
HPTS 95 Position Paper: Queues are Databases 1

Queues Are Databases

Jim Gray

December 1995

Technical Report

MSR-TR-95-56

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

HPTS 95 Position Paper: Queues are Databases 2

Queues are Databases1

Jim Gray

Microsoft Research, 301 Howard St., S.F., CA. 94105

Gray@Microsoft.com

December, 1995

Abstract:

Message-oriented-middleware (MOM) has become an small industry. MOM offers

queued transaction processing as an advance over pure client-server transaction

processing. This note makes four points:

Queued transaction processing is less general than direct transaction processing.

Queued systems are built on top of direct systems. You cannot build a direct system

atop a queued system. It is difficult to build direct, conversational, or distributed

transactions atop a queued system.

Queues are interesting databases with interesting concurrency control. It is best to

build these mechanisms into a standard database system so other applications can use

these interesting features.

Queue systems need DBMS functionality. Queues need security, configuration,

performance monitoring, recovery, and reorganization utilities. Database systems

already have these features. A full-function MOM system duplicates these database

features.

Queue managers are simple TP-monitors managing server pools driven by queues.

Database systems are encompassing many server pool features as they evolve to TP-

lite systems.

1 Acknowledgments: These ideas derive from discussions with Andrea Borr (Oracle), Richard Carr

(Tandem), Dieter Gawlick (Oracle), Pat Helland (Microsoft), Franco Putzolu (Oracle), Andreas Reuter

(U. Stuttgart) and Bill Highliman (NetWeave).

HPTS 95 Position Paper: Queues are Databases 3

1. Queues Are Best Built Atop Direct TP Systems.

TP systems offer both queued and direct transaction processing. They offer both client-

server and peer-to peer direct processing. Gray & Reuter [pp. 246] offer the following

common taxonomy of process-to-process communication:

Direct Peer-To-Peer: either process can
initiate request. Responses are not
necessarily paired to requests.

 Client-Server: client sends request to
server, server responds.

Queued Client-Server: client sends request to
queue, server reads queue and places
response in output queue, client reads
output queue.

The shaded boxes in the figure represent a dispatcher that binds client requests to servers.

The dispatcher was traditionally called a TPmonitor. Today dispatchers are called Object-

Request Brokers (ORBs).

In queued processing, clients place request messages in a queue. A pool of server

processes, managed by a TP-monitor, service these request queues, perhaps placing results

in other queues. Clients can poll these output queues to see the status or outcome of their

transaction requests. If the client and server on different computers, the queue may be

replicated at both the client and server node so that either end can generate and process

messages even if when disconnected.

Queued processing is the basic mechanism of IBM’s IMS, so we have 30 years experience

with its pros and cons. Advocates of queued processing point out that, at saturation, a

direct system is really a queued system: the TPmonitor dispatches servers via a queuing

mechanism to do load control. When clients saturate a server pool, the queues become

visible. Indeed, it is optimal to schedule new requests to a server pool via a single global

queue.

server client

servers
client

servers
client

HPTS 95 Position Paper: Queues are Databases 4

The difficulty is that queued transaction processing of a request-response is three ACID

units:

1. Client places request in queue.

2. Server dequeues request, performs task, enqueues response.

3. Requester dequeues response from output queue .

This tri-ACID unit model has the benefit of decoupling the client from the server, but has

the liability that it makes multi-request (conversational) transactions impossible. Since

each message exchange is three ACID units, one cannot wrap a multi-step dialog in a

single ACID transaction unit. Implementing distributed transactions, conversational

transactions, or multi-step transactions on top of a queued system requires building a lot

of application-level machinery. IMS customers have invested millions of dollars in such

efforts.

By contrast, direct transaction processing systems can easily add a queuing mechanism as

a new transaction type. They implement a direct transaction that places requests in

queues, have pools of servers that poll these queues, and have a third transaction that

queries the output queues. This is the approach that CICS, ACMS, Tuxedo, Topend, and

Encina take. At last count, CICS had over six distinct queue managers as part of the

regular product -- each with slightly different performance-functionality tradeoffs.

I am not arguing that queued processing is bad -- quite the contrary. Queued processing

has been a common transaction processing style and will continue to be very important in

the future. Queued processing is increasingly important for workflow, disconnected

operation, and replication applications. It has always been the mainstay of batch and spool

operations. Using Bill Highliman’s acronyms2, the world needs both MOM and DAD.

