
Relevancy Propagation

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo, nbjorner}@microsoft.com

Abstract. SMT solvers that perform search over a large set of con-
straints need to maintain, update and propagate truth assignments to
atomic constraints. Each new truth assignment may lead to additional
constraint propagation, which depending on the constraint domain can
be costly. Relevancy propagation keeps track of which truth assignments
are essential for determining satisfiability of a formula. Atoms that are
marked as relevant have their truth assignment propagated to theory
solvers, but we can avoid propagating truth assignments for atoms that
are not marked as relevant.

1 Introduction

SMT solvers that perform search over a large set of constraints need to maintain,
update and propagate truth assignments to atomic constraints. Each new truth
assignment may lead to additional constraint propagation, which depending on
the constraint domain can be costly. Examples of such domains are real or in-
teger linear arithmetic, bit-vectors, quantifier instantiation. It is thus, for those
expensive constraint domains, very desirable to limit constraint propagation to
only cases that are relevant for solving the constraints.

We here explain a notion of relevancy in the context of an efficient SMT
solver framework. The relevancy propagation used in Z3 was first mentioned
in [1] where it provides for a drastic reduction in the search space covered dur-
ing quantifier instantiation. We also found that relevancy propagation has a
profound effect when reasoning about bit-vectors.

Consider the following formula:

a < 1 ∨ (a+ b > 0 ∧ b < 0)

It is a disjunction that requires either a to be less than 1, or to requires
a + b to be strictly greater than 0, but b to be less than 0. Assume that a
and b range over integers, so that the legal values for a and b are the numbers
. . . ,−2,−1, 0, 1, 2, The formula is satisfiable. A satisfying assignment is a 7→
0, b 7→ 3. The assignment satisfies the first disjunction, but it does not satisfy
the second disjunction. A satisfying assignment for the second disjunction is
a 7→ 2, b 7→ −1. The truth value of the atom a + b > 0 is irrelevant when
satisfying the first disjunction, and it is a potential waste of resources to satisfy
either a+ b > 0 or the negation a+ b ≤ 0.

Traditional approaches to combining theory solvers with efficient SAT solvers
do not have mechanisms for avoiding the un-necessary propagation of irrelevant
atoms. They indiscriminatly propagate theory constraints based on truth assign-
ments chosen by the SAT solver.

2 Proof search calculi

To motivate the technique of relevancy propagation we will here survey the
essence of two popular proof-search calculi. The first calculus, called the Tableau
calculus, creates a proof-search tree by decomposing an input formula into pieces.
The second calculus, the DPLL calculus creates a proof-search tree by case
splitting on truth values of the propositional atoms in a formula. It disregards
the formula structure. Both calculi are presented as refutation calculi. By this we
mean that in order to prove that an assertion ϕ is valid we create the negation,
¬ϕ, and try to derive a contradiction, or find a model for ¬ϕ.

2.1 Tableau search

Tableau proof search engines retain some of the structure of the input formula as
an and-or tree. A tableau style search proceeds by cases: to refute a disjunction,
each disjunct is refuted independently. Refuting a conjunction only requires re-
taining each conjunct. Conjunctions can be represented by negated disjunctions
by using the de-Morgan rules. A branch is contradictory if it contains both a
formula and it’s negation. Tableau rules for the main propositional connectives
can be summarized below:

k∨

i=1

ϕi

∨
ϕ1 | · · · | ϕk

¬
k∨

i=1

ϕi

¬∨¬ϕ1, . . . ,¬ϕk

¬¬ϕ
¬¬ϕ

ϕ↔ ψ
↔

ϕ, ψ | ¬ϕ,¬ψ

¬(ϕ↔ ψ)
¬ ↔

ϕ,¬ψ | ¬ϕ, ψ

ite(ϕ1, ϕ2, ϕ3)
ite

ϕ1, ϕ2 | ¬ϕ1, ϕ3

¬ite(ϕ1, ϕ2, ϕ3)
¬ite

ϕ1,¬ϕ2 | ¬ϕ1,¬ϕ3

– The ∨-rule takes a disjunction of formulas ϕ1, . . . , ϕk and creates k branches.
In order for the disjunction to be unsatisfiable each disjunct must be con-
tradictory, hence the k branches.

– The ¬∨-rule takes a negated disjunction and creates k new formulas in the
same branch. The negated disjunction is contradictory if some combination
of the constituents is contradictory.

– The ¬¬-rule removes a double negation.
– The rules for bi-implication create two branches. In the positive case, the

branches cover the conditions where both ϕ and ψ hold, or both ϕ and ψ

don’t hold. In the negative case the branches cover the conditions where ϕ
holds, but ψ does not, or vice versa.

– The rules for if-then-else (called ite) are motivated in a similar way as the
other rules.

