
Deciding Effectively Propositional Logic with Equality

Ruzica Piskac
EPFL Lausanne

ruzica.piskac@epfl.ch

Leonardo de Moura
Microsoft Research

leonardo@microsoft.com

Nikolaj Bjørner
Microsoft Research

nbjorner@microsoft.com

December 7, 2008

Technical Report
MSR-TR-2008-181

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Deciding Effectively Propositional Logic with Equality
Ruzica Piskac

EPFL Lausanne
ruzica.piskac@epfl.ch

Leonardo de Moura
Microsoft Research

leonardo@microsoft.com

Nikolaj Bjørner
Microsoft Research

nbjorner@microsoft.com
December 7, 2008

Abstract

Effectively Propositional Logic (EPR), also known as the Bernays-Schönfinkel class, allows en-
coding problems that are propositional in nature, but EPR encodings can be exponentially more
succinct than purely propositional logic encodings. We recently developed a DPLL-based decision
procedure that builds on top of efficient SAT solving techniques to handle the propositional case effi-
ciently while maintaining the succinctness offered by the EPR representation. To achieve the effect,
it uses sets of substitutions encoded as binary decision diagrams [5]. It is possible to reduce EPR
formulas with equality to pure EPR, but the reduction requires adding axioms for equality and con-
gruence. This approach potentially increases the search space and could defeat the efficiency we are
aiming to achieve. We here provide a calculus and decision procedure that handles equality natively.
The procedure builds in equality propagation, and allows reducing dependencies on equalities during
conflict resolution.

Contents

1 Introduction 2

2 Examples 2

3 Preliminaries 8
3.1 Basic conventions 8
3.2 Equality 9
3.3 DPLL as an abstract transition system 9

3.3.1 Refining resolution 11
3.4 Relational Algebra 11
3.5 Closing relations under equality 12
3.6 A DPLL(SX) calculus for pure EPR . 13

4 DPLL(SE) 15
4.1 Decisions and Propagation 16
4.2 Conflicts 16
4.3 Conflict Resolution 19

4.3.1 Resolve . 19
4.3.2 E-Resolve . 19
4.3.3 E-CongResolve . 20
4.3.4 Other conflict resolution rules 20

4.4 Summarizing the DPLL(SE) calculus 20
4.5 Examples .. . 20
4.6 Soundness, Completeness, Stuck-freeness, and Complexity 21

5 Conclusions 24

1

DPLL(SE) Piskac, de Moura and Bjørner

1 Introduction

Pure Effectively Propositional Logic is a fragment of first-order logic. The satisfiability problem for pure
EPR is to determine satisfiability for formulas of the form

∃~x∀~yϕ(~x, ~y)

whereϕ is a quantifier free, and atomic sub-formulas range over un-interpreted relations.
The satisfiability problem for EPR formulas can be reduced toSAT by first replacing all existential

variables by skolem constants, and then grounding the universally quantified variables by all combina-
tions of constants. This process produces a propositional formula that is exponentially larger than the
original. In a matching bound, the satisfiability problem for EPR is NEXPTIME complete [11]. Ram-
sey [13] [2] established that the satisfiability problem forEPR remained decidable when adding equality.
The more celebrated result of the decidability proof is now known as Ramsey’s theorem. The finite
counter-part has,Ramsey theory, remains an active field in combinatorics [9].

It is rather simple to encode EPR with equality into EPR without equality. Section 3.2 illustrates the
embedding. The encoded equality axioms are Horn, and they can be applied by unit-propagation only.
Thus, literals occurring in equality axioms need not take part in splits. The added complexity of handling
equality arises from the potential of having to propagate equality explicitly. In other words, every time
an equality is added to the current set of assumptions, everyassignment to literals should be closed
under the added equality. Our calculus for EPR with equalityaddresses the closure of predicates under
equality in a uniform way. It avoids explicit equality axioms, and propagates equalities implicitly to all
other predicates. The implicit equality propagation requires in return an explicit apparatus for handling
equalities during conflict resolution. That is, when producing auxiliary conflict clauses, and performing
backjumping during the DPLL search.

Before we continue with the main subject of this paper, whichis to formulate a calculus for EPR with
equality, we will first motivate the use of EPR using a set of examples ranging form direct to indirect
applications of EPR.

2 Examples

Example 1 (Orders). Problems arising from program verification often involve establishing facts of
quantifier-free formulas, but the facts themselves use relations and functions that are conveniently ax-
iomatized using a background theory that uses quantified formulas. One set of examples of this situation
comprise of formulas involving partial orders. The theory of partial orders, orders with tree-like prop-
erties, and other variants can be axiomatized in EPR with equality. We list a few axioms that can be
combined in different ways to produce different theories ofbinary relations.

Reflexivity ∀x . x � x

Anti−Symmetry ∀x, y . x � y ∧ y � x → x ' y

Transitivity ∀x, y, z . x � y ∧ y � z → x � z

Tree ∀x, y, z . x � z ∧ y � z → x � y ∨ y � x

Linearity ∀x, y . x � y ∨ y � x

Note that the above axioms do not include axioms for specifying dense linear orders, or discrete orders
with an infinite number of elements.

2

DPLL(SE) Piskac, de Moura and Bjørner

Example 2(Sets and Boolean Algebras). Constraints over sets (Boolean Algebras) can be encoded into
EPR by treating sets as unary predicates and lifting equalities between sets as formula equivalence. For
example,A ∪B ⊆ C is represented as∀x . A(x) ∨B(x) → C(x), and we can prove theorems, such as

A ∪B ⊆ C ∧B \ A 6= ∅ → A ⊂ C

by dually checking satisfiability of:

∀x . A(x) ∨B(x) → C(x) ∧ ∃y . B(y) ∧ ¬A(y)

∧ ¬(∀z . (A(z) → C(z)) ∧ ∃u . C(u) ∧ ¬A(u))

Equality is useful when expressing properties, such asA is a singleton:(∃x . A(x)) ∧ (∀x, y . A(x) ∧
A(y) → x ' y). Additional examples of set encodings in EPR have been explored in [8].

Example 3(The map property fragment). The Map Property Fragment [3] (for un-interpreted functions)
is a Boolean combination of map properties and quantifier free formulas. The fragment captures several
scenarios, including Boolean Algebras. Amap propertyis a formula of the form:

∀i.G[i] → F [a[i]] (1)

whereG is an index guard,i is a set of bound universal variables (uvar), F is value constraint such that
the bound variablesi only appear in an array accessa[i]. Nested array accesses with bound variables
are not allowed. Instead array accesses have to occur only inequalities and disequalities. An index
guard is a positive Boolean combination of arbitrary equalities; or disequalities between one constantc
taken from some setΣ, and either a universal variable or a constant.

G ::= G ∧G | G ∨G | atom (2)

atom ::= var ' var | var 6' c | c 6' var (3)

var ::= c | uvar (4)

As established in [3], the array property fragment is decidable. In fact every positive universal quantifier
can be replaced by a finite conjunction of instantiations, where the instances range over the finite set of
index variablesthat can be extracted from the formula. The set of possible instantiations is exponential
in the number of bound variables.

One way of reducing the array property fragment to EPR is by anticipating that a finite amplification
of an array property formula using the index set introduces abounded set of array values of the form
a[i], wherea is an array andi is in the computed index set. We can then replace array accessterms by
a function that has a finite range. Finite range functions canbe axiomatized using relations. So we use
the steps:

1. Collect the set of arraysa1, a2, a3, . . . , an, and the set of index variablese1, e2, . . . , em.

2. Introduce the set of values:v11 = a1[e1], a1[e2], . . . , an[e1], . . . , vnm = an[em].

3. Replace every occurrence ofai[ej] in the formula byvij .

4. For every array property∀i.G[i] → F [a[i]] replacea[i] by a fresh variablewai to form the formula
∀i, wai . G[i] ∧ select(a, i, wai) → F [wai].

3

DPLL(SE) Piskac, de Moura and Bjørner

5. Add either the axioms (5) and (6), or (6) and (7).
∧

1≤j≤n,1≤k≤m

select(aj , ek, vjk) (5)

∀a, i, v, w . select(a, i, v) ∧ select(a, i, w) → v ' w (6)

∀a, i,
∨

1≤j≤n,1≤k≤m

select(a, i, vjk) (7)

The transformation allows to replace the functiona[i] by a relation. The resulting formula is in EPR and
is polynomial in size of the original formula. The three axioms (5) and (6), and (7) imply thatselectis set
to vjk on argumentsaj andek, is functional, and is total. However, as suggested above wedo not need
all three properties ofselectin the context of the array fragment. If we just assume (5) and(6), then all
ground occurrences ofa[i] are specified, and all occurrences under a quantifier is defined at least on the
index set. This suffices for the array fragment. On the other hand, if we assume (6) and (7), then we are
not specifying thataj [ek] maps tovjk, but in light of axiom (7) it must map to some constant among the
vjk, which suffices for satisfiability.

Both (5) and (6) are relatively expensive because they require a product of arrays and indices. But
(5) allows an incremental use of an EPR solver. Initially, only assertselect(aj, ek, vjk) if aj [ek] occurs
as a ground instance. Check for satisfiability. We can eitherfix models generated by the EPR solver, by
adding functionality axioms when the models don’t satisfy them, or we can use a different trick known
from finite model finders: assert

∀a, i .
∧

aj [ek]

(a 6' aj ∨ ek 6' i) → select(a, i, wnew) ∨ Ans(a, i) (8)

If Ans(a, i) is non-empty, then add constants for (at least one) member(s) of it.

