
Approximating Catmull-Clark Subdivision

Surfaces with Bicubic Patches

Charles Loop

Microsoft Research

Scott Schaefer

Texas A&M University

April 24, 2007

Technical Report

MSR-TR-2007-44

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052



Abstract

We present a simple and computationally efficient algorithm for ap-
proximating Catmull-Clark subdivision surfaces using a minimal set of
bicubic patches. For each quadrilateral face of the control mesh, we con-
struct a geometry patch and a pair of tangent patches. The geometry
patches approximate the shape and silhouette of the Catmull-Clark sur-
face and are smooth everywhere except along patch edges containing an
extraordinary vertex where the patches are C

0. To make the patch sur-
face appear smooth, we provide a pair of tangent patches that approximate
the tangent fields of the Catmull-Clark surface. These tangent patches are
used to construct a continuous normal field (through their cross-product)
for shading and displacement mapping. Using this bifurcated representa-
tion, we are able to define an accurate proxy for Catmull-Clark surfaces
that is efficient to evaluate on next-generation GPU architectures that
expose a programmable tessellation unit.

1 Introduction

Catmull-Clark subdivision surfaces [4] have become a standard modeling prim-
itive in computer generated motion pictures and 3D games. To create a sub-
division surface, an artist constructs a coarse polygon mesh that approximates
the shape of the desired surface. A subdivision algorithm recursively refines this
shape to produce a sequence of finer shapes that converge to a smooth surface.
In practice, the user needs to perform only 3 or 4 refinement steps to produce
a dense mesh suitable for rendering. For real-time applications, this uniform
refinement provided by subdivision is undesirable due to the large number of
polygons generated. Therefore, adaptive tessellation techniques are needed to
avoid overwhelming the graphics pipeline with triangles.

Recently [3], [12], have used the GPU to dynamically tessellate Catmull-
Clark surfaces. While these methods utilize graphics hardware, the performance
of these schemes is not impressive. As GPUs continue to evolve, support for
higher order tessellation directly in hardware has become a reality [8]. The
tessellator unit in the Xbox 360’s GPU provides hardware support for adaptive
tessellation of parametric surfaces. Based on user-provided tessellation factors,
the tessellator adaptively creates a sampling pattern of the underlying para-
metric domain and automatically generates a set of triangles connecting these
samples. The programmer then provides a special shader program that the
tessellator calls with the parametric coordinates (u, v) for each sample in the
parametric patch; the shader then emits a vertex that corresponds to the patch
evaluated at those coordinates.

This approach allows the GPU to triangulate arbitrary parametric surfaces
because the evaluation details are provided by the programmer in the form of
a shader. Furthermore, this technique allows the GPU to exploit parallelism
because multiple arithmetic units can be running the same evaluation shader

1



Figure 1: a) The patch structure we associate with a Catmull-Clark subdivision
surface. The grey patches contain only valence 4 vertices, green have one ex-
traordinary vertex and blue have more than one extraordinary vertex. b) Our
approximation to the Catmull-Clark subdivision surface using geometry patches
and c) our final approximation using geometry and tangent patches compared
with d) the actual Catmull-Clark limit surface.

in lock-step. We expect hardware tessellation to appear in the next generation
of GPU architectures [2] as it is an obvious way to overcome the bottleneck of
bus bandwidth caused by scene/model complexity and amplifies data directly
on the GPU. The resulting variable tessellation representation has the added
benefit of being a good level-of-detail management strategy.

Catmull-Clark subdivision surfaces are in fact piecewise parametric and
therefore amenable to hardware tessellation. Each quadrilateral polygon in a
Catmull-Clark control mesh corresponds to a single bicubic patch except for
quadrilaterals that contain an extraordinary vertex (a vertex not touched by
exactly four quadrilaterals). These extraordinary patches, patches containing
one or more extraordinary vertices, are actually composed of an infinite col-
lection of bicubic patches. Using this polynomial structure, Stam developed
an algorithm for efficiently evaluating the parametric form of Catmull-Clark
surfaces in constant time [14].

