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Abstract

We introduce a mean-field model of lattice trees based on embeddings into
Zd of abstract trees having a critical Poisson offspring distribution. This model
provides a combinatorial interpretation for the self-consistent mean-field model in-
troduced previously by Derbez and Slade, and provides an alternate approach to
work of Aldous. The scaling limit of the mean-field model is integrated super-
Brownian excursion (ISE), in all dimensions. We also introduce a model of weakly
self-avoiding lattice trees, in which an embedded tree receives a penalty e−β for
each self-intersection. The weakly self-avoiding lattice trees provide a natural in-
terpolation between the mean-field model (β = 0), and the usual model of strictly
self-avoiding lattice trees (β = ∞) which associates the uniform measure to the set
of lattice trees of the same size.
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1 Introduction

It is often the case that the understanding of a statistical mechanical model can be
enhanced by the analysis of a corresponding mean-field model. The mean-field model
typically involves an interaction that is simple enough to enable explicit computations
of its scaling behaviour. Moreover, the scaling behaviour of the mean-field model is
typically identical to that of the original model, above an upper critical dimension. The
basic example is the Curie–Weiss model of ferromagnetism, which is the mean-field model
corresponding to the Ising model [3]. For the self-avoiding walk, the mean-field model is
simple random walk [24]. In both cases, the upper critical dimension is 4.

In this paper, we introduce a mean-field model for lattice trees, based on lattice em-
beddings of abstract trees having a critical Poisson offspring distribution. The scaling
limit of the mean-field model is the limit obtained by embedding increasingly large trees
into an increasingly finer lattice. We will show that the scaling limit of the mean-field
model is the random probability measure on Rd known as integrated super-Brownian ex-
cursion (ISE). This provides a simple construction of ISE. In this construction, we embed
discrete abstract trees into Zd and then take a continuum limit. Such an approach was
outlined by Aldous in [2], although constructions more commonly first take a continuum
limit of abstract trees and then embed these limiting objects into Rd [1, 2, 20]. Further
discussion of ISE can be found in [7, 21, 22, 23, 25].

Our use of the Poisson distribution simplifies the analysis, but seems inessential.
Although we do not prove convergence to ISE for other distributions, we will comment
very briefly in Sections 3 and 4 on how our results might be generalised.

The occurrence of ISE as the scaling limit of lattice trees and of the incipient infinite
percolation cluster above their respective upper critical dimensions 8 and 6 is discussed
in [9, 10, 16, 17, 18, 25]. These interacting systems are more difficult to analyse than the
mean-field model introduced here, and the methods described below serve as a basis for
their analysis. Our primary goal in this paper is to isolate and describe these elementary
methods, which underlie the work of [9, 10, 16, 17, 18, 25].

As we will indicate, our mean-field model provides a combinatorial interpretation
for the self-consistent mean-field model introduced in [9]. Our mean-field model is also
closely related to the mean-field model for lattice trees discussed in [5]. In [5, (5.15)–
(5.17)], non-integer values are given for quantities that purportedly count embedded
trees of various kinds. However, if we assume that the embeddings in [5] tacitly involve
the Poisson weight factors we will introduce below, then we recover some of the results
of [5].

It is often convenient to introduce a small parameter into a statistical mechanical
model, as in the Domb–Joyce model of weakly self-avoiding walks [11]. We will de-
fine a model of weakly self-avoiding lattice trees, which associates a factor e−β to each
self-intersection of an embedded tree. The weakly self-avoiding lattice trees interpolate
between the mean-field model (β = 0) and the standard model of lattice trees in which
all lattice trees of a given size and containing the origin are assigned equal probability
(β = ∞).
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We expect that the analysis of [10, 14, 15], which proves that the scaling limit is
ISE for lattice trees in Zd in dimensions d � 8 and for sufficiently “spread-out” lattice
trees in dimensions d > 8, can be easily extended to obtain similar results for weakly
self-avoiding lattice trees for d > 8 and β � 1. In fact, the weakly self-avoiding lattice
trees should be easier to handle because the small parameter β is more explicit than
the small parameters in [10, 14, 15]. However, we have not carried out the exercise of
checking that the various calculations involved all go through in this setting.