Example 4 (Arrays with Theories). The Map Property Fragment from the previous example 3 can be
generalized for the case where the array formulas are integrated withtheories. One such theory is the
theory of discrete linear orders, in which case we obtain thearray property fragment. An array property
is a formula of the form (1), but this time atoms in index guards (the atoms in the formulaG) are from a
larger vocabulary that includes relations.

atom ::= var ' var | var 6' c | c 6' var | R(var , . . . , var) (9)

The value constraints can in this case be generalized to alsouse uninterpreted relations.

F ::= F ∧ F | F ∨ F | val atom (10)

val atom ::= val ' val | val 6' val | R(val , . . . , val) | ¬R(val , . . . , val) (11)

val ::= a[var] | c (12)

Let I = {c1, . . . , cn} be a set of constants occurring in the formulaϕ, which is flattened into
conjunctive normal form. Ifϕ does not contain any constants, then introduce a dummy constant κ. Let
TR be a theory forR. For the sake of using this example for bootstrapping EPR theories, we could even
assume thatϕ contains a set of axioms forTR formulated within EPR. To simplify our treatment, let us
also assume thatR is a binary relation. LetG1, . . . , Gm be the index guards inϕ (all other clauses
are in already within EPR) and to further make our lives simpler, also assume that the array property
formulas contain at most one bound variablei. We then say thatI coversϕ if (the EPR portion of)ϕ
implies

∀i .
∨

c∈I

m∧

j=1

[Gj [i] → Gj [c]] (13)

4

DPLL(SE) Piskac, de Moura and Bjørner

Thus, wheneverGj [i] holds for somei, then there is a constant inc, such thatGj [c] holds, and such
that the same constant satisfies all the other guards inϕ that are satisfied byi. This property on index
guards implies thatI induces a congruence relation: variables are congruent if they satisfy the same set
of index guards. Furthermore, every variable is congruent to some constant inI. With the congruence
relation we can form a choice function that for everyi associates a constantc ∈ I to satisfy formula
(13). For future reference, we will call the choice functionproj(i).

In this case, it suffices to instantiate the quantifiers usingjust the constants inI. The justification
for this restriction is as follows: LetM be a finite interpretation that satisfies the EPR fragment ofϕ

together with all the ground instances of the array fragmentof ϕ. We may liftM to an interpretationM̂
of ϕ by interpretinga[i] using the interpretation fora[proj(i)], and we can interpret predicates in the
value constraint, such asR(a[i], b[j]), using the value forR(a[proj(i)], b[proj(j)]). To validate that̂M
satisfiesϕ, notice that it satisfies the EPR fragment ofϕ, and wheneveri satisfies guardsG1, G2, G3, then
proj(i) satisfies the same guards. SincêM satisfies the entire formula, it must be the case thatF1, F2, F3

are satisfied by the values induced by the interpretations ofthe array access termsa[i], b[j], c[k],
Our notion of the array property fragment is an abstraction of the presentation in [3]. There, the

index guard may contain arithmetical inequality≤, but not strict inequality. In the theory of integer
arithmetic it is possible to replace strict inequality between a bound variable and a closed term by non-
strict inequalities by adding or subtracting 1 from the closed term. In other words, the predicatei < t

wherei is a bound variable andt is a closed term is equivalent toi ≤ t− 1. The theory of linear orders
ensures that for every index guard using a positive combination of ≤ there is somec ∈ I satisfying
condition (13). Notice that if we use the theory of dense linear orders and replace non-strict inequality
≤ by strict inequality,<, then the property does not hold. For example, assuminga and b are the only
variables inI, then given the guard formulasG1[x] : a < x ∧ x < b, G2[x] : x 6' a, G3[x] : x 6' b,
neithera, nor b can be used for the case wherei satisfiesG1[i] (soi is strictly betweena andb).

We here make the observation that the condition on index guards is not specific to the theory of linear
orders. For example, ifR (from now on writtenv) satisfies distributive lattice axioms, then we can create
the setI consisting of the closure of all constants inϕ with respect to suprema and infima underR. In
other words, if the constants{c1, . . . , cn} occur inI, then create the finite set of at most22n

elements
closed underu andt (term overI usingt andu can be written in disjunctive normal form each using
up to2n conjunctions). IfG[x] is a positive Boolean combination of inequalities of the formx v c, and
x satisfiesG[x], then letIu be the subset ofI such thatx v c for c ∈ Iu, and letIl be the subset ofI
such thatc v x, for c ∈ Il. ThentIl v x v uIu, and we can choose either bound (at least one of the
setsIl or Iu has to be non-empty) as the representative forx.

Example 5 (Finite domains and QBF). The satisfiability and validity problem for Quantified Boolean
Formulas (QBF) is PSPACE complete. Bound variables in QBF formulas range over Boolean truth
values. Formulas where bound variables range over a finite domainD can be more handy, but don’t
add expressive power. For example, we can reduce∀x ∈ {0, . . . , 7} . ϕ[x ' 5] to ∀x0, x1, x2 ∈
B . ϕ[x0 ∧ ¬x1 ∧ x2]. We can also directly reduce finite domain constraints to EPR. For example,
consider the formula:

∀x ∈ D . ∃y ∈ D . ∀z ∈ D . ϕ[x, y, z]

where we assumex (andy, z) appear in equalities of the formx ' d, whered ∈ D, in ϕ. Skolemization
produces:

∀x, z ∈ D . ϕ[x, fy(x), z]

and we can relativize the quantifiers by introducing definitions for the finite domain:

∀x, z .D(x) ∧ D(z) → ϕ[x, fy(x), z]

5

DPLL(SE) Piskac, de Moura and Bjørner

Now replace every occurrence offy(x) ' d in ϕ by a predicatepy(x, d). Finally, add axioms for the
properties ofD andpy:

∀x .D(x) ↔
∨

d∈D

x ' d

∀z, u, v . py(z, u) ∧ py(z, v) → u ' v

∀z
∨

d∈D

py(z, d)

The embedding of QBF into EPR is obtained from this construction by specializing the domainD to the
set{tt, ff}. A more general logic of finite domains includes predicates besides equality. An embedding
of this logic into EPR is provided in Chapter 4 of [10]. The more general finite domain logic with
predicates is easily seen equivalent to EPR, because EPR formulas are equi-satisfiable to a finite domain
restriction, but the finite domain variant with just equalities is not. It corresponds to PSPACE, as opposed
to NEXPTIME.

So, we embedded a set of problems that belong in PSPACE to EPR that is a potentially exponentially
more succinct formalism. Our decision procedure for EPR also takes up to exponential space. One
could wonder if we could simulate a PSPACE procedure for QBF within EPR. To this end, let us start
examining a canonical way of evaluating QBF formulas. It proceeds by evaluating a QBF formula by
recursive descent, while building up a contextρ. Then the closed formulaϕ is equivalent totrue if and
only if [[ϕ]][] = true.

[[∀x . ϕ]]ρ = [[ϕ]]ρ[x 7→true] and [[ϕ]]ρ[x 7→false]

[[∃x . ϕ]]ρ = [[ϕ]]ρ[x 7→true] or [[ϕ]]ρ[x 7→false]

[[ϕ ∨ ψ]]ρ = [[ϕ]]ρ or [[ψ]]ρ

[[ϕ ∧ ψ]]ρ = [[ϕ]]ρ and [[ψ]]ρ

[[¬ϕ]]ρ = not [[ϕ]]ρ

[[x]]ρ = ρ(x)

Consider a formula∀x1, x2∃yQz . ϕ[y] in prenex form. Skolemizingy produces∀x1, x2Qz . ϕ[Ry(x1, x2)].
Thus, for every evaluation ofx1 andx2: (true, true), (true, false), (false, true), (false, false),
we have to determine whether the corresponding tuple belongs toRy. Note that in order to evaluate the
formula it suffices to perform this guessonly onceper combination ofx1, x2. Let us use this observation
to sketch a DPLL-based strategy for EPR that works in polynomial space when the EPR formula is ob-
tained from a QBF or finite domain formula. Thus, assumeF is a set of clauses where every occurrence
of predicateR is applied to the same set of variables. This holds for QBF andfinite domain formulas
obtained by skolemization. Then for each predicateR of arity m enumerate the arguments toR using
a lexicographic ordering:a1, a2, . . . , a|D|m, where eachai has aritym. Following the enumeration,
start with the partial modelΓ : R(a1). Assume without loss of generality that the arguments to allother
relations are the same as the ones passed toR. If the other relations areS and T , we would create
the modelΓ : R(a1), S(a1), T (a1). The model suffices to evaluate all clauses ofF [a1]. If some clause
is not satisfied, then the assignment forces at least one of the relations to not containa1, and standard
DPLL backtracking can be used to either adjust the assignment to the relations, or detect thatF is un-
satisfiable. If all clauses are satisfied, then the inferred assignment does not contradictF . Now proceed
by guessing an assignment toa2. The inference steps are independent of the steps used fora1 because
every occurrence of every relation uses the same arguments.In this way, we can gradually build up an
interpretation for all relations by examining elementsa1, thena2, etc. Now observe that the assignments

6

DPLL(SE) Piskac, de Moura and Bjørner

for a1 were irrelevant when examininga2. We therefore do not need to maintain the partial model for
assignments that have been previously examined. We could call this processguess, assign, and forget.
We saw that the process is sound and complete when relations are applied to the same arguments and
when enumerating assignments in a prescribed order.

