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Abstract. The Abstract State Machine Thesis asserts that every classical
algorithm is behaviorally equivalent to an abstract state machine. This thesis
has been shown to follow from three natural postulates about algorithmic com-
putation. Here, we prove that augmenting those postulates with an additional
requirement regarding basic operations implies Church’s Thesis, namely, that
the only numeric functions that can be calculated by effective means are the re-
cursive ones (which are the same, extensionally, as the Turing-computable nu-
meric functions). In particular, this gives a natural axiomatization of Church’s
Thesis, as Gödel and others suggested may be possible.

We can write down some axioms about computable functions
which most people would agree are evidently true.

It might be possible to prove Church’s Thesis from such axioms.

—Joseph Shoenfield (1993)

1. Introduction: Effectivity

In the beginning of the twentieth century, Hilbert famously introduced funda-
mental questions of decidability to mathematics:

[Problem] 10. Determination of the solvability of a Dio-
phantine equation. Given a Diophantine equation with any num-
ber of unknown quantities and with rational integral numerical co-
efficients: To devise a process according to which it can be de-
termined in a finite number of operations whether the equation is
solvable in rational integers.1 [28]

The Entscheidungsproblem [decision problem for first-order logic]
is solved when we know a procedure that allows for any given log-
ical expression to decide by finitely many operations its validity
or satisfiability. . . . The Entscheidungsproblem must be considered
the main problem of mathematical logic. . . . The solution of the
Entscheidungsproblem is of fundamental significance for the theory
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1“10. Entscheidung der Lösbarkeit einer Diophantischen Gleichung. Eine Diophan-

tische Gleichung mit irgend welchen Unbekannten und mit ganzen rationalen Zahlencoefficienten
sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen Anzahl
von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.”
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of all domains whose propositions could be developed on the basis
of a finite number of axioms.2 [29, p. 73ff.]

Hilbert was looking for well-defined procedures that would solve each instance
of a problem, positively or negatively, by applying a finite number of operations.
He did not have a formal notion of which operations would be reasonable in this
context and which not, but clearly he was looking for operations that could be
carried out by a mathematician acting mechanically, sans ingenuity. “We assume
that we have the capacity to name things by signs, that we can recognize them
again. With these signs we can then carry out operations that are analogous to
those of arithmetic and that obey analogous laws” (Hilbert, quoted in [69]).

In 1936, Church suggested that the recursive functions, which had been defined
by Gödel earlier that decade (based on a suggestion of Herbrand’s), adequately
capture the intended concept of finite procedure. He wrote [12, pp. 346, 356]:

The purpose of the present paper is to propose a definition of ef-
fective calculability which is thought to correspond satisfactorily to
the somewhat vague intuitive notion. . . .
We now define the notion . . . of an effectively calculable function
of positive integers by identifying it with the notion of a recursive
function of positive integers (or of a λ-definable function of positive
integers).

Church identified “the commonly used term ‘effectively calculable’” [13, p. 40] in
reference to a function, that is, the existence of “an algorithm” for computing the
value of that function for any arguments [12, p. 356], with the specific requirement
that there be recursion equations by means of which the evaluation of the function
can be effected. Only with such a formalization of effectivity in hand could one prove
“absolute” undecidability results, namely, that no algorithmic solution whatsoever
exists for some particular problem—like the Entscheidungsproblem—as Church set
out to show in his papers.

Church was roundly criticized by Post [52, p. 105] for hiding a debatable formal-
ization of “effective calculability” behind a definition:

The work done by Church and others carries this identification con-
siderably beyond the working hypothesis stage. But to mask this
identification under a definition hides the fact that a fundamen-
tal discovery in the limitations of mathematicizing power of Homo
Sapiens has been made and blinds us to the need of its continual
verification.

For Post [54, p. 418], it “is not a matter of mathematical proof but of psychological
analysis of the mental processes involved in combinatory mathematical processes”.

When Church subsequently learned of Turing’s work,3 he conceded that Turing’s
machines have “the advantage of making the identification with effectiveness in
the ordinary (not explicitly defined) sense evident immediately” [14, p. 43]. He

2“Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt, das bei einem
vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheindung über die Allge-
meingültigkeit bzw. Erfüllbarkeit erlaubt. Das Entscheidungsproblem muss als das Hauptproblem
der mathematischen Logik bezeichnet werden. . . . Die Lösung des Entscheidungsproblems ist für
die Theorie aller Gebiete, deren Sätze überhaupt einer logischen Entwickelbarkeit aus endlich
vielen Axiomen fähig sind, von grundsätzlicher Wichtigkeit.”

3Church was Turing’s official Ph.D. advisor at Princeton.
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responded to Post, saying: “To define effectiveness as computability by an arbitrary
machine, subject to restrictions of finiteness, would seem an adequate representation
of the ordinary notion” [15].

A few years later, Church’s student, Kleene, reformulated Church’s contention
that the recursive functions and the effective numeric functions are one and the
same as a “thesis” [32, p. 60], [33, p. 300]:4

[Church’s] Thesis I. Every effectively calculable function (effec-
tively decidable predicate) is general recursive.

Again, “effective” is meant in the “vague intuitive” sense of computable by humans
acting in an algorithmic fashion. To be more inclusive, one can allow functions to
be partial, as Kleene subsequently did [33, p. 332]:5

[Church’s] Thesis I†. Every partial function which is effectively
calculable (in the sense that there is an algorithm by which its value
can be calculated for every n-tuple belonging to its range of defini-
tion) is . . . partial recursive.6

Though Kleene spoke of this thesis as unprovable (“Since our original notion of
effective calculability . . . is a somewhat vague intuitive one, the thesis cannot be
proved” [33, p. 317]), he did present evidence in its favor [33, Chaps. XII–XIII].
Three main lines of argument have been adduced in support of Church’s Thesis
(already in [33, pp. 319–323]):

(1) In years of experience, all the many effective computational models that
have been investigated (starting with the lambda calculus and continuing
on down to the latest programming languages) have been shown to compute
only partial recursive functions.

(2) A vast number of computational models and a multitude of variants, all
yield the exact same class of functions. “The proposed characterizations
of Turing and of Kleene, as well as those of Church, Post, Markov, and
certain others, were all shown to be equivalent” (Rogers’ Basic Result [56,
pp. 18–19]).

(3) Turing’s analysis of “the sorts of operations which a human computer could
perform, working according to preassigned instructions” showed that these
can be simulated by his machines [33, p. 321].

The first, “heuristic” argument is relatively unconvincing (“heuristic” is Kleene’s
word). History is full of examples of delayed discoveries. Aristotelian and Newto-
nian mechanics lasted much longer than the seventy years that have elapsed since
Church proposed identifying effectiveness with recursiveness, but still those physical
theories were eventually found deficient.

