
FAST COMPUTATION OF GENERAL FOURIER TRANSFORMS ON GPUS

D. Brandon Lloyd Chas Boyd Naga Govindaraju

Microsoft Corporation

ABSTRACT

We present an implementation of general FFTs for graphics process-
ing units (GPUs). Unlike most existing GPU FFT implementations,
we handle both complex and real data of any size that can fit in a tex-
ture. The basic building block for our algorithms is a radix-2 Stock-
ham formulation of the FFT for power-of-two data sizes that avoids
expensive bit reversals and exploits the high GPU memory band-
width efficiently. We implemented our algorithms using the DirectX
9 API, which enables our routines to be used on many of the exist-
ing GPUs today. We have performed comparisons against optimized
CPU-based and GPU-based FFT libraries (Intel Math Kernel Library
and NVIDIA CUFFT, respectively). Our results on an NVIDIA
GeForce 8800 GTX GPU indicate a significant performance im-
provement over the existing libraries for many input cases.

Index Terms— graphics hardware, FFT, GPGPU

1. INTRODUCTION

Though commodity graphics processors (GPUs) have been tradition-
ally used for real-time 3D rendering in visualization applications
and video games, their raw computational power and relatively low
cost has made them increasingly attractive for more general purpose,
data-parallel computations. The performance of GPUs comes from
their large number of cores and high memory bandwidth. For ex-
ample, the GeForce 8800 GTX GPU has 128 scalar processors and
86 GB/s peak memory bandwidth. GPUs are well-suited for a num-
ber of multimedia applications including signal processing for audio,
images, and video. An important component of these applications
is the Fast Fourier Transform (FFT). In this paper we discuss how
the GPU can be used for high performance computation of general
FFTs.

A number of FFT implementations for the GPU already exist,
but these are either limited to specific hardware or they are limited
in functionality. Probably the most general FFT implementation for
GPUs available today is the CUFFT library [1]. CUFFT handles
FFTs of varying sizes on both real and complex data. However,
CUFFT is written in CUDA [2], a programming interface that is spe-
cific to only the most recent NVIDIA GPUs. A recent survey of over
800,000 gaming enthusiasts revealed that only about 15% of those
surveyed had a GPU capable of running CUDA [3]. Those numbers
are probably much lower for a more general user base. To support
multiple generations of GPUs from different vendors, some FFT li-
braries are written in the high-level shading languages found in stan-
dard graphics APIs such as OpenGL or DirectX [4, 5, 6, 7, 8, 9].
However, all of these implementations share the same limitation –
they are restricted to sizes that are a power of two.

In this paper we describe our FFT library which is both gen-
eral in terms of the GPUs it supports and its functionality. Our
current FFT library is written using DirectX 9. We handle 1D and
2D FFTs for power-of-two and non-power-of-two sizes on both real

Fig. 1. Simple filtering application. A user interactively adjusts
a simple bandpass filter. The resulting image is shown on the top
row and the power spectrum of its Fourier Transform is shown in the
bottom row. Using our FFT implementation the application runs at
66 Hz for a 1024× 1024 image.

and complex data, using a simple API that chooses the appropri-
ate algorithm for a given input. Our focus has been on general
algorithms that ensure the availability of functionality over a wide
range of GPUs more than on attaining maximum performance for
any specific GPU. Nevertheless, even our general implementation
on newer GPUs typically outperforms the same computation on the
CPU, while achieving comparable performance to vendor-specific
implementations such as CUFFT.

The rest of this paper is organized as follows. In Section 2
we present some background information on the GPU programming
model and the Fourier Transform. We briefly discuss previous work
in Section 3. In Section 4 we present the details of our FFT routines.
We show some results using our library in Section 5 and conclude
with some ideas for future work.