2 Results

A bond in Zd is a pair {x, y} of sites x, y ∈ Zd with ‖x − y‖1 = 1. A lattice tree is a
finite connected set of bonds that contains no cycles. We will say that x is in a lattice
tree L if there is a bond in L that contains x. We put the uniform measure on the set of
all n-site lattice trees containing the origin. This model is difficult to analyse because of
the self-avoidance constraint inherent in the prohibition on cycles. The mean-field model
will relax this restriction completely.

The mean-field model is defined in terms of embeddings of abstract trees into Zd.
The abstract trees are the family trees of the critical birth process with Poisson offspring
distribution. In more detail, we begin with a single individual having ξ offspring, where
ξ is a Poisson random variable of mean 1, i.e., P(ξ = m) = (em!)−1. Each of the offspring
then independently has offspring of its own, with the same critical Poisson distribution.
For a tree T consisting of exactly n individuals, with the ith individual having ξi offspring,
this associates to T the weight

P(T ) =
∏
i∈T

e−1

ξi!
= e−n

∏
i∈T

1
ξi!

. (2.1)

The product is over the vertices of T .
It is important to be clear about when two trees T are the same and when they are

not. For this, we introduce a description of T in terms of words. These words arise
inductively as follows. The root is the word 0. The children of the root are the words
01, 02, . . . 0ξ0. The children of 01 are the words 011, . . . , 01ξ01, and so on. The family
tree is then uniquely represented by a set of words. Two trees are the same if and only if
they are represented by the same set of words. In the terminology of [19], we are dealing
with plane trees.

We define an embedding ϕ of T into Zd to be a mapping from the vertices of T
into Zd, such that the root is mapped to the origin and adjacent vertices in the tree
are mapped to nearest neighbours in Zd. Given a tree T having |T | vertices, there are
(2d)|T |−1 possible embeddings ϕ of T . The mean-field model is then defined to be the
set of configurations (T, ϕ), with probabilities

P(T, ϕ) =
1

(2d)|T |−1 P(T ). (2.2)
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Equivalently, we may regard the mean-field model as corresponding to branching random
walk, with mean-1 Poisson branching distribution.

The one-point and two-point functions of the mean-field model are defined for com-
plex z and ζ, with |z|, |ζ| ≤ 1, by

t(1)z =
∑

(T,ϕ)

P(T, ϕ)z|T | =
∑
T

P(T )z|T |, (2.3)

t
(2)
z,ζ(x) =

∑
(T,ϕ)

P(T, ϕ)z|T | ∑
i∈T

I[ϕ(i) = x]ζ |i| (x ∈ Z
d), (2.4)

where |i| denotes the graph distance from i to the root of T . The series (2.3) converges
for |z| ≤ 1, with t

(1)
1 = 1. The series (2.4) clearly converges for |z| < 1, |ζ| ≤ 1. The

one-point function is a generating function for embedded trees rooted at the origin, while
the two-point function is a generating function for embedded trees rooted at the origin
and containing the site x.

The one-point function is given by the following theorem.

Theorem 2.1 For d ≥ 1, the one-point function is given by t(1)z =
∑∞

n=1
nn−1

n! e−nzn,
which is one solution of the implicit equation

t(1)z e−t
(1)
z = ze−1. (2.5)

Equation (2.5) actually defines a function analytic in C\[1,∞), and we are taking the
principal branch. Equation (2.5) can be written in terms of the Lambert W function,
defined by WeW = z, as t(1)z = −W (−ze−1). The branches of W are described in [6].
Theorem 2.1 rederives the well-known result that for critical Poisson branching processes,

P(|T | = n) =
nn−1

n!
e−n. (2.6)

Given a summable function f : Zd → C, its Fourier transform is given by f̂(k) =∑
x∈Zd f(x)eik·x. We write

D̂(k) =
1
d

d∑
j=1
cos kj, k = (k1, . . . , kd) ∈ [−π, π]d (2.7)

for the Fourier transform of the step distribution for the simple random walk on Zd

taking nearest-neighbour steps with equal probabilities. The two-point function of the
mean-field model is then given by the following theorem.