2 DAD: direct access to data, MOM: message oriented middleware.

The three parts of a tri-ACID
queued transaction

1

2
3

HPTS 95 Position Paper: Queues are Databases 5

The controversial opinion is that a queue manager is best built as a naive resource

manager atop an object-relational database system [Chamberlin], [Stonebraker]. That

system must have good concurrency control, recovery, triggers, security, operations

interfaces, and utilities -- indeed it must be a good TP-lite system. Given such a base, a

queue manager would be one of the first class libraries I would write.

HPTS 95 Position Paper: Queues are Databases 6

2. Queues Are “Interesting” Databases

Storing queues in a database has considerable appeal. The idea is that queues are a

database class encapsulated with create(), enqueue(), dequeue(), poll(), and destroy()

methods. By using a database, the queue manager becomes a naive resource manger with

no special code for startup, shutdown, checkpoint, commit, query, security, or utilities.

Rather it is just a simple application – the database system does all the hard stuff like

locking, logging, access paths, recovery, utilities, security, performance monitoring, and

so on. The queue manager benefits from all the database utilities to query, backup,

restore, reorganize, and replicate data. In addition it piggybacks on the TP-lite and trigger

mechanisms of the database system for process and server pool management.

Queues pose difficult problems when implemented atop a database.

Performance: An enqueue transaction is an insert followed by a commit. This places

extreme performance demands on the concurrency control and recovery components

of a database -- it exposes hotspots and high-overhead code.

Concurrency control: The dequeue transaction typically involves deleting a record from

the queue, processing the request, enqueuing results in other queues, and then

committing. Serializable isolation requires that there can be at most one dequeue

executing at a time against each queue. This suggests that queues need lower, indeed

specialized, isolation levels.

Gray and Reuter [ibid. pp. 402] outline the concurrency control mechanisms needed to

implement queues within a database:

Read_Past locks allow a program to skip over dirty (uncommitted records) to find the

first committed record. This is what a dequeue() operation wants.

Read_Through locks allow a program to examine records that have not yet been

committed. This is useful in polling the status of a queued request that is currently

being processed.

Notify (events) allow a program to wait for a state change in a lock. This allows a

dequeue() operation to wait for one or more queues to become non-empty.

HPTS 95 Position Paper: Queues are Databases 7

Non-transactional queues are sometimes needed for performance reasons. The same

reasons encourage us to support non-transactional tables in an SQL database. These

tables and queues are not durable (do not survive system restart or media failure), but

have low overhead.

The paradox is that queues are just an application data structure. Their concurrency

control and recovery needs appear in many other contexts. An auction application looking

for a set of sellers to match a buyer needs exactly these features. An emergency dispatch

application needs to find the highest-priority request not yet being serviced. Similar

requirements appear in workflow, CASE, and parallel programming models like Linda.

There is a pattern here. Each new requirement for a queuing system seems to reflect a

corresponding requirement for user-application data. This recurs when one considers,

query interfaces to queues, queue performance monitoring, queue backup, restore,

recovery utilities, queue security, and so on. Indeed, Richard Carr reports that when a

queuing mechanisms was added to Tandem’s database servers, several applications

became simpler and faster.

HPTS 95 Position Paper: Queues are Databases 8

3. Queue Managers Are Simple TP-Monitors

So far, the discussion has ignored the question of server pool management (threads or

processes). Some queues have a server pool attached to them. The servers in this pool

are dedicated to servicing entries in the queue. You see this in batch job schedulers, print

spoolers, and in many transaction processing systems. TP-monitors (aka: ORBs)

configure, manage, and load-balance these pools.

Server pools are configured with a minimum and maximum number of servers. The pool

starts at its minimum size. As traffic grows, the pool grows. As traffic shrinks, the pool

shrinks. If a server fails, a new server is allocated. If too many servers fail in a time

window, the TP-monitor declares the queue broken and human intervention is required.

Operator and programmatic interfaces are defined to create, configure, query, and control

(start, stop, redefine) queues. This is what the “gray boxes” are doing in Figure 1.

Queued processing has many variants:

 Periodic: Servers are created at certain times.

 Event: Servers are created on demand when a request first arrives in a queue.

 Batch: Servers are created when the queued grows to a certain size.

The queue scheduling policy is often a priority scheme whereby some queue elements are

processed before others.

Gee! This sounds like a lot of stuff you do not find in your database system: server pools,

timers, priority,… .