2. BACKGROUND

2.1. GPU Programming Model

Standard graphics APIs use a programming model for GPUs that
is essentially stream processing. Kernels are run independently on
the data elements of input streams to produce an output stream.
Two main types of kernels are used on the GPU: vertex programs
and fragment programs. Vertex programs transform an input stream
of vertex records consisting of vertex positions and other vertex
attributes (such as color). The vertices of the transformed output
stream are grouped together to form 2D primitives (e.g. every 4
vertices form a quadrilateral). The primitive is rendered to a 2D

buffer (either the framebuffer or a texture map). A fragment is gen-
erated for each buffer element covered by the primitive. A fragment
program is run on the fragment stream. To generate an output value
for each fragment, the fragment program uses data from a buffer
of constants, the bilinearly interpolated vertex attribute values, and
texture maps with random read access. The interpolated attribute
values are commonly used to compute an address from which to
read the texture. The output value is then stored at a fragment’s
position in the buffer.

2.2. Discrete Fourier Transform

An N point Discrete Fourier Transform (DFT), FN , of a sequence
f(n) is computed using the following equation:

F (k) = FN{k, f} =
N−1∑
n=0

f(n)e−2πikn/N , (1)

where n ∈ [0, N − 1] and k ∈ [0, N − 1]. The sequence f(n) is
referred to as the time domain and F (k) as the frequency domain.
The Fast Fourier Transform (FFT) is a family of algorithms for effi-
ciently computing the DFT. The “Decimation in Time” (DIT) algo-
rithm recursively splits the time domain into a DFT of even and odd
elements:

FN{k, f} = FN/2{k′, fe}+ TN (k)FN/2{k′, fo}
k′ = k mod N/2

fe(n) = f(2n) fo(n) = f(2n+ 1)

TN (k) = e−2πik/N .

The TN values are referred to as twiddle factors. This algorithm
is often called the Cooley-Tukey algorithm after the researchers who
published it [10]. The “Decimation in Frequency” (DIF) algorithm is
similar to DIT, except that it recursively splits the frequency domain
into DFTs for even and odd k.

FN{k, f} =

{
FN/2{k/2, fe} for k even
FN/2{(k + 1)/2, fo} for k odd

fe(n
′) = f(n′) + f(n′ +N/2)

fo(n
′) = TN (n′)

(
f(n′)− f(n′ +N/2)

)
TN (n′) = e−2πin′/N

where n′ ∈ [0, N/2 − 1]. Both of these algorithms require that N
be a power of two. The algorithms can be performed in-place by
simply concatenating the subtransforms in a single array. However,
this requires a reordering of the elements. For the DIT, the input must
be in bit-reversed order, that is, the value corresponding to index n
is actually found at the index formed by reversing the bits of n. The
DIF starts with the input in natural order, but produces bit-reversed
output. The inverse DFT can be computed by simply conjugating
the twiddle factors and dividing the final values by N .

3. PREVIOUS WORK

Spitzer [5] and Mitchell et al. [6] perform a DIT FFT that retrieves
the input indices and twiddle factors of each output element from
a precomputed texture. This makes for a relatively simple frag-
ment program. Moreland and Angel [4] modify the DIT indexing
scheme to avoid the bit-reversal step. They also encode FFTs of real
data into a single channel texture, which requires several fragment

0 1 2 3 4 5 6 7

0 4 2 6 1 5 3 7

{0,4} {2,6} {1,5} {3,7}

{0,2,4,6} {1,3,5,7}

{0,1,2,3,4,5,6,7}

{0,4} {1,5} {2,6} {3,7}

{0,2,4,6} {1,3,5,7}

{0,1,2,3,4,5,6,7}

0 1 2 3 4 5 6 7

it=1, Ns=2

input

it=2, Ns=4

it=3, Ns=8

Cooley-Tukey Stockham

Fig. 2. Dataflow for two DIT algorithms. Both algorithms proceed
iteratively, merging pairs of smaller FFTs into larger ones. Each
box represents the FFT of the listed sequence elements. Unlike the
Cooley-Tukey algorithm, the Stockham algorithm does not require
an initial bit-reversal step.

programs to be applied to different parts of the texture. Jansen et
al. [7] move the bit-reversal step of a DIF to the input and reorder
the dataflow to obtain a simpler indexing scheme more suitable for
GPUs. Sumanaweera and Liu [8] render each subtransform of the
FFT as a separate quadrilateral. This approach uses interpolators for
index and twiddle factor calculations, but is slow for the first iter-
ations of the FFT where there are many subtransforms. For these
iterations they use an approach like that of Spitzer and Mitchell et
al. Govindaraju et al. [9] use the Stockham formulation of the FFT
described later in this paper to avoid the bit-reversal step. They also
block the computations to maximize cache performance. All of these
FFT implementations are for power-of-two sizes.