The tableau search has the side-effect of eliminating irrelevant formulas from
the scope of a branch. For example, to derive a contradiction for a disjunction∨

i
ϕi the search examines each disjunction. No information is propagated or

required about other disjuncts.

2.2 Davis Putnam Longman Loveland search (DPLL)

DPLL search proceeds by case splits on atomic sub-formulas appearing in the
goal ¬ϕ. A simplistic way to characterize DPLL is by the decide rule:

¬ϕ[p]
decide

¬ϕ[true] | ¬ϕ[false]

To refute ¬ϕ, which contains the propositional atom p reduce ¬ϕ[p] by re-
placing p by true and by replacing p by false. If both reduced formulas are
contradictory, then the original formula is contradictory.

Efficient implementations of DPLL operate on formulas in conjunctive normal
form (CNF). CNF formulas consist of a set of clauses, each clause represents a
disjunction of literals.

DPLL can be extended to handle non-propositional problems by accumulat-
ing the truth assignments to atomic formulas and make these available to theory
solvers that understand only how to handle truth assignments to atoms. These
extensions are commonly referred to as DPLL(T) [2].

3 Relevancy propagation

We saw how DPLL(T)-based solvers do not have the isolation property enjoyed
by Tableau proof systems, as the search assigns a Boolean value to potentially
all atoms appearing in a goal. For example, when clausifying `1 ∨ (`2 ∧ `3) using
a Tseitin [3] style algorithm we obtain the set of clauses (the last clause can be
omitted while preserving satisfiability):

{`1, `aux}, {`2,¬`aux}, {`3,¬`aux}, {`aux,¬`2,¬`3} .

Now, suppose that `1 is assigned true. In this case, `2 and `3 are clearly
irrelevant and truth assignments to `2 and `3 need not be propagated to the
theory solvers, but the Tseitin encoding, which creates a set of clauses, makes
the act of discovering this difficult.

3.1 Rules for relevancy

We suggest a method that does not change how the SAT solver works with
respect to case-split heuristics, unit propagation, conflict resolution, etc. Instead,
we convert to CNF using a variation of Tseitin algorithm, keep the input formula,
and map every (Tseitin) auxiliary variable to a node in the original formula.
Initially, only the auxiliary variable corresponding to the root in the original
formula is marked as relevant. Relevancy is then propagated to sub-formulas
using the following rules. Note how these rules effectively simulate the tableau
rules. Assume ϕ is marked as relevant.

1. Let ϕ be shorthand for
∨

i
ϕi, if ϕ is assigned true and is marked as rele-

vant, then the first child ϕi that gets assigned true is marked relevant. If
ϕ is assigned false and is marked as relevant, then all children are marked
relevant.

2. Let ϕ be shorthand for (ϕ1 ↔ ϕ2), if ϕ is marked as relevant, then both ϕ1

and ϕ2 are marked as relevant.
3. Let ϕ be ite(ϕ1, ϕ2, ϕ3), if ϕ is marked as relevant, then ϕ1 is marked as

relevant, and if ϕ1 is assigned to true(false), then ϕ2 (ϕ3) is marked as
relvant.

3.2 Implementing Relevancy

In our implementation the rules above are triggered during Boolean constraint
propagation. The rules suggest that two different kind of events should be
tracked: a variable is marked as relevant, a variable is assigned. Each variable
has a relevancy bit attached to it. An undo-list is used to restore the value of
this bit during backtracking. If a variable is a shorthand for some term, it also
has the term attached to it. For each literal, a list rw of shorthands (variables)
is also kept. The shorthand ϕ is a member of rw [ϕ′] iff term[ϕ] = ϕ1 ∨ . . . ∨ ϕn

and ϕ′ = ϕi for some i ∈ [1, n], or term[ϕ] = ite(ϕ′, ϕ2, ϕ3). We say ϕ′ is a child
of ϕ. The lists rw are necessary because triggering rules 1 and 3 may depend on
the truth assignment of a child variable (i.e., ϕ′).

In standard DPLL(T), the atom attached to a Boolean variable ϕ is sent to
the theory solver T as soon as ϕ is assigned by the SAT engine. When relevancy
propagation is used, the atom is only sent to the theory solver T after ϕ is
assigned and the relevancy bit is marked as true.

References

1. L. de Moura and N. Bjørner. Efficient E-matching for SMT Solvers. In CADE’07.
Springer-Verlag, 2007.

2. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
Fast decision procedures. In CAV 04: Computer Aided Verification, LNCS 3114,
pages 175–188, 2004.

3. G. S. Tseitin. On the complexity of derivation in propositional calculus. In Au-

tomation of Reasoning 2: Classical Papers onComputational Logic 1967-1970, pages
466–483. Springer-Verlag, 1983.