The empirical second argument, from “confluence” of models, is also weak, and
has been deemed so by Kreisel [40, p. 144] and Mendelson [47, p. 228, n. 4]. Clearly
the notion captured by these equivalent models is a robust one, but there still could

4The converse, namely, that all recursive functions are effectively computable, is almost uni-
versally held. (Goodstein is an exception [23, n. 29]; Kalmár is not [3, n. 10].) It can be proved
(e.g. [34, p. 300]), though some (e.g. [20]) contend that such an argument, inasmuch as it, too,
involves the informal notion of effectiveness, should not be designated a “proof”. Cf. Gödel’s
assertion [24, p. 44] that primitive recursive functions “can be computed by a finite procedure”.

5“Gödel points out that the precise notion of mechanical procedures is brought out clearly by
machines producing partial rather than general recursive functions.” Reported in [78, p. 84].

6The omitted word is “potentially”, which is nowadays left unstated but understood.
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be a class of effective algorithms not captured by it. As Kreisel [40, p. 144] put it:
“What excludes the case of a systematic error?”

The third argument is by far the strongest, so strong, in fact, that Gödel [25,
p. 168] thought the idea “that this really is the correct definition of mechanical
computability was established beyond any doubt by Turing”. See, also, Gandy
[23, p. 72] and Soare [74] in this connection. Though the grand sweep of Turing’s
argument is overwhelming, there remain weaknesses when it comes to details. For
example, the universality of Turing’s supposition [76] that “the number of states
of mind which need be taken into account is finite” is debatable. In any event, it
would be hard to reduce Turing’s analysis to a few general axioms.

Subsequent models of computation did not add much force to Turing’s argu-
ments, with the possible exception of Kolmogorov’s model [38, 39], which, according
to Leonid Levin [personal communication],7 was inspired by an analysis of computa-
tion in physical space-time. But one can only guess at the analysis of computations
that was in Kolmogorov’s head. Kolmogorov machines, and other variants of the
pointer machine, do provide greater fidelity to algorithmic behavior than do Turing
machines; see [6]. But Kolmogorov’s published work does not delve into philosoph-
ical motivations for, or implications of, his model. In any event, an algorithm need
not fit the constraints on states of Kolmogorov’s machines. (See Section 7.)

Hence, it remains of real importance to provide a small number of convincing
postulates in support of Church’s Thesis. Indeed, Gödel has been reported (by
Church in a letter to Kleene cited by Davis in [18]) to have believed “that it might
be possible . . . to state a set of axioms which would embody the generally accepted
properties of [effective calculability], and to do something on that basis”. As ex-
plained by Shoenfield (and partially quoted in the opening tag line) [66, p. 26]:

It may seem that it is impossible to give a proof of Church’s Thesis.
However, this is not necessarily the case. . . . In other words, we
can write down some axioms about computable functions which
most people would agree are evidently true. It might be possible
to prove Church’s Thesis from such axioms. . . . However, despite
strenuous efforts, no one has succeeded in doing this (although some
interesting partial results have been obtained).

Kalmar [30] (more recently, [20]) argued against provability of the thesis, while
Gandy [22] and Mendelson [47, 48] (along with [62, 64, 42, 68, 3]) argued in favor
of the possibility of axiomatizing effectivity. Kreisel described the discovery of
“evident axioms about constructive functions” as “one of the really important open
problems” [40] and “one of the more feasible problems at the present time” [41].

We propose just such an axiomatization in the sections that follow. We demon-
strate that, under certain very natural hypotheses regarding algorithmic activity,
called the “Sequential Postulates” [27], Church’s Thesis is in fact provable. In brief,
the postulates say the following about algorithms:

I. An algorithm determines a sequence of “computational” states for each valid
input.

II. The states of a computational sequence can be arbitrary structures.
III. The transitions from state to state in computational sequences are governed

by some finite description.

7Levin was Kolmogorov’s student.
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The “ASM Thesis” (described in Section 2) asserts that all (deterministic, sequen-
tial) algorithms do indeed satisfy these reasonable hypotheses. To ensure that an
algorithm is not endowed from the outset with uncomputable oracles, we add the
following postulate:

IV. Only basic (computable) operations are available initially.
We show that Church’s Thesis provably follows from these four postulates. Thus,
to the extent that one might entertain the notion that there exist non-recursive
effective functions, one must reject one or more of these postulates.8

In the next section, we formulate the three Sequential Postulates (I, II, III)
rigorously and motivate each of them. In Section 3, we recall the definition of
abstract state machines, and the fact that they emulate any algorithm obeying those
postulates. Then, in Section 4, we turn Church’s Thesis into a precise mathematical
statement and show how it is implied by the ASM Thesis, plus Postulate IV. In other
words, the fact that only the recursive functions can be calculated by effective means
follows provably from our four postulates. In the same way, as shown in Section 5,
it follows that relative effectiveness (modulo oracles) and relative recursiveness are
equivalent.

Church supplied examples to argue that a decision problem in a non-numeric
domain could also “be interpreted as a problem in elementary number theory”,
since properties in other domains “can be described in number-theoretic terms”
[12, p. 345]. Accordingly, in Section 6, we extend our analysis to deal with such
algorithms that manipulate additional objects, besides numbers, like strings of sym-
bols.

Unlike Turing’s analysis [76], and its subsequent generalizations [38, 39, 22, 67,
68, 72, 71], our axioms of effective computation are, at the same time, both formal
and generic. They are generic, in that they apply to computations with arbitrary
states and arbitrary programmable transitions. These issues are discussed in the
concluding section.

For more on the history of Church’s Thesis, see the article by his student, Davis
[18].

2. Stepwise Effectivity

Church was striving to characterize the numerical functions that are algorithmi-
cally computable. The question is how does one know that all possible algorithms
have been characterized, or as Post already phrased the problem in 1921 [54]: one
needs to capture “all the possible ways in which the human mind could set up finite
processes”.

Rogers, a student of Church’s, starts his classic book [56, pp. 1–2] with the
following elaboration on the informal notion of “effective procedure” (italics in
original):

Roughly speaking, an algorithm is a clerical (i.e., deterministic,
bookkeeping) procedure which can be applied to any of a certain
class of symbolic inputs and which will eventually yield, for each

8For one well-known example of the claim that there is an “effective” mode of reasoning that
computes a non-recursive function, see Lucas [44]: “One can feel confident without having an effec-
tive method within the meaning given to effective—i.e. programmable into a Turing machine. . . .
It is not necessary that all reasoning must in this sense be effective. And in the sense in which
reasoning might be necessarily effective, effectiveness does not imply computability.”
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such input, a corresponding symbolic output. An example of an
algorithm is the usual procedure given in elementary calculus for
differentiating polynomials. . . .

Several features of the informal notion of algorithm appear to be
essential. We describe them in approximate and intuitive terms.
*1. An algorithm is given as a set of instructions of finite size. . . .
*2. There is a computing agent, usually human, which can react to
the instructions and carry out the computation.
*3. There are facilities for making, storing, and retrieving steps in
a computation.
*4. Let P be a set of instructions as in *1 and L be a computing
agent as in *2. Then L reacts to P in such a way that, for any
given input, the computation is carried out in a discrete stepwise
fashion, without use of continuous methods or analogue devices.
*5. L reacts to P in such a way that a computation is carried
forward deterministically, without resort to random methods or de-
vices, e.g., dice.