Theorem 2.2 For d ≥ 1, k ∈ [−π, π]d, |z| < 1, |ζ| ≤ 1,

t̂
(2)
z,ζ(k) =

t(1)z

1− t
(1)
z ζD̂(k)

. (2.8)

The denominator of the right side vanishes for z = ζ = 1, k = 0, and in that case
t̂
(2)
1,1(0) = ∞.
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Figure 1: The shapes for m = 2, 3, 4, and examples of the 7!! = 7 · 5 · 3 = 105 shapes for
m = 6. The shapes’ edge labellings are arbitrary but fixed.

Apart from unimportant factors, the one-point and two-point functions given above
are the same as those of the mean-field models of [9] and [5]. The two-point function given
in Theorem 2.2 can be interpreted as the two-point function of simple random walk with
an activity ζ associated to each step of the walk and an activity t(1)z associated to each
site. We may therefore regard an embedded tree containing 0 and x as corresponding to
a simple random walk path from 0 to x with a one-point function attached at each site
along the way.

In order to definem-point functions, form ≥ 3, we first introduce the notion of shape.
We start with an abstract m-skeleton, which is a tree having m unlabelled external
vertices of degree 1 and m − 2 unlabelled internal vertices of degree 3, and no other
vertices. An m-shape is a tree having m labelled external vertices of degree 1 and m− 2
unlabelled internal vertices of degree 3, and no other vertices, i.e., an m-shape is a
labelling of an m-skeleton’s external vertices by the labels 0, 1, . . . ,m − 1. When m is
clear from the context, we will refer to an m-shape simply as a shape. For notational
convenience, we associate to each m-shape an arbitrary labelling of its 2m − 3 edges,
with labels 1, . . . , 2m − 3. This arbitrary choice of edge labelling is fixed once and for
all. Thus an m-shape σ is a labelling of an m-skeleton’s external vertices together with
a corresponding specification of edge labels. Let Σm denote the set of m-shapes. There
is a unique shape for m = 2 and m = 3, and (2m − 5)!! distinct shapes for m ≥ 4 (see
[13, (5.96)] for a proof). In this notation, (−1)!! = 1 and (2j + 1)!! = (2j + 1)(2j − 1)!!
for j ≥ 0.

Next, we need the notion of backbone. We write ı̄ = (i1, . . . , im−1) for a sequence of
m − 1 vertices ij in a tree T (possibly with repetition), and define the backbone B of
(T, ı̄) to be the subtree of T spanning 0, i1, . . . , im−1. There is an induced labelling of
the external vertices of the backbone, in which vertex il is labelled l. Ignoring vertices
of degree 2 in B, this backbone is equivalent to a shape σB or to its modification by
contraction of one or more edges to a point. (In the latter case, as we will discuss further
in Section 4.2, the choice of σB may not be unique.) The edge labels of σB induce labels
on the paths in T comprising the backbone B.

Finally, we need a notion of compatibility. Let �s = (s1, . . . , s2m−3) for nonnegative
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integers sj, and �y = (y1, . . . , y2m−3) for yj ∈ Zd. Note that we distinguish m − 1 and
2m − 3 component vectors by using ·̄ and �· respectively. Restoring vertices of degree 2
in B, let bj denote the length of the backbone path corresponding to edge j of σB, with
bj = 0 for any contracted edge. We say that (T, ϕ, ı̄) is compatible with (σ; �y,�s) if σB

can be chosen such that σB = σ, if bj = sj for all edges j of σ, and if the image under
ϕ of the backbone path (oriented away from the root) corresponding to j undergoes the
displacement yj for all edges j of σ. Note that �y determines the image under ϕ of all
2m − 2 vertices of σB.