Example 6(Finite model finding). The DarwinFM [1] model finder reduces model finding problems to
EPR. We here review an approach to EPR-based finite model finding and combine it with a refutationally
complete extension similar to a GEO-style model-expansioninferences [7]. Other finite model finders
are SEM [17], MACE [12] and Paradox [4]. These model finders are based on either pure SAT solvers
or on a combination of SAT solver with solvers for uninterpreted function symbols (which is the case
with SEM). To encode finite domain functions, the solvers tend to require a super-linear number of
propositional clauses compared to the size of the input.

Like DarwinFM, we can take advantage of the expressiveness of EPR to encode functions as rela-
tions, and avoid splitting finite relations into propositional variables.

To simplify the presentation below, assume we have a single binary functionf . We introduce the
3-ary relationRf to encode the function graph off . The functionf can be eliminated from the input
clauses in a standard way, while preserving satisfiability.That is:

1. Eliminatef from every clauseC:

∀x, y, z.C[f(x, y)] 7→ ∀x, y, z, u.¬Rf (x, y, u) ∨ C[u] (14)

2. Add axioms:

∀~x, y, y′ .Rf (~x, y) ∧Rf (~x, y′) → y ' y′ (15)

∀~x .
∨

c∈Σ

Rf (~x, c) ∨ Ansf (~x) (16)

The auxiliary predicateAnsf (~x) tracks dependencies on the constraints on the range off .

3. For each functionf assert

∀~x .
0∨

j=1

~aj ' ~x ∨ ¬Ansf (~x). (17)

The resulting set of clauses are in EPR, and if the clauses aresatisfiable, there is a finite model for
the original formula. On the other hand, if the clauses are unsatisfiable, then there is a resolution
proof of unsatisfiability. If the proof does not use the axiom(17), then the original clauses are
unsatisfiable. Assume that proof-search is constrained to produce proofs that do not use (17)
whenever possible. Thus, if the clauses are unsatisfiable without using the range constraints onf
we will discover this before depending on the current range for f .

4. Let us assume that the EPR clauses are unsatisfiable, and all resolution proofs of unsatisfiability
require (17). In this case there is also a finite ground instance that is unsatisfiable. Suppose the
ground instance uses the units¬Ansf (~a1), . . . , ¬Ansf (~an). We now repeat adding fresh constants
corresponding to terms and modify the clause (17). Assume (17) is of the form:

∀~x .
n∨

j=1

~aj ' ~x ∨ ¬Ansf (~x).

7

DPLL(SE) Piskac, de Moura and Bjørner

for n ≥ 0, and that the clauses are unsatisfiable using the ground instances:¬Ansf (~an+1), . . . ,
¬Ansf (~an+m). Replace it by the clause:

∀~x .
m+n∨

j=1

~aj ' ~x ∨ ¬Ansf (~x). (18)

Furthermore introduce fresh constants of the formcf(~aj) to provide range elements for the function
f and add the facts:

m∧

j=n

Rf (~aj , cf(~aj)) (19)

Theorem 1. The model search algorithm is both refutationally completeas well as complete for finding
finite models.

Proof. If there is a finite model of sizeN of the original set of clauses, then every term of depth more
thanN contains itself as a sub-term. We therefore only have to create constants that correspond to terms
of depth at mostN in order to admit a finite model of sizeN .

Refutational completeness follows by compactness of first-order logic: If a set of clauses is unsat-
isfiable it is unsatisfiable for a finite amplification. We willneed a fair way to enumerate the Herbrand
Universe. One way of achieving this is to give precedence to proofs that introduce terms of the smallest
possible depth.

This presentation of the finite model-building routine suffers from a few practical problems. We
presented the process for modifying the clause (17) by replacement. A better approach, in the context of
DPLL, is to assert the original version of (17) as a unit literal, and ensure that the literal does not get
simplified away from conflict clauses (it is common to simplify away unit literals from conflict clauses
because their assignment never changes). In subsequent rounds, add a fresh answer literal corresponding
to the number of rounds, and add a clause that interprets the previous round’s answer literal by the newly
introduced constants and the new answer literal. Another potential drawback is that the scheme searches
the space of terms, and not number of elements. Thus, there may be exponentially many terms of depth
N , but a finite model finder based on domain cardinalities does not require searching the set of depthN
terms, whereas this could.

3 Preliminaries

3.1 Basic conventions

We use lower case letters from the beginning of the alphabet,a, b, c, . . ., to range over a finite alphabetΣ
of constants, while~a,~b,~c are tuples of constants. We use lettersx, y, z, x0, x1, x2, . . . for variables from
a setV ; and tuples are variables are written~x, ~y, ~z. The range of lettersp1, p2, p, q, r, P,Q,R, S, T, . . .

are used for atomic predicates of varying arities. Signed predicate symbols are identified by the setL.
As usual, literals (identified by the letter`) are either atomic predicates or their negations applied to
arguments. For example,¬p(x1, x2) (or p(x1, x2)) is the literal where the binary atomic predicatep is
negated.

Clauses consist of a finite set of literals, where each atomicpredicate is applied to a tuple of variables
and constants. For examplep(x1, a) ∨ q(x3) ∨ q(b) is a (well formed) clause. We useC,C ′, C1, C2

to range over clauses. When we later combine clauses withsubstitution sets(Section 3.4), we will use
normalizedclauses. These are clauses where predicates are applied to distinct variables. The empty
clause is identified by a2.

8

DPLL(SE) Piskac, de Moura and Bjørner

3.2 Equality

EPR remains decidable if we add the theory of equality. The theory of equality can be directly encoded
in EPR by supplying the usual equality and congruence axioms. Thus, to axiomatize that equality is an
equivalence relation, add the axioms:

Reflexivity ∀x1 . x1 ' x1

Symmetry ∀x1, x2 . (x1 6' x2 ∨ x2 ' x1)

Transitivity ∀x1, x2, x3 . (x1 6' x2 ∨ x2 6' x3 ∨ x1 ' x3)

Furthermore, for each additional predicate, such asP (of arityn) andQ (of aritym), add the axioms:

Cong(p) ∀x1, .., xn, y1, .., yn . (¬p(x1, .., xn) ∨
n∨

i=1

xi 6' yi ∨ p(y1, .., yn))

Cong(q) ∀x1, .., xm, y1, .., ym . (¬q(x1, .., xm) ∨
m∨

i=1

xi 6' yi ∨ q(y1, .., ym))

Clearly, if a formula∃~x∀~yϕ(~x, ~y) has a model where equality is interpreted literally as equality, then
the same model satisfies the additional equality axioms. Conversely, if there is a model of∃~x∀~yϕ(~x, ~y)
and the additional equality axioms, then we can take a quotient of such a model under'. The quo-
tient still satisfies the formula, and furthermore the quotient ensures that no two different elements are
congruent modulo equality.

3.3 DPLL as an abstract transition system

Key ingredients to recent efficient decision procedures forBoolean Satisfiability have been a combination
of non-chronological back-jumping, lemma learning, and efficient Boolean propagation using literal
watch heuristics. We will here recall back-jumping and lemma learning using a presentation of DPLL as
an abstract transition system. As we later develop DPLL(SX) and DPLL(SE), the inference rules used
for the purely propositional case will be generalized for EPR and then for EPR with equality.

During search, the states of the abstract transition systemare of the form

Γ ||F

whereΓ is a partial model andF is a set of clauses. The partial model consists of a sequence of
literals that are either proceeded by adecisionmarker� to indicate that their value was assigned as a
consequence of a guess; or the literals are annotated by a clause (so they are of the form̀C∨`) to indicate
that their value was assigned as a consequence of a unit propagation. The clause annotation provides
anexplanationfor the propagated literal assignment. It will be convenient to useΓ directly as a partial
assignment, that is a map from literals to Boolean values, asfollows:

Γ(`) =

true if ` ∈ Γ

false if ` ∈ Γ
undef otherwise; and we say “` is unassigned inΓ”

(20)

We will use the definition to capture the case where all literals in a clause are forced false by a context

Γ ¬C ≡ Γ(`) = false for every` in C (21)

9

DPLL(SE) Piskac, de Moura and Bjørner

` or ` occurs inF Γ(`) = undef
Decide

Γ ||F =⇒ Γ � ` ||F

Γ(`) = undef Γ ¬C
UnitPropagate

Γ ||F,C ∨ ` =⇒ Γ`C∨` ||F,C ∨ `

Γ ¬C
Conflict

Γ ||F,C =⇒ Γ ||F,C ||C

Factoring Γ ||F ||C ∨ ` ∨ ` =⇒ Γ ||F ||C ∨ `

`C∨` ∈ Γ
Resolve

Γ ||F ||C ′ ∨ ` =⇒ Γ ||F ||C ∨ C ′

Γ ¬C
Backjump

Γ � `′Γ′ ||F ||C ∨ ` =⇒ Γ`C∨` ||F

Unsat M ||F ||2 =⇒ unsat

C 6∈ F
Learn

Γ ||F ||C =⇒ Γ ||F,C ||C

Figure 1: Core DPLL calculus for Boolean satisfiability

During conflict resolution, the abstract transition systemmaintains states of the form

Γ ||F ||C

whereC is aconflictclause and, as before,Γ is a partial model andF is the current set of clauses.
A search process in the abstract presentation of DPLL startswith a stateε ||F comprising of an

empty partial modelε and a set of clausesF . The possible steps from a stateΓ ||F are to (1) guess
a literal assignment (using theDecide rule) to a literal that has not already been assigned, (2) (using
UnitPropagate) propagate a literal assignment by assigning a truth value to a literal` when it appears
in a clauseC ∨ ` where all literals inC have been assigned to false, (3) to detect that the current literal
assignment contradicts a clause (Conflict), or (4) to conclude with a complete assignmentΓ that satisfies
all clauses. In the last case, the search is done and a satisfying assignment has been extracted. In case
(3), the current assignment needs to be undone by jumping back to a previous partial assignment and flip
a previous guess. This process is guided by conflict resolution steps that use and modify a conflict clause
in order to track the dependencies of decisions that caused the conflict. The conflict resolution rules use
a ruleResolve in order to refine the conflict clause by dependencies,Factoring to remove duplicate
literals, andBackjump to flip the last literal assignment that caused the conflict.