While programmable tessellation hardware will be capable of running Stam’s
algorithm, there are a number of issues that suggest alternative surface schemes
will have much better performance. Stam’s method requires that extraordinary
patches contain only one extraordinary vertex. If there are patches that contain
more than one extraordinary vertex, one level of subdivision must be performed
first yielding 4 times as many patches to evaluate (see Figure 2). Furthermore,
Stam’s algorithm projects control points into an eigenspace (that varies with
the valence) before evaluation begins, which eliminates the possibility of sharing
control points among adjacent patches. The evaluation itself requires that 2n+8
bicubic eigenbasis functions be evaluated (for a patch containing an n-valent
extraordinary vertex); the 32n + 128 coefficients of these functions must read
from memory for each evaluation instance. Hence, the large number of patches,
the inability to share patch data and large number of constants will tax hardware
resources.

2



Figure 2: Blue patches (left) contain more than one extraordinary vertex and
cannot be evaluated using Stam’s method. The subdivided shape (right) con-
tains patches with one or less extraordinary vertices but increases the number
of patches by a factor of 4.

Contributions

We propose an algorithm for visually approximating Catmull-Clark subdivision
surfaces, possibly with boundaries, using a collection of bicubic patches (one for
each face of a quad-mesh). These patches are smooth everywhere except along
edges leading to an extraordinary vertex where they are only C0; therefore
shading discontinuities may result. We overcome this difficulty by creating
independent tangent patches that conspire to produce a continuous normal field
and, hence, the appearance of a smooth surface. When each vertex of the patch
has valence 4, our geometry and tangent patches are identical to the Catmull-
Clark subdivision surface. Furthermore, we place no restriction on the number
or valence of extraordinary vertices per patch.

2 Previous Work

Some of the early work in this area used Gregory patches [5] to create surfaces
that interpolate networks of curves and allow the user to specify cross-boundary
derivatives. While these patches could be used to approximate Catmull-Clark
surfaces, the patches are rational polynomials whose denominators vanish at
patch corners complicating evaluation. Furthermore, these patches contain few
degrees of freedom that can be used to approximate Catmull-Clark surfaces and
suffer from shape problems like flat spots at extraordinary vertices.

[10] describes an algorithm that converts Catmull-Clark surfaces into a NURBS
approximation of the subdivision surface. This method creates one bicubic
polynomial patch for each face of a quad mesh. The surfaces produced are

3



C2 everywhere except near extraordinary vertices where they are C1. However,
this method requires that the base quad mesh be subdivided at least once (twice
if there are vertices of even valence > 4) to create sufficient separation of ex-
traordinary vertices resulting in at least 4 times as many patches as the base
subdivision surface.

[12] present a method for directly subdividing Catmull-Clark surfaces on
programmable graphics hardware. Since their technique actually simulates sub-
division, the surfaces do not suffer from any approximation artifacts. Though
patches can be individually tessellated to different levels of resolution, their
method requires that the samples are evenly spaced at intervals of 1

2L because
Catmull-Clark subdivision performs a binary split at each level of subdivision.
However, true adaptive sampling cannot be accomplished with this method and
is incompatible with the sampling patterns produced by GPU tessellator units.

Finally, Curved PN Triangles (sometimes known as N-Patches) [15] bear
the most similarity to our work. This method takes as input a set of triangles
with normals specified at the vertices and attempts to build an interpolating,
smooth surface consisting of cubic Bézier triangles. Unfortunately, the patches
are not smooth across their edges. To combat this effect, the authors create
a separate normal field that gives the surface the appearance of being smooth.
The advantage of this method is that the computations are local and a patch
can be constructed using only the information present in a single triangle. The
disadvantage is that the surfaces suffer from various shading artifacts and the
lack of smoothness can typically be seen in the silhouette of the object.

In contrast, our method produces geometry patches that are smooth almost
everywhere and the lack of smoothness is rarely if ever visible in the silhouette
of the model (the silhouettes of all of our examples appear smooth even un-
der extreme conditions). Our surfaces are also identical to the Catmull-Clark
subdivision surfaces everywhere except for patches containing one or more ex-
traordinary vertices. Finally, we use larger neighborhoods of vertices when
constructing our patches. The larger support allows us to create better approx-
imations to the underlying smooth surface than Curved PN Triangles, which
use minimal information and exhibit shape artifacts.

3 Geometry Patches

For each face in a quad-mesh, we construct a bicubic patch to approximate
the Catmull-Clark surface over the corresponding region. We represent these
bicubic patches in Bézier form with the labeling scheme illustrated in Figure 3.

