
NetPrints: Diagnosing Home Network Misconfigurations Using Shared Knowledge

Bhavish Aggarwal
Ranjita Bhagwan

Venkata N. Padmanabhan

Microsoft Research India

Geoffrey M. Voelker

UC San Diego

July 2008

Technical Report
MSR-TR-2008-102

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052



NetPrints: Diagnosing Home Network
Misconfigurations Using Shared Knowledge
Bhavish Aggarwal†, Ranjita Bhagwan†, Venkata N. Padmanabhan†, and Geoffrey M. Voelker‡*

†Microsoft Research India ‡UC San Diego

Abstract— Networks and networked applications depend
on several pieces of configuration information to operate
correctly. Such information resides in routers, firewalls, and
end hosts, among other places. Incorrect information, ormis-
configuration, could interfere with the running of networked
applications. This problem is particularly acute in consumer
settings such as home networks, where there is a huge diversity
of network elements and applications coupled with the absence
of network administrators.

To address this problem, we presentNetPrints, a system
that leverages shared knowledge in a population of users to
diagnose and resolve misconfigurations. Basically, if one user
has figured out the fix for a problem, we would like this
knowledge made available to another user experiencing the
same problem. NetPrints records and aggregates configuration
information from a large population of clients, annotates
it with compact network problem signatures, looks up the
appropriate information when a new client experiences a
similar problem, and suggests configuration changes to resolve
the problem. NetPrints performs all of these steps automat-
ically, with little human involvement. We evaluate NetPrints
in the context of several home networking problems actually
reported by users, and find that it is effective in sifting through
large volumes of shared configuration data to identify the
relevant fix.

I. I NTRODUCTION

A typical network comprises several components, in-
cluding routers, firewalls, NATs, DHCP, DNS, servers, and
clients. Configuration information residing in each compo-
nent controls its behaviour. For example, a router’s con-
figuration tells it who its neighbours are while a firewall’s
configuration tells it which traffic to block and which to
let through. Correctness of the configuration information is
thus critical to the proper functioning of the network and of
networked applications.Misconfigurationcan interfere with
the running of these applications, leading to user frustration.

This problem is particularly acute in consumer settings
such as home networks, where there is a huge diversity
of network elements and applications, deployed without
the benefit of vetting and standardization that is typical in
enterprises, and an absence of network administrators. A
home user with a network problem is often left helpless,
not knowing which, if any, of a myriad of configuration
settings to manipulate.

Nevertheless, it is often the case that a user is not the
first one to encounter a problem. Other users may have
encountered a similar or the same problem while running

* The author was a visiting researcher at Microsoft Research India during
the course of this work.

the same application with a similar or the same network
setup. For example, a particular audio/video chat application
may not work with a particular make and model of home
router unless the client host is placed on the DMZ. If one
user discovers this fix, it can, in principle, be reused by
another user faced with the same problem in a similar
setting.

Motivated by this observation, we presentNetPrints, a
system that helps users diagnose network misconfigurations
by leveraging the knowledge accumulated by a population
of users. This approach is akin to how users today scour
through online discussion forums looking for a solution
to their problem. However, a key distinction is that the
accumulation, indexing, and retrieval of shared knowledge
in NetPrints happensautomatically, with little human in-
volvement.

NetPrints comprises client and server components. The
client component gathers configuration information from
the client host and from network devices such as the home
router or NAT box. In addition, it captures a trace of
the network traffic associated with an application run and
extracts a set offeaturesthat characterize the correspond-
ing network communication. The client component then
uploads its local configuration information along with the
network traffic features to the server. In addition, in the
case of a failed application run, the user clicks a “help”
button to invoke NetPrints diagnostics (this is the only
human input needed in NetPrints). This also signals to the
server that the configuration information and network traffic
features just uploaded correspond to an unsuccessful run of
the application. We term the combination of configuration
information, network traffic features, and the indication
of whether or not an application run was successful an
anecdote.

The server gathers such anecdotes from clients and
constructs a decision tree for every application to represent
the knowledgeof good and bad configurations. It also
uses a decision tree algorithm to identify the network
traffic features that are important, thereby generating a
network signature for each application. In addition, the
server maintains asuggestion tablewhere, indexed by the
network signature, it stores a potential set of configuration
fixes that other clients have previously reported as their
solution to a similar problem.

When the server is presented with a client request
triggered by a user invoking “help”, it walks down the
decision tree that codifies its knowledge and it identifies

2



configuration changes that might help resolve the problem
using a procedure we callconfiguration mutation. If the de-
cision tree traversal does not yield a suitable fix, the server
looks up the suggestion table for any isolated configuration
changes that might solve the problem. If both the tree
traversal and the suggestion table lookup fail in generating
a configuration fix, NetPrints infers that the problem is not
related to the client’s home network configuration.

We have compiled a list of 25 configuration-related
home networking problems and their resolutions drawn
from online discussion boards, user surveys, and our own
experience. Of these, we were able to obtain the necessary
hardware and software resources to reproduce 10 problems.
All of these problems are amenable to resolution through
NetPrints, as we argue later in the paper. However, since
we do not have configuration data or network traces from
a large population of users, our evaluation focuses on real
data gathered for three applications from our testbed, where
we artificially varied the network configuration settings to
mimic the diversity of settings from an actual population of
users. Separately, we evaluate the robustness of NetPrints’
decision tree algorithm for different mixes of good and
bad anecdotes and when bogus anecdotes are fed to it.
Our results demonstrate the effectiveness of NetPrints in
diagnosing many different kinds of misconfigurations.

While our focus in this paper is on home network
settings, NetPrints could be applied in other settings as
well, as discussed in Section V. Also, we focus here on
network configuration problems that interfere with specific
applications but do not result in full disconnection and
in particular does not prevent communication with the
NetPrints server. Indeed, such subtle problems tend to be
much more challenging to diagnose than full disconnection,
which is often the result of a basic problem (e.g., the
network cable not being plugged in) or a problem beyond
the home network and hence the control of the end user
(e.g., a disconnection at the ISP level). Nevertheless, as we
discuss in Section V, it would be possible to proactively
prefetch and locally cache relevant information from the
NetPrints server (e.g., that pertaining to the specific make
and model of router in a user’s home network), to allow
NetPrints to still function in the event of a disconnection
from the server.

II. R ELATED WORK

Misconfiguration diagnosis has received much attention
in recent years. We summarize prior work on problem
diagnosis in computer systems and in networks, and discuss
how NetPrints relates to it.

A. Peer Comparison-based Diagnosis

There has been prior work on leveraging shared knowl-
edge across end hosts, which provides inspiration for a
similar approach in NetPrints. However, the prior work
differs from NetPrints in significant ways.

Strider [23] uses a state-based black-box approach for
diagnosing registry problems that impact the health of
applications on a Windows machine. The basic idea is
to trace accesses made to registry keys by an application
(“state tracing”) and combine this with a comparison of
registry settings across machines (“state diffing”), thereby
identifying the keys that are the likely culprits. Note that
Strider requires a healthy machine to be identified for
state diffing. Also, state tracing would be hard to do in
the NetPrints context because there are no explicit “ac-
cesses” that applications make to network configuration
information, whether local or on a separate network device.
Rather, the configuration information governs policy (e.g.,
port-based filtering) that impacts an application’s network
communication.

PeerPressure [22] extends Strider by eliminating the
need to identify a single healthy machine for state diffing.
Instead, PeerPressure accumulates registry settings froma
large population of machines. Then, under the assumption
that the settings on most of the machines is correct, it uses
Bayesian estimation to calculate the probability of each
registry key setting on the sick machine being the culprit.
For each culprit considered in rank order, PeerPressure
suggests to the user that the key be set to the most popular
value drawn from the population.

The unsupervised learning approach used in PeerPressure
has the advantage of not requiring the samples to be
labeled, although the system does require the user who
is performing the diagnosis to manually identify a sick
machine as such. However, this unsupervised approach also
means that PeerPressure will necessarily find a culprit. This
would be inappropriate in the NetPrints settings, where, for
instance, an application failure may be caused by reasons
other than local misconfiguration (e.g., disconnection at the
ISP). On a separate note, PeerPressure works with discrete
valued configuration variables (which makes it hard to deal
with ranges, e.g., all settings of MTU less than 1300 may
be bad) and moreover assumes that there is only one culprit.
The decision tree based classifier we employ in NetPrints
avoids these difficulties.