The premises for theDecide andUnitPropagate rules ensure that the context is always satisfiable.
That is, we have the invariant:

Invariant 1. For every generated context of the formΓ ||F andΓ ||F ||C and every atomic predicatep
it is the case that eitherp 6∈ Γ or p 6∈ Γ. Thus, equation (20) is well defined.

One thing to notice about conflict resolution is thatBackjump is always enabled if the context con-
tains at least one decision literal. This claim follows as the literals in the conflict clause are inserted

10

DPLL(SE) Piskac, de Moura and Bjørner

Resolve Γ`C∨` ||F ||C ′ ∨ ` =⇒ Γ ||F ||C ∨ C ′

` 6∈ C
Skip

Γ`C
′

||F ||C =⇒ Γ ||F ||C

Figure 2: First unique implication point resolution

according to the ordering inΓ. More precisely, theUnitPropagate andBackjump rules directly estab-
lish the following invariant:

Invariant 2. For every generated context of the formΓ`C∨`Γ′ ||F it is the case thatΓ ¬C.

3.3.1 Refining resolution

In Figure 1 we formulated the resolution step to apply to an arbitrary non-decision literal in the contextΓ.
A refinement of this general conflict resolution rule is thefirst unique implication point(FUIP) conflict
resolution strategy [18]. There, the first-unique implication point heuristic for conflict resolution was
shown experimentally to offer advantages over an array of other proposals. We can capture the strategy
by restricting conflict resolution to always pop the top-most literal from the partial modelΓ until the
context below the last decision literal implies a conflict. Figure 2 contains this rule. We should of course
always applyFactoring as much as possible prior toResolve to avoid getting stuck.

3.4 Relational Algebra

The extension of DPLL to EPR uses notations known from relational algebra heavily, and we will recall
those here. These will be useful in manipulating substitution sets that are used in DPLL(SX). See
also [15], [14] and [16].

For a fixed set of variablesV and a fixed set of constantsΣ, a substitutionθ is an idempotent partial
function fromV to V ∪ Σ. A domain of a substitution can also be the empty set. If a substitution
maps variables only to constants then it is calledinstantiation. With each substitution we associate
a set of instances, denoted withinstancesOf(θ). As an illustration, for the substitutionθ = [x 7→
y, y 7→ y, z 7→ a] and set of constantsΣ = {a, b, c}, set of instances isinstancesOf(θ) = {[x 7→
a, y 7→ a, z 7→ a], [x 7→ b, y 7→ b, z 7→ a], [x 7→ c, y 7→ c, z 7→ a]}. Formally, it is defined as
instancesOf(θ) = {θ′ ∈ (Dom(θ) → Σ) | ∀x ∈ Dom(θ). θ′(x) = θ′(θ(x))}.

We define a set of substitutions as a set of instances, but we will use the terminology substitution set
to express that we will represent those set as a composition of instantiations and substitutions.

We denote sets of substitutions withΘ. Those sets are used in the notion of substitution-set con-
strained clauses. A substitution-set constrained clause is a pairC · Θ, whereC is a clause andΘ is a
substitution set.C · Θ = {θ(C) | θ ∈ Θ} andθ(C) is defined in a standard way:θ(`1 ∨ . . . ∨ `m) =
θ(`1) ∨ . . . ∨ θ(`m) andθ(f(t1, . . . , tm)) = f(θ(t1), . . . , θ(tm)).

Clauses can be represented more succinctly when using substitutions sets, for example set of clauses
p(a, b), p(b, c), p(c, d) can be represented asp(x, y) ·{[x 7→ a, y 7→ b], [x 7→ b, y 7→ c], [x 7→ c, y 7→ d]},
or simply: p(x, y) · {(a, b), (b, c), (c, d)}.

The operations we consider on substitution sets are:

11

DPLL(SE) Piskac, de Moura and Bjørner

Selectionσϕ(~x)Θ is shorthand for{θ ∈ Θ | ϕ(θ(~x))}.

Projection π~xΘ is shorthand for the set of substitutions obtained fromΘ by removing domain elements
other than~x. For example,πx{[x 7→ a, y 7→ b], [x 7→ a, y 7→ c]} = {[x 7→ a]}.

Co Projectionπ̂~xΘ is shorthand for the set of substitutions obtained fromΘ by removing~x. Soπ̂x{[x 7→
a, y 7→ b], [x 7→ a, y 7→ c]} = {[y 7→ b], [y 7→ c]}.

Join Θ 1 Θ′ is the natural join of two relations. IfΘ uses the variables~x and~y, andΘ′ uses variables
~x and~z, where~y and~z are disjoint, thenΘ 1 Θ′ uses~x, ~y and~z and is equal to{θ | π̂~z(θ) ∈
Θ, π̂~y(θ) ∈ Θ′}. For example,{[x 7→ a, y 7→ b], [x 7→ a, y 7→ c]} 1 {[y 7→ b, z 7→ b], [y 7→
b, z 7→ a]} = {[x 7→ a, y 7→ b, z 7→ b], [x 7→ a, y 7→ b, z 7→ a]}.

Renamingδ~x→~yΘ is the relation obtained fromΘ by renaming the variables~x to ~y. We here assume
that~y is not used inΘ already.

Restriction Θ o θ restricts the setΘ to the substitutionθ. It is shorthand for a sequence of selection and
co-projections. For example,Θ o [x 7→ a] = π̂xσx=aΘ, andΘ o [x 7→ y, y 7→ y] = π̂xσx=yΘ. More
generally,Θ o θ is π̂~xσ~x=θ(~x)Θ where~x is the subset of the domain ofθ whereθ is not idempotent.
Thus, if~x = {x1, . . . , xn}, thenθ(x1) 6= x1, . . . , θ(xn) 6= xn.

Set operationsΘ ∪ Θ′ creates the union ofΘ andΘ′, both sets ofn-ary tuples (sets of instances withn
variables in the domain). SubtractionΘ \ Θ′ is the set{θ ∈ Θ | θ 6∈ Θ′}. The complementΘ is
Σn \ Θ.

The empty set∅ should not be confused with the singleton set containing thesubstitution{[]} with an
empty domain. For example,∅ 1 Θ = ∅, but{[]} 1 Θ = Θ.

3.5 Closing relations under equality

We will also recall how binary relations can be closed under reflexivity, symmetry and transitivity. In the
following, letR be a binary relation, then we define auxiliary operations onR:

R−1 = {(y, x) | (x, y) ∈ R} (22)

R0 = {(x, y) | x = y} (23)

Rn+1 = R0 ∪ π̂z(δy→z(R
n) 1 δx→z(R

n)) (24)

R∗ = R0 ∪R ∪R2 ∪ . . . (25)

[R] = (R ∪R−1)∗ (26)

We call [R] theequivalenceclosure ofR. The equivalence closure of any relation contains the identity
relation. In the following, we will useE for a binary relation that is closed under equivalence, thatis, we
will assume that:

[E] = E.

The construction for the equivalence closure outlined above and in particular in (24) uses iterative squar-
ing. The number of iterations required for computing the equivalence closure is therefore logarithmic in
the diameter of the graph induced byR.

For ann-ary relationΘ and equivalence relationE define the closure ofΘ underE as:

[Θ]E = {~x | ∃~y ∈ Θ

n∧

i=1

. (xi, yi) ∈ E} (27)

12

DPLL(SE) Piskac, de Moura and Bjørner

SupposeΘ is ann-ary relation. We can compute the closure using a convolution Θn, where:

Θ0 = Θ

Θk+1 = π̂y(E 1 Θk), 0 ≤ k < n

We can also compute then-ary equality closureEn by using the auxiliary definition:

E0 = E0

Ek+1 = Ek 1 δx,y→xk,yk
E

Lemma 1. The convolution computes the closure ofΘ underE:

[Θ]E = Θn = δyk→xk
(πyk

(Θ 1 En)).

Lemma 2. SupposeE is closed under equivalence. That is[E] = E. LetR be a binary relation, then

[E ∪R] = E ∪ [[R]E] (28)

Proof. The inclusion⊇ is immediate. To establish⊆ consider a pair(a, b) that is an element of[E ∪R].
Thus, there is a path(c1, . . . , cn), wherea = c1 andb = cn, such that each pair on the path is in either
E or inR orR−1. If all elements on the path are inE we are done because then(a, b) ∈ E. So assume
the path contains pairs of elements inR. Each subsequence that contains at most one pair inR (the rest
in E) will be in [R]E. These subsequences are combined by taking the reflexive, symmetric, transitive
closure, which is[[R]E].

3.6 A DPLL(SX) calculus for pure EPR

We here extend the basic DPLL calculus presentation to EPR. Adetailed treatment of this extension is
provided in [6], but we repeat the main calculus withsimultaneousunit propagation rules as it prepares
the ground for adding built-in inference support for equality to EPR.

In DPLL(SX), a clause is represented as a pairC ·Θ, whereC as before is a list of literals, comprising
of n-ary predicate symbols, andΘ is a set of instances for the predicates inC. The setΘ may be
represented succinctly using a combination of Binary Decision Diagrams and substitutions (as described
in [6]); so we callΘ a substitution set. The definition of a contextΓ is also lifted to substitution sets.
Literals inΓ are associated with set of instances, so now a context is of the form`1Θ1 . . . `kΘk.