Our geometry patch construction is a generalization of B-spline knot inser-
tion, used to convert from the B-spline to Bézier basis. If all four vertices of a
quad-mesh face have valence 4, then the construction reproduces the standard
uniform B-spline patch in Bézier form. There are three types of masks needed
to construct the control points of a Bézier patch from a uniform B-spline control

4



�
��
�
��
�
��
�
��

�
��
�
���
��
�
��

�
��
�
���
��
�
��

�
��

�
���
��
�
��

Figure 3: Control point labeling for a bicubic Bézier patch.

mesh as shown in Figure 4. These masks encode a set of coefficients that are
applied by summing the products of these coefficients and the corresponding
points. For masks that generate points (such as the masks in this figure) there
is an implied normalization that these masks sum to 1. However, masks that
generate vectors must sum to 0 and, thus, do not have an implied normalization.

� ���

���

��

�

�	

�

�

�

�

��

� �


����

Figure 4: Masks for determining Bézier control points from a uniform bicubic
B-spline surface.

Referring to Figure 4, mask a) is used (in four orientations) to create the
four interior points b11,b21,b12 and b22, corresponding to each quad face; mask
b) is used to create the edge points b10,b20,b01,b02,b31,b32,b13 and b23 cor-
responding to the edges of the quad-mesh; finally, mask c) is used to create the
corner points b00,b30,b03 and b33 corresponding to the vertices of the quad-
mesh. Note that each edge point lies at the midpoint of two interior points,
belonging to adjacent faces; and each corner point lies at the centroid of the 4
interior points that surround that vertex. Our general quad-mesh patch con-
struction is inspired by these geometric relationships.

In the ordinary case (all vertices of the patch have valence 4), the corner
points b00,b30,b03 and b33 interpolate the limit position of the Catmull-Clark

5



surface. Therefore, in the extraordinary case, we also choose these control points
to interpolate the limit position of the Catmull-Clark surface. [7] showed that
the left eigenvector corresponding to the dominant eigenvalue of the Catmull-
Clark subdivision matrix corresponds to the mask that generates the limit posi-
tion of an extraordinary vertex. Figure 5 c) illustrates this limit position mask.

���

�

�

�

�

�

�

�

�

���

�

�

�

�

��

��

������

Figure 5: Generalized masks for interior, edge and corner points.

If the centroid of the surrounding interior Bézier points creates the corner
point with the mask shown in Figure 5 c), then we can solve directly for the
mask for the interior points (shown in Figure 5 a). Note that the value n in
the generalized interior point mask corresponds to the valence of the vertex
whose weight is n. Furthermore, this valence may differ for each interior point
b11,b21,b12 and b22. Finally, the edge points are found as midpoints of the
adjacent interior points leading to the mask shown in Figure 5 b). Notice that, if
n = 4, the masks in Figure 5 reproduce the knot insertion masks in the uniform
case shown in Figure 4.

4 Tangent Patches

In general, replacing the Catmull-Clark surface with the geometry patches from
the previous section results in a surface that is smooth everywhere except along
edges containing extraordinary vertices. For some applications, this lack of
smoothness may be acceptable. However, for techniques such as displacement
mapping, we need a surface that has a continuous normal field over the entire
surface. The normal field of a bicubic surface is biquintic, which produces a
large number of control vectors in Bézier form to exactly represent the biquintic
polynomial (36 control vectors). Furthermore, the control vectors do not depend
linearly on the underlying control mesh complicating animation. Therefore, our
approach uses a pair of tangent patches that approximate the ∂u and ∂v tangent

6



fields of the geometry patches allowing us to recover the biquintic normal field
via their cross product. These tangent patches have fewer control vectors (they
are degree 3 × 2) and depend linearly on the control mesh.

Consider the tangent patch ∂u. This patch will be bidegree 2 × 3, since
differentiating the bidegree 3 × 3 geometry patch with respect to u will lower
the degree by one in the u-direction. Similarly, the ∂v patch will be bidegree
3× 2. Since the ∂u and ∂v patches represent vector fields, their coefficients are
control vectors, as illustrated in Figure 6. The construction of tangent patches

Figure 6: Control vectors for tangent patches ∂u and ∂v.

is symmetric; that is, the constructions are identical up to an interchange of
principle directions, with appropriate change of signs. Therefore, we limit our
discussion to the ∂v patch.