4. OUR FFT IMPLEMENTATION

4.1. Stockham FFT

Fig. 2 shows the dataflow for the Cooley-Tukey algorithm. The ini-
tial bit-reversal permutation can be expensive because the memory
accesses are incoherent. For our library we use the radix-2 Stockham
FFT algorithm [11], which reorders the dataflow in order to elimi-
nate the need for the bit-reversal. This algorithm requires twice as
much memory because it does not perform the FFT in-place, but be-
cause textures cannot have simultaneous read and write access, the
FFT must be performed out-of-place anyway.

Our implementation of the Stockham FFT uses 32-bit floating-
point textures with 2 channels to store the real and imaginary com-
ponents of complex data. We store a 1D array in each row of the
texture and perform multiple 1D FFTs of the same length simultane-
ously. We render a single quadrilateral into an output texture that is
the same size as the input texture, using the fragment program shown
in Fig. 3. We then swap the input and output textures and repeat for
all log2(N) iterations.

4.2. 2D FFTs

The 2D FFT can be computed simply by computing 1D FFTs along
the rows followed by 1D FFTs along the columns. Because travers-
ing columns of a row-major 2D array stored linearly in memory
has poor spatial locality, the FFT along columns is usually imple-
mented by transposing the array, performing the transform on the
rows, and transposing back. On a GPU, however, textures are swiz-
zled in memory so as to preserve 2D locality. Thus, no transposes
are necessary.

FFT_Rows(x, y, N, Ns, input)
{

base = floor(x / Ns)*(Ns/2);
offset = x mod (Ns/2);
x0 = base + offset;
x1 = x0 + N/2;
(Re0, Im0) = input[x0][y];
(Re1, Im1) = input[x1][y];
angle = -2*M_PI*(x/Ns);
(ReT, ImT) = (cos(angle), sin(angle));
return (Re0 + ReT * Re1 - ImT * Im1,

Im0 + ImT * Re1 + ReT * Im1);
}

Fig. 3. Pseudocode for FFT fragment program. x and y are the
positions of the fragment in the buffer. N is the size of the entire
FFT and Ns is the size of the subtransform for the current iteration.
input is an input texture.

4.3. Non-power of two sizes

Several algorithms exist for handling DFTs of lengths that are not
a power of two. Mixed radix algorithms recursively split a DFT of
length N = NxNy into smaller DFTs of lengths Nx and Ny . This
works best for lengths that are highly composite numbers. Other
algorithms exist for lengths that are prime numbers. Rather than im-
plement a large number of special cases for different lengths, we cur-
rently use what is commonly called the Bluestein z-chirp algorithm
[11], which handles all non-power-of-two sizes. The algorithm is de-
rived by substituting kn = (k2+n2−(k−n)2)/2 into the complex
exponential of Eq. 1 and rearranging the terms to get:

F (k) = [e−πik
2/N]

N−1∑
n=0

[f(n)e−πin
2/N][e+πi(k−n)

2/N]

= b∗(k)

N−1∑
n=0

a(n)b(k − n)

a(n) = f(n)b∗(n)

b(n) = e−πin
2/N ,

where b∗ is the conjugate of b. The summation is a linear convo-
lution c = a ∗ b. When a and b are large, the convolution can be
performed more efficiently as a component-wise product in the fre-
quency domain due to the following property:

F{a ∗ b} = F{a} ⊗ F{b}.