The rules use a generalization of definition (20) to substitution sets; namely:

Γ(`) =
⋃

{Θ | ` · Θ ∈ Γ} (29)

Thus, the truth assignments for a literal` consists of the union of instances for` in Γ.
Figures 3 and 4 summarize DPLL(SX). For example, theDecide rule has been generalized to use

substitution sets for identifying new case splits. Insteadof requiringΓ(`) = undef it requires a more
general side conditionΓ(`) 1 Θ = Γ(`) 1 Θ = ∅. Likewise, unit propagation is generalized as it
assigns new instances to a literal based on joining the instances assigned to the complement of other
literals in a clause. A clause is conflicting if the instancesassigned to the complement of all literals in it
forms a non-empty intersection.

One property maintained by the resulting system is that the contextΓ is always consistent. That is,
similar to invariant 1 we have

Invariant 3. For every generated context of the formΓ ||F it is the case thatΓ(`) ∩ Γ(`) = ∅.

13

DPLL(SE) Piskac, de Moura and Bjørner

So wheneverUnitPropagate, Decide and Conflict are disabled, then the invariant allows us to
conclude that the set of clauses are satisfiable with modelΓ.

Invariant 2 admits a similar lifting:

Invariant 4. For every derived context of the formΓ`C·ΘΘ′Γ′ it is the case thatC = (`1 ∨ . . . ∨ `k ∨ `(~x))
and∅ 6= Θ′ ⊆ π~x (Θ 1 Γ(`1) 1 . . . 1 Γ(`k)).

Invariant 4 allows us to introduce the notion of the set of premises for a literal. We writepremises
(`C·ΘΘ′) to extract particular literal positions̀1Θ1, . . . , `kΘk in Γ such thatΘ′

1 Θ1 1 . . . 1 Θk 6= ∅
(where the variables inΘ1, . . . ,Θk have been renamed appropriately to align with the names usedin Θ′).

` ∈ F Γ(`) 1 Θ = Γ(`) 1 Θ = ∅
Decide

Γ ||F =⇒ Γ � `Θ ||F

C = (`1 ∨ . . . ∨ `k ∨ `(~x)),
Θ′ = π~x(Θ 1 Γ(`1) 1 . . . 1 Γ(`k)) \ Γ(`) 6= ∅
Θ′

1 Γ(`) = ∅
UnitPropagate

Γ ||F,C · Θ =⇒ Γ`C·Θ · Θ′ ||F,C · Θ

C = (`1 ∨ . . . ∨ `k), Θr = Θ 1 Γ(`1) 1 . . . 1 Γ(`k) 6= ∅
Conflict

Γ ||F,C · Θ =⇒ Γ ||F,C · Θ ||C · Θ,Θr

Figure 3: Search inference rules

δ~y→~xπ~yΘr 1 Θ` = ∅ for every`(~y) ∈ C ′, C` = (C(~y) ∨ `(~x))
Θ′

r = π̂~x(Θr 1 Θ` 1 premises(`Θ`)) 6= ∅, Θ′′ = π̂~x(Θ 1 Θ′)
Resolve

Γ`
C`·Θ

′

Θ` ||F || (C ′(~z) ∨ `(~x)) · Θ,Θr =⇒ Γ ||F || (C(~y) ∨ C ′(~z)) · Θ′′,Θ′
r

δ~y→~xπ~yΘr 1 Θ` = ∅ for every`(~y) ∈ C
Skip

Γ`
C`·Θ

′

Θ` ||F ||C · Θ,Θr =⇒ Γ ||F ||C · Θ,Θr

Θ′
r = π̂~zσ~y=~zΘr 6= ∅, Θ′ = π̂~zσ~y=~zΘ

Factoring
Γ ||F || (C(~x) ∨ `(~y) ∨ `(~z)) · Θ,Θr =⇒ Γ ||F || (C(~x) ∨ `(~y)) · Θ′,Θ′

r

C · Θ 6∈ F
Learn

Γ ||F ||C · Θ,Θr =⇒ Γ ||F,C · Θ ||C · Θ,Θr

Unsat Γ ||F ||2 · Θ,Θr =⇒ unsat if Θ 6= ∅

C = (`1 ∨ . . . ∨ `k ∨ `(~x)),
Θ′ = π~x(Θ 1 Γ1(`1) 1 . . . 1 Γ1(`k)) \ Γ1(`) 6= ∅

Backjump
Γ1 � Γ2 ||F ||C · Θ,Θr =⇒ Γ1`

C·ΘΘ′ ||F

Refine Γ � `Θ1Γ
′ ||F ||C · Θ,Θr =⇒ Γ � `Θ′

1 ||F if ∅ 6= Θ′
1 ⊂ Θ1

Figure 4: Conflict resolution rules

14

DPLL(SE) Piskac, de Moura and Bjørner

4 DPLL(SE)

The main objective in this paper is to give direct support forequality as an extension to DPLL(SX). This
section presents the extension. While the rules in DPLL(SX) are based on extracting truth assignments
using the auxiliary functionΓ(`), a key change here is to extend this facility to take the set ofasserted
equalities into account. The reason is that we wish to use allconsequences of asserted equalities during
search without creating an explicit trail of equality propagation. Define:

E(Γ) = [Γ(')] (30)

Γ'(`) = [Γ(`)]E(Γ) =
[⋃

{Θ′ | ` · Θ′ ∈ Γ}
]

E(Γ)
(31)

• E(Γ) denotes the equivalence closure constructed using all equalities that occur in the contextΓ

• Γ'(`) describes the set of all instances of the literal` that occur in the contextΓ. Moreover,Γ'(`)
also contains all the instances of`(~x) that are inferred using the congruence closureE(Γ). Note
thatΓ'(') = E(Γ).

The next step is to lift the rules for DPLL(SX) to the equality case. We will lift invariants 3 and 4.

Invariant 5. For every generated context of the formΓ ||F it is the case thatΓ'(`) ∩ Γ'(`) = ∅.

Invariant 6. For every derived context of the formΓ`C·ΘΘ′Γ′ it is the case thatC = (`1 ∨ . . . ∨ `k ∨ `(~x))
and∅ 6= Θ′ ⊆ π~x(Θ 1 Γ'(`1) 1 . . . 1 Γ'(`k)).

But a direct lifting of the calculus that could be obtained byjust replacingΓ(`) by Γ'(`) is not
possible. We will expose one of the difficulties and hint at our approach before formulating DPLL(SE)
in detail.

Example 7(A difficulty with equality). Consider the search state:

�p(a), �p(b) || p(b) ∨ a ' b︸ ︷︷ ︸
C

One application of unit propagation produces the context:

=⇒ UnitPropagate

�p(a), �p(b), a ' bC || p(b) ∨ a ' b

This context is no longer consistent in the theory of equality. If we aim to develop a calculus and decision
procedure where contexts are always satisfiable, such that invariant 3 holds (and inconsistencies are
captured by conflict clauses), then cases like this one have to be handled by limiting unit propagation
and instead identify uses for applying equality axioms. A potential problem in this example is that the
clauseC is not directly a conflict clause with the current contextΓ.

Our presentation of the extensions to DPLL(SX) explain how to change the basic calculus in a way
that avoids producing inconsistent contexts during search. This will be mostly done using the axioms for
equalities (transitivity and congruence) and applying their instances. In the above state we can resolve
C with the axiomp(a) ∨ a 6' b ∨ p(b) which is an instance of the congruence axiom forp. The resulting
clause becomesp(a)∨p(b)∨p(b) which after factoring simplifies top(a)∨p(b). This clause is conflicting
in Γ and we proceed with conflict resolution.

15

DPLL(SE) Piskac, de Moura and Bjørner

The derivation in the new calculus that we will present is therefore:

=⇒ E−CongConflict

�p(a), �p(b) ||C || p(a) ∨ p(b) ∨ p(b)
=⇒ Factoring

�p(a), �p(b) ||C || p(a) ∨ p(b)
=⇒ Backjump

�p(a), p(b)(p(a)∨p(b)) ||C

4.1 Decisions and Propagation

For literals different than equality' we can lift theDecide rule directly. We call itE-Decide to distin-
guish it, but the only difference is the use ofΓ'(`) instead ofΓ(`).

` ∈ F, ` 6=', Θ 1 Γ'(`) = ∅, Θ 1 Γ'(`) = ∅
E-Decide

Γ ||F =⇒ Γ � `Θ ||F

For equality' we have the potential problem that asserting a new equality violates invariant 3. We
filter potential violations in the pre-condition for decisions on equalities:

Γ1 = Γ � x ' y · Θ, for every` ∈ Γ1 Γ'
1 (`) 1 Γ'

1 (`) = ∅
E-Decide'

Γ ||F =⇒ Γ1 ||F

Similar to applications ofE-Decide we ensure that unit-propagation does not ignore conflicts that
are implied by adding equalities to the context. We therefore check that the new context is consistent
when adding the implied literal. This additional check is only necessary when the new propagated literal
is', but we formulate the rule with this generality for an arbitrary propagated literal̀.