For Bézier patches, the ∂v patch can be found using differences of the con-
trol points. If bi,j are the coefficients of the geometry patch and vk,l are the
coefficients of the tangent patch, then

vi,j = 3 (bi,j+1 − bi,j) , i = 0, . . . , 3 j = 0, . . . , 2. (1)

These control vectors represent a Bézier patch that exactly encodes the tangent
field in the v-direction of the corresponding geometry patch. However, since
the geometry patches do not meet with C1 continuity everywhere, the tangent
patches ∂u and ∂v will not create a continuous normal field. In particular, the
tangent field must create a unique normal at the corners of the patch (shared
by multiple patches) and along the edges of the patch (shared by two patches).
Therefore, we must modify the control points along the edges of ∂v such that
we create a continuous normal field over the entire surface.

4.1 Tangent Patch Corners

To modify our tangent patch ∂v, we begin with the corner vertices v00,v02,v30,
and v32, which should produce a unique tangent plane among all patches shar-
ing this corner. Unfortunately, our geometry patches are not smooth for an

7



Figure 7: An example mesh (top) and a zoomed in region of a complex
patch structure (bottom). From left to right: Catmull-Clark patch structure,
Geometry patch approximation, Geometry/Tangent patch approximation and
Catmull-Clark limit mesh.

arbitrary valence vertex so our construction from Equation 1 does not pro-
duce a unique tangent plane. Given that the geometry patches are meant to
approximate the Catmull-Clark surface, we use the limit tangent mask of the
Catmull-Clark surface to create a unique tangent plane at the corners of the
patch.

[7] showed that the tangent limit masks for Catmull-Clark surfaces corre-
spond to the left eigenvectors of the subdivision matrix associated with the
subdominant eigenvalue pair. Using these eigenvectors, we arrive at a tangent
mask

αL
i = cos

(

2πi
n

)

,

βL
i =

(
√

4+cos(π

n )
2−cos(π

n )
4

)

cos
(

2πi+π
n

)

.

where αL and βL are the coefficients for the left eigenvector and use the labeling
shown in figure 8 b). Unfortunately, this relationship between the left eigenvec-
tors of the subdivision matrix and the tangent mask only generates a mask that
determines the direction of the tangent vector and not its length (eigenvectors
are independent of scale). Therefore, we must find an appropriate length for
this vector to ensure a well behaved tangent field.

Our approach conceptually uses the characteristic map of the subdivision
scheme as a local parameterization of the surface [11]. Similar to the tangent
mask, the coordinates of the characteristic map are given by the pair of right
eigenvectors corresponding to the subdominant eigenvalues. If we allow αR, βR

to be points in the plane, then the one-ring control points of the characteristic

8



���

��
��

����

����

��

��

�
���

�
���

�	 
	

�

�

�

��

�



� �


��

Figure 8: a) Tangent mask for uniform bicubic B-splines surfaces b) Mask for
Catmull-Clark limit tangent.

map are

αR
i =

(

cos
(

2πi
n

)

, sin
(

2πi
n

))

βR
i = 4

√

4+cos(π

n )
2
+cos(π

n )

(

cos
(

2πi+π
n

)

, sin
(

2πi+π
n

))

.

The characteristic map is also independent of scale, which we are free to choose.
We pick a scale for the map such that αR

0 = (1, 0).
If we apply the limit tangent mask to the control points of the characteristic

map, the result will be a vector with non-unit length. We then find a scalar σ

such that

σ

n−1
∑

i=0

αL
i αR

i + βL
i βR

i = (1, 0).

Solving for σ yields

σ =
1

n
+

cos
(

π
n

)

n

√

4 +
(

cos
(

π
n

))2
.

Multiplying the previous tangent mask by σ produces the final tangent mask.

αi =

(

1
n

+
cos(π

n )

n

√

4+(cos(π

n ))
2

)

cos
(

2πi
n

)

,

βi =

(

1

n

√

4+(cos(π

n ))
2

)

cos
(

2πi+π
n

)

.

(2)

9



Figure 9: An example of a mesh with a boundary. From left to right: Catmull-
Clark patch structure, Geometry patch approximation, Geometry/Tangent
patch approximation and Catmull-Clark limit surface using Biermann et al.’s
boundary rules.

