches, the 
following items are the possibly input and output by the test 
generation activity.  

Input: scenarios at different levels of abstraction, and/or state-
based models (finite state machines and its variations), structural 
description of the system, code (sometimes named system under 
test - SUT), other specifications (depending on the approach), 
relationships (among some items input). 

Output: concrete test scripts, provided relationships between 
concepts in model and concepts in the code are available (see 
relationships in figure 1). Otherwise, abstract test scripts. In 
addition, it creates relationships among artifacts input and 
artifacts output (e.g. relationship from model input to test script 
it generated).  
Usually, when scenarios are input, they are directly transformed 
into test scripts (concrete or abstract), which are used to drive 
the test by exercising the code. If state-based models are input, 
the tool traverses the model, according to some pre-defined 
criteria. The criteria are used to guide path selection, as a way of 
pruning state explosion. These paths are the test scripts 
generated. Sometimes both scenarios and state-based 
specifications scenarios are provided as input to the test 
generation activity. In this case, the scenarios are used to guide 
the test path selection. Test values in the generated scripts can 
either be created by the user or generated by the tool using 
existing techniques such as category partition [22].  
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To understand the level of automation of the evaluated 
approaches with respect to test generation, we are interested in 
learning if the test generation activity produces concrete test 
scripts. The reason being that concrete test scripts can be 
automatically compiled and run. 

4.2 Test Execution and Evaluation 
The test execution and result evaluation receive as input abstract 
or concrete test scripts output by the test generation activity. 
Test execution runs test scripts. Result evaluation compares the 
results obtained against the expected results. Automatic 
evaluation is done by oracles, which are an element of test 
scripts. Oracles consist of oracle procedure and oracle 
information. The procedure uses the information to compare 
actual to expected behaviors. An oracle, therefore, checks the 
final result obtained is the expected. It could also check the steps 
taken to reach a result (or the states through which the system 
passed to get to that result) are the same steps described in the 
specification.  

The following items are the possible artifacts input and output 
by the test execution and evaluation activities.  

Input: abstract or concrete test scripts, code (sometimes named 
system under test - SUT), relationships (among some artifacts 
input). 

Output: test results (list of executed and evaluated test scripts 
with the results obtained: test script passed or failed) and/or test 
traces (list individual steps executed when the test script was 
executed). In addition, it creates relationships among artifacts 
input and artifacts output (e.g. relationship from test script input 
to test result).  

If concrete test scripts are input, they are executed and the oracle 
evaluates the results obtained. The evaluation could compare the 
results obtained to the results expected, or the behavior obtained 
to the behavior expected. If abstract test scripts are input, they 
need to be processed before automated execution can happen. 
Relationships between concepts in abstract test script and 
concepts in the code are used to support execution. Regardless 
the input, test results and/or traces are output.  

To understand the level of automation of the evaluated 
approaches with respect to test execution and evaluation, we are 
interested in learning if models created are used as oracles, and 
if the check done by the oracle is automatic. The reason is that 
models describing expected behavior are created anyhow when 
model-based testing is adopted. They should, therefore, be used 
as input to leverage automation of execution and evaluation 
activities.  

4.3 Test Coverage Analysis 
Test coverage analysis analyzes test results and/or traces to 
inform stakeholders (testers, developers, managers) about the 
extent to which a set of test scripts covered the artifacts. This 
information helps them make informed decisions regarding the 
testing process. It comes in the form of a report that informs 
about coverage obtained with respect to different artifacts, or 
with respect to finer entities that compose the artifacts. Indeed, it 
depends on the granularity of the test results and test traces 
available. It also depends on the relationships connecting the test 
results to other artifacts based on which the coverage is 
measured. For instance, if relationships are available from 

individual requirements to test scripts and their results, 
requirements coverage can be measured. 

The following items are the possible artifacts input and output 
by the test coverage analysis activity.  
Input: test results and/or test traces, relationships. 
Output: coverage measurement report.  
To understand the level of automation of the evaluated 
approaches with respect to coverage analysis, we are interested 
in learning if the approach supports it. We are also interested in 
learning if the analysis is done with regards to artifacts at other 
levels of abstraction than code.  