C = (`1 ∨ . . . ∨ `k ∨ `(~x)),
Θ′ = π~x(Θ 1 Γ'(`1) 1 . . . 1 Γ'(`k)) \ Γ'(`) 6= ∅
Θ′

1 Γ'(`) = ∅, Γ1 = Γ`Θ′

Γ'
1 (`′) 1 Γ'

1 (`′) = ∅, for each`′ occurring inΓ
E-UnitPropagate

Γ ||F,C · Θ =⇒ Γ`C·Θ · Θ′ ||F,C · Θ

4.2 Conflicts

We may lift basic conflict detection to equalities directly;a conflict detected by taking the closure of
instantiations under equality is still a conflict. So DPLL(SE) retains a variant of the ruleConflict:

C = (`1 ∨ . . . ∨ `k), ∅ 6= Θr = Θ 1 Γ'(`1) 1 . . . 1 Γ'(`k)
E-Conflict

Γ ||F,C · Θ =⇒ Γ ||F,C · Θ ||C · Θ,Θr

However, the case covered byE-Conflict is not the only way that an assignmentΓ can induce a
contradiction. Example 7 gave an appetizer of the situation. It comprised of a contextΓ containingp(a)
andp(b), while the set of clauses containedp(b) ∨ a ' b. We solved it by replacinga ' b in C by the
literalsp(a) ∨ p(b).

Basically, we need to detect and resolve conflicts if an assignmentΓ and clauseC ∨ x ' y · Θ
implies a set of equalities by unit propagation fromC, but the newly propagated equalities contradict
the assignment inΓ. The problem boils down to inferring congruence relations implied from (would-be)
propagated equalities, and extracting a conflict state based on the (would-be) propagation. We summarize
this situation in the ruleE-CongConflict.

16

DPLL(SE) Piskac, de Moura and Bjørner

C = (`1 ∨ . . . ∨ `k ∨ x ' y),

Θr = Θ 1 Γ'(`1) 1 . . . 1 Γ'(`k) 1 E(Γ),
Θ′ = πxyΘr 6= ∅,
Γ1 = Γx ' yΘ′

Γ'
1 (p) 1 Γ'

1 (p) 6= ∅, for somep occurring inΓ
E-CongConflict

Γ ||F,C · Θ =⇒ Γ ||F,C · Θ ||C · Θ,Θr

The rule requires thatΘr is the set of instances that implyx ' y. We obtainΘr by joining the
instances for the complement of the literals inC. The derived substitution setΘ′ is obtained from
Θr by projectingx and y, and subtracting instances that are already equal. Observethat sinceΓ is
consistent, and we subtracted the complement of existing derived equalities, we have thatΘ′ does not
contain any instances for disequalities; soΘr 1 Γ'(6') = ∅. The rule then checks for the complement
of the enabling condition forE-UnitPropagate. In this case there is a predicatep in Γ that receives
contradictory assignments by the implied equality.

Prior to producing a conflict clause, our approach is to resolve this particular literal with the congru-
ence axiom for the literal that would receive a contradictory assignment.

Example 8. Consider the state:

p(a) p(f) x ' y{(a, b), (c, d), (e, f)} q(b, c) q(d, e) || q(x, y) ∨ x ' y

The clause satisfies the premises ofE-CongConflict. A corresponding conflict clause is:

q(b, c) ∨ q(d, e) ∨ p(b) ∨ p(e)

The function CongConflictInstance is used to produce the desired resolvent. We will motivate the
function by first establishing a lemma that implies the existence of the function:

Lemma 3. Following the pre-conditions of ruleE-CongConflict: Given a clauseC = (`1 ∨ . . . ∨ `k ∨ x ' y)
and a contextΓ, let Θ′ = πxy(Θ 1 Γ'(`1) 1 . . . 1 Γ'(`k)) \ E(Γ). If Θ′ 6= ∅ then define the new
contextΓ1 = Γx ' yΘ′. If there existsp occurring inΓ such thatΓ'

1 (p) 1 Γ'
1 (p) 6= ∅, then there exists

a clauseC1Θ1 such that

1. C1Θ1 is conflicting inΓ. In other words, the premises of ruleE-Conflict apply.

2. C1Θ1 can be derived fromCΘ using congruence and resolution

Proof. Let p be a predicate occurring inΓ such thatΓ'
1 (p) 1 Γ'

1 (p) 6= ∅. Assume that the premises of
the lemma are satisfied. That implies thatΓ'(p) 1 Γ'(p) = ∅.

For simplicity we assume that the arity ofp is 1. If p has a greater arity, then it is enough to apply the
procedure that we will describe in this proof on an argumenti of p such thatΓ'

1 (p |i) 1 Γ'
1 (p |i) 6= ∅.

We know that at least one such an argument needs to exist.
The fact that adding equalitiesx ' yΘ′ will raise the contradiction in the contextΓ is expressed as

follows:

Γ'(p) 1 δx→yΓ
'(p) 1 E(Γ) = ∅ (32)

but,

Γ'(p) 1 δx→yΓ
'(p) 1 E(Γ1) 6= ∅ (33)

17

DPLL(SE) Piskac, de Moura and Bjørner

That implies that there exist a set of equalitiesx ' yΘN ∈ E(Γ1) that bindsΓ'(p) andΓ'(p).
Before adding equalitiesx ' yΘ′ to the contextΓ those two sets were disjoint. SinceE(Γ1) =
[Γ1(')] = [Γ(') ∪ Θ′] a chain of equations connectingΓ'(p) andΓ'(p) will consist of a finite number
of equalities belonging toE(Γ) orΘ′. At least one equality fromΘ′ has to be present. Figure 5 visualizes
the idea: the chain of equalities that connectsΓ'(p) andΓ'(p) consists of alternating equalities from
[Θ′] andE(Γ). The chain is defined as:

Hm
def
= δy→n1

[
Θ′

]
1 δxy→n1o1

E(Γ) 1 . . . 1 δxy→nmomE(Γ) 1 δx→om

[
Θ′

]
(34)

and an integerm is chosen in such a way that

B
def
= δx→yΓ

'(p) 1 Hm 1 Γ'(p) 6= ∅ (35)

nm om y

E(Γ)

[Θ′]

p
x n1 o1 n2 o2 . . .

E(Γ) E(Γ)

[Θ′] [Θ′]

p

Figure 5: The chain of equalities bindingΓ'(p) andΓ'(p) is constructed alternating equalities fromΘ′

andE(Γ)

Applying this on the Example 8 we obtain the following substitution set:B = {[x 7→ b, n1 7→
c, o1 7→ d, y 7→ e]}. Note that theB was constructed using onlyΘ′ andE(Γ). Now we explain how to
derive the formulaC1Θ1 fromCΘ.

First we construct the formula(x 6' n1 ∨n1 6' o1 ∨ . . .∨ om 6' y∨x ' y)H, where the substitution
setH contain a tuple of values that were used to establish the chain of equalities. This formula represents
a transitive derivation ofx ' y πxyH. All equalitiesni ' oi πnioi

H are already contained inE(Γ). The
remainingm+ 1 inequalities are resolved with the equality in theC = (`1 ∨ . . . ∨ `k ∨ x ' y) clause.

The resulting clause has the form

(`11 ∨ . . . ∨ `
1
k ∨ . . . ∨ `m+1

1 ∨ . . . ∨ `m+1
k ∨ x ' y)ΘR (36)

whereπxyΘR = πxyH.
Next, we construct the axiom(p(x) ∨ x 6' y ∨ p(y))πxyH. This is a congruence axiom forp. We

resolve this axiom with (36) and denote the result byC1Θ1. C1Θ1 is conflicting inΓ and it was derived
fromCΘ.

Definition 1 (CongConflictInstance). For a contextΓ and a clauseCΘ that fulfills the preconditions of
Lemma 3, letC1Θ1 be a clause derived fromCΘ as described in the proof of the Lemma. We introduce
the following shorthand to describe this fact:

C1Θ1 = CongConflictInstance(Γ, C,Θ)

Definition 2 (Bridge). Given a contextΓ, a new set of equalitiesx ' yΘ′ added toΓ and an integerm,
with Bridge(E(Γ),Θ′,m) we define a chain of equalities of size2m− 1 defined in the same manner as
in the proof of Lemma 3:

Bridge(E(Γ),Θ′,m)
def
= δy→n1

[
Θ′

]
1 δxy→n1o1

E(Γ) 1 . . . 1 δxy→nmomE(Γ) 1 δx→om

[
Θ′

]

18

DPLL(SE) Piskac, de Moura and Bjørner

4.3 Conflict Resolution

Propagation of equalities are left implicit in the search inference rules. The price to pay is that depen-
dencies on equalities in conflicts have to be re-produced during conflict resolution. So, a given conflict
clause may depend on some subset of the asserted equalities in Γ. Conflict resolution would have to
determine which. In this section we show how the set of equality dependencies can be unfolded lazily
during conflict resolution.

We will approach conflict resolution as an instance of the FUIP strategy. This means that we will
proceed from a conflict stateΓ`C

′∨`Θ′ ||F ||CΘ,Θr and either pop̀Θ′ from the context by usingSkip,
apply Backjump, apply Factoring, or if none of these rules apply, resolveC ′ ∨ ` with the conflict
clause. The rules for resolution cannot be identical to the rule listed in Figure 4, first because equality is
used implicitly during constraint propagation, second in light of E-CongConflict, we need to super-pose
equalities into literals. Prior to formulating the conflictresolution rules, let us consider the possible cases
where they should apply:

4.3.1 Resolve

The first case is when the premises ofResolve apply directly.

δ~y→~xπ~yΘr 1 Θ` = ∅ for every`(~y) ∈ C ′, C` = (C(~y) ∨ `(~x))

Θ′
r = π̂~x(Θr 1 Θ` 1 premises(`Θ`)) 6= ∅, Θ′′ = π̂~x(Θ 1 Θ′)

Γ`
C`·Θ

′

Θ` ||F || (C ′(~z) ∨ `(~x)) · Θ,Θr =⇒ Γ ||F || (C(~y) ∨C ′(~z)) · Θ′′,Θ′
r

In this case we can resolvèwith the matching negated literal in the context to obtain a conflict
clause without the particular occurrence of`.