Before performing the FFT, a and b should be zero padded to a size
N ′ that is at least the size of the convolved signal in order to avoid
aliasing. The lengths of a and b are N and 2N − 1, respectively, so
the length of a∗ b is N +(2N −1)−1 = 3N −2. However, we are
only interested in values for k ∈ [0, N − 1]. Aliasing beyond this
range does not affect the solution, which means that it is sufficient
that N ′ ≥ 2N − 1.

The range of valid indices for the b is [−(N − 1), N − 1]. After
zero padding, the indices lie in [−(N−1), N ′− (N−1)]. Negative
indices are inconvenient, so relying on the fact that the FFT convo-
lution assumes periodic signals, we move the values in the negative
range to the other end of the array so that the indices run from 0 to
N ′ − 1. The entire convolution can then computed as follows:

c(k′) = F−1
N′
{
k′,FN′{k′, a} ⊗ FN′{k′, b}

}
,

where k′ ∈ [0, N ′ − 1]. The advantage of this algorithm is that N ′

can be chosen to be a power of two, which we already know how to
handle efficiently.

For our implementation of this algorithm, we choose N ′ to be
the next power of two greater than or equal to 2N − 1. We first
compute the b vector and its Fourier transform B(k′) = FN′{k′, b}
on the CPU and store them in a texture. These can be reused for
multiple transforms of the same size. We then render to a texture
of width N ′ and compute a(n′) from the input textures containing b
and f , and zero pad elements n′ > N − 1. We compute A(k′) =
FN′{k′, a} using the power-of-two FFT routine described earlier.
(B(k′) could also be computed on the GPU in the same way, though
we currently do not do this). Another pass computes the component-
wise product A(k′) ⊗ B(k′). We compute the inverse FFT of the
result to get c(k′). The final pass computes b∗(k) ⊗ c(k). This
algorithm can be performed on both rows and columns to compute
2D FFTs. Because this algorithm requires both a forward and inverse
FFT of size N ′ which is approximately 2N in the best case and
nearly 4N in the worst case, the algorithm is roughly 4 to 8 times
slower than the Stockham algorithm would on similar power-of-two
sizes.

Note that the reason we compute b on the CPU is that for large
values of n, the n2 term in b(n) cannot be computed directly with
enough precision with the single precision available on most GPUs.
Only the most recent GPUs support double precision, so we cur-
rently compute b with double precision on the CPU.

4.4. Large FFTs

The total number of elements in an FFT in our current implemen-
tation is limited to the number of elements in the largest allocatable
texture on the GPU. However, the number of rows or columns in a
batch of 1D FFTs or a 2D FFT can exceed the maximum texture
dimensions, but still have fewer than the maximum number of el-
ements (e.g. a single large 1D FFT). We handle this situation by
concatenating the arrays and wrapping them into the rows of the
texture. We can compute FFTs on this “wrapped” representation in
two ways. The first approach introduces a level of indirection in
the indexing, computing a logical index for each fragment from its
physical address in the texture. Suppose that (x, y) represents the
physical address of the current fragment in the destination texture of
width W . We compute the logical address (xl, yl) in an Nx × Ny

array as:

u = y ·W + x

xl = u mod Nx

yl = bu/Nxc.

The logical index can be used in the same fragment programs as
described above. When reading from the input texture, the logical
input index must be converted back to a physical address:

u = yl ·Nx + xl

x = u mod W

y = bu/W c.

The advantage of this method is its flexibility. However, it requires
extra computation and can destroy 2D locality in its access patterns
for some combinations of Nx and W . A second approach can be
used for wrapped 1D FFTs whose lengths are a multiple of the tex-
ture width. The algorithm, sometimes referred to as the “four-step”
framework [12, 13], computes a single, large 1D FFT by comput-
ing FFTs along the rows and columns of its wrapped representation.

Row 0

Row 1

Row 2

Row 3

a
b
c
d

a cb d

Row 0

Row 1

Row 0

Row 1

Row 2

Row 3

Fig. 4. Local transposes in the four-step method for large FFTs.
(Left) Four long rows are wrapped at the texture width into multi-
ple rows to form a sub-block of the texture. (Middle) The four-step
method transposes each of these sub-blocks independently, and thus
exceeds the texture dimensions. (Right) We rewrap the results back
into the texture.