Virtually all mathematicians would agree that features *1 to *5,
although inexactly stated, are inherent in the idea of algorithm.

In what follows, we formalize these considerations of finite program and stepwise
deterministic computation (without delineating the rôles of program P and agent
L).

2.1. Sequentiality. We begin by characterizing computations, in general. Com-
putation, as opposed to the behavior of a physical process, is usually conceived of
as a sequence of discrete computational steps.9,10

9Moschovakis [50, p. 919] claims that “algorithms are recursive definitions while machines
model implementations, a special kind of algorithms”. We beg to differ. In fact, in addition to
a least fixed point solution, a recursive definition has a unique “optimal” (maximally consistent)
fixed point [61], which (though not necessarily computable) could be taken as the intended se-
mantics of the definition. Nevertheless, if one accepts Moschovakis’s point of view, then it is the
“implementation” of algorithms that we have set out to characterize. In [5], it is argued that such
a machine-independent “implementation” does not reduce the level of abstraction.

10Turing was explicitly interested in formalizing “discrete” machines, not continuous processes
[77]: “The nervous system is certainly not a discrete-state machine. A small error in the informa-
tion about the size of a nervous impulse impinging on a neuron, may make a large difference to
the size of the outgoing impulse. It may be argued that, this being so, one cannot expect to be
able to mimic the behaviour of the nervous system with a discrete-state system. It is true that
a discrete-state machine must be different from a continuous machine. But if we adhere to the
conditions of the imitation game, the interrogator will not be able to take any advantage of this
difference.” A first attempt at characterizing analogue computation is [49].
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This is what Kolmogorov presumably had in mind when he presented his view
of algorithms in 1953 [38]:11

We start with the following obvious ideas concerning algorithms:
1) An algorithm Γ being applied to any “input” (=“initial state”)

A which belongs to some set (the “domain” of the algorithm)
gives a “solution” (=“final state”) B.

2) An algorithmic process splits into separate steps of limited
complexity; each step consists of an “immediate transforma-
tion” of the state S obtained up to this moment into the state
S∗ = ΩΓ(S).

3) The process transforming A0 = A into A1 = ΩΓ(A0), then
A1 into A2 = ΩΓ(A1), then A2 into A3 = ΩΓ(A2), etc. is
continued until the next step is impossible (i.e. the operator
ΩΓ is undefined on the current state) or a signal indicating
the appearance of the “solution” is received. It is possible,
however, that this process of transformations would never stop
(if we get no signal at all).

4) The immediate transformation of S into S∗ = ΩΓ(S) is based
only on information about the limited “active part” of S and
affects this part only.

Much earlier, in 1922, Behmann [2, p. 166] expressed the stepwise nature of
algorithmic activity by saying (cited in [79]):12

A completely determined general [set of] instructions shall be ex-
hibited, according to which the correctness or falsity of an arbitrary
given claim, which can be formulated with purely logical means, can
be decided after a finite number of steps.

This is also what Kleene envisioned when he wrote [36, pp. 16–17] (emphasis in the
original):

Such a method is given by a set of rules or instructions, describing
a [decision] procedure that works as follows. After the procedure
has been described, if we select any question from the class, the
procedure will then tell us how to perform successive steps, so that
after a finite number of them we will have the answer to the question
selected. . . . After our performing any step to which the procedure
has led us, the rules or instructions will either enable us to recognize
that now we have the answer before us and read it off, or else that

11Cf. Knuth in 1966 [37]: “Algorithms are concepts which have existence apart from any
programming language. . . . I believe algorithms were present long before Turing et al. formulated
them, just as the concept of the number ‘two’ was in existence long before the writers of first grade
textbooks and other mathematical logicians gave it a certain precise definition. . . . A computa-
tional method comprises a set Q (finite or infinite) of ‘states’, containing a subset X of ‘inputs’
and a subset Y of ‘outputs’; and a function F from Q into itself. (These quantities are usually
also restricted to be finitely definable, in some sense that corresponds to what human beings can
comprehend.) . . . In this way we can divorce abstract algorithms from particular programs that
represent them.”

12“Es soll eine ganz bestimmte allgemeine Vorschrift angegeben werden, die über die Richtigkeit
oder Falschheit einer beliebig vorgelegten mit rein logischen Mitteln darstellbaren Behauptung
nach einer endlichen Anzahl von Schritten zu entscheiden gestattet.”
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we do not yet have the answer before us, in which case they will
tell us what steps to perform next.

Furthermore, we view computation as proceeding deterministically. As Rosser,
also a student of Church, puts it [57]:

“Effective method” is used here in the rather special sense of a
method each step of which is precisely determined and which is
certain to produce the answer in a finite number of steps. . . . An
effective method of solving certain sets of problems exists if one can
build a machine which will then solve any problem of the set with
no human intervention beyond inserting the question and (later)
reading the answer.

Shoenfield adds [66, p. 107], “A method must be mechanical . . . . Methods which
involve chance procedures are excluded; . . . methods which involve magic are ex-
cluded; . . . methods which require insight are excluded.”

Computations may, therefore, be formalized as a (deterministic) state-transition
system (STS), comprising a set of states S, a subset I of which are initial, and a
(partial) transition function ; on states, which determines the next-state relation,
as in Kolmogorov’s description. States with no “next” state, namely O = {β ∈
S | ¬∃γ.β ; γ}, will be, for us, terminal states.13

This understanding of computation is encapsulated as follows:

Postulate I (Sequential Time). An algorithm is a state-transition system. Its
transitions are partial functions.

Continuous processes, nondeterministic transitions, and nonprocedural specifica-
tions are thereby excluded.14

Our insistence on a unique next state is not limiting, since classical algorithms,
of the sort Church was considering, appeal at most to “don’t care” nondeterministic
choice—one that does not affect the final result, and which can be determinized.
Just as it matters not whether one sums a list of decimal numbers by adding
columns of digits from top to bottom or from bottom to top, so, too, such under-
specified algorithms can be made deterministic by fixing some order.15 Segments
of the evaluation of a recursive function, for example, can proceed in a nondeter-
ministic fashion, or even in parallel; all the same, it was obvious to everyone that
recursive functions can be computed sequentially (see, for instance, [32, p. 45] and
[65, p. 109]). The important point is that the final result is independent of the pre-
cise order of evaluation [32, p. 44]. For this reason, we may restrict our attention
to fully deterministic algorithms.

2.2. Abstractness. Specific models of computation work with specific data struc-
tures. For example, Turing designed a model that works with tapes, though he

13For Kolmogorov [38], terminal states somehow “signal” their appearance. In the original
definition of ASMs [26], the transition function is always total and the output is extracted from a
state in O = {β ∈ S | β ; β}. This difference is of no significance.

14Turing’s (human) computers operate sequentially when computing functions, though he did
envision choice-machines that wait for an “arbitrary choice . . . by an external operator”, before
continuing (in an exploration of proofs, say).