Now we define the m-point function (with m − 2 additional internal vertices) by

t(m)
n (σ; �y,�s) =

∑
(T,ϕ):|T |=n

P(T, ϕ)
∑

i1,...,im−1∈T

I[(T, ϕ, ı̄) is compatible with (σ; �y,�s)]. (2.9)

We also define

t
(m)
z,�ζ
(σ; �y) =

∞∑
n=0

∞∑
s1,...,s2m−3=0

t(m)
n (σ; �y,�s)zn

2m−3∏
j=1

ζ
sj

j , (2.10)

and the Fourier transform

f̂(�k) =
∑

y1,...,y2m−3∈Zd

f(�y)ei�k·�y, (2.11)

where �k · �y = ∑2m−3
j=1 kj · yj.

Theorem 2.3 For d ≥ 1, m ≥ 2, kj ∈ [−π, π]d, |z| < 1, |ζj| ≤ 1,

t̂
(m)
z,�ζ
(σ;�k) =

(
t(1)z

)−2(m−2) 2m−3∏
j=1

t̂
(2)
z,ζj
(kj) = t(1)z

2m−3∏
j=1

1

1− t
(1)
z ζjD̂(kj)

. (2.12)

Theorem 2.3 gives the same m-point function as the self-consistent mean-field model
of [9], apart from the factor

(
t(1)z

)−2(m−2)
that was absent in [9]. This factor has a natural

combinatorial interpretation. Namely, it “corrects” for an overcounting of the branch at
each of the m−2 internal shape vertices, as this branch is counted in ∏2m−3

j=1 t̂
(2)
z,ζj
(kj) once

by each of the three two-point functions incident at that vertex. This factor is equal to
1 at the critical point z = 1, and does not play a role in the leading scaling behaviour.

We now turn to the scaling limit of the mean-field model. A discussion of the scaling
limit requires a digression concerning super-processes, a topic that has received consid-
erable attention in probability theory [8, 21]. The most basic example of a super-process
is super-Brownian motion, which arises as the scaling limit of branching random walk.
Super-Brownian motion is a continuous-time stochastic process in which the state space
is the set of finite measures on Rd. It dies out in finite time, and its total mass integrated
over its entire history is a random variable. Integrated super-Brownian excursion (ISE)
is the random probability measure on Rd obtained by conditioning this total mass, inte-
grated over time, to be 1. We will consider the scaling limit of mean-field lattice trees
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conditioned to have mass n. This is the same as conditioning on the mass of branching
random walk, and it is to be expected that the scaling limit will therefore be ISE. We
will prove that this is indeed the case. In fact, as we will discuss in Section 4, our proof
provides an elementary construction of ISE.

To state our result, we writeM1(Ṙd) for the compact space of probability measures on
the one-point compactification Ṙd of Rd, equipped with the topology of weak convergence
(see [4]). We regard the set M1(Rd) of probability measures on Rd as embedded in
M1(Ṙd). ISE is a certain probability measure µISE on M1(Rd), i.e., it is the law of a
random probability measure on Rd. Mean-field lattice trees arising from embeddings of
trees T with |T | = n induce a measure µn on M1(Rd), as follows. Given a tree T with
|T | = n, and an embedding ϕ of T , let µ(T, ϕ) be the probability measure on Rd which
assigns mass n−1 ∑

i∈T I[ϕ(i) = x] (x ∈ Zd) to points xd1/2n−1/4 in Rd. The measure µn

on M1(Rd) is then the measure that assigns mass P((T, ϕ)| |T | = n) to each µ(T, ϕ) with
|T | = n. In other words, we obtain a random probability measure on Rd by assigning
equal mass to each of the n embedded vertices of a rescaled version of an embedded tree.

Theorem 2.4 For d ≥ 1, as measures on M1(Ṙd), µn converges weakly to µISE.