Specifically, the algorithm first computes FFTs along the columns.
Then each element is multiplied by a twiddle factor:

T (x, y) = e2πixy/N ,

where (x, y) ∈ [0,W − 1]× [0, H − 1] are the physical coordinates
of the element and H = N/W . Finaly, the algorithm computes the
FFT along the rows and transpose the result. The advantage of this
method is that it is generally faster because it better preserves 2D
locality and does not require expensive logical indexing. Currently,
we use this method only for large power-of-two FFTs. For large
non-power-of-two DFTs, we use logical indexing for all the steps of
the z-chirp algorithm except for the two FFTs used to compute the
convolution, for which we utilize this four-step method.

With a batch of large 1D FFTs, a single row is wrapped into a
sub-block of the texture. The transpose step of the four-step method
is performed for each sub-block independently. We refer to these
transposes as local transposes (as opposed to a global transpose of
the entire 2D array). As shown in Figure 4, physically transposing
the sub-blocks can cause the texture to exceed dimension limitations.
Instead, we compute the logical equivalent of a local transpose fol-
lowed by rewrapping to the texture width. Figure 5 explains how
this is done. To reduce the number of render passes, we fold in the
transposes and twiddle factor multiplications with FFT computation.

We currently do not directly support large 2D FFTs that can not
fit within a single texture. However, our library can be used to handle
large 2D FFTs by performing the FFTs on several rows at a time —
as many as can fit into one texture. After all the rows have been
transformed, the same thing is done for the columns. We support
large FFTs along columns by first performing a global transpose on
the wrapped representation, performing a batch of FFTs along the
rows, and performing a global transpose at the end.

4.5. Real-valued FFTs

In many applications, the input of the Fourier Transform has no
imaginary component. The DFT of real-valued sequence has spe-
cial symmetry that can be used to compute the FFT more efficiently:

F (k) = F (N − k)∗ (2)

F is periodic so F (N) = F (0). We pack two real-valued sequences
x and y into a complex sequence z, thus reducing the amount of data

Logical yl xl

yl xpys

yp

yl xp ys

Wrapped

Transposed

Linear Index

Fig. 5. Computing indices for the local transposes in the four-
step FFT. (Top) The linear index of an element in a batch of large
1D FFTs is composed by concatenating the bits of the logical ad-
dress (xl, yl), where the length of the FFTs is a power of two. (Mid-
dle) The address in the physical index in the wrapped representation
(xp, yp) in a texture with power-of-two dimensions is computed by
simply reinterpreting the appropriate bits of the linear index. ys is
the y coordinate within a sub-block corresponding to one logical
row. (Bottom) A local transpose exchanges ys and xp. The final
physical coordinates are computed by reinterpreting this last linear
index. The DX9 API does not support scatters, so we actually gather
to the physical destination by inverting this process to compute the
corresponding logical index.

to transform by a factor of two:

z(n) = x(n) + iy(n).

The process can be inverted:

x(n) = (z(n) + z∗(n)) /2

y(n) = −i (z(n)− z∗(n)) /2.

Because the DFT is a linear operator we can recover F{x} and
F{y} from F{z}:

X(k) = (Z(k) + Z∗(k)) /2

Y (k) = −i (Z(k)− Z∗(k)) /2.

By symmetry, Z∗(k) can be computed as:

Z∗(k) = (Z(N − k))∗.

For a 1D FFT with N even, we pack together even and odd elements,
x = fe and y = fo. After performing the FFT on the resulting data,
we unpack X = Fe and Y = Fo and perform the final iteration of
the FFT in the same pass. If N is odd, we cannot use this packing
scheme. For batches of odd length FFTs, however, we can pack
adjacent rows together. If there are an odd number of FFTs in the
batch, an extra row of zeros can be added.