This tangent mask is used to construct the vectors v00,v02,v30, and v32

resulting in a unique tangent plane at each of the patch corners. Also, note
that all these vectors must be consistently aligned. In particular, the tangent
vector directions must be reversed (multiplied by −1) for v02 and v32. The
construction of tangent field vectors u00,u20,u03, and u23 is identical. Finally,
notice that if n = 4, this tangent mask exactly reproduces the tangent mask for
bicubic B-splines in Figure 8 a) including scale.

4.2 Tangent Patch Edges

Given the tangent patch from Equation 1 with corner vertices specified by Equa-
tion 2, the tangent patches create a unique tangent plane everywhere except
along the edges of a patch. Therefore, we must modify the control vectors along
the edges of the patch as well.

�
���
��

�
��

�
��

�
��
�
���
��

�
��

�
�����

�
��

�
��

�

Figure 10: Control vectors involved in smooth edge conditions.

Consider the patch edge in Figure 10 shared by two patches. These control
vectors define two cubic functions v(t), v̂(t) and one quadratic function u(t).
These three vector fields will be linearly dependent if

((1 − t)c0 + tc1)u(t) =
1

2
(v(t) + v̂(t)) ∀t ∈ [0, 1]

10



where ci = cos
(

2π
ni

)

and n0, n1 are the valence of the left and right endpoints.

Solving for the Bézier coefficients results in four conditions:

c0 u00 = 1
2 (v00 + v̂00) , (3)

1
3 (2 c0u10 − c1u00) = 1

2 (v10 + v̂10) , (4)
1
3 (c0u20 − 2 c1u10) = 1

2 (v20 + v̂20) , (5)

−c1 u20 = 1
2 (v30 + v̂30) . (6)

Conditions (3) and (6) are satisfied by construction using Equation 2. Con-
dition (4) will be satisfied if

v10 = 1
3 (2 c0u10 − c1u00) + x,

v̂10 = 1
3 (2 c0u10 − c1u00) − x

for any choice of x. We choose x = 3 (b11 − b10) since, by construction, we
get the same vector x (up to sign) when processing either patch sharing an edge.
Furthermore, this construction reproduces the regular case (n = 4). The control
vector v20 can be found in a similar fashion. To summarize, we set

v10 = 1
3 (2 c0u10 − c1u00) + 3 (b11 − b10) ,

v20 = 1
3 (c0u20 − 2 c1u10) + 3 (b21 − b20) .

The construction for v̂10, and v̂20 follows in a similar manner.

5 Results

Over the ordinary patches in the mesh (no extraordinary vertices), our construc-
tion for the geometry and tangent patches exactly reproduces the surface and
tangent field of the Catmull-Clark surface. Therefore, the only regions that our
surfaces differ from the actual Catmull-Clark surface are those patches contain-
ing one or more extraordinary vertices. Furthermore, our method interpolates
the limit position and normal of the Catmull-Clark surface at each vertex of
the mesh. Though our geometry patch approximation is only C0, the lack of
smoothness is rarely if ever visible in the silhouette of the model (we have not
been able to discern the C0 regions of the models along the silhouette in any of
our examples).

Figures 1, 7 and 12 show examples of subdivision surfaces containing patches
with one or more extraordinary vertices. The approximation using only Geom-
etry patches matches the Catmull-Clark surface very well, but is noticeably not
smooth along some of the edges. Adding the tangent field to the model creates
a smooth normal field and results in a surface that is nearly identical visually to
the original Catmull-Clark surface. Because the tangent patches create a con-
tinuous normal field over the surface, we can use these shapes for displacement

11



Figure 11: Our Geometry/Tangent patch model (left) with displacement map-
ping (right).

Figure 12: A complex mesh with boundary. From left to right: Catmull-Clark
patch structure, Geometry patch approximation, Geometry/Tangent patch ap-
proximation and Catmull-Clark limit surface.

mapping as well. Figure 11 shows an example of displacement mapping applied
to our geometry/tangent patch approximation from Figure 1.

Figure 9 illustrates an example of a mesh with a boundary containing both
ordinary and extraordinary vertices (our boundary construction can be found
in Appendix A). The Catmull-Clark surface uses the boundary rules of [1] to
produce a smooth subdivision surface. Again, our geometry patch approxima-
tion matches the profile and shape of the Catmull-Clark surface, but the lack
of continuity along a few patch edges is evident in the shading of the surface.
With the tangent patches, we create a continuous normal field over the entire
surface.