15The ASM Thesis has been extended to admit the more essential use of nondeterminism in
modern distributed computations; see [7] for an in-depth treatment.
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explained why such a one-dimensional medium suffices for what is normally car-
ried out by people in two dimensions [76]: “I think that it will be agreed that the
two-dimensional character of paper is no essential of computation.” Kolmogorov-
Uspensky’s model [39], and later variants of the “pointer machine” (e.g. [58]), use
graphs as a more free-form representation of state. Gandy [22] suggests hereditarily
finite sets as a generic data structure for the same purpose.

Since we are interested here in characterizing arbitrary algorithms, we ought not
limit the form of states a priori. Accordingly, we let the states of our state-transition
systems be first-order structures [75], first-order structures being the most general
thing mathematicians have in their arsenal for representing discrete states. It will
simplify matters if the relations (predicates) of a first-order structure are viewed
as truth-valued functions, and constants as nullary functions.16 Structures, like
our states, whose vocabulary does not include relation symbols are called algebras
(in the universal algebra sense). The justification for postulating that algebras are
appropriate for capturing algorithmic states is the enormous experience of math-
ematicians who have faithfully and transparently represented every kind of static
mathematical reality as a first-order structure.

We shall refer to state-transition systems with algebraic states as abstract tran-
sition systems (ATSs). Without any loss of generality, we may assume that transi-
tions preserve the domain (base set, carrier) of the structures, taking the union of
differing domains (which may be a class, not a set), if need be. We may also safely
assume that the states of any particular ATS all share the same fixed vocabulary,
again taking the union of differing vocabularies as the common vocabulary, should
that be necessary.

Additionally, we assume that the classes of states and initial states are closed
under isomorphism, and that transitions commute with isomorphisms (so that iso-
morphic states transition to isomorphic states). Closure under isomorphism is
justified by the understanding that such structures are mere representations of iso-
morphism types; there should be no more reality to a domain element than what is
observable from the structure. This isomorphism constraint is what makes states
“abstract”. It reflects the fact that an ATS works at a fixed level of abstraction,
and representations do not matter. The relevance of insisting on closure under
isomorphism was underscored by Gandy [22, p. 128]. For more discussion, see [27,
Sect. 4.6].

Usually, the states of an ATS include some static functions that are present
in initial states and are never changed by transitions. The values of any other,
“defined” functions, however, are dynamic and may change from state to state. Of
course, each state must contain all the data required by the algorithm for making
the next step.

To sum up, we have:

Postulate II (Abstract State). States are algebras. All states share the same
vocabulary. States and initial states are closed under isomorphism. Transitions
preserve the domain of states. Transitions and isomorphisms commute.

16Neither constants, nor functions, are “constant”, because their value may vary from state to
state, which is what would make it awkward were we to talk about “variable constants”.



10 NACHUM DERSHOWITZ AND YURI GUREVICH

Infinitary operations are thereby excluded, since the vocabulary is first-order,
but—then again—operations that are not finitary cannot be expected to be eval-
uatable in a single algorithmic step. Extending the vocabulary when transitioning
from one state to the next, in the manner in which speakers of a natural language
might continually invent new names for bigger and bigger numbers, is also pre-
cluded, but—as indicated earlier—one may instead include all such names in the
state-vocabulary from the outset. Algorithms working with higher-order structures
are not precluded, since the domain may include sets and higher-order functions.

Post, according to his testimony in [54, pp. 420, 426–429], had the following
intuitions about abstract representations of computational states in 1922:

We are . . . to regard our symbols as without properties except that
of permanence, distinguishability and that of being part of certain
symbol-complexes.

We . . . give what is at least a first approximation to a defini-
tive solution of the difficulty of finding a natural normal form for
symbolic representation. . . .

We . . . assume [symbolic representations] to be finite and we
might say discrete. . . . Each symbolization can be considered to
consist of a finite number of unanalysable parts (unanalysable from
the standpoint of the symbolization) these parts having certain
properties and certain relations with each other. . . . The ways in
which these parts can be related will be assumed to be specified
for the whole system of symbolizations. . . . The number of these
elementary properties and relations used is finite and . . . there is a
certain specific finite number of elements in each relation. . . .

The symbol-complexes are completely determined by specifying
all the properties and relations of [their] parts. . . . Each complex
of the system can be completely described [by a conjunction of
relations]. . . .

Due to discreteness and finiteness we would thus have a finite
sequence of symbol-complexes representing the various stages in the
method.

2.3. Boundedness. So far, nothing we have said makes the behavior of a transition
system effective. For effectivity, it must be possible to express the rules for going
from state to state in some finite fashion. Kleene stresses this point repeatedly:

An algorithm in our sense must be fully and finitely described before
any particular question to which it is applied is selected. When the
question has been selected, all steps must then be predetermined
and performable without any exercise of ingenuity or mathematical
invention by the person doing the computing. [34, pp. 240–241n.]
The notion of an “effective calculation procedure” or “algorithm”
(for which I believe Church’s thesis) involves its being possible to
convey a complete description of the effective procedure or algo-
rithm by a finite communication, in advance of performing compu-
tations in accordance with it. [35, p. 493]
An algorithm is a finitely described procedure. . . . In performing
the steps, we simply follow the instructions like robots; no ingenuity
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or mathematical invention is required of us. Such methods as I have
described . . . have been called “algorithms”. [36, p. 17]

Turing analyzed the need for transitions to depend on only a finite segment of
the state, for his model, as follows [76, Sect. 9]:

The behaviour of the computer at any moment is determined by
the symbols which he is observing and his “state of mind” at that
moment. We may suppose that there is a bound B to the number of
symbols or squares which the computer can observe at one moment.
If he wishes to observe more, he must use successive observations.
We will also suppose that the number of states of mind which need
be taken into account is finite. The reasons for this are of the same
character as those which restrict the number of symbols.

This finiteness requirement is expressed in more general terms by Kolmogorov and
Uspensky [39, pp. 6, 16]:

The mathematical notion of Algorithm has to preserve two proper-
ties. . . .
1. The computational operations are carried out in discrete steps,
where every step only uses a bounded part of the results of all pre-
ceding operations.
2. The unboundedness of memory is only quantitative: i.e., we al-
low an unbounded number of elements to be accumulated, but they
are drawn from a finite set of types, and the relations that connect
them have limited complexity. . . .

It seems plausible to us that an arbitrary algorithmic process
satisfies our definition of algorithms. We would like to emphasize
that we are talking not about a reduction of an arbitrary algo-
rithm to an algorithm in the sense of our definition, but that every
algorithm essentially satisfies the proposed definition.

To achieve this for arbitrary abstract transition systems, we demand the follow-
ing:

Postulate III (Bounded Exploration). Transitions are determined by a fixed finite
“glossary” of “critical” terms. That is, there exists some finite set of (ground) terms
over the vocabulary of the states, such that states that agree on the values of these
glossary terms, also agree on all next-step state changes.