For 2D FFTs, the symmetry relationship is similar to that in 1D:

F (k0, k1) = F (N0 − k0, N1 − k1)
∗. (3)

If the length is even along one of the dimensions d, we pack to-
gether even and odd elements, fe and fo along d, perform the 2D
FFT, unpack Fe and Fo, and compute the last FFT iteration along
d. When the lengths are odd in both dimensions, we can treat each
dimension as a batch of real 1D FFTs. This requires an unpack after
transforming the rows, followed by another pack before transform-
ing the columns. It is possible, however, to eliminate one of these
extra intermediate passes as illustrated in Figure 6.

),(10 nnf

pack FFT rows FFT colsunpack
reflect and
conjugate

),(100 nnz),(100 nkZ

*
1000),(nkNF

),(100 nkF

*
1100),(kNkNF

),(10 kkF),(10 kkF

),(10 nnf

packIFFT cols IFFT rows unpack

),(100 nnz

*
1000),(nkNF

),(100 nkF

*
1100),(kNkNF

),(10 kkF

reflect and
conjugate

),(100 nkF

),(100 nkZ

Fig. 6. Packing real data for 2D FFTs with odd lengths in both dimensions. (Top) Forward transform. Adjacent pairs of rows (except the
last) are packed together to form z. After performing the FFT along rows of z, only half of the data is unpacked. The FFT is performed on
the columns of this half. The other half is then obtained by reflecting and conjugating the result. (Bottom) Inverse transform. The inverse
FFT is first performed on half of the columns. The rest of the steps are similar to the forward transform.

real?

Pack

power
of 2?

FFT

Load A

A ∙ B

IFFT Mult b*

FFT

real?

UnpackOutput

Input
Yes

No

YesNo

No Yes

Fig. 7. Fragment programs used for a 1D FFT computation.

Another way to implement FFTs of real-valued data is to do
the computation on only the first half of each sub-transform in the
algorithm. This approach can save the packing step that we currently
use. However, it cannot be used with the z-chirp algorithm that we
use for evaluating non-power-of-two length FFTs.

4.6. Numerical precision issues

DirectX 9 does not support integer data types. Indices must be com-
puted with floating point, which can lead to precision errors. Preci-

sion errors arise from two sources. First, the coordinate interpolation
may not be exact. We noticed that on some GPUs the interpolated
integer coordinates actually have a fractional component. This is not
the case in the reference rasterizer or on other GPUs. For GPUs that
support Shader Model 3.0, we use the VPOS semantic, which returns
the integer pixel location of a fragment, thereby eliminating interpo-
lation errors. We also tried interpolating linear addresses to save
some instructions in the fragment program. However, some GPUs
do not interpolate with enough precision for this to work. Second,
imprecision can also result from mod operations. This is due to the
way that mod is implemented. It is based on the frac() instruc-
tion, which returns the fractional part of a floating point number:

float mod(x,y) { return frac(x/y)*y; }

This code assumes that x and y are non-negative. Even when they
are exact integers, this code can produce non-integer results for val-
ues of y that are not a power of two. The result of the division, im-
plemented as x multiplied by the reciprocal of y, cannot always be
represented exactly in floating point, leading to a loss of precision.

It is possible to remove imprecision by computing x ← bx +
0.5c after every operation that can potentially introduce imprecision.
However, floor operations are relatively expensive. Therefore, we
use floors sparingly. We assume that the input coordinates are im-
precise and make judicious use of small offsets so as to prevent a
number falling onto the wrong side of an integer boundary. We also
use an offset and nearest neighbor sampling when fetching a value
from a texture.