4.3.2 E-Resolve

It can be the case that the last asserted literal in the context Γ1 is an equality,x ' yΘ′, which is used in
conjunction with other equalities to establish the currentconflict clause. The inter-dependencies of the
last asserted equality and other equalities have to be untangled before we can applyE-Resolve.

Γ1 = Γu ' vΘ′, Γ'(` |i) 1 Θr = ∅, (butΓ'
1 (` |i) 1 Θr 6= ∅)

P = δxy→xiyi
Bridge(E(Γ),Θ′,m)

Θ′′ = Γ'(`) 1 P 1 δ~x→~yΘ, Θ′′
r = Θ′′

1 δ~x→~yΘr 6= ∅
C ′′ = C ∨ `(~y) ∨ xi 6' n1 ∨ n1 6' o1 ∨ . . . ∨ nm 6' om ∨ om 6' yi

Γ1 ||F ||C ∨ `(~x) · Θ,Θr =⇒ Γ1 ||F ||C ′′ · Θ′′,Θ′′
r

In the rule, the literal̀ (~z) is only contradictory in the context of the equalitiesx ' yΘ′. That
means there must be an argumenti of ` such that projectingi-th component of̀ results withΓ'

1 (` |i
) 1 Θr 6= ∅. In the rule we consider contradicting arguments of` one by one. TheBridge relationP
that was introduced in the proof of Lemma 3 encodes the use of the last asserted equalities to derive the
contradiction. Just as in Lemma 3, we will bound the number ofapplications of the inserted equalities
with m. The contradiction can be derived using finite number of equalities from both,E(Γ) and the set
of newly inserted equalities. That guarantees the existence ofm.

19

DPLL(SE) Piskac, de Moura and Bjørner

4.3.3 E-CongResolve

The ruleE-CongResolve is introduced to matchE-CongConflict when the top-most literal is conflict-
ing with an equality in the conflict clause. used for propagating an equality.

Γ = Γ0`
C′∨`Θ′

Θ`, ` is not'
C = (`1 ∨ . . . ∨ `k ∨ x ' y),

Θr = Θ 1 Γ'(`1) 1 . . . 1 Γ'(`k) 1 E(Γ),
Θ′′ = πxyΘr 6= ∅,
Γ1 = Γx ' yΘ′′, [Θ`]E(Γ1) 1 Γ'

1 (`) 6= ∅

C1Θr1 = CongConflictInstance(Γ, C,Θr), Θ1 = Θ 1 Θr1

Γ ||F ||C · Θ,Θr =⇒ Γ ||F ||C1 · Θ1,Θr1

An implied equality in the conflict clause contradicts the top-most literal assignment in the context, and
the top-most literal assignment is not an equality (that case was handled using theE-Conflict rule). The
side-conditions match the premises of lemma 3. The lemma ensures that there areC1 · Θ1,Θr1 that can
be derived fromC · Θ,Θr, such that resolution with the top-most literal can be applied.

The rulesE-Resolve andE-CongResolve essentially handle the two cases where standard reso-
lution does not yet apply. The premises for the two rules are disjoint: one handles the case where the
top-most literal inΓ is an equality, the other handles the case where it isn’t an equality. The rules both
reduce the dependencies on the top-most literal for the conflict clause. TheE-Resolve rule takes care of
the use of transitive closure, theE-CongResolve rule takes care of the dependencies on conflicts caused
indirectly from congruence (E-CongConflict). These observations are summarized in the following
lemma.

Lemma 4. In every reachable conflict state it is the case that:

1. If E-Resolve applies, then it is only applicable a finite number of times.

2. If E-CongResolve applies, then it is only applicable a finite number of times.

In either case, these rules can be followed only by either a finite number ofFactoring, after which either
Resolve, or Refine apply.

4.3.4 Other conflict resolution rules

The other conflict resolution rules are direct liftings of the same rules that apply for DPLL(SX). The
rules for DPLL(SX) were listed in Figure 4, and the rules for DPLL(SE) are listed in Figure 6.

4.4 Summarizing the DPLL(SE) calculus

We can now summarize the full DPLL(SE) calculus as comprising of the rules listed in Figure 6 as well
asE-Decide, E-Decide', E-UnitPropagate, E-Conflict, E-CongConflict, Resolve, E-Resolve, and
E-CongResolve.

4.5 Examples

We here illustrate the rules on a couple of small example. Ourfirst example exercises just theE-
CongConflict rule. The second example shows how the conflict resolution rules are used.

20

DPLL(SE) Piskac, de Moura and Bjørner

Γ1 = Γ`
C`·Θ

′

Θ`, δ~y→~xπ~yΘr 1 [Θ`]E(Γ1) = ∅ for every`(~y) ∈ C
Skip

Γ`
C`·Θ

′

Θ` ||F ||C · Θ,Θr =⇒ Γ ||F ||C · Θ,Θr

Θ′
r = π̂~zσ~y=~z [Θr]E(Γ) 6= ∅, Θ′ = π̂~zσ~y=~zΘ

Factoring
Γ ||F || (C(~x) ∨ `(~y) ∨ `(~z)) · Θ,Θr =⇒ Γ ||F || (C(~x) ∨ `(~y)) · Θ′,Θ′

r

C · Θ 6∈ F
Learn

Γ ||F ||C · Θ,Θr =⇒ Γ ||F,C · Θ ||C · Θ,Θr

Unsat Γ ||F ||2 · Θ,Θr =⇒ unsat if Θ 6= ∅

C = (`1 ∨ . . . ∨ `k ∨ `(~x)),
Θ′ = π~x(Θ 1 Γ'(`1) 1 . . . 1 Γ'(`k)) \ Γ'(`) 6= ∅

Backjump
Γ � Γ′ ||F ||C · Θ,Θr =⇒ Γ`C·ΘΘ′ ||F

Γ � `Θ1Γ
′ ||F ||C · Θ,Θr =⇒ Γ � `Θ′

1 ||F if ∅ 6= Θ′
1 ⊂ Θ1

Figure 6: Remaining conflict resolution rules for DPLL(SE)

Example 9. Let us check satisfiability of the following set of clauses:

x1 ' x2 ∨ x3 6' x4 · {(a, c, b, c)},

x1 ' x2 ∨ x3 ' x4 · {(b, c, a, b)},

x1 6' x2 ∨ x3 6' x4 · {(a, b, a, c)}

A possible derivation can take the form:

Example 10. Let us check satisfiability of the following set of clauses:

p(a),

p(f),

a ' b ∨ a ' c,

e ' f ∨ c ' f,

c ' d,

∀x,∀y. x ' y ∨ q(x, y),

d 6' f ∨ q(a, c),

a 6' c ∨ q(d, f)

a 6' b ∨ q(b, c)

e 6' f ∨ q(d, e)

In order to enhance readability we did not use the notation ofsubstitution sets. Furthermore, where
it is obvious, we do not annotate literals with explanations. To show that the above set of clauses is
unsatisfiable, a proof looks as follows:

4.6 Soundness, Completeness, Stuck-freeness, and Complexity

As we have now presented the full DPLL(SE) calculus let us summarize its properties. The more detailed
justification for these properties follow the lines of the justification of the corresponding theorems in [6]
together with lemma 3 and lemma 4.

21

DPLL(SE) Piskac, de Moura and Bjørner

||F
=⇒ E−Decide'

�, x1 ' x2{(a, c)} ||F
=⇒ E−UnitPropagate

�, x1 ' x2{(a, c)}, x1 6' xC3Θ3

2 {(a, b)} ||F
=⇒ E−CongConflict (the second clause),b ' c

�, x1 ' x2{(a, c)}, x1 6' xC3Θ3

2 {(a, b)} ||
||F, (x1 6' x2 ∨ x3 ' x4 ∨ x5 ' x6) · {(a, c, a, b, a, b)}

=⇒ E−Conflict (the newly added clause)
�, x1 ' x2{(a, c)}, x1 6' xC3Θ3

2 {(a, b)} ||F1 || . . .
|| (x1 6' x2 ∨ x3 ' x4 ∨ x5 ' x6) · {(a, c, a, b, a, b)}

=⇒ Factoring

�, x1 ' x2{(a, c)}, x1 6' xC3Θ3

2 {(a, b)} ||F1 || (x1 6' x2 ∨ x3 ' x4) · {(a, c, a, b)}
=⇒ Resolve (the conflicting and the third clause),

�, x1 ' x2{(a, c)} ||F1 || (x1 6' x2 ∨ x3 6' x4) · {(a, c, a, c)}
=⇒ Factoring

�, x1 ' x2{(a, c)} ||F1 || (x1 6' x2) · {(a, c)}
=⇒ Backjump

x1 6' x
(x1 6'x2)·{(a,c)}
2 {(a, c)} ||F1

=⇒ E−UnitPropagate

x1 6' x
(x1 6'x2)·{(a,c)}
2 {(a, c)}, x1 6' xC1Θ1

2 {(b, c)} ||F1

=⇒ E−UnitPropagate

x1 6' x
(x1 6'x2)·{(a,c)}
2 {(a, c)}, x1 6' xC1Θ1

2 {(b, c)}, x1 ' xC2Θ2

2 {(a, b)} ||F1

Figure 7: Derivation for example 9

Theorem 2 (Soundness). The DPLL(SE) calculus is sound. Thus, whenever it establishesUnsat, from
ε ||F , then the set of clausesF are unsatisfiable.