Since our method produces only polynomial patches for each quad in the orig-
inal mesh, the surface is very easy to evaluate at arbitrary parametric values.
We have implemented this method on the Xbox 360 using the programmable

12



tessellator unit to create real-time, adaptive tessellations of our approximate
Catmull-Clark surfaces. Even with our preliminary implementation, we have
been able to achieve tessellation rates of over 100 million polygons/second (in-
cluding normal calculations). The accompanying video provides a real-time
demonstration of our technique.

Our patches are also substantially faster to evaluate than Catmull-Clark
surfaces using Stam’s exact evaluation method (our patches approximate the
Catmull-Clark surface whereas Stam’s algorithm evaluates the true limit sur-
face). Even assuming that all patches contain only one extraordinary vertex
(no 4 times multiple in the number of patches) and ignoring the projection
step in Stam’s algorithm for each patch, which alone contains (2n + 8)2 mul-
tiplies, Stam’s method still performs at least 100n + 420 multiply operations
per evaluation, which includes operations for extracting the tangents for light-
ing. Most of these operations are due to repeated multiplication by the b-spline
basis functions 2n + 8 times in the evaluation loop. In contrast, our method
performs at most 4n + 226 multiplications assuming that every control point
is recalculated for every evaluation including the evaluation of the tangents.
Therefore we expect a minimum speed-up of at least 3x over Stam’s method
even if all patches only have one extraordinary vertex. In the more realistic
scenario, where patches contain more than one extraordinary vertex, we expect
at least an order of magnitude speed-up.

6 Future Work

While Catmull-Clark surfaces are typically created from quad-meshes, the sub-
division rules are general enough to handle meshes with arbitrary sided polygons.
Arbitrary polygons are theoretically possible in our framework, but are not prac-
tical for adaptive tessellation on current graphics hardware, which support only
triangular and quadrilateral domains. However, it is possible to incorporate
triangle patches into the tessellation process.

For simplicity, we only operate on meshes consisting entirely of quads. We
can, of course, produce an all-quad mesh by performing one round of subdivision.
However, the disadvantage of this approach is the increase in the number of
patches similar to Figure 2. In the future we would like to extend our method to
triangular patches, and more generally triangle-quad surfaces [13] using Bézier
triangles.

Finally, Catmull-Clark surfaces are smooth everywhere while many everyday
surfaces contain sharp edges or corners. We can handle these creases by marking
edges in the mesh and treating them as boundary edges. However, [6] introduced
rules to create semi-sharp creases in Catmull-Clark surfaces. We believe that
we may be able to incorporate semi-sharp creases into our method by modifying
the patch coefficients as well.

13



References

[1] Henning Biermann, Adi Levin, and Denis Zorin. Piecewise smooth sub-
division surfaces with normal control. In SIGGRAPH 2000: Computer
Graphics Proceedings, pages 113–120, 2000.

[2] David Blythe. The direct3d 10 system. ACM Trans. Graph., 25(3):724–734,
2006.

[3] Jeffrey Bolz and Peter Schröder. Rapid evaluation of catmull-clark subdi-
vision surfaces. In Proceeding of the International Conference on 3D Web
Technology, pages 11–17, 2002.

[4] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbi-
trary topological meshes. Computer Aided Design, 10(6):350–355, 1978.

[5] H. Chiyokura and F. Kimura. Design of solids with free-form surfaces.
Computer Graphics, 17(3):289–298, 1983.

[6] T. DeRose, M. Kass, and T Truong. Sudivision surfaces in character an-
imation. In Siggraph 1998, Computer Graphics Proceedings, pages 85–94,
1998.

[7] Mark Halstead, Michael Kass, and Tony DeRose. Efficient, fair interpola-
tion using catmull-clark surfaces. Computer Graphics, 27(Annual Confer-
ence Series):35–44, 1993.

[8] Matt Lee. Next-generation graphics programming
on xbox 360. http://download.microsoft.com/download/d/3/0/d30d58cd-
87a2-41d5-bb53-baf560aa2373/Next Generation Graphics
Programming on Xbox 360.ppt, 2006.

[9] Ahmad H. Nasri. Polyhedral subdivision methods for free-form surfaces.
ACM Trans. Graph., 6(1):29–73, 1987.