It’s important to note that sometimes coverage analysis, 
execution and evaluation are performed as if they were one 
single task. This happens in particular if the coverage is 
measured with respect to code (statement, method, branch).  

4.4 Regression Testing 
Software changes require further attention to ensure the quality 
of the final product will not be affected. When the software is 
modified, it needs to be retested to reduce the chances that new 
faults were inserted to the system. Test scripts already run might 
not need to be re-run. Selective regression testing [11] deals 
with this issue by reducing the amount of test scripts run after a 
change is in place. Changes can happen to different software 
artifacts (code, models), and selective regression testing 
techniques can be applied for each of them [11, 16]. Ideally, 
automated model-based testing approaches should support 
model-based selective regression testing. 
The following items are the possible artifacts input and output 
by the test execution and evaluation activities.  

Input: modified scenarios at different levels of abstraction, 
and/or state-based models (finite state machines and its 
variations), modified structural description of the system, and 
the relationships between models, and test scripts.  
Output: Subset of selected test scripts to be re-run, and/or 
subset of the models that should be used as basis for generating 
the new test scripts.  
To understand the level of automation of the evaluated 
approaches with respect to regression testing, we are interested 
in learning if the approach supports it. We are, in fact, mostly 
interested in learning if regression testing is done with regards to 
artifacts at other levels of abstraction that code. 

4.5 Artifacts, Relationships and Relationship 
Management 
Relationships among testing artifacts play an important role on 
model-based testing automation. Artifacts at their end points 
characterize them. Changes to these artifacts could imply the 
relationship does not hold anymore. Thus, to fully achieve 
automation of model-based testing activities, there is a need to 
automate management of testing artifacts and the relationships 
among them (relationship management).  
Relationship management is a topic currently addressed by 
research on software traceability. It aims at supporting 
(automatically, semi-automatically or manually1) creation, 
                                                                    
1 This classification was in [30]. 
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persistence, maintenance, and destruction of meaningful 
relationships across software artifacts [2, 31]. It also aims at 
describing and classifying those relationships [3, 15, 31]. 

Software traceability tools automate some software development 
activities by connecting all inter-relatable software artifacts and 
supporting relationship management. They exploit the fact that 
software artifacts have different forms, objectives and 
semantics; exist at different levels of abstractions and are 
usually closely inter-related through different kinds of 
relationships [21, 29]. These relationships can be represented by 
explicit links, references, and similar name, among other 
representations [15]. Nevertheless, for those kinds of solutions 
to be practical, many challenges investigated by the traceability 
research need to be addressed first. Some challenges exist 
because stakeholders do not usually maintain (and sometimes 
not even establish) the relationship representation across the 
artifacts. As a result, even if the relationships exist, they might 
become obsolete [9, 31]. Establishing and maintaining 
relationships among software artifacts is important because 
relationships can be used in a number of different software 
engineering activities such as software change impact analysis 
and software validation, verification and testing [31]. Current 
traceability approaches that explore validation and verification 
concentrate on solving inconsistencies among requirements 
artifacts, design artifacts and code [19, 30]. The use of such 
approaches to improve automation of model-based software 
testing is yet to be fully explored. 

A commonality between model-based testing and traceability is 
the need to manage relationships between artifacts. This means 
traceability infrastructures have the potential to be used with the 
specific aim of improving testing. This would leverage 
automation of some model-based testing activities by supporting 
management of test-related artifacts and their relationships. 