Since a state α is a structure, it assigns a value [[t]]α ∈ Dom α to each ground
term t over its vocabulary. Let

∆(α) = {f(ā) := b | α ; β, ai ∈ Dom α, [[f ]]α(ā) 6= [[f ]]β(ā) = b}
be the set of “updates” (that is, tuples 〈f, ā, b〉, written—for clarity—as “assign-
ments” f(ā) := b) to the graphs of functions f that transpire in a transition out of
a state α. Bounded exploration demands that ∆(α) = ∆(α′) whenever [[t]]α = [[t]]α′
holds for all critical terms t in the glossary. This is what ensures that the step-by-
step behavior of the procedure is effective, since it implies that the algorithm can
be described by a finite text [27, p. 90]. See [27] for further details.

Infinite programs as well as individual steps that require examination of un-
boundedly many parts of the state, or which update unboundedly many values in
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one swoop, are precluded by this postulate. For example, a transition cannot be
governed by an “instruction” like

n := 23···
n

,

as it refers to unboundedly many terms (depending on the value of n). One would
need, instead, a new operation for such an exponential tower. Nor can the transition
be something like

n := 3 ↑↑ · · · ↑︸ ︷︷ ︸
n times

n ,

where the arrow is Knuth’s “uparrow” notation for iterated operations.17 This
instruction is also unbounded, as it is really a schema for infinitely many conditional
assignments, each involving a different operation:

...
if n = 2 then n := 3 ↑↑ 2
if n = 3 then n := 3 ↑↑↑ 3
if n = 4 then n := 3 ↑↑↑↑ 4

...

To obtain the equivalent effect would require some form of iteration involving a
long sequence of state transitions, or a new operation a ↑n b.

With Bounded Exploration, an algorithm computes in “steps of limited com-
plexity”, as demanded by Kolmogorov [38] (quoted above). This postulate thereby
answers Kolmogorov’s implicit question: What does it mean to bound the com-
plexity of each individual step?

3. Abstract State Machines

An abstract state machine, or ASM, is a state-transition system in which alge-
braic states store the values of constants and graphs of functions, and each transition
updates a finite number of elements of the current state. ASMs capture the no-
tion that each step of an algorithm performs a bounded amount of work, whatever
domain it operates over.

Definition 3.1 (ASM [27]). An abstract state machine (ASM) is given by:

• a set of algebraic states S, sharing a vocabulary V ,
• a set I ⊆ S of initial states, and
• a program P , consisting of finitely many (guarded) updates, each taking the

form

if p then t := u ,

for ground terms t and u over V and conjunction p of equalities and dis-
equalities between ground terms.

17A single ↑ is ordinary exponentiation, ↑↑ is tetration (repeated exponentiation), ↑↑↑ is “pen-
tration” (repeated tetration), and so on.



A NATURAL AXIOMATIZATION OF CHURCH’S THESIS 13

Program P defines a state transition α ; β, for states α and β sharing vocabularies
and domains, as follows:

[[f(ā)]]β =





[[u]]α if [[p]]α = T ∧ [[s̄]]α = ā
for some update if p then f(s̄) := u

[[f(ā)]]α otherwise ,

where the valuation is extended to tuples s̄ and to conditions p in the obvious way.18

A terminal state is reached when none of the update guards p are true. The updates
must be “consistent”, meaning that different updates with true guards may never
disagree as to the value to be assigned to any f(ā).

Any process that satisfies the three postulates of the previous section, collectively
referred to as the Sequential Postulates, provably behaves just like some ASM:

Theorem 3.2 (ASM Theorem [27]). For every process satisfying the Sequential
Postulates, there is an abstract state machine in the same vocabulary (and with the
same sets of states and initial states) that emulates it.

We use the term “emulate” for step-by-step simulation.19 The proof is based in
large part on the ability to use critical terms to express all transitions of abstract
(isomorphism-closed classes of) states.

This emulation is effective, in the sense that the abstract state machine provides
an effective means of computing each state of a computation sequence from its
predecessor, provided the latter is finitely representable.

The following thesis stakes a stronger claim than the ASM Theorem, in that it
entails that any algorithmic computation whatsoever can, in fact, be naturally and
faithfully emulated by some ASM:

(Sequential) Abstract State Machine (ASM) Thesis. Every relatively-
effective procedure satisfies the Sequential Postulates.

As throughout this paper, the term “effective procedure” refers to an ordinary,
traditional mathematical algorithm, one that proceeds in a well-defined step-by-
step fashion. We add the modifier “relatively”, since procedures are allowed to
apply arbitrary operations. This notion includes: (1) the classical algorithm for
greatest common divisor—which Euclid applied to both rational and irrational val-
ues, and which can be applied more generally to Euclidean rings; (2) the ancient
“rectangular array” method for solving linear equations (from the two-millennia
old Chinese classic, Jiuzhang suanshu [31]); and (3) the very similar method of
Gaussian elimination, even when the field (or division ring) over which it is applied
is unspecified. On the other hand, it excludes underspecified methods (like, “Guess
a solution to a system of linear equalities”), and non-algorithms (“Try all numbers
to see whether or not there is a solution to a system of linear equalities” or “. . . to
a Diophantine equation”). It is also meant to exclude nondeterministic methods
(like “pivot on any non-zero element”), randomized algorithms (like multiplying

18A more liberal and convenient language for ASMs is provided in [27], but this simple form
suffices for our purposes.

19“Emulate. To duplicate the functions of one system with a different system, so that the
second system appears to behave like the first system. Note: For example, a computer emu-
lates another, different computer by accepting the same data, executing the same programs, and
achieving the same results.” American National Standards Institute [1].
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by a random matrix prior to performing Gaussian elimination), probabilistic meth-
ods (like Rabin’s algorithm for testing primality), modern distributed processes
(like Internet routing), or massively parallel DNA computations (for the travelling
salesman problem, say).

Up to this point, we have established conditions under which an algorithm is
effective to the extent that the functions in the initial state are. In addition, it
is traditionally required that states have constructive representation; see, for ex-
ample, Markov [45]. “We are,” Kleene writes [35, p. 493], “dealing with discrete
objects (the arguments and the result included) – it is digital, not analog, comput-
ing.” Indeed, if all initial states of an ATS are finitely-representable objects, then
Bounded Exploration ensures that all subsequent states also are, and the ASM for-
malism effectively computes the ensuing sequence of states, until a terminal state
is obtained—if ever. But, the Sequential Postulates do not, in and of themselves,
guarantee that an algorithm computes a computable function, since they do not
prevent initial states from being pre-endowed with non-computable functionalities.

This issue is addressed in the next two sections.

4. Arithmetical Effectivity

Since we are interested in the computation of functions, we may suppose that
the vocabulary of an ATS includes (nullary) symbols Out for the output and
In1, . . . , Inn, for n ≥ 0 input values. Furthermore, we should insist that there
is exactly one input state for each n-tuple of input values. Then, an ATS may be
said to compute the following partial function over the domain(s) of its states:

{([[In1]]α, . . . , [[Inn]]α) 7→ [[Out]]β | α ∈ I, β ∈ O, α ;∗ β} ,

where I and O are the input and terminal states, respectively, of the system, and
;∗ is the transitive closure of its transition function ;. This input-output relation
is a partial function, since α ;∗ β ∈ O is a partial function, by virtue of ; being
undefined for terminal states.