Finally, Autobash [19] helps diagnose and recover from
system configuration errors by recording the user actions
to fix a problem on one computer and replaying these on
another computer that is experiencing the same problem.
Autobash uses a set of predicates to generate problem
signatures and also to determine whether the speculative
application of a solution has in fact fixed the problem.
Autobash depends critically on causality tracking with the
OS kernel to determine which processes depend on a
particular entity (e.g., configuration setting). However,such
causality tracking is not feasible in the NetPrints setting
since, for instance, the end host does not have visibility
into how configuration settings on the home router are being
used.

3



B. Problem Signature Construction

There has been work on developing compact signatures
for systems problems that could then be used to look up
a database to find previous instances, if any, of the same
problem, often having a known solution.

Yuan et al. [26] generate problem signatures by recording
system call traces, representing these as n-grams, and then
applying support vector machine (SVM) based classifi-
cation. SVMs allow for very general classification using
arbitrary separating hyperplanes. However, it operates on
real-valued samples; categorical configuration information
(e.g., the wireless security setting, which might be one of
WEP, WPA, or none), which NetPrints must accommodate,
would first have to be quantified to be amenable to SVM.
Instead, NetPrints uses a decision tree based classifier,
which can naturally handle discrete as well as continuous
configuration parameters, to represent both its knowledge
of configurations and application network signatures. More
importantly, a decision tree lends itself to easy interpreta-
tion, allowing NetPrints to identify of mutations needed to
reach a good state from a bad one.

Cohen et al. [6, 7] consider the problem of automated
performance diagnosis in server systems. They use Tree-
Augmented Bayesian Networks (TANs) to identify com-
binations of low-level system metrics (e.g., CPU usage)
that correlate well with high-level service metrics (e.g.,the
average response time). A high service response time corre-
sponds to the system being in an unhealthy state. They also
present a technique to cluster system states corresponding
to similar problems and thereby construct a signature that
is then used to look up information (e.g., diagnostic notes)
on past instances of the same problem. Their work, unlike
NetPrints, focuses solely on quantifiable system metrics.
Also, TANs are computationally more efficient that decision
trees (which is important when processing large volumes of
data in real time), but are not as useful in the NetPrints
context since they do not readily identify the mutations
needed to reach a good state.

C. Network Problem Diagnosis

There has also been much work on network problem
diagnosis. However, there has been a limited amount of
work that focuses on misconfigurations in particular.

Active probing has been used to localize faults in wide-
area network paths. For example, Tulip [12] probes routers
to localize anomalies such as packet reordering and loss
on an end-to-end path. Such diagnosis relies on a model
of how routers behave. In the context of NetPrints, it
may be possible to construct such a model for certain
well-understood configuration information (e.g., port-based
filters at a firewall), thereby allowing active probing based
diagnosis. However, it would be difficult to do so in general
because the impact of various configuration settings may not
be documented or well-understood. Indeed, our experience
has been that the root causes of many home networking

problems are firmware quirks or bugs, which would be hard
to capture through a model.

In the context of wireless LANs, the broadcast nature of
the channel facilitates problem diagnosis based on passive
monitoring of network traffic. Examples of such systems
include DAIR [3] and Jigsaw [5]. These are again based on
model- or rule-based engines, an approach that would be
hard to replicate for arbitrary configuration information.

Other systems such as SCORE [10] and Sherlock [2] have
modeled, and in some cases automatically discovered, de-
pendencies between higher-layer, observable network events
and the underlying network components. These systems
then use statistical inference to identify network compo-
nents that are the likely cause of failures.

WiFiProfiler [4] combines peer cooperation with a rule-
based engine to help clients diagnose wireless problems,
including several configuration-related ones (e.g., security
settings). This system focuses on a setting where the number
of peers sharing information is very small (just the nodes
within wireless range), hence the dependence on a rule-
based rather than a statistical approach.

Finally, there has also been work on using formal meth-
ods to check the correctness of network configuration infor-
mation. For example, the rcc tool [9] includes a constraint
verifier that checks for a range of well-understood BGP
routing properties.

D. NetPrints Compared to Prior Work

We view NetPrints as being complementary to prior
work on network diagnosis in a couple of ways. First,
NetPrints focuses onlocal configurationproblems at the
client end that impactspecific applications rather than
on broad problems that impact the network infrastructure.
Second, NetPrints uses ablackboxapproach appropriate for
arbitrary and poorly understood configuration information,
avoiding the need for the network behaviour or dependen-
cies to be modeled explicitly. The latter is a key point
of difference between NetPrints and the network diagnosis
systems targeted at the more organized enterprise networks.

NetPrints draws inspiration from prior work on blackbox
techniques to diagnose systems problems and index them
with signatures to enable recall. However, NetPrints’ goal
of identifying how a broken configuration can be mutated to
fix a problemleads us to use a decision tree based approach,
which is distinct from the techniques used in prior work.
Furthermore, NetPrints leverages domain-specific knowl-
edge to constructsignaturesof networking problems. So
the diagnosis procedure in NetPrints is both state-based and
signature-based.

III. N ETPRINTS DESIGN AND I MPLEMENTATION

In this section, we describe the design and implementa-
tion of the NetPrints system. We begin with an overview
of how the NetPrints system operates. We then provide a
more detailed description of the design and implementation

4



Fig. 1. NetPrints system design

of the various system components at both the client and the
server.

To provide context for the challenges of diagnosing home
network misconfigurations, we have compiled a list of
25 configuration-related home networking problems and
their resolutions drawn from online discussion boards, user
surveys, and our own experience. Table I summarizes
these problems, their cause, and the configuration changes
required to fix them. Glancing through this table shows
that many problems affect specific applications, that the
causes can be subtle (e.g., no connectivity when STP is
not disabled when connected to Comcast networks (#3)),
and that the solutions can involve obscure configuration
settings, particularly for home users (e.g., the suite of
specific settings for the Xbox problem in #22).

A. Operation overview

Figure 1 shows a high-level depiction of the components
of NetPrints, both at the client and the server, and how
they interact. NetPrints has two modes of operation: the
“normal” mode and the “diagnose” mode. In normal mode,
the NetPrints client collects information about the normal
mode of operation of the user’s machine. It periodically
determines the set of applications running, afeature vector
(explained in Section IV-E) that characterizes the network
usage of each application, and the home network configura-
tion. It reports a concise representation of this information
to the NetPrints server whenever it detects a change since
the last time it reported this information to the server. The
server, in turn, uses this information to characterize the
normal mode of operation for each application reported by
the client. We emphasize that NetPrints uses a black-box
approach to operating on home network configurations. It
does not interpret the semantics of any of the configuration
fields and values used to diagnose network problems.

When users experience a problem with a certain applica-
tion, they click the “help” button on a simple GUI to ask the
NetPrints client on their local machine to diagnose the prob-
lem. The NetPrints client can identify which application to
diagnose automatically (e.g., the application corresponding
to the last foreground window before running the NetPrints

client) or with the help of the user (e.g., ask the user click
on the application window). The client then switches to the
diagnose mode, in which it gathers the same information as
in the normal mode. However, it labels the information as
corresponding to a “bad” state (since there is a problem in
running the application) and uploads this information to the
server (step 1 in Figure 1). The server compares this “bad”
information with the “good” information (represented as a
decision tree) it has gathered over time from clients that
ran this application successfully (i.e., corresponding tothe
normal mode of those NetPrints clients). The server then
reports possible configuration fixes back to the client (step
2 in Figure 1).