The weak convergence in Theorem 2.4 is the assertion that for any continuous function
F onM1(Ṙd), limn→∞

∫
M1(Ṙd) F (ν)dµn(ν) =

∫
M1(Ṙd) F (ν)dµISE(ν). A result along the lines

of Theorem 2.4 was already sketched in [2].
Next, we introduce a model of weakly self-avoiding lattice trees. For β ≥ 0, let

Zβ
n =

∑
(T,ϕ):|T |=n

P(T, ϕ) exp
[
−1

2β
∑

i,j∈T :i�=j I[ϕ(i) = ϕ(j)]
]
, (2.13)

and, for |T | = n, define

Q
β
n(T, ϕ) =

1
Zβ

n

P(T, ϕ) exp
[
−1

2β
∑

i,j∈T :i�=j I[ϕ(i) = ϕ(j)]
]
. (2.14)

The measure Qβ
n on the set of embedded n-site trees rewards self-avoidance by giving

a penalty e−β to each self-intersection of an embedded tree. For β = 0, Q0
n is just our

mean-field model conditional on |T | = n. The next theorem shows that the weakly
self-avoiding lattice trees interpolate between the mean-field model and lattice trees, in
the sense that Q∞

n corresponds to the uniform measure on the set of n-site lattice trees
containing the origin. In the statement of the theorem, 'n denotes the number of n-site
lattice trees containing the origin. Given an injective ϕ and a lattice tree L, we abuse
notation by writing ϕ(T ) = L if ϕ(T ) consists of the sites in L and the edges in T are
mapped to the bonds in L.

Theorem 2.5 For d ≥ 1 and n ≥ 0, limβ→∞ Qβ
n(T, ϕ) = 0 if ϕ is not injective. Given

an n-site lattice tree L, limβ→∞
∑

(T,ϕ):ϕ(T )=L Qβ
n(T, ϕ) = '−1

n .

The remainder of this paper is organised as follows. In Section 3, we prove Theo-
rems 2.1, 2.2 and 2.3. In Section 4, we prove Theorem 2.4 and provide an additional
statement concerning convergence of backbones. Finally, in Section 5, we prove Theo-
rem 2.5.
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3 The m-point functions

In this section, we prove Theorems 2.1, 2.2 and 2.3. To indicate the role of the Poisson
distribution, we begin the proofs of Theorems 2.1 and 2.2 with a general critical offspring
distribution pm = P(ξ = m) and then specialize to the critical Poisson distribution
pm = 1/(em!). For the general offspring distribution, (2.2) becomes

P(T, ϕ) =
1

(2d)|T |−1 P(T ) =
1

(2d)|T |−1

∏
i∈T

pξi
. (3.1)

We introduce the generating function P (w) =
∑∞

m=0 pmwm. Note that P (1) = 1, and
since the offspring distribution is assumed to be critical, P ′(1) = 1. For the critical
Poisson distribution, P (w) = ew−1. We will make use of the fact that the Poisson
distribution has moments of all orders, but we expect that a more careful analysis can
be used to prove that mean-field lattice trees with a critical offspring distribution having
finite variance will converge to ISE in the scaling limit. A general result of this form is
stated in [2]. It would be of interest to prove this using our methods, but we will prove
Theorem 2.4 in Section 4 only for the Poisson distribution.

For the proofs, it will be helpful to introduce generating functions for planted plane
trees (in the terminology of [19]). A planted plane tree is a plane tree for which the root
has exactly one offspring. Generating functions for planted plane trees will be denoted
by r rather than t, and, by convention, will not include the factor zp1 associated with the
root having exactly one offspring. Thus the one-point function for planted plane trees is
given simply by

r(1)
z = t(1)z . (3.2)

The one-point function on the right side of (3.2) arises as the generating function of the
root’s child and its progeny.
Proof of Theorem 2.1. Conditioning on the number of offspring of the root gives

t(1)z =
∞∑

m=0
pmz

(
r(1)
z

)m
= zP (t(1)z ). (3.3)

For the Poisson distribution, this implies t(1)z = zet
(1)
z −1, which gives (2.5). The Taylor

expansion then follows from Lagrange’s inversion formula (see, e.g., [19, p.23]). ✷

We define the two-point function r
(2)
z,ζ(x) for planted plane trees to be the restriction

of the summation in (2.4) to trees T for which the root has a single offspring, with the
factor ze−1 associated with the root omitted. Then

r̂
(2)
z,ζ(k) = ζD̂(k)t̂(2)z,ζ(k). (3.4)

Proof of Theorem 2.2. The Fourier transform of the two-point function is given by

t̂
(2)
z,ζ(k) =

∑
(T,ϕ)

∑
j∈T

P(T, ϕ)z|T |eik·ϕ(j)ζ |j|. (3.5)
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Figure 2: The 23 = 8 subshapes for m = 3.