Church was interested in formalizing numerical algorithms, that is, algorithms
that apply arithmetic operations to numbers.

Definition 4.1 (Arithmetical State). The domain of an arithmetical state includes
the natural numbers N, as well as the Boolean truth values, T and F, and some
value ⊥ signifying “undefined”. Its operations include some or all of the “grade
school” operations of arithmetic, namely zero (0), successor (+ 1), addition (+),
subtraction (−), multiplication (·), quotient (÷), equality (=), and inequality (<),
as well as logical constants and standard operations for the Booleans. (So that
these functions are all total, let m − n = 0 when n > m and let n ÷ 0 = ⊥ for all
n.) Besides symbols for these operations, the vocabulary of an arithmetical state
may have various symbols for dynamic functions and constants.

When all dynamic operations, other than the inputs Ini, are completely
undefined—that is, are assigned the value ⊥ at every point of their graphs—we
say that an arithmetic state is blank.

The choice of basic functions is somewhat flexible, as we will see. But these
“grade school” operations are what one typically has in mind. Menabrea,20 in his
1842 description of Babbage’s Analytical Engine, wrote [46]:

20Luigi Federico Menabrea, an engineer, later became prime minister of Italy.
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We must limit ourselves to admitting that the first four operations
of arithmetic, that is addition, subtraction, multiplication and divi-
sion, can be performed in a direct manner through the intervention
of the machine. The machine is thence capable of performing every
species of numerical calculation, for all such calculations ultimately
resolve themselves into the four operations we have just named.

Babbage’s design also included a conditional branch on zero; see, for example, [23].
The dynamic functions act as “variables” in the programming sense; they are

intended to be updated by the algorithm in the course of a computation.
To capture the fact that Church’s Thesis is dealing specifically with numeric

calculations, we need the following additional postulate:

Postulate IV (Arithmetical State). Initial states are arithmetical and blank.
There is one input state for any given input values.

Accordingly, we are interested in the following class of machines:

Definition 4.2 (Arithmetical ASM). An arithmetical ASM is an ASM satisfying
the Arithmetical State Postulate (IV).

The above postulate will be considerably weakened in Section 6 to allow richer
domains than the purely numeric.

Our goal now is to characterize everything that is effectively computable from
such a starting point. To begin with, since transitions do not change the domain,
vocabulary, or static operations, we obviously have the following:

Proposition 4.3. All states of an arithmetical ASM are arithmetical.

Theorem 4.4. A numeric function is partial recursive if and only if it is com-
putable by an arithmetical ASM.

Proof. It is well-known that counter machines can compute any partial recursive
function. And any counter machine (which only uses 0, +1,− 1,= 0) can be directly
emulated by an arithmetical ASM, with nullary symbols for each counter (including
the inputs Ini), plus another “program counter” to keep track of the current counter-
machine instruction. The ASM instructions take the following forms:

if p = ⊥ then p := 0 (initialize program counter);
if c = ⊥ then c := 0 (initialize non-input counter);
if p = i then c := c + 1 (increment counter);
if p = i then c := c− 1 (decrement counter);
if p = i then p := i + 1 (move to next instruction);
if p = i ∧ c = 0 then p := j (branch on zero);
if p = i ∧ c 6= 0 then p := j (branch on non-zero);

where p is the program counter (initially ⊥), c is any of the other counters, and i
and j are (instruction) numbers.21

On the other hand, it is also clear that any arithmetical ASM can be programmed
in a standard programming language, by storing the current non-⊥ values of those
constants and functions appearing in the glossary and interpreting the ASM’s con-
ditional updates step-by-step. In Lisp, for example, one can simply maintain an
associative list (an “environment”) that lists the values (other than ⊥) of all dy-
namic variables and defined functions as location-value pairs 〈(f, a1, . . . , an), b〉,

21For details of counter-machine ASMs, consult [8].
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where f ∈ V is dynamic and ai, b ∈ N ∪ {T, F}. Each step of the ASM involves
looking for, and using, the values in the list to evaluate all the expressions in the
ASM program’s updates and prepending all updated values to that list. (Values
closer to the head of the list take precedence; anything not in the list is undefined
and should result in nontermination.) Such programs, of course, can compute only
partial recursive functions.22 ¤

It can be seen from the proof, and the fact that three counters suffice to compute
all recursive functions,23 that it would be enough if states had just zero, successor,
equality, and a handful of constants for all recursive functions to be computable.
(Predecessor can be computed from zero, successor, and equality.) In fact, the
(partial) functions computed by all arithmetical ASMs with n ≥ 0 inputs plus
three additional nullary symbols (including Out) are precisely the (partial) recursive
functions of arity n.

It follows from the above theorem that:

Corollary 4.5. Every numeric algorithm satisfying the Sequential Postulates and
provided initially with only basic arithmetic is partial recursive.

Proof. By the ASM Theorem, every such algorithm can be emulated by an ASM
whose initial states are provided only with the basic arithmetic operations. By the
above theorem, such an ASM computes a partial recursive function. ¤

In other words, Church’s Thesis is a consequence of the ASM Thesis. It is
provably true for numerical algorithms satisfying the Sequential and Arithmeti-
cal Postulates. Call such an algorithm, arithmetical. Then, the above corollary,
rephrased, is precisely what we have set out to establish, namely:

Church’s Thesis. Any numeric (partial) function computed by an arithmetical
algorithm is (partial) recursive.

5. Relative Effectivity

Church provided some justifications for his claim that “every function, an al-
gorithm for the calculation of the values of which exists, is effectively calculable”
by means of recursion [12, p. 357]. But, as Sieg [68, p. 78] explains, his argument
lacked an analysis of the recursiveness of the individual steps in the algorithm. (See
[73, p. 291].) So, as Shoenfield [66, pp. 120–121] also makes clear, it all boils down
to the effectivity of the operations that are applied at each step of a computation.

We have seen in the previous section that effectiveness is guaranteed by the Se-
quential Postulates and the Arithmetical State Postulate. The situation portrayed
by those results is maintained no matter how many additional recursive functions
are permitted in arithmetical states: Bounded Exploration guarantees that each
single step is in fact effective, because it allows only a bounded number of appli-
cations of those initial functions and of function values derived from them in the

22This implicit appeal to the effectivity of standard programming techniques (what can be
programmed in any formalism can be expressed as general recursion) is sometimes also referred to
as an invocation of Church’s Thesis (cf. [56, pp. 20–21]), but the omitted details could be fleshed
out in what amounts to no more than a programming assignment for an undergraduate course.
Shoenfield [65, p. 121n.] refers to such uses of the thesis as “very convenient”, but “not really
essential”.