4.5.1 Artifacts and Kinds of Relationships 
To execute each discussed testing activity, the approaches use 
some kinds of relationships among the artifacts manipulated. For 
the purpose of this paper, we describe these relationships as 
implicit or explicit, coarse-grained or fine-grained, and vertical 
or horizontal. An Implicit relationship is a relationship that the 
user of the approach is not aware of the existence. It relates two 
different artifacts (regardless their level of granularity). The user 
is aware of the existence of the related artifacts. Conversely, an 
explicit relationship is one that the user is aware of its existence. 
A Coarse-grained relationship relates artifacts described at a 
high level of abstraction (e.g. class in class diagram to its 
implementation). Thus, the level of granularity of the 
relationship is defined by the level of abstraction of the artifacts 
at the end-points of the relationship. On the other hand, fine-
grained relationships relate artifacts described at a lower level of 
abstraction. More concretely, we considered a relationship as 
fine-grained when it related artifacts described at the method 
level of abstraction or lower levels (e.g. code statement). 
Vertical relationships relate artifacts described at different levels 
of abstraction (e.g. relationship between the source and its 
compiled code), while horizontal relationships relate artifacts 
described at the same level of abstraction.  
Since it is not an objective of this survey to define these 
relationships formally, figure 2 provides an intuitive explanation 
and exemplifies these kinds of relationships. For example, RA 
exemplifies one instance of a coarse-grained, vertical and 

explicit relationship. It means that a sequence diagram realizes a 
use case in a use case diagram. It is coarse-grained because the 
level of abstraction of a use case is high. It is vertical because 
use case diagrams are created during the requirements analysis 
phase, as opposed to the sequence diagrams. It is explicit 
because in this case the user is aware of its existence (note that it 
is represented by a thick line). Also, RD exemplifies one instance 
of a fine-grained, vertical, implicit relationship. It means a 
concept in a model (method from a class in a class diagram) is 
related to (implemented by) a concept in the implementation 
(method in the code). It is fine-grained because the level of 
abstraction of a method is low. It is vertical because class 
diagrams are created during the design phase, and later coded. 
Also, the code is at a different level of abstraction than the class 
diagram. It is implicit because in this case the approach uses the 
relationship, but the user of the approach is not able to explicitly 
manipulate such relationship (note that it is represented by a 
dashed line). 

 
Figure 2 - Instances of kinds of relationships 
 

5. FRAMEWORK APPLIED TO 
APPROACHES 
We evaluated eleven approaches with respect to the framework 
described. Six of them are based on scenarios: UCSC-System 
[18], Sequence Diagram Test Center (SeDiTeC) [10], 
SCENTOR [34], COWtest pluS UIT Environment 
(COW_SUITE) [4], Scenario-based Object-Oriented Testing 
Framework (SOOTF) [32], Testing Object-orienTed systEMs 
with the unified Modeling language (TOTEM) [6]. Two of them 
are based on state-based models: Automated Generation and 
Execution of test suites for DIstributed component-based 
Software (AGEDIS) [13], and UMLTest [20]. Two of them are 
based on scenarios and state machines: UMLAUT/Simulator 
[14, 25], and TEst Sequence GeneraTOR (TESTOR) [24]. One 
of them is based on scenarios or state machines: Abstract State 
Machine Language (AsmL) [1]. 
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This sub-set of model-based testing approaches was selected 
mainly considering the modeling perspective accepted 
(scenarios and state machines), the level of formalism of such 
modeling perspectives, and the number of testing activities 
supported. This sub-set is mostly representative of academic 
research, with some exceptions (e.g. AsmL and AGEDIS are 
approaches developed by industrial research). We are aware of 
the existence of other tool-supported approaches, particularly 
commercial tools (e.g. LEIRIOS) that satisfy these criteria, but 
were not included in the survey.  They will be evaluated in 
future work.  

The evaluation was solely based on available publications. The 
authors created two sets of questions. One set was concerned 
with the testing activities and aimed at understanding the level 
of automation of the approach with regards to each activity. The 
other set was concerned with the kinds of relationships used to 
support each activity and how these relationships were managed. 
The process consisted of studying the available publications, 
answering the questions objectively, and summarizing the 
findings in the tables shown in sections 5.1 through 5.2. The 
interested reader is referred to [17], were the questions and 
answers are detailed. 

This section summarizes the main observations about the 
approaches studied. Each section summarizes information with 
regards to one testing activity.  

5.1 Test Generation 
Table 1 summarizes information about the test generation 
activity of each approach. It has four rows. The first row 
describes the kinds of artifacts received as input for test 
generation, the second row describes the artifacts produced as 
output from the test generation activity, the third row describes 
the kinds of relationships required by the approach to support 
test generation (more concretely, relationships required for the 
creation of the artifacts output), the fourth row describes if the 
approach support management to these relationships. 