In some cases, the server may not be in a position to
diagnose the problem based on the configuration informa-
tion that it has accumulated. This situation could happen
because the server has an insufficient volume of samples to
be able to distinguish between good and bad configurations
(e.g., the application might be new). It could also happen
when the problem only impacts a subset of clients, so that
the “problematic” configuration actually works well for the
majority of clients (e.g., problems #3 and #4 in Table I).
In such cases, we rely onsuggestionsto try and resolve
the problem. A suggestion is an observation reported by a
client that says that a certain configuration change seems
to have fixed the problem. The problem is identified using
the network traffic signatureof a problematic run of the
application. While not as authoritative as diagnosis basedon
the decision tree, suggestions can nevertheless be useful in
the NetPrints context, just as they are in the human context
(e.g., on online discussion boards which discuss problems
and potential fixes).

If neither the decision tree nor the suggestion information
yields an answer — the configuration reported by a troubled
client is not deemed “bad” and there are no suggestions
that apply to the application and its network signature —
NetPrints will not return any diagnosis or resolution steps.
This response is appropriate since it may well be that
the problem is unrelated to local network configuration,
so any local resolution steps might do more harm than
good. This aspect of NetPrints is in contrast to prior
systems such as PeerPressure [22], which would necessarily
suggest a configuration change even when the cause is not
configuration-related.

We will now describe, in more detail, the different
components within the NetPrints client and the NetPrints
server.

B. The NetPrints Client

The NetPrints client, running as a background process on
a computer within the home network, has three principal
components: theconfiguration scraper, the per-application
network traffic feature extractorand the per-application
suggestion generator.

Configuration scraper

5



No. Application Router Problem Cause Fix

1. BitTorrent WRT54GL Torrents seem to get extremely
slow after a while

NAT table filling up too fast Decrease the NAT table timeout,
increase the max. no. of connec-
tions in the NAT table

2. File Sharing WGT624 Only unidirectional sharing: PC1
is seen on PC2 but not vice versa

Firewall is not properly config-
ured

Allow file sharing through all
firewalls

3. Generic WRT54GL Cannot access the network STP (Spanning Tree Protocol)
not supported by Comcast

Disable STP

4. Generic Linksys Cannot access the Internet though
the LAN is working

Recent router change, ISP uses
MAC authentication, so disallows
traffic from the new router

Turn on MAC address cloning

5. IP Camera DG834GT Camera disconnects periodically
at midnight, router needs reboot

DHCP problem Configure static IP on the camera

6. Online Gaming WGR614 Disconnected from wireless net-
work immediately or 30 sec into
playing

(n/a) Enable UPnP on router and gam-
ing device

7. Office
Communicator

WRTP54G Instant Messenger client does not
connect from home

DNS requests not getting re-
solved

Switch off DNS proxy on router

8. Outlook WRT54G Outlook does not connect via
VPN to office

Default IP range of router was
same as that of the office router

Change the IP range of router

9. Outlook WGR614 Router not able to email logs SMTP server not configured
properly

Setup SMTP server details in the
router configuration

10. Outlook Linksys Not able to send Outlook mes-
sages through Linksys router.
Belkin router works fine, Linksys
only receives messages

MTU value too high Reduce MTU to 1458 or 1365

11. Outlook WRT54G Not able to send mail using Out-
look

Specific ports not opened on the
router

Setup port triggering on router for
port 25 and 110 (smtp and pop3
resp)

12. ROKU DIR-655 ROKU did not work with mixed
b, g and n wireless modes

(n/a) Change to mixed b and g mode

13. SSH WGR614 SSH client times out after 10
minutes

NAT table entry times out Change router or increase NAT
table timeout

14. SSH server WRT54G Not able to setup ssh Port 22 not forwarded Forward port 22 to correct IP
15. STEAM based

games
WGR614 Listing game servers causes con-

nection drops
The router misinterprets the sud-
den influx of data as an attack and
drops connection

Upgrade to latest firmware

16. Streaming Real
Media

BEFW11s4 Real streaming kills router Firmware upgrade caused prob-
lems

Downgrade to previous firmware

17. Streaming media WGR614 Streaming media is not played SPI is enabled which drops the
connection

Disable SPI in the router config-
uration

18. VPN WGR614 VPN does not work with Cisco
VPN Client

Cisco client uses GRE protocol
which is not supported with the
router

Use a different router

19. VPN WRT54G VPN drops connection after 3
minutes

(n/a) Set MTU to 1350-1400, uncheck
“block anonymous internet re-
quest”, “filter multicast boxes” in
router configuration

20. VPN WRT54G No VPN connectivity Old router firmware Firmware upgrade
21. VPN server WRT54G PPTP server behind NAT does

not work despite port forward-
ing enabled on required ports and
PPTP passthrough allowed

IP of server is 192.168.1.109,
which is inside default DHCP
range of router. Router some-
times is not able to port forward
to these IPs inside default range
of router

Use static IP outside DHCP range
for server

22. Xbox WRT54G Xbox does not connect and all
games do not run

Some ports are blocked and NAT
traversal is restricted

Set static IP address on Xbox and
configure it as DMZ, enable port
forwarding on UDP 88,TCP 3074
and UDP 3074, disable UPnP to
open NAT

23. Xbox WRT54G Xbox works with wired network
but not with wireless

WPA2 security is not supported Change wireless security feature
from WPA2 to WPA personal se-
curity

24. Xbox WGR614 Not able to host Halo3 games NAT settings too strict Set Xbox as DMZ
25. Xbox WRT54G 2 Xboxes behind same NAT don’t

run simultaneously
Router can’t forward traffic on
one port to two different Xboxes

DMZ one Xbox and port forward
the other for ports 88 UDP and
3074 TCP and UDP

TABLE I. RECENT CONFIGURATION-RELATED PROBLEMS IN HOME NETWORKS.

6



The configuration scraper collects three kinds of infor-
mation:
a) Network identification informationfrom the local host
running the client: specifically, whether it is using the
wireless interface, the wired interface, or both, and whether
it is using a static IP address.
b) Internet Gateway Device identification information,
namely the make, model and firmware version of the device,
which in most cases is a home router although in some cases
it could be a DSL or cable modem1. The scraper obtains
this information using the UPnP interface that is supported
by many Internet Gateway Devices [20]. It also uses the
UPnP interface to obtain the URL for the web interface to
the device.
c) Network-specific configuration information from the de-
vice. The scraper uses both the UPnP interface and the
web interface that most routers and modems provide to
glean configuration information such as port forwarding and
triggering tables, MTU value, VPN passthrough parameters,
DMZ settings and wireless security settings. On the routers
we tested, the port tables from the web page and the port
tables from the UPnP interface were not kept consistent with
each other. Consequently, we had to scrape and combine the
tables from both interfaces. Some router firmware versions
also allow us to scrape the maximum NAT table size and
the per-connection timeout for each table entry. These fields
can be particularly useful in diagnosing problems such as
#1 and #13 in Table I.

While the UPnP interface gives us access to only device-
identifying parameters and the UPnP port forwarding and
port triggering tables,2 the web interface is richer but
not standardized across routers. In particular, there is no
standardized way for parsing the HTML to extract the
(key,value) pairs defining the configuration. Consequently,
the configuration scraper uses several heuristics to extract
configuration information from the router web pages. While
these heuristics work across a set of Linksys, Netgear, and
D-Link routers in our testbed, it is difficult to know how
well these will extend to other routers.

An alternative to parsing the HTML is to leverage
the observation that each configuration web page of the
device is typically an HTML form that includes a “submit”
button. We can invoke this button programmatically
on each configuration web page (for example, using
the WebBrowser .NET control on Windows). Doing
so causes the submission of an HTTP POST request
containing all of the (key,value) pairs in an easy-
to-parse form. For example, the body of the POST
request might contain: submit button=index&
change action=&submit type=&action=Apply&
dhcp start=100&dhcp num=50&dhcp lease=1440.

1Several ISPs supply home users with modems that include routing,
NAT and DHCP functionality.

2The UPnP specification for Internet Gateway Devices has manyfunc-
tions defined as optional. In our experience, these functions are usually
not supported by typical home router firmware.

It is straightforward to extract the various DHCP-related
configuration settings from this string.