[10] Jörg Peters. Patching catmull-clark meshes. In SIGGRAPH 2000: Com-
puter Graphics Proceedings, pages 255–258, 2000.

[11] U. Reif. A unified approach to subdivision algorithms near extraordinary
vertices. Computer Aided Geometric Design, 12:153–174, 1995.

[12] Le-Jeng Shiue, Ian Jones, and Jörg Peters. A realtime gpu subdivision
kernel. ACM Trans. Graph., 24(3):1010–1015, 2005.

[13] J. Stam and C. Loop. Quad/triangle subdivision. Computer Graphics
Forum, 22(1):1–7, 2003.

14



[14] Jos Stam. Exact evaluation of Catmull-Clark subdivision surfaces at
arbitrary parameter values. Computer Graphics, 32(Annual Conference
Series):395–404, 1998.

[15] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell. Curved pn
triangles. In Proceedings of the Symposium on Interactive 3D Graphics,
pages 159–166, 2001.

A Meshes with Boundaries

Orginally, Catmull-Clark surfaces were assumed to be closed surfaces; however,
not all meshes are closed. [9] extended Catmull-Clark subdivision to surfaces
with boundaries. Along the boundary, Nasri chose the subdivision rules to
reproduce cubic B-splines. To generalize our geometry patches to boundaries,
we follow [9] and require that the boundary curves form cubic B-splines.

���

����

���

����

��

��

������

Figure 13: Rules for Bézier control points along the boundary to create a cubic
B-spline. Bolded edges indicate boundaries. From left to right: mask for an
edge control point, corner control point and a corner control point contained by
only one quad.

A.1 Geometry Patches

For a boundary edge, the two edge points are found along the edge at ratios
1 : 2 and 2 : 1 from the endpoints. For a boundary vertex incident on two or
more faces, we find the corner point as the midpoint of the two adjacent edge
points. For a boundary vertex contained by only one face, we set the corner
point to the boundary vertex. These rules are summarized in Figure 13 with
the implied normalization that the masks sum to 1.

Besides modifying the Bézier control points along the boundary, we also
modify the interior control point adjacent to a boundary vertex. For boundary
vertices contained by more than one quad, we use the mask in Figure 14 a)
where k is equal to the number of quads containing the boundary vertex. When
a boundary vertex is contained by only one quad, the interior control point
is given by Figure 14 b). Similar to Section 3, edge points on interior edges
are placed at the midpoint of the adjacent interior points. In the interest of

15



����

����

��

��

����

Figure 14: Rules for creating the interior Bézier control point adjacent to a
boundary vertex contained by more than one quad a) and only one quad b).

simplicity, we ignore topologically anomalous configurations, such as bow-ties
and pin-wheels; though in principle, such configuration do not cause problems.

We make a distinction from the valence n used in Sections 3 and 4 and the
number of quads k containing a boundary vertex because we treat the boundary
as being half of a closed mesh. Therefore, n = 2k. In fact, if we apply this
identity to Figure 14, we obtain the interior point mask for closed meshes shown
in Figure 5.

�	
	�

�
		���
����

Figure 15: Labeling for vertices around a boundary vertex contained by k quads.

A.2 Tangent Patches

Our tangent patch construction is identical to Section 4 except that we modify
the way the limit tangents are computed at boundary vertices. For boundary
vertices contained by more than one quad, we use the tangent masks derived for
Catmull-Clark surfaces by [1] to compute the tangent vectors. These tangent
vectors provide direction, but lack length information and we use the same
normalization process from Section 4 to choose an appropriate length. The
result is two tangent masks that create two vectors r0 and r1 that span the

16



tangent plane at that vertex. Referring to Figure 15, the mask for r0 is

γ = −4s
3k+c

α0 = αk = −
(1+2c)

√
1+c

(3k+c)
√

1−c

αi6=0,k = 4si

3k+c

βi = sisi+1

3k+c

and for r1

α0 = 1
2

αk = −
1
2

αi6=0,k = γ = βi = 0

where c = cos
(

π
k

)

, s = sin
(

π
k

)

and si = sin
(

πi
k

)

.
The tangent vector along the jth edge is then given by

cos

(

πj

k

)

r0 + sin

(

πj

k

)

r1.

The rest of the tangent patch construction is the same except that we use the
substitution n = 2k in Section 4.2 for the edges of the tangent patches.

17