5.1.1 Observations 
It was expected that scenario-based testing approaches would 
address the need for using specifications that non-technical 
stakeholders find easier to manipulate. In particular, this need 
would be addressed by accepting scenarios at the requirements 
level. Only few approaches accept such scenarios. They do not, 
however, address this need. UCSC-System accepts use cases 
annotated with a formal language for describing pre and pos 
conditions contracts for the use cases. SOOTF accepts scenarios 
at the requirements level, and supports the user with a tool to 
transform this scenario into semi-formal test scenario 
specifications. AsmL accepts their definition of use cases, which 
requires the user to learn their language to describe the scenarios 
programmatically.  

With exception of SOOTF, approaches that output concrete test 
scripts need fine-grained vertical relationships among the 
artifacts used to generate the test scripts. As already discussed, 
this kind of relationship is used to map concepts from high-level 
specifications to low-level ones (code). Since with SOOTF the 
user is charge of creating the test scenario specification, fine-
grained vertical relationships are not used to support test 
generation.  

Table 1 - Test Generation 

 
As it could be expected, approaches that use implicit 
relationships do not support management of such relationships. 
Inline with this observation, SOOTF uses explicit relationships 
and provides manual support for relationship management. 

5.2 Test Execution and Evaluation 
Table 2 summarizes information about the test execution and 
evaluation activity of each approach. It has six rows. The first 
row describes the kinds of artifacts received as input for test 
execution and evaluation activities. Note that apart from the 
input created by the user (e.g. code), the input received for this 
activity was output from the previous one. The second row 
describes the artifacts produced as output from this activity, the 
third row describes if the approach uses the models created as 
oracles, and the fourth row describes if the comparison between 
expected and obtained behavior and results are automated. The 
last two rows describe the kinds of relationships required by the 
approach to support test execution and evaluation (more 
concretely, relationships the approach requires to create the 
artifacts output), and if the approach support management to 
these relationships. 
Table 2- Test Execution and Evaluation 

 

5.2.1 Observations 
It can be observed that approaches whose test generation activity 
outputs concrete scripts (shown as input in this table) use 
specifications as oracles and support automated evaluation. It is 
worth noting, however, only SeDiTeC actually compares the 
expected behavior to the obtained. The others compare only the 
results.  

Two other approaches compare the expected behavior to the 
obtained behavior (AGEDIS and AsmL). Note, however, that 
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these approaches receive as input abstract instead of concrete 
test scripts. For this reason, they require fine-grained and 
vertical relationships to execute and evaluate such test scripts.  

As expected, approaches that use explicit relationships provide 
support for management of such relationships. However, the 
support available with these approaches require user to create 
and manage the relationships. Thus, they are considered as 
manual support.  

5.3 Coverage Analysis 
Table 3 summarizes information about the coverage analysis 
activity of each approach. It has five rows. The first row 
describes the kinds of artifacts received as input for test 
execution and evaluation activities. Note that the input received 
for this activity was output from the previous one. The second 
row describes the artifacts produced as output from this activity, 
the third row describes if the approach supports coverage 
analysis. The last two rows describe the kinds of relationships 
required by the approach to support coverage analysis, and if the 
approach support management to these relationships. 
Table 3 - Coverage Analysis 

 

5.3.1 Observations 
It can be observed that the majority of the approaches do not 
support coverage analysis. In fact, coverage analysis supported 
by the AGEDIS tool is based on code coverage (at the method 
level). Both approaches that support coverage analysis, support 
automatic creation and persistence of the relationships required 
for such activity. This can be explained by the nature of the 
artifacts that stand at the end points of the relationships used to 
support coverage analysis. These artifacts are test results and test 
traces. The relationships are created when the artifacts are 
created by the previous activities (test execution and evaluation). 
If such relationships were modified, it would result on the 
modification of the artifacts used as basis for the coverage 
analysis. As a consequence, the coverage analysis would not 
consider data that resulted from actual execution of test scripts. 