Network traffic feature extractor
The network traffic feature extractor characterizes the

network usage of each application running on the client
machine. In our current implementation, it uses the winpcap
library and the IPHelpers API on Windows to tie all
observed network traffic to the individual processes, and
hence applications, running on the client machine. For
each running application, it extracts a set of features by
examining its network activity. These features form the
feature vectorfor the application. Table II lists the set
of features we extract in the form of rules. For every
application, the feature extractor creates a seven-bit feature
vector. If at leastone connection of an application satisfies
any of these rules, the corresponding bit in the feature vector
is set. Note that while all of the features we consider at
present are binary, the feature set could be expanded to
include non-binary features.

No. Feature description Evaluation Type
1. TCP:Three SYN no response per-connection
2. TCP:RST after SYN per-connection
3. TCP:RST after no activity for 2 mins per-connection
4. TCP:RST after some data exchanged per-connection
5. UDP:Data sent but not received per-four-tuple
6. Other: Data sent but not received per-IP address pair
7 All: No data sent or received overall

TABLE II. N ETWORK TRAFFIC FEATURES USED INNETPRINTS.

We identified the set of features in Table II based on
empirical observations of the ways in which an application’s
network communication may typically fail. The first four
features in the table capture various kinds of TCP-level
issues that we commonly see in malfunctioning applica-
tions. Several applications and services such as multimedia
streaming, DNS and VPN clients use transport protocols
other than TCP. For all of these, the lack of connectivity in
one direction often indicates a networking problem. Con-
sequently, we have included features #5 and #6 to capture
the behavior of such applications. Feature #7 characterizes
a total loss of connectivity for an application using any
transport protocol; problems #12 and #23 in Table I, for
instance, are scenarios in which our system would use this
feature.

The NetPrints client associates the feature vector ex-
tracted from network traffic with the corresponding ap-
plication generating the traffic. We use a hash of the
application binary image as a unique application identifier.
The gathered network configuration and the per-application
network features form the basic unit of information, called
the anecdote, that the NetPrints server uses to perform
automatic diagnosis of misconfigurations, as we discuss
next.

Note that the client generates the network traffic feature
vector during the execution lifetime of an application. This

7



situation would be problematic for applications that are long
running; for example, a web browser could remain open
on a client machine and be used for days or weeks. One
way of constructing the feature vector would be to consider
the network activity of the application just within relatively
short windows of time. We defer further consideration of
this issue to future work.

Suggestion generator
NetPrints uses the suggestion generator to help rec-

ommend configuration fixes for new problems that new
applications or routers may pose, or to solve obscure
configuration problems such as #3 in Table I. When the
user reports a problem that NetPrints cannot immediately
solve, the suggestion generator on the NetPrints client starts
tracking the configuration and the affected application using
the configuration scraper and the network traffic feature
extractor.

If it perceives a change in configuration (likely en-
tered manually) and, within a pre-defined time window,
the application’s networking problem disappears, NetPrints
infers that the configuration changes fixed the application’s
problem. It then creates asuggestioncontaining the ap-
plication binary hash, the network traffic feature vector,
and the configuration fix, and uploads this suggestion to
the NetPrints server. The server uses these suggestions to
generate configuration fixes that may not yet be captured in
the decision tree of configurations. We describe this aspect
of diagnosing later in Section III-C.

Client issues
Extracting the network traffic feature vectors for an appli-

cation requires capturing its traffic. One possibility is todo
this continuously. This approach has the advantage that both
successful and unsuccessful runs of an application would be
captured automatically. In our implementation, we split the
network signature generator into two parts: a lightweight,
continuously running component to capture selected packet
headers and connection-to-process bindings, and a relatively
more CPU-intensive component that creates the feature
vector from the trace. This approach leads to low overhead.
We tested our implementation of the continuously-running
NetPrints client on a 1.8 GHz laptop PC running Windows
Vista Enterprise while streaming video over the Internet and
simultaneously synchronizing email folders with the server.
We found that the NetPrints client only had a 0.8% CPU
overhead under such a scenario.

An alternative would be to monitor applications when
they start and to capture traffic only when the application
is one for which we have not already extracted the feature
vectors since the last change in network configuration.
While this alternative would further reduce the overhead, it
would mean that when there is a failure of an application for
which the feature vector has already been recorded (from a
previous successful run) and users click “help”, they would
have to run the application again for NetPrints to capture

traffic from the failed run.

C. The NetPrints Server

As shown in Figure 1, the NetPrints server has two major
components: theconfiguration managerand thenetwork
signature generator, each of which operates on a per-
application basis. The configuration manager tracks config-
uration information from successful and unsuccessful runs
of an application. When presented with a misconfiguration,
it suggests changes to be made to the (bad) configuration
to move it to a good state. We call this stepconfiguration
mutation. The network signature generator prunes the net-
work signatures uploaded by clients to the minimum set of
features needed to characterize and differentiate between
the different ways in which an application may fail.

Decision trees
NetPrints uses decision trees as a basis for performing

configuration mutation. A decision tree is a predictive
model that maps observations (e.g., a client’s network con-
figuration) to their target values orlabels (e.g., “good” or
“bad”). Each non-leaf node in the decision tree corresponds
to an attribute of the observation and the edges out of
the node indicate values that this attribute can take. Thus,
each leaf node corresponds to an entire observation and
carries a label. Given a new observation, we start at the root
of the decision tree, walk down the tree, taking branches
corresponding to the individual attributes of the observation,
until we reach a leaf node. The label on the leaf node
identifies configurations as good or bad.

There are several algorithms for decision tree learning,
i.e., for inducing a decision tree from labeled training data.
We chose a widely-used algorithm, C4.5 [16], which builds
trees using the concept of information gain. The idea is
to start with the root, and at each level of the tree choose
that attribute to split the data which reduces the entropy
by the maximum amount. The result is that the branch
points (i.e., non-leaf nodes with multiple children) at the
higher levels of the tree correspond to attributes with greater
predictive power, i.e., those with distinct values or value
ranges corresponding to distinct labels.

When the training data is noisy (e.g., it contains misla-
beled samples) or there are too few samples, there is the
danger that the above algorithm will over-fit the training
data. To address this concern, decision tree algorithms like
C4.5 also include a pruning step, wherein some branches
in the tree are discarded so long as this does not result in a
significant error with respect to the training data (a process
called generalization). C4.5 uses a confidence threshold to
determine when to stop pruning. In our implementation, we
use the default threshold. A consequence of pruning is that
if the number of samples is insufficient, these will not be
reflected in the decision tree. We evaluate this issue in the
context of NetPrints in Section IV-E.

A decision tree has two key properties. First, it enables
classification of observations that include both quantitative

8



and categorical attributes. For example, the decision treein
Figure 6 includes quantitative attributes such as the WAN
MTU and categorical attributes such as the security mode.
Second, a decision tree is amenable to easy interpretation.
It not only enables classification of observations, it also
helps identify in what minimal way an observation could
be mutatedso as it change its label (e.g., from “bad” to
“good”). With a decision tree, NetPrints can walk up the
tree until it hits a branch point that includes a leaf with the
desired label as a descendant, and then walk down the tree
to that leaf node. For example, in Figure 4, the mutation
needed for a WGR614 router to move to a “good” state,
with stateful packet inspection (SPI) disabled, would be to
enable SPI.

The above properties make decision trees attractive in the
context of NetPrints compared to alternatives such as SVMs
or Bayesian classification. Both configuration management
and network signature generation require the ability to
work with quantitative as well as categorical attributes.
Furthermore, configuration management can benefit from
the mutation recipe that decision trees provide.

Configuration manager
The configuration manager uses the configuration infor-

mation submitted by clients to learn and constructper-
application configuration treesusing C4.5. Note that con-
figuration information submitted when the user clicks the
“help” button is labeled as “bad”; otherwise, it is labeled
as “good”.

Figure 4 shows an example of such a configuration tree
that we generated for the Microsoft Connection Manager
VPN application [13] using configuration information from
clients using two different models of routers: the Linksys
WRT54G and the Netgear WGR614v5. We note that the
pptp passthrough attribute (corresponding to whether
PPTP pass-through is enabled) is the clearest, even if not
a perfect, indicator of whether a configuration is good or
bad. So it is at the root of the decision tree.