23See [59] for the fundamental difference between a two-counter and three-counter machine.
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preceding finitely many steps. Adding non-recursive functions to the initial state,
on the other hand, is a different story, taken up next.

A (partial) function f is said to be (partial) recursive relative to a set of functions
B if its values can be inferred by equational reasoning from a set of equations
involving B. We assume that B always includes zero, successor, and equality. This
is equivalent to stating that f can be obtained by composition, primitive recursion,
and/or minimization from B. See [33, §63]. The ordinary recursive functions are
just those that are defined relative to B = {0,′ , =}.
Theorem 5.1. A numeric function is partial recursive relative to “oracular” func-
tions B if and only if it is computable by an ASM with domain N ∪ {T, F,⊥} and
initial functions B (containing at least zero, successor, and equality), but no other
functions defined in its initial state.

Proof. One can program the step-by-step evaluation of an expression (in terms of
B) by encoding terms as numbers in some standard fashion. So, we design an ASM
with dynamic functions for needed arithmetic, plus static oracles for B. If in the
process of evaluation, one of the oracular functions is called, the ASM applies the
corresponding function from B.

On the other hand, one can write an interpreter for such ASMs, which can
be programmed in any standard language, except for calls to the oracles. Such
an interpreter can in turn be implemented in terms of the functions in B, using
composition, primitive recursion, and minimization. ¤

Corollary 5.2. The ASM Thesis implies that the only numeric functions that are
algorithmically computable are those that are partial recursive with respect to the
initial functions.

We have, then, what Kleene [33, p. 332] (paraphrased) refers to as:
Thesis I∗†. Every partial function which is effectively calculable
relative to some initial functions is partial recursive relative to those
functions.

This version of Church’s Thesis follows from the Sequential Postulates alone, with-
out Arithmetical State. The results of the previous section are obtained whenever
B is a subset of the recursive functions.

In the development so far, all functions operate over numbers or truth values.
But, one can add as many non-numerical values to the domain as one wishes to
more naturally mimic human “notations” to keep track of things while in the midst
of arithmetic calculations. Better yet, one can incorporate arbitrary algorithmic
operations on strings of symbols, as shown in the next section.

6. Arithmetized Effectivity

Consider now algorithms that operate over larger domains than just natural num-
bers, domains that may include rationals, vectors, matrices, strings, lists, graphs,
etc. To work with such objects, an algorithm would be provided with operations like
division of rationals, vector addition, matrix multiplication, string concatenation,
list sorting, or graph intersection.

Indeed, one might naturally employ such capabilities in the process of computing
what is a strictly numerical function. The object domain of such an algorithm would
include elements D besides numbers and truth values, and its initial states would
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include operations over D. But, as we are only interested in effective computations,
it is necessary to limit the initial repertoire of operations to what is undeniably
effective; anything more complicated should be programmed, just as sophisticated
arithmetic operations are.

We adopt a generous version of this presumption.

Postulate IVb (Arithmetizability). The operations of the initial states of an al-
gorithm are arithmetizable. All input states have the same operations, except for
input values. There is one input state for any given input values.

To explain, let D′ = D∪N∪{T, F,⊥} be the object domain of an algorithm and F ,
its native typed operations, and suppose operations for mistyped arguments yield
⊥. By saying that D′ is arithmetizable, we mean that there exists an injection
ρ : D ∪ {T, F,⊥} → N such that, for every function f ∈ F of arity n over D′, the
corresponding function f̂ (of arity n over N) is recursive, where

f̂(ρ′(x1), . . . , ρ′(xn)) = ρ′(f(x1, . . . , xn) ,

and ρ′(x) extends ρ by giving x when x ∈ N and ρ(x), otherwise. This is well-
defined, even though ρ′ is not one-one, as long as the native operations are in fact
well-typed. So, if k ∈ N is not in the range of ρ, then f̂(. . . k . . .) = ρ′(f(. . . k . . .)) =
ρ′(⊥) = ρ(⊥) for all f expecting an element of D ∪ {T, F} as its argument, rather
than a number k. (There is no need to insist that ρ is effective in any sense, as can
be seen from the proof of the theorem below.)

For example, an algorithm that uses finite strings Σ∗ over some alphabet Σ would
have object domain Σ∗∪N∪{T, F,⊥}. To manipulate strings, Post’s tag machines
[53], for example, use the following all-powerful set of basic string operations:

• Read: Σ∗ → Σ (read first letter).
• Delete: Σ∗ → Σ∗ (delete first letter).
• Add: Σ∗ × Σ → Σ∗ (add letter to end).

It is not hard to set up a mapping from Σ∗ to N that encodes strings as numbers
in some standard fashion, turning these string operations into combinations of
addition, multiplication, exponentiation, and remaindering.

As Ada Lovelace asserted in 1843 [46]:
Many persons who are not conversant with mathematical studies
imagine that because the business of [Babbage’s Analytical Engine]
is to give its results in numerical notation, the nature of its pro-
cesses must consequently be arithmetical and numerical rather than
algebraical and analytical. This is an error. The engine can arrange
and combine its numerical quantities exactly as if they were letters
or any other general symbols; and in fact it might bring out its
results in algebraical notation were provisions made accordingly.

Call an algorithm satisfying the Sequential Postulates and the above Arithmeti-
zability Postulate, arithmetized. We have the following:

Theorem 6.1 (Extended Church’s Thesis). Any numeric (partial) function com-
puted by an arithmetized algorithm is (partial) recursive.

Of course, the special case when the object domain is not enriched (D = ∅) is
what was already shown in Section 4.
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Proof. By the ASM Theorem, such an algorithm is emulated by an ASM M oper-
ating over the algorithm’s domain D′, and computing the same numeric function
g. For any such M , consider the arithmetical ASM M̂ that includes in its initial
states all the f̂ corresponding to M ’s operations f over D′.

Recall that f̂(ρ′(ā)) = ρ′(f(ā)), for f ∈ F and a1, . . . , an ∈ D′, where n is
the arity of f , ρ′(ā) is short for ρ′(a1), . . . , ρ′(an), and the postulated arithmeti-
zation ρ′ maps elements of D into the naturals and maps each natural number
to itself. For every state α of M , let the corresponding state α̂ of M̂ be such
that [[f̂(ρ′(ā))]]α̂ = ρ′([[f(ā)]]α), for each function f and domain elements ā of M .
(This, too, is well-defined on account of the fact that M ’s operations are typed.)
For each guarded update of M , there is a corresponding update for M̂ , with each
occurrence of a function symbol f from the vocabulary of M replaced by the cor-
responding symbol f̂ of M̂ . This way, whenever a value b is assigned to f(ā) in
a state α of a computation of M , the value ρ′(b) is assigned to f̂(ρ′(ā)) in the
corresponding state α̂ of M̂ . (Again, on account of the typing of arguments, the
corresponding updates must be consistent, like those of M .) It follows by induction
on the length of a computation that these updates maintain the correspondence
[[f̂(ρ′(ā))]]α̂i