Proving soundness is a standard inspection of the derivation rules.

Theorem 3(Completeness). The DPLL(SE) calculus is complete. Thus, whenever it saturates in a state
Γ ||F where no rule can be applied, then the set of clausesF is satisfiable using the assignmentΓ.
Conversely, if the setF is unsatisfiable, then the rules derive the empty clause2.

Theorem 4(Stuck-freeness). The transition rules of the DPLL(SE) calculus terminate. Inparticular the
conflict resolution rules always admit a state where eitherBackjump or Refine are enabled.

The proof of Theorem 4 is a direct lifting of the theorem for stuck-freeness of DPLL(SX) presented
in [6], except we use rulesE-CongConflict andE-Resolve to reduce the conflict clause to the cases
where the rules from DPLL(SX) apply. Stuck-freeness corresponds to a confluence property: every
strategy is ensured to make progress towards establishing whether the set of input clausesF are satisfi-
able.

Theorem 5 (Complexity). Similar to the DPLL(SX) calculus, the complexity of applying the calculus
as an algorithm for DPLL(SE) requires up to doubly exponential time and up to exponential space.

The justification for the theorem follows the same argument used in [6].

22

DPLL(SE) Piskac, de Moura and Bjørner

||F
=⇒ UnitPropagate (3 times)

p(a), p(f), c ' d ||F
=⇒ Decide (2 times)

p(a), p(f), c ' d, �a ' b, �e ' f ||F
=⇒ UnitPropagate (2 times)

p(a), p(f), c ' d, �a ' b, �e ' f, q(b, c), q(d, e) ||F
=⇒ E − CongConflict + E − CongResolve (as described in Example 8)

p(a), p(f), c ' d, �a ' b, �e ' f, q(b, c), q(d, e) ||F || q(b, c) ∨ q(d, e) ∨ p(b) ∨ p(e)
=⇒ Resolve (2 times)

p(a), p(f), c ' d, �a ' b, �e ' f ||F || p(b) ∨ p(e) ∨ a 6' b ∨ e 6' f

=⇒ E − Resolve + Factoring

p(a), p(f), c ' d, �a ' b, �e ' f ||F || p(b) ∨ p(f) ∨ a 6' b ∨ e 6' f

=⇒ Backjump whereC1 = p(b) ∨ p(f) ∨ a 6' b ∨ e 6' f

p(a), p(f), c ' d, �a ' b, e 6' fC1 ||F
=⇒ UnitPropagate

p(a), p(f), c ' d, �a ' b, e 6' fC1, c ' f ||F
=⇒ UnitPropagate

p(a), p(f), c ' d, �a ' b, e 6' fC1, c ' f, q(a, c) ||F
=⇒ E − CongConflict + E − CongResolve (preventing to adda ' c)

p(a), p(f), c ' d, �a ' b, e 6' fC1, c ' f, q(a, c) ||F || p(a) ∨ p(f) ∨ q(a, c)
=⇒ Resolve

p(a), p(f), c ' d, �a ' b, e 6' fC1, c ' f ||F || p(a) ∨ p(f) ∨ d 6' f

=⇒ E − Resolve

p(a), p(f), c ' d, �a ' b, e 6' fC1, c ' f ||F || p(a) ∨ p(f) ∨ d 6' c ∨ c 6' f

=⇒ 2xResolve + Factoring

p(a), p(f), c ' d, �a ' b ||F || p(a) ∨ p(b) ∨ p(f) ∨ a 6' b ∨ d 6' c

=⇒ Resolve + Factoring

p(a), p(f), c ' d, �a ' b ||F || p(a) ∨ p(f) ∨ a 6' b ∨ d 6' c

=⇒ Backjump whereC1 = p(a) ∨ p(f) ∨ a 6' b ∨ d 6' c

p(a), p(f), c ' d, a 6' bC1 ||F
=⇒ 2xUnitPropagate

p(a), p(f), c ' d, a 6' bC1 , a ' c, q(d, f) ||F
=⇒ E − CongConflict + E − CongResolve (preventing to addd ' f)

p(a), p(f), c ' d, a 6' bC1 , a ' c, q(d, f) ||F || p(d) ∨ p(f) ∨ q(d, f)
=⇒ after sequence of applyingResolve, E-Resolve, andFactoring

p(a), p(f), c ' d ||F || p(a) ∨ p(f) ∨ d 6' c

=⇒ 3xResolve

∅ ||F ||2
=⇒ unsat

Figure 8: Derivation for example 10

23

DPLL(SE) Piskac, de Moura and Bjørner

5 Conclusions

We have presented a calculus for EPR with equality based on the Davis-Putnam-Logemann-Loveland
procedure with substitution sets. By building in equality the calculus avoids explicitly adding equality
axioms and allows for propagating equality facts implicitly during search. On the other hand, conflict
resolution for backjumping and lemma learning necessitates reconstructing the dependencies on equali-
ties.

Adding the theory of equality as a primitive to a calculus forEPR can be seen as one instance of
adding theory reasoning to an EPR calculus. The wider programme is thus to add theory solvers in the
context of an efficient EPR calculus. Just like there is a simple way of reducing EPR to propositional
satisfiability by grounding, there is a simple way of adding theories to EPR calculi based on DPLL: for
each ground model identified by a the core calculus, assert all ground facts to the theory solver. Our work
with handling equality illustrates an approach that seeks an integration that does not require grounding.

Future work includes experimenting with the equality calculus and evaluating it relative to alterna-
tives, such as the direct encoding of equality in EPR.

References

[1] Peter Baumgartner, Alexander Fuchs, Hans de Nivelle, and Cesare Tinelli. Computing Finite Models by
Reduction to Function-Free Clause Logic.Journal of Applied Logic, July 2007. In Press, available online,
doi:10.1016/j.jal.2007.07.005.

[2] Egon Börger, Erich Grädel, and Yuri Gurevich.The Classical Decision Problem. Springer-Verlag, 1997.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’sdecidable about arrays? In E. Allen Emerson
and Kedar S. Namjoshi, editors,VMCAI, volume 3855 ofLecture Notes in Computer Science, pages 427–442.
Springer, 2006.

[4] K. Claessen and N. Sorensson. New techniques that improve mace-style finite model finding. InCADE-19
Workshop: Model Computation - Principles, Algorithms, Applications, 2003.

[5] L. de Moura and N. Bjørner. Deciding Effectively Propositional Logic using DPLL and substitution sets. In
Allesandro Armando, Peter Baumgartner, and Gilles Dowek, editors,IJCAR 2008, 2008.

[6] L. de Moura, R. Piskac, and N. Bjørner. Deciding Effectively Propositional Logic using DPLL and substitu-
tion sets. Technical Report MSR-2008-108, Microsoft Research, 2008.

[7] Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on finite model search. In
Ulrich Furbach and Natarajan Shankar, editors,IJCAR, volume 4130 ofLecture Notes in Computer Science,
pages 303–317. Springer, 2006.

[8] Pascal Fontaine. Combinations of theories and the Bernays-Schönfinkel-Ramsey class. In Bernhard Beckert,
editor,4th International Verification Workshop - VERIFY’07, Bremen, 15/07/07-16/07/07, July 2007.

[9] R. Graham, B. Rothschild, and J. Spencer.Ramsey Theory. Wiley, 2 edition, 1990.

[10] J. A. Navarro Pérez.Encoding and Solving Problems in Effectively Propositional Logic. PhD thesis, The
University of Manchester, 2007.

[11] Harry R. Lewis. Complexity results for classes of quantificational formulas.J. Comput. Syst. Sci., 21(3):317–
353, 1980.

[12] William McCune. Mace4 reference manual and guide.CoRR, cs.SC/0310055, 2003.

[13] F. Ramsey. On a problem of formal logic.Proc. of the London Mathematical Society, 30:264–286, 1930.

[14] Tanel Tammet and Vello Kadarpik. Combining an inference engine with database: A rule server. In Michael
Schroeder and Gerd Wagner, editors,RuleML, volume 2876 ofLecture Notes in Computer Science, pages
136–149. Springer, 2003.

[15] Andrei Voronkov. Merging relational database technology with constraint technology. In Dines Bjørner,
Manfred Broy, and Igor V. Pottosin, editors,Ershov Memorial Conference, volume 1181 ofLecture Notes in
Computer Science, pages 409–419. Springer, 1996.

24

DPLL(SE) Piskac, de Moura and Bjørner

[16] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using datalog with binary decision
diagrams for program analysis. In Kwangkeun Yi, editor,APLAS, volume 3780 ofLecture Notes in Computer
Science, pages 97–118. Springer, 2005.

[17] Jian Zhang and Hantao Zhang. System description: Generating models by sem. In Michael A. McRobbie
and John K. Slaney, editors,CADE, volume 1104 ofLecture Notes in Computer Science, pages 308–312.
Springer, 1996.

[18] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient conflict driven
learning in boolean satisfiability solver. InICCAD, pages 279–285, 2001.

25

	Introduction
	Examples
	Preliminaries
	Basic conventions
	Equality
	DPLL as an abstract transition system
	Refining resolution

	Relational Algebra
	Closing relations under equality
	A DPLL(SX) calculus for pure EPR

	DPLL(SE)
	Decisions and Propagation
	Conflicts
	Conflict Resolution
	Resolve
	E-Resolve
	E-CongResolve
	Other conflict resolution rules

	Summarizing the DPLL(SE) calculus
	Examples
	Soundness, Completeness, Stuck-freeness, and Complexity

	Conclusions