Algorithm 1 shows the algorithm that the configuration
manager uses to suggest suitable configuration changes to
the client. With this algorithm, NetPrints uses the subtree
from a branch of the nearest parent node for searching for
a path that ends in a good configuration. The configuration
fields along this path are the candidates for moving the
configuration from a bad state to a good state. We chose
this approach because it results in minimal configuration
changes for solving the problem (the alternative path shares
a long common prefix with the original configuration).
Alternative algorithms exist, such as traversing to the root of
the tree and searching in the subtree of another branch of the
root. One issue with that approach is that it might recom-
mend more drastic changes first (e.g., change the firmware
or use a different router) instead of simpler configuration
changes. Our experience has been that this algorithm works
well with the decision trees we have experimented with.
Further experience with NetPrints will suggest whether the

Algorithm 1 Configuration mutation algorithm to move
from a bad state to a good state.

1: sub findgoodconf(badleaf)
2: parentnode = parent(badleaf node)
3: good leaf node = findgood leaf(parentnode)
4: conf fix = traversetree(parentnode, goodleaf node)
5: return
6: end sub
7: sub findgood leaf(node)
8: if is good leaf(node)then
9: return node

10: else
11: for all child node of nodedo
12: good leaf node = findgood leaf(child node)
13: good leaf node
14: end for
15: end if
16: end sub

algorithm needs revising.

Network signature generator
The server also constructsper-application signature trees

to reduce the network traffic feature vectors submitted by
clients down to the most significant features. The signature
generator again uses the C4.5 algorithm for this purpose.
Figure 5 shows the signature tree generated for the Mi-
crosoft Connection Manager VPN application. Of all of the
network features classified as good or bad, the signature
tree structure shows that only two important features are
sufficient to capture all the networking problems that the
Connection Manager application sees in our experiments.

Diagnosis procedure
We now describe the server operations in normal mode

(corresponding to successful application runs) and in diag-
nosis mode (corresponding to application failure leading to
the user invoking “help”) in more detail. In Sections IV-
C and IV-D, we illustrate these server operations through
examples.

Normal mode:When a client uploads a good configuration
and the corresponding application network traffic feature
vector, the configuration manager and the signature genera-
tor use this to train the configuration tree and the signature
tree, respectively. Currently, the decision tree algorithm we
use does not allow for incremental training of the trees,
hence we use a cache of configurations to perform the
training at each step. However, incremental update based
algorithms exist [21] and we plan to evaluate these in future
work.

Diagnosis mode:When a client uploads a presumed-to-be-
bad configuration along with a malfunctioning application’s
network feature vector, the configuration manager and the
signature generator at the server again use this information

9



to train their respective trees. In addition, the server pro-
ceeds to diagnose the problem.

As the first step towards diagnosis, the server traverses
the tree top-down, using the presumed-to-be-bad configu-
ration. If this traversal ends at a leaf node that is labeled
as “bad”, the configuration manager uses Algorithm 1 to
find an alternate path from the root to a leaf node that is
labeled “good”. It uses this alternate path to generate a set
of configuration changes that it then conveys back to the
client for presentation to the user.

However, as noted in Section III-A, it is possible that the
top-down traversal of the tree in fact ends at a “good” leaf
node. Such a case can arise if (a) the problem that the client
has encountered is relatively new (e.g., because it involves
a new application) and so has had an insufficient volume of
training samples reported for it to have been incorporated in
the configuration tree, (b) the problem only impacts a small
subset of clients (e.g., problem #3 with STP and Comcast
in Table I) so that the same configuration is reported as
good by the majority of clients,3 (c) the configuration
information being reported by the clients is not rich enough,
or (d) the failure is not due to local misconfiguration.

The NetPrints server constructs and maintains asugges-
tion tableto address cases (a) and (b). The suggestion table
is populated with thesuggestionscontributed by clients
(Section III-B) and indexed by the network signature of the
applicationbeforethe suggested fix was applied. Since the
accumulated volume of suggestions would keep growing,
the server only remembers a small, fixed number of the
most recent distinct suggestions for any given application
network signature.

In the event that the configuration information submitted
by a complaining client is found to be “good”, the server
uses the network signature submitted to look up the sug-
gestion table. If one or more suggestions is found, it returns
these to the client.

If the suggestion table also does not return an answer,
NetPrints declares that it is unable to diagnose the problem.
As noted in Section III-A, this result would be appropriate
in some cases since the problem may not be related to local
configuration at all (case (d) above). However, if in fact
the problem is that some critical configuration information
is not being captured by NetPrints (case (c)), this would
require the client-side scraper to be augmented to extract
this additional information.

IV. E XPERIMENTS

In this section, we describe the experiments we per-
formed to evaluate how effective the NetPrints system is
in automatically diagnosing misconfigurations. Our experi-
ments recreate problem scenarios for a set of applications
and then verify that NetPrints automatically catches all

3One could address this issue by including the ISP name as partof the
configuration information, but we avoid doing that since this is non-local
information that may not always be discoverable by the client host in an
automated manner.

of the misconfigurations that cause these problems. We
first outline our experimental methodology, and then we
demonstrate how NetPrints builds suitable configuration and
signature trees and identifies configuration mutations, using
anecdotes generated for three example applications. Finally,
we show that the decision trees that NetPrints produces are
robust to changes in the accuracy, skew, size, and mix of
the input anecdote set.

A. Methodology

Using three routers, the Linksys WRT54G, Linksys
WRTP54G and Netgear WGR614, we recreated some of
the problems specified in Table I. We outline these recre-
ated problems in Table III. However, for the experiments
reported here, we focus on three applications — the IIS
FTP server, the Microsoft Connection Manager VPN client,
and the Xbox 360 gaming console — and two routers
— Linksys WRT54G and Netgear WGR614 — to study
NetPrints’ ability to detect and correct misconfigurations.
We specifically pick these example applications because
problems related to services running behind NATs, VPN
clients, and gaming systems are reported as significant pain-
points on the forums we have tracked, as reflected in Table I.

We ran each application in different home-networking
environments created by varying the home router (Linksys
WRT54G or Netgear WGR614), the type of medium used
(wired or wireless), and the configuration settings on the
router. From various home router forums such as the Net-
gear [15] and Linksys [11] help forums, Microsoft support
web pages [14], and third-party firmware forums [8], we
created a list of typical configuration parameters that users
modify on their routers. We determined the exact parameter
names and automated the process of varying their settings,
using the HTTP POST mechanism explained in section III.
We list the details of these configuration parameters below,
with the values that each parameter was set to shown in
parentheses.

1) MTU size (1100, 1200, 1300, 1400, 1500). Both the
Linksys and the Netgear routers used the variable
wan mtu to specify this. We limited changing MTU
size to these specific round numbers because, in most
cases, users do not set the MTU to an arbitrary
number under 1500.

2) VPN-specific passthrough fields (on or off). These
parameters were available only on the Linksys router.
It used three binary variables for VPN-based filtering:
ipsec passthrough, pptp passthrough,
andl2tp passthrough.

3) Stateful Packet Inspection (SPI) firewall (on or off).
This parameter was available only on the Netgear
router through thedisable spi firewall bi-
nary variable.

4) Wireless security parameters (disabled, WEP,
WPA or WPA2). The Netgear router used the
security type variable to specify the type

10



No. Problem Router Bad configuration

1. Connection Manager fails to connect Netgear WGR614 SPI firewall disabled
2. Connection Manager fails to connect Linksys WRT54G pptp passthrough disabled
3. FTP connections fail to an FTP server behind a NATLinksys WRT54G, Netgear WRT54G No DMZ set
4. Office Communicator (IM) did not connect Linksys WRTP54G(VoIP) DNS proxy enabled
5. Remote Desktop Connection fails Linksys WRT54G No port forwarding enabled
6. SSH connection times out after 10 minutes Netgear WGR614 NAT table timeout too short (10 minutes)
7. SSH connection times out after 30 minutes Linksys WRT54G NAT table timeout too short (30 minutes)
8. Xbox 360 does not connect to Xbox Live Linksys WRT54G, Netgear WGR614 MTU < 1365
9. Xbox 360 does not connect to the wireless network Linksys WRT54G WPA2 turned on
10. Xbox 360 does not detect an open NAT Linksys WRT54G, Netgear WGR614 UPnP turned off

TABLE III. P ROBLEMS WE RECREATED

of wireless security and the Linksys router used
SecurityMode. Also, the Netgear router did not
support WPA2.