Floating point precision also limits the size of the Fourier trans-
forms that we can support. The logical indexing that we use when
the data exceeds the texture size limits requires the computation of

0

2

4

6

8

10

12

14

129 193 257 385 513 769 1025 1537 2049 3073

G
Fl

o
p

s

2D NPOT Complex

CUFFT

Ours 8800

Ours XT1900

MKL

0

1

2

3

4

5

6

130 194 258 386 514 770 1026 1538 2050 3074

G
Fl

o
p

s

Resolution

2D NPOT Real

CUFFT

Ours 8800

Ours XT1900

MKL

0

5

10

15

20

25

30

35

128 256 512 1024 2048 4096

G
Fl

o
p

s

2D Complex

CUFFT

Ours 8800

Ours XT1900

MKL

0

2

4

6

8

10

12

14

16

18

20

128 256 512 1024 2048 4096

G
Fl

o
p

s

Resolution

2D Real

CUFFT

Ours 8800

Ours XT1900

MKL

Fig. 8. Performance comparisons of 2D FFTs. We compare 2D FFTs for power-of-two and non-power-of-two (NPOT) sizes. CUFFT and
MKL are optimized, vendor-provided libraries for the GPU and CPU, respectively. The GFlops numbers are computed as 5N log2(N)/t
where t is execution time. We use N/2 instead of N for computing GFlops for the real transforms.

linear addresses. The maximum size of the linear address is limited
to the precision of a floating point number, which unfortunately, is
less than the maximum number of elements in a texture for some
GPUs.

4.7. API

The API for our library is fairly simple. It consists of two main
functions. The first function is a configuration function that tells the
library what format to expect for the data:

Configure(int SpatialFormat,
int FrequencyFormat,
int DataSize[2],
int SpatialRectWidth,
int FrequencyRectWidth
int DimMask)

We refer here to the domain the FFT as the spatial domain in-
stead of the time domain because it can be two dimensional. The
SpatialFormat can have the values REAL or COMPLEX, while
FrequencyFormat can be COMPLEX or HALF COMPLEX. The
half-complex format can be used for transformed real data. Only the
first N/2 + 1 values of an FFT are stored and computed. The other
values can be obtained by symmetry. The format is particularly
useful for minimizing the size of data transferred on the bus between
the GPU and main memory. DataSize represents the logical di-
mensions of the data. For 1D FFTs, one of the dimensions indicates
the length of the FFTs and the is the number in the batch. The
*RectWidth variables are the widths of the data as laid out in the
textures. If DataSize[0] (or DataSize[0]/2 + 1 in the case
of the half-complex format) is not the same as *RectWidth, then
the slower logical indexing must be used. DimMask is a bit mask
with a bit for each dimension to which the FFT should be applied.
Thus for a 2D transform, the bits for both rows and columns. Once
the library is configured, the user passes input and output textures to
the Compute() function:

Compute(bool Inverse,
IDirect3DTexture9* pInputTexture,
IDirect3DTexture9* pOutputTexture)

The direction of the transform is determined by the Inverse flag.
We provide helper functions for loading textures with values from
arrays on the CPU. The intended usage model for this API is that
after configuring, a user will compute multiple forward and inverse
FFTs of the same size and type.

Our library allocates two additional temporary buffers for com-
puting intermediate results. We provide a more advanced API that
allows the user to provide the temporary buffers. This is important
when computing large FFTs because the input and output themselves
can be used as the temporary buffers in order to conserve memory.
The advanced API also provides other conveniences such as speci-
fying which channel to read from or write to for real data and speci-
fying an origin for the texture sub-rectangle that contains the data.

5. RESULTS

We tested our FFT algorithms using both an NVIDIA GeForce 8800
GTX and an ATI XT1900 on a PC with an Intel Core 2 Duo E6600
CPU clocked at 2.66 GHz. We compared the performance of both
complex and real 2D FFTs of power-of-two (POT) and non-power-
of-two (NPOT) sizes to NVIDIA’s CUFFT library running on the
8800 and Intel’s Math Kernel Library (MKL) on the CPU. The re-
sults are shown in Fig. 8. For complex POT FFTs, CUFFT performs
better than the others due to its use of shared memory. Our algo-
rithms perform relatively well on the same GPU even though we do
not use shared memory. In fact, for real data our implementation sig-
nificantly out-performs CUFFT. The performance of our algorithms
on the 8800 is better than on the older, less expensive XT1900. We
used the latest drivers for both GPUs. The relative performance may
vary due to differences and tuning in the drivers. For POT FFTs,
the performance of the XT1900 is still competitive with MKL. In
general the GPU algorithms do not perform as well on small sizes

due to the overhead of the graphics API. For NPOT FFTs, our FFTs
show a fairly consistent pattern in performance that correlates with
steps in the size of the underlying POT FFT and inverse FFT used to
perform the convolution. The graphs for CUFFT and MKL are a bit
more erratic, performing both better and worse than ours for some
values.