5.4 Regression Testing 
Table 4 summarizes information about the regression testing 
activity of each approach. It has five rows. The first row 
describes the kinds of artifacts received as input and used as 
basis for selective regression testing. Note that in this case the 
artifacts input also include the modified ones (e.g. modified 
scenarios, state machines, class diagrams, and so forth). The 
second row describes the artifacts produced as output from this 
activity, the third row describes if the approach supports 
regression testing. The last two rows describe the kinds of 
relationships required by the approach to support regression 

testing, and if the approach support management to these 
relationships. 

5.4.1 Observations 
It can be observed that the majority of the approaches do not 
support selective regression testing. Those that support rely on 
the relationships among the artifacts, but do not provide support 
for automated (or semi-automated) management of such 
relationships. 
Table 4 - Regression Testing 

 

6. CONCLUSION 
This paper summarized a survey that studies automated model-
based testing from two perspectives. We evaluated the level of 
automation of each approach by evaluating how and if the 
approach supported each testing activity. We also investigated 
what kinds of artifacts and relationships are used by the 
approaches, and how (if) they manage these relationships. 
Regarding the first perspective, this paper showed the 
approaches need better support for some activities. The first is 
selective regression testing. Support for selective regression 
testing is important to reduce chances that new faults were 
inserted to a modified system. It has been implemented in 
relation to code, specification and architecture. It identifies 
possibly impacted test scripts based on relationships between the 
artifact used to generate the test scripts and the test scripts. As 
observed, the majority of studied approaches do not support 
selective regression testing. Inline with this observation, it was 
also observed that the majority of the approaches are still 
lacking the support for coverage analysis based on high-level 
artifacts (or based on entities that compose these artifacts). 

Not surprisingly, regarding the second perspective, we learned 
that studied approaches rely on some mechanism to establish 
relationships between concepts that describe the software 
artifacts. Relationships can connect concepts across models, or 
between models and implementation. They are used to support 
test scripts generation, or to automate the test execution and 
evaluation.  

Support provided for creating and managing relationships varies 
with the approaches. Some approaches have manual support for 
managing them, and they require the users to explicitly establish 
them. When possible, other approaches infer relationships 
considering name matching and the semantics of the models. For 
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instance, AsmL uses the information input by the user about the 
namespace to match classes and methods at design and 
implementation levels. Additionally, approaches that use UML 
models rely on implicit relationships available from the models. 
Unfortunately, even when established, these relationships are 
not maintained. This paper showed model-based testing 
approaches are currently lacking in support for automated 
management of the artifacts used and produced, and the 
relationships among them. 

6.1 Recommendation 
Given the requirement for automating most of the testing 
activities, these approaches should improve their support for 
selective regression testing and coverage analysis.  

Regarding selective regression testing, the level of granularity of 
the end points of the relationships used to support identification 
of impacted test cases (or impacted models) influences its 
precision. The more fine-grained these endpoints are, the more 
precise the selection could be (e.g. code-based regression 
testing). Therefore, one challenge for model-based selective 
regression testing is identifying the ideal level of granularity of 
the artifacts related that would achieve gains with selective 
regression testing.  
Current support for coverage analysis is based on code-level 
artifacts. Users should be able to obtain other information such 
as percentage of the requirements, or of scenarios covered by the 
tests run. This kind of information could be inferred from 
relationships between the model used to generate the tests 
scripts, the test scripts and their results. Given the importance of 
such activity, automated testing approaches should improve their 
support for coverage analysis based on other (higher level) 
artifacts than code-level. 

Given the requirement for tracking information among related 
artifacts, these approaches should also improve support for 
relationship management. In fact, some traceability tools recover 
relationships between artifacts with different techniques such as 
dynamic and static reverse engineering [9, 29]. The precision of 
these is limited, and they require manual intervention to some 
extent. Nevertheless, integration of traceability tools with 
model-based testing approaches should improve the level of 
automation of these approaches. This integration has the 
potential of leveraging relationship-related testing activities (e.g. 
regression testing, and coverage analysis). It also has the 
potential of reducing the burden of relationship maintenance for 
the users of specification-based testing approaches. Last but not 
least, it leverages the effort spent on establishing relationships, 
and thus could encourage the use of traceability tools. 
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