5) DMZ (on or off). Both routers used the variable
dmz enable.

6) UPnP (on or off). Both routers used the variable
upnp enable.

In our experiments, we varied the these configuration set-
tings on the router. For each setting, we ran the application
and used the NetPrints client’s network feature extractor to
create the feature vector for the application. We combined
this with the configuration information to create an anecdote
for the run. When the application worked as expected, we
labeled the anecdote as “good”. For the runs in which the
application encountered networking problems, we labeled
the anecdote as “bad”. We used this collection of anecdotes
to generate the results presented here.

For the evaluation in Sections IV-B, IV-C and IV-D,
we input all of these anecdotes to the NetPrints server’s
configuration manager and network signature generator.
These then generate configuration trees and signature trees
that, as we show, capture all of the problems that we
saw with these specific applications. Our experiments in
Section IV-E use the same collection of anecdotes to vary
the proportion of good and bad configurations, the diversity
in the configuration information, and data set size to show
NetPrints’ robustness in generating the correct configuration
and signature trees and in identifying suitable configuration
mutations to fix problems.

B. IIS FTP Server

Usually, people set up FTP servers behind their NATs
so that they and people they know can have easy access to
data on their local computers from a remote location. The
forums showed that a number of people complain about
their service not running as expected behind a NAT. To
emulate this situation, our first evaluation of NetPrints was
on the IIS FTP server [1] running behind a NAT. While
varying the configuration, we used a remote FTP client
to connect to this server. When we saw the connection
fail, we labeled the anecdote as bad. All other anecdotes
were labeled good. In this experiment, we used 128 distinct
anecdotes, with 64 each labeled as good and bad.

Figure 2 shows the configuration tree that NetPrints gen-
erates using these anecdotes. The configuration tree clearly

bad good

dmz_enable

0 1

Fig. 2. The configuration tree generated by the configurationmanager
for the IIS FTP server.

captures the fact that when the variabledmz enable was
set, the FTP server worked. Therefore, for any new anecdote
for this FTP server that is labeled as bad, the configuration
mutation would involve changing thedmz enable field
from 0 to 1.

good bad

ALL: No data 
sent our received

0 1

signature suggestion���� ������	
�������������	
����X X X X X X 1

Fig. 3. The signature tree and the suggestion table entries generated
by the signature generator and the configuration manager forthe IIS FTP
Server.

Figure 3 shows the signature tree that the signature
generator built using the anecdotes. The differentiating
feature in this case is feature no. 7 in Table II. The server
determines the problem signatures to enter into the per-
application suggestion table by traversing the tree from root
to every bad leaf. It sets the value of all the features that it
does not see during the traversal as a don’t care value, “X”.
In this experiment, since the FTP server ran into only one
kind of problem, the server generated only one signature,
with all values except the 7th value set to X. If and when a
client reports that a particular configuration change fixed a
problem (i.e., it makes a suggestion), with a feature vector
matching this signature, the server makes an entry in the
suggestion table indexed by the signature.

C. Microsoft Connection Manager

The Microsoft Connection Manager [13] is a PPTP-
based VPN client. To collect anecdotes with the Connection
Manager, we varied the router configuration and, for each
configuration, we tried to connect our client to a VPN
server. If the VPN connection was successful, we labeled

11



the anecdote as good, and if the connection did not go
through, we labeled the anecdote as bad. We collected 360
anecdotes using the Linksys router, of which in 120 cases
the VPN client connected successfully to the server, and
120 runs using the Netgear router, of which the VPN client
connected successfully to the server 60 times.

pptp_pass
through

device device

disable_spi
_firewall

good

bad

bad

gooddisable_spi
_firewall

good bad

0 1

WGR614 WRT54G WGR614 WRT54G

0 1 0 1

Fig. 4. The configuration tree generated by the configurationmanager
for the Connection Manager VPN client.

Figure 4 shows the configuration tree for the Connec-
tion Manager application that the NetPrints server gen-
erated. Of all the configuration parameters, the configu-
ration manager pickedpptp passthrough, device,
anddisable spi firewall as the discerning config-
uration parameters. Therefore, from the anecdotes, Net-
Prints automatically identifies that the connection man-
ager fails to connect through the Netgear WGR614 router
if disable spi firewall is turned on, and it fails
to connect through the Linksys WRT54G router when
pptp passthrough is disabled. The configuration muta-
tion step will therefore suggest changing bad configurations
by changingpptp passthrough from 0 to 1 or changing
disable spi firewall from 1 to 0, depending on the
router used. This matches with the three problem scenarios
that we manually reproduced for the VPN client, shown in
Table III.

TCP RST after 
SYN

good bad

�������������� ��� ����� �!"�# bad

0 1

0 1

signature suggestion�$#�#!���$�%�&!%'!��(�$$)*+�(�#!���$�%�&!%'!��(�$$),X 1 X X X X X �$#�&&�&%&���),+�(�&&�&%&���)*X 0 X X 1 X X

Fig. 5. The signature tree and the suggestion table entries generated by
the signature pruner and the configuration manager for the Connection
Manager VPN client.

Figure 5 shows the signature tree that the NetPrints
signature generator creates for the Connection Manager.
Of the seven features shown in Table II, only two features
appeared to be most discerning — “TCP:RST after SYN”
and “OTHER: Data sent but not received”. It turns out that

the feature vectors in the bad anecdotes that the Netgear
WGR614 router generates almost always have the former
feature set, while a large percentage of the bad anecdotes
that the Linksys router generates have the latter feature
set. The C4.5 algorithm, therefore, automatically extracts
these in the signature tree. The signature generator uses
the signature tree to generate signatures for every problem.
these signatures are then used as indices into the suggestion
table. Figure 5 shows the two signatures that are created and
used to index the suggestion table.

D. Xbox 360

Xbox Live [25] is a service that allows Xbox users
to play single-player and multi-player games, chat, and
interact over the network. When the game “Halo 3” re-
leased, we found a large amount of activity on the different
forums discussing home networking issues that hindered
online multi-player gaming with Xbox 360 and Xbox Live.
Consequently, we decided to evaluate how the Xbox 360
interacted with the Xbox Live service under different routers
and router configuration settings.

One problem that arose during this experiment was that
we could not run the NetPrints client’s feature extractor
directly on the Xbox since it is not user-programmable.
Xbox Development kits are available at a much higher price
than consumer Xboxes, so the NetPrints client could, in
principle, be ported to the Xbox. However, for the sake of
these experiments, we emulated a NetPrints client on the
Xbox by instead running the client on a PC that is able to
monitor all of the Xbox’s network communication. In the
wired network scenario, we set the PC to be in bridge mode,
placed in between the Xbox and the home router. For the
wireless case, we used a PC, with a wireless interface set
in monitor mode, to sniff all packets to and from the Xbox.

We collected 147 anecdotes with the Linksys WRT54G
and 100 anecdotes using the Netgear WGR614 router while
varying the configurations. 50 of the former and 50 of the
latter were good anecdotes. Our methodology to determine
whether the Xbox was suitably connected to Xbox Live
was to run the “Test Live Connection” tool from the Xbox
Dashboard. This tool checks that the Xbox 360 is connected
to the network, either via a wired or a wireless connection,
and that it has a valid IP address and a DNS server setting.
It uses a specific test server to check whether the home
router handles ICMP messages as expected, and to check
the MTU value of the router. If any of these tests fail, the
tool reports an error. The test also classifies the NAT on the
router as one of “open”, “moderate” or “strict”, depending
on the port assignment policy and the port filtering policy
of the NAT [24]. Xbox Live users prefer to have an open
NAT because this gives them the maximum functionality
and highest performance while playing online games. We
therefore label any anecdote for which the tests fail, or for
which the NAT is labeled as “moderate” or “strict”, as bad.