The performance of our FFTs is mostly bandwidth limited.
When we eliminate the computations from our fragment programs
and only read the input values, the performance improves by less
than 10%. We also experimented with vectorizing our code by using
4 channel textures and packing multiple values into one texture ele-
ment. We see only a small improvement (< 10%) on the XT1900
and no improvement on the 8800.

A simple image processing application that utilizes our FFTs is
shown in Fig. 1. The user manipulates sliders to change the cutoff
frequency and falloff of a band pass filter. Because the FFT com-
putations take place on the GPU, the relatively expensive memory
transfers between GPU and CPU are avoided. The high performance
of our library sustains interactive frame rates even for large images.
The immediate feedback makes it easier for the user to tweak a filter
to achieve a desired result.

6. CONCLUSION

The GPU can be an effective coprocessor for signal processing op-
erations, including FFTs. Our FFT library makes it easier to use a
wide variety of GPUs for FFTs of various sizes and types, while still
delivering good performance. For future work we would like to add
support for FFTs of higher dimensions.

7. ACKNOWLEDGMENTS

We would like to thank Peter-Pike Sloan and Yuri Dotsenko for fruit-
ful discussion on this project, as well as John Bronskill and Steve
White for their useful feedback. We would also like to thank John
Manferdelli and Craig Mundie for their support of this project.

8. REFERENCES

[1] NVIDIA Corp., CUDA CUFFT Library, 2007.

[2] NVIDIA Corp., NVIDIA CUDA Compute Unified Device Ar-
chitecture, 2007.

[3] Valve Corp., “Hardware survey results,” http://
steampowered.com/status/survey.html, 2007.

[4] Kenneth Moreland and Edward Angel, “The FFT on a GPU,”
in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, 2003, pp. 112–119.

[5] John Spitzer, “Implementing a GPU-efficient FFT,” SIG-
GRAPH Course on Interactive Geometric and Scientific Com-
putations with Graphics Hardware, 2003.

[6] Jason L. Mitchell, Marwan Y. Ansari, and Evan Hart, “Ad-
vanced image processing with DirectX 9 pixel shaders,” in
ShaderX2: Shader Programming Tips and Tricks with DirectX
9.0, Wolfgang Engel, Ed. Wordware Publishing, Inc., 2003.

[7] Thomas Jansen, Barosz von Rymon-Lipinski, Nils Hanssen,
and Erwin Keeve, “Fourier volume rendering on the GPU using
a split-stream-FFT,” in Proceedings of the Vision, Modeling,
and Visualization Conference 2004, 2004, pp. 395–403.

[8] Thilaka Sumanaweera and Donald Liu, “Medical image recon-
struction with the FFT,” in GPU Gems 2, Matt Pharr, Ed., pp.
765–784. Addison-Wesley, 2005.

[9] Naga K. Govindaraju, Scott Larsen, Jim Gray, and Dinesh
Manocha, “A memory model for scientific algorithms on
graphics processors,” Supercomputing 2006, pp. 6–6, 2006.

[10] James W. Cooley and John W. Tukey, “An algorithm for the
machine calculation of complex fourier series,” Math. Com-
put., vol. 19, pp. 297–301, 1965.

[11] Charles Van Loan, Computational Frameworks for the Fast
Fourier Transform, Society for Industrial Mathematics, 1992.

[12] W. M. Gentleman and G. Sande, “Fast Fourier transforms for
fun and profit,” Proceedings of AFIPS, vol. 29, pp. 563–578,
1966.

[13] D. H. Bailey, “FFTs in external or hierarchical memory,” Su-
percomputing, pp. 23–35, 1990.