= ρ′([[f(ā)]]αi) between states αi of a computation of M and states α̂i

of the corresponding computation of M̂ .
In this manner, M̂ emulates M step-by-step, and—by the Arithmetizability

Postulate—its initial states provide recursive functions only. Any ASM, like M̂ ,
with only recursive functions at its disposal must compute a recursive function ĝ
(as indicated at the beginning of Section 5). But if g is numeric, then ĝ is identical
to g, as the extended mapping ρ′ is the identity function on all of g’s numeric
arguments. Hence, g must likewise be recursive. ¤

7. Conclusion

Our goal in this work has been to remedy the situation described thus by Mon-
tague [49, p. 432]: “Discussion of Church’s thesis has suffered for lack of a precise
general framework within which it could be conducted.” We have shown how the
Sequential ASM Postulates provide just such a framework, and how Church’s The-
sis follows from them, plus the postulate that nothing uncomputable is given ab
initio. We saw in the introduction that Gödel surmised that Church’s Thesis may
follow from appropriate axioms of computability. But, as far as we can ascertain,
no complete axiomatization has previously been presented in the literature. In fact,
the challenge of proving Church’s Thesis is first in Shore’s list of “pie-in-the-sky
problems” for the twenty-first century [11].

Turing long ago dissected the essentials of computation. As Gödel [24, p. 72] com-
mented: “Turing’s work gives an analysis of the concept of ‘mechanical procedure’
(alias ‘algorithm’ or ‘computation procedure’ or ‘finite combinatorial procedure’).
This concept is shown to be equivalent with that of a Turing machine.” See also
Kleene in [36, p. 30]:

Computation, theoretically considered (to be performable for all
possible values of the independent variables), is idealized. Turing’s
analysis takes this idealized aspect of it into account. A Turing
machine is like an actual digital computing machine, except that
(1) it is error free. . . , and (2) by its access to an unlimited tape
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it is unhampered by any bound on the quantity of its storage of
information or “memory”.

Turing [76] stressed the finite limitations on exploration of state by an “idealized”
human computer, but his analysis was on an informal level, and related only to
two-dimensional symbolic manipulations.

Just as we have shown here that the recursive functions are the only numeric
functions that can be computed by an effective algorithm, we could likewise have
shown that Turing machines compute all effective string functions, by adopting
some basic set of primitive string operations, like Post’s, and postulating that initial
states of string algorithms are endowed with nothing additional.

Kolmogorov [38] generalized Turing’s analysis, insisting on the “limited com-
plexity” of operations and on the locality of information needed to determine the
next state, but he too gave no precise characterizations. In contrast, our postulates
are formal and apply to arbitrary structures—without encoding states as numbers,
strings, or graphs.

Gandy [22] proposed postulates for human and machine effectivity. He defined a
model, “Gandy machines”, whose states are described by hereditarily finite sets. Ef-
fectivity of Gandy machines is achieved by bounding the rank (depth) of states, in-
sisting that they be unambiguously assemblable from individual “parts” of bounded
size, and requiring that transitions have local causes. Gandy’s ideas have been ex-
pounded by Sieg and Byrnes [72].

In contrast to all previous analyses of effectiveness, the postulates proposed here
apply to transition systems with arbitrary states. States can hold one-dimensional
tapes (as in Turing’s original work [76]), two-dimensional (as extended in [67]),
bounded-degree graphs (as in Kolmogorov machines [38, 39]), or bounded-rank
hereditarily finite sets (as in Gandy machines [22, 72]). But, in fact, states can also
be multi-dimensional grids, or unbounded-degree graphs, or sets with unbounded
rank, so long as the program satisfies the Bounded Exploration Postulate.

Moreover, we place no restrictions on state transitions, other than Bounded Ex-
ploration and the respecting of isomorphism. We do not straightjacket transitions
to follow any particular format, as in Turing’s formalism. Transitions can take very
big steps, as long as they can all be described finitely.

It is true that convoluted structures can be represented linearly or graphically,
and that complex transitions can be decomposed into smaller steps. But it is not a
priori evident that computational power is not increased or decreased by such repre-
sentations or decompositions. Indeed, one can “effectively” compute uncomputable
functions, given a sufficiently malevolent representation. See [63, 55, 9] for discus-
sions of this crucial point. It is, therefore, imperative to deal with effectiveness on
the actual level of algorithmic computation, as undertaken here.

Some of Gandy’s considerations were motivated by physical limitations of ma-
chines, like “the finite velocity of propagation of effects and signals” [22, p. 135].
We, on the other hand, are not concerned at all with what Gandy calls “Thesis M”
(or what is also called the “Physical Church-Turing Thesis”), namely, that whatever
can be calculated by a physical machine can be computed by a Turing machine, a
claim regarding limitations that physics may, or may not, place on physical comput-
ing devices.24 Furthermore, our analysis is not specific to a computational model

24Copeland [16] argues against the all too common misconstrual of Turing as having himself
asserted such a physical claim.
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operating over hereditarily finite sets, but applies to arbitrary state-transition sys-
tems with arbitrary structures for states. Gandy admitted that his model cannot
emulate all computations [22, p. 146]: “Despite the liberality advertised . . . there
is a limit to what a machine can do in a single step.” Indeed, the algorithm in [19]
(determining the “parity” of certain graphs) cannot be naturally encoded as hered-
itarily finite sets of bounded rank, as shown there. For a recent critique of Gandy,
see [60]. For another set of physical postulates, satisfied by Turing machines, see
[21].

We should point out that, nowadays, one deals daily with more flexible notions
of algorithm, such as interactive and distributed computations. To capture such
non-sequential processes and non-classical algorithms, additional postulates are re-
quired. For such a development, see [6].

We also do not address the question of the computational capabilities of the
human mind, what Shagrir [60, p. 223] refers to as “The Human version of the
Church-Turing Thesis” (more generally called the “AI [Artificial Intelligence] The-
sis”), that (idealized) humans cannot compute any uncomputable function. Never-
theless, it does follow from our axiomatization that any state-transition mechanism
that computes a non-recursive function, whether physical or biological, must vio-
late (at least) one of the Sequential Postulates, and/or must include at least one
non-recursive function in its initial states.

See [51, pp. 101–123] and [16] for discussions of these and other variants of
Church’s Thesis.

Finally, the question of what effectiveness means for computations over arbitrary,
non-numerical domains is taken up in [43, 8, 10]; see also [49].
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[The Sliced Bread Thesis:]
“Turing machine = coolest idea since sliced bread”

Even a rabid fan of the Turing machine concept, who firmly believes the
Sliced Bread Thesis, would not claim that the Sliced Bread Thesis is

formalizable in ZFC (or whatever). Possibly one could come up with an
axiomatic definition of “effective algorithm” that is not trivially

equivalent to the definition of a Turing machine, and then one could
formalize Church’s Thesis and ask for a proof of it. Shoenfield worked

on this for a while, I am told, but didn’t get very far.

—Tim Chow, Foundations of Mathematics (FOM) Forum
(January 12, 2004)
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