Figure 6 shows the NetPrints server’s configuration tree
generated using the Xbox’s anecdotes. There were three

12



upnp_
enable

wan_mtu

good

bad

0 1

<= 1300 > 1300

WEP

bad connection
_type

Security
Mode

good bad bad

WPA WPA2

wired wireless

Fig. 6. The configuration tree for the Xbox 360 configuration data.

misconfigurations that the configuration manager learned
from the anecdotes. First, to make the NAT open,the router
needs to enable UPnP. Second, the Xbox requires the MTU
value set to be set to greater than 1300 for it to able to
connect to Xbox Live. Third, the Xbox wireless adapter
could not connect to a wireless network if the security mode
used was WPA2.

NetPrints’ findings are the same as the configuration fixes
we manually generated and show in Table III, except for
the MTU fix. We found information both on the Xbox
dashboard tool and on the support pages that the Xbox
Live service requires the MTU to be set to 1365 or higher
for a connection to succeed. However, given that in our
experiments we set the MTU to one of five round numbers,
we could not make a more informed choice than setting the
MTU size to larger than 1300.

This experiment also shows that the NetPrints server can
capture and solve a mix of different kinds of configuration
issues: a general error (upnpenable needs to be on), a
service requirement (wanmtu needs to be set higher than
1365), and an unsupported feature (WPA2 not supported).

UDP: Data 
sent but not 

received

good bad

All: No data 
sent or 

received
bad

0 1

0 1

signature suggestion-./01234567789:012345;77X X X X 1 X X -./0<9=>?@AB1C/94DEF689:0<9=>?@AB1C/94/@GHI.9/X X X X 0 X 1

Fig. 7. The signature tree and the suggestion table entries generated for
the Xbox 360 network signatures.

Figure 7 shows the signature tree that NetPrints generates
for the Xbox. Although NetPrints detected three prob-
lem configuration values in this experiment, the signature
tree appears to capture only two features as problematic:
ALL:no data sent or received, and UDP:Data sent but
not received. It turns out that our feature vector did not
capture the difference between having the NAT in moderate
or strict mode and having it in open mode. (Indeed, this

0 20 40 60 80 100

% Mislabeled

0

20

40

60

80

100

%
 E

rr
o

r

VPN
Xbox 360
FTP

Fig. 8. Sensitivity of the decision trees to mislabeled configuration data.

configuration setting only has a bearing on functionality
such as hosting games.) While this would impact our ability
to use the network signature to index the corresponding
suggestions, the configuration tree (which in any case is
NetPrints’ first line of defence) nevertheless captures the
relevant configuration information (upnp enable).

E. Robustness tests

Finally, we perform a series of experiments to evaluate
the robustness of the configuration decision trees to various
conditions not found in the experimental data sets we gen-
erated. These conditions include mislabeled configurations
submitted to the server, skewed distributions of configura-
tions, the responsiveness of the decision trees to adapt to
configurations for new problems, and the sensitivity of the
decision trees to the balance of good and bad configurations
at the server.

1) Mislabeled configurations:The configuration snap-
shots in the data sets presented in Section IV-A and used
in our experiments thus far are all correctly labeled as
to whether they represent good or bad configurations for
a particular application. In a deployed system, however,
configurations added to the shared repository on the server
will not always be labeled correctly. Mislabeling could
happen for various reasons, including application failure
due to reasons other than local misconfiguration, a user not
choosing to invoke NetPrints’ “help” when an application
fails, 4 or the user deliberately invoking “help” even when
the application works fine.

Mislabeled configurations could potentially lead to trou-
bleshooting a problem incorrectly, such as identifying a bad
configuration as a good one. Even with mislabeled config-
urations, though, we would still like the decision trees to
tolerate the mislabeling and troubleshoot user configurations
correctly.

To evaluate the sensitivity of our configuration decision
trees to mislabeling, we performed the following exper-
iment. For each application in our workload, we started
with the known, correct set of labeled configurations and
their associated decision trees. We then chose a random

4Note that this would normally have no impact since no anecdote would
be uploaded either. However, if it so happens that the clienthas not already
reported an anecdote for the application in question since the most recent
configuration change (and hence will do so now)and the application fails
and the user fails to invoke “help”, only then will a mislabelinghappen.

13



percentagep of those configurations and mislabeled them,
flipping their labels from good to bad and vice versa.
From this set containing mislabeled configurations, we
again generated decision trees and compared them with the
original trees generated using correct labels. To account
for variability in the random choice, for each percentage
p we performed multiple trials of the experiment each with
different random mislabelings.

If the two trees are equivalent across all trials, we con-
sider the configuration set to be completely tolerant top%
mislabeling. Basically, in this case, despite the mislabeled
data, the C4.5 algorithm produces a pruned decision tree
that makes the same decisions as the original tree. As a
result, the configuration mutation procedure will remain as
accurate as with correctly labeled data — using this tree
will still correctly identify all configuration fields that could
change a bad configuration to a good one, even though the
tree was generated with some mislabeled data.

If the two trees diverge, the decision trees begin to
overfit the data as a result of the mislabeling. In this case,
the decision trees incorporate features of the mislabeled
configurations and the configuration mutation step might
report incorrect fields back to the user. Using the tree
formed with the mislabeled set of configurations, we can
count the number of original configurations incorrectly
classified and use this as an error metric.

Figure 8 shows the results of this experiment on the con-
figurations for the VPN and Xbox 360 applications. The x-
axis shows the percentage of mislabeling of configurations,
and the y-axis shows the fraction of configurations correctly
labeled in the decision tree based upon the mislabeled
configurations. For each data point we performed 100 trials
and present the average across the trials. The results indicate
that the applications are fairly resilient to mislabeling.The
decision trees for the VPN, Xbox, and FTP applications
completely tolerate mislabeling (0% error) when 15%, 2%,
and 2% of the configurations are mislabeled, respectively.
With 1% error, in which configuration mutation can report
an incorrect configuration fix for 1 out of 100 diagnoses, the
applications are very tolerant to mislabeling: in this case,
the VPN, Xbox, and FTP applications tolerate 28%, 13%,
and 23% mislabeling, respectively. When more than 30% of
configurations are mislabeled, though, the resulting decision
trees begin to overfit substantially.

Those familiar with evaluation of learning techniques
will immediately recognize that our methodology is not
performing cross-validation on the data with training and
testing sets. The reason is that we are not using the decision
trees as classifiers. In other words, NetPrints does not use
decision trees to classify or predict whether a configuration
is good or bad — all configurations from the client already
have labels (“good” or “bad”) associated with them. The
mislabeling experiment performs an extrinsic evaluation
of the problem in terms of the utility of identifying an
appropriate configuration mutation for a diagnosis in the

face of incorrect labels.
2) Skewed configuration distributions:The configura-

tions in our raw data sets are roughly uniform in distribution
in terms of the settings of the various parameters. In prac-
tice, however, some configurations are likely to be much
more prevalent — have higher skew — than others. (For
example, UPnP might be disabled on 90% of the routers.) In
particular, one bad configuration is likely to have high skew
for a given problem: a default configuration for a device,
with an incorrect setting for a parameter, preventing an
application from working. Similarly, the resulting working
configuration, with the parameter setting corrected, is likely
to have high skew as well.

Does configuration skew further change the sensitivity of
the decision trees to mislabeling? For each application in
our workload, we chose two configurations representing a
default bad configuration and a default good configuration.
We then introduced duplicates of those defaults to create
skew. For an experiment withq% skew we created duplicate
default configurations such that the sum of default good and
bad configurations comprisedq% of all configurations. In a
set of 1000 configurations with a skew of 20%, for example,
100 will be the same good configuration and 100 will be the
same bad configuration (200 total). We then performed the
mislabeling experiment above, varying skew from 0–95%
with 100 random trials per skew value.