But, what about triggers and stored procedures? All modern database systems allow

users to associate procedures with data records. These procedures fire when the client

explicitly invokes the procedure. Triggers implicitly fire when records are read, inserted,

deleted, or updated. Stored procedures may be synchronous or asynchronous. Triggers

HPTS 95 Position Paper: Queues are Databases 9

fire at the time of the operation (immediate), or at the time of commit (deferred). They

may execute within the ACID transaction of the operation that fired the trigger, or they

may begin a new top-level asynchronous transaction.

Stored and trigger procedures are out-calls from the DBMS. They are written in C,

COBOL, FORTRAN, Visual Basic, or the DBMS procedural language (Transact SQL or

PL/SQL or …). User-written procedures are optionally executed in a protection domain

separate from the requester and separate from the DBMS. They are typically executed in

a separate process (address space). Sybase’s OpenServer design is typical of this idea --

although it uses a single multi-threaded process rather than having a separate protection

domain per trigger. Oracle’s Rdb uses a separate process per user to manage outcalls.

Managing trigger processes is a chore. For good performance, they must be pre-allocated.

There must be load-control to prevent saturation. The pools must grow and shrink with

demand. Gradually, the trigger-execution mechanism of the DBMS merges with the

DBMS’s TP-lite front-end dispatcher to make a fairly general TP-lite monitor. Indeed, the

Sybase OpenServer started as a front-end, then became a side-end (trigger) and back-end

(gateway) mechanism.

So DBMS systems are growing a server pool management system. This is part of the

evolution of DBMS to TP-lite to TP-heavy.

Not much is needed to add queued processing to a TP-lite database system. First one

must implement queues as an encapsulated type atop the Object-Relational system. Then

one must recognize that triggers may be fired as part of a transaction, or fired

asynchronously as a new ACID unit (either immediately, or if and when the transaction

commits). This gives a simple queued transaction processing system. If it solves the

concurrency and performance problems, should be as scaleable and robust as the

underlying DBMS.

HPTS 95 Position Paper: Queues are Databases 10

4. Summary

Many people are building queue managers on file systems as a transactional resource

manager and a TP-lite monitor. An alternative approach is to evolve an Object-Relational

database system to support the mechanisms needed to build a queuing system:

? ? reduced isolation levels and fine granularity locking.

? ? efficient support for simple transactions.

? ? asynchronous trigger invocation executed by server pools.

? ? server pools management and dispatching.

These basic facilities enable the implementation of queue managers but also make the

DBMS more useful to other applications.

5. Reconsideration

This position paper was intended to generate controversy at the High Performance

Transaction Processing Workshop (HPTS). Amazingly, everyone either agreed or was so

disgusted that they left the room. In the end, there was no heated discussion. I was

astonished. In defense of MOM, one must point out that my discussion assumes a

homogeneous environment: one ubiquitous database and transport. In essence it says: if

you got universal DAD you can build MOM.

The flaw in this argument seems to be that DAD presumes that the database system has

direct access from everywhere to everywhere and has storage everywhere. The database

system has to have a presence on Prime, Apollo, Unisys, Boroughs, NCR, Singer, Harris,

Tandem, Prime, Apollo, Sequent, Next, NetWare, DOS,… Queues need to be stored on

both client and server. Thus, the DBMS must exist on all these exotic platforms (no

offense intended). Many of the MOM companies make their living by porting a minimalist

database (a queue system) to these exotic platforms for a fee. The cost of porting a full-

blown DBMS to such systems is prohibitive.

HPTS 95 Position Paper: Queues are Databases 11

My conclusion from this are:

1. DADs (OR-DBMSs) will evolve to provide queues. Portable systems like Oracle,

Sybase, Informix, DB2/CS will offer heterogeneous queuing among commodity

platforms.

2. MOMs will thrive by connecting exotic heterogeneous systems together.

HPTS 95 Position Paper: Queues are Databases 12

6. References

[Chamberlin] D. Chamberlin, Using DB2 Common Server, IBM’s New Object Relational

Database System. , Morgan Kaufmann, San Francisco, 1996.

[Bernstein, Hsu, & Mann] P.A. Bernstein, M. Hsu and B. Mann. “Implementing

Recoverable Requests Using Queues.” Proc.. ACM SIGMOD. Atlantic City, NJ.

1990

[Gray & Reuter] J. Gray and A. Reuter. Transaction Processing Concepts and

Techniques, Morgan Kaufmann, San Francisco, 1993.

[Stonebraker] M. Stonebraker, Object Relational, The Next Great Wave in Databases,

Morgan Kaufmann, San Francisco, 1996.