We found that skew does not affect the sensitivity of the
decision trees to mislabeling. For all of the applications and
skew values, the effect of mislabeling was the same as with
the original distribution of configurations.

3) Responsiveness:Over time the configuration decision
trees need to be responsive to new problems experienced by
users. With each new application, NetPrints will generate
a separate new decision tree. For existing applications,
though, users will encounter new problems with existing
devices, and new devices will arrive on the market with
their own set of unique problems. Ideally, the decision trees
will be highly responsive to these new problems and adapt
quickly upon encountering configurations that correspond
to them. Until the decision trees adapt, however, NetPrints
has to rely upon items in the suggestion table for resolving
problems, as noted in Section III-A.

We evaluated the responsiveness of the decision trees
by simulating a scenario where a new device arrives on
the market and users experience new problems with the
device. We simulated this scenario by creating an initial
decision tree based only upon the Netgear WGR614 router.
We then incrementally added configuration reports for the
Linksys WRT54G router until the decision tree adapted
to represent configuration problems on the new router.
We randomly chose configurations to add from the set
of Linksys reports, and we repeated the experiment 50
times for each application. We simulated the situation where
NetPrints receives equal numbers of bad and good reports
(the problem gets fixed as well).

Table IV shows the results of these experiments. For each

14



Application # Configurations
VPN 4
Xbox 360 17
FTP 0

TABLE IV. R ESPONSIVENESS TO NEW PROBLEMS.

application, it shows the number of configurations added
until the decision trees adapted in all random trials of the
simulation. The responsiveness of the decision trees varies
across applications because the different applications start
with different initial trees. For the VPN application, the
decision tree adapts very quickly after seeing a handful
of configuration reports for the problem in the new router.
The Xbox 360 takes longer to adapt, and the FTP result is
expected since both routers experience the same problem:
the initial tree already captures it and no adaption is
necessary.

Finally, there is a tension between being responsive to
new problems — extending the trees — and generalizing
in the face of mislabeled data — simplifying the trees. The
confidence threshold of the pruning algorithm (Section III-
C) could be tuned to alter the balance between the two.

4) Good versus bad:Without experience of a live
deployment, we can only speculate on the balance of good
and bad configuration reports at the server. It is useful to
know how sensitive the decision trees are to the ratio of
good and bad configurations to determine whether NetPrints
should react to unusual situations.

To explore this sensitivity, for a given application we
randomly selected from its set of configurations and varied
the ratio of good to bad selections. We also varied the total
number of configurations selected from 200–20,000. For
each set of parameters we again made 100 random trials.
Only in the extreme cases (almost all were good or bad)
were the decision trees sensitive to the ratio. As a result, we
conclude that the ratio of good to bad configurations will
not impact the quality of the decisions trees in practice.

V. D ISCUSSION

In this section, we outline several issues that a large-scale
deployment of NetPrints could potentially face and the ways
in which NetPrints could be extended to solve a larger set
of configuration-related problems in diverse environments.

Will people use a service like NetPrints?While we
cannot measure the frustration that users feel while try-
ing to manually troubleshoot a home networking issue,
we believe that a service like NetPrints has tremendous
potential of being useful to an ever-growing population
of home-networking users. Moreover, NetPrints imposes
very low overhead (Section III-B) and is not intrusive on
users. Furthermore, in-home networking using media-based
devices [17, 18] are making the home network even more
complex and difficult to troubleshoot. Such heterogeneity
will only increase the need for a system like NetPrints.

Privacy. As with any system that collects information
from users, privacy is important. We ensure the privacy
of an individual NetPrints user by ensuring that we do

not collect any identifying information, such as the PPPoE
login and password, the ISP name, WAN IP address, the
DNS server addresses, or the wireless SSID. None of the
configuration fixes that the NetPrints server proposes do
not involve any of these sensitive fields. Furthermore, the
network signatures derived from tracing the network capture
only very high-level information (e.g., three TCP SYNs
without a response) and no raw packet data.

Proactive and reactive operations.Currently, NetPrints
works reactively, i.e., it only solves a problem if a client
reports it. An alternative approach is to be more proactive
in providing configuration changes to the client. Given
the knowledge of the set of applications running on the
NetPrints client, the NetPrints server could anticipate poten-
tial configuration-related problems and suggest preventive
configuration changes.

NetPrints in other environments.While our system targets
the home network, the NetPrints design methodology is
equally applicable to other settings such as large enterprise
networks that have different kinds of networking devices,
configurations and network topologies. We therefore plan to
test the efficacy of the NetPrints approach in the enterprise
network setting.

VI. C ONCLUSION

We have described the design and implementation of
NetPrints, a system to automatically troubleshoot home
networking problems caused by router misconfigurations.
We use a decision tree-based learning algorithm to aggre-
gate anecdotes from multiple clients and create a concise
representation of good and bad configurations. For every
reported problem, NetPrints uses the configuration tree or
suggestion table to generate suitable configuration fixes.
Using three example applications we demonstrate that Net-
Prints is able to diagnose a variety of misconfigurations and
that it is robust to changes in the size, mix and skew of the
configuration information.

REFERENCES

[1] Microsoft Internet Information Services (IIS).
http://www.microsoft.com/windowsserver2003/iis/default.mspx.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards Highly Reliable Enterprise Network Services
Via Inference of Multi-level Dependencies. InSIGCOMM, 2007.

[3] P. Bahl, J. Padhye, L. Ravindranath, M. Singh, A. Wolman,and
B. Zill. DAIR: A Framework for Managing Enterprise Wireless
Networks Using Desktop Infrastructure. InHotNets, 2005.

[4] R. Chandra, V. N. Padmanabhan, and M. Zhang. WiFiProfiler:
Cooperative Diagnosis in Wireless LANs. InMobiSys, 2006.

[5] Y. Cheng, P. B. John Bellardo, A. C. Snoeren, G. M. Voelker, and
S. Savage. Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis.
In SIGCOMM, 2006.

[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase.
Correlating Instrumentation Data to System States: A Building Block
for Automated Diagnosis and Control. InOSDI, 2004.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.
Capturing, Indexing, Clustering, and Retrieving System History. In
SOSP, 2005.

[8] DD-WRT Forums. http://www.dd-wrt.com/phpBB2.
[9] N. Feamster and H. Balakrishnan. Detecting BGP configuration

faults with static analysis. InNSDI, 2005.

15



[10] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP Fault
Localization via Risk Modeling. InNSDI, 2005.

[11] Linksys forums. http://forums.linksys.com.
[12] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level

Internet Path Diagnosis. InSOSP, 2003.
[13] Microsoft Connection Manager. http://support.microsoft.com/kb/221119.
[14] Microsoft Support Website. http://support.microsoft.com.
[15] Netgear forums. http://forum1.netgear.com.
[16] J. R. Quinlan. ”C4.5: Programs for Machine Learning. Morgan

Kauffman, 1993.
[17] The ROKU SoundBridge Network Music Player.

http://www.rokulabs.com.
[18] The Slingbox: Watch TV in Another Room or Another Hemisphere.

http://www.slingmedia.com/go/slingbox.
[19] Y.-Y. Su, M. Attariyan, and J. Flinn. Autobash: Improving configura-

tion management with operating system causality analysis.In SOSP,
2007.

[20] Universal Plug and Play Internet Gateway Device Specification.
http://www.upnp.org/standardizeddcps/igd.asp.

[21] P. E. Utgoff. Incremental Induction of Decision Trees.Machine
Learning, 4:161–186, 1989.

[22] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic Misconfiguration Troubleshooting with PeerPressure. In
OSDI, 2004.

[23] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang,
C. Yuan, and Z. Zhang. STRIDER: A Black-box, State-based
Approach to Change and Configuration Management and Support.
In LISA, 2003.

[24] Xbox NAT Type Detection. http://www.xbox.com/en-
US/support/connecttolive/xbox360/connectionmethods/
troubleshootliveconnection-testnat.htm.

[25] The Xbox Live Service. http://www.xbox.com/en-us/live/.
[26] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y.

Ma. Automated Known Problem Diagnosis with Event Traces. In
EuroSys, 2006.

16