The contribution to the right side arising when j is the root is simply t(1)z . When j is
not the root, we condition on the number of offspring of the root. With (3.2), this gives

t̂
(2)
z,ζ(k) = t(1)z +

∞∑
m=1

pmzm
(
r(1)
z

)m−1
r̂
(2)
z,ζ(k) = t(1)z + zP ′(t(1)z )r̂

(2)
z,ζ(k). (3.6)

In the middle of (3.6), the factor z takes care of the factor associated with the root on
the left side, and the factor m corresponds to choosing which of the root’s offspring is
an ancestor of the vertex j. By (3.4), this gives

t̂
(2)
z,ζ(k) =

t(1)z

1− zP ′(t(1)z )ζD̂(k)
. (3.7)

Specializing now to the Poisson distribution, we have zP ′(t(1)z ) = zP (t(1)z ) = t(1)z , which
gives the desired result. Note that t̂(2)1,1(0) =

∑
(T,ϕ)

∑
i∈T P(T, ϕ) =

∑
n nP(|T | = n) = ∞,

by (2.6) and Stirling’s formula. ✷

For m ≥ 3, we introduce the notion of a subshape of a shape σ ∈ Σm. A subshape of
σ ∈ Σm is an abstract tree obtained by contracting a subset of the edges of σ to a point.
This can lead to multiply-labelled vertices, and contracted edges lose their labelling. The
subshapes for m = 3 are shown in Figure 2. In general, there are 22m−3 subshapes of a
shape σ ∈ Σm. We denote subshapes by λ and write λ ≤ σ when λ is a subshape of σ.
We denote the set of edge labels of λ by e(λ).

Proof of Theorem 2.3. For the Poisson offspring distribution, (3.6) gives t̂
(2)
z,ζ(k) =

t(1)
z [1 + r̂

(2)
z,ζ(k)]. Therefore, it suffices to show that

t̂
(m)
z,�ζ
(σ;�k) = t(1)z

2m−3∏
j=1

(
1 + r̂

(2)
z,ζj
(kj)

)
. (3.8)

Expanding the product, the desired identity (3.8) is equivalent to

t̂
(m)
z,�ζ
(σ;�k) = t(1)z

∑
λ≤σ

∏
j∈e(λ)

r̂
(2)
z,ζj
(kj). (3.9)

Given a subshape λ, we let t(λ) denote the result of restricting the summation in
(2.10) to sj = 0 for j �∈e(λ) and sj > 0 for j ∈ e(λ). Its Fourier transform will be
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denoted t̂(λ). We leave implicit the dependence on the variables of �k and �ζ, as these are
determined by the edge labels of λ. Then

t̂
(m)
z,�ζ
(σ;�k) =

∑
λ≤σ

t̂(λ). (3.10)

Thus it suffices to show that

t̂(λ) = t(1)z

∏
j∈e(λ)

r̂
(2)
z,ζj
(kj). (3.11)

We will use π to denote a subshape for which the root has exactly one offspring,
and write r̂(π) = (zp1)−1t̂(π). As before, the factor (zp1)−1 serves to cancel the factor
zp1 associated to the root in t̂(π). We denote by π̄ the subshape obtained from π by
contracting the edge incident on the root. We claim that

r̂(π) = r̂
(2)
z,ζ(k)

1

t
(1)
z

t̂(π̄), (3.12)

where ζ and k bear the subscript of the label of the edge incident on the root of π. The
identity (3.12) will be proved below. Given a subshape λ having at least one edge, let
π1, . . . , πb be the branches emerging from its root. For a general offspring distribution,
as in (3.6),

t̂(λ) =
∞∑

j=b

zpmj(j − 1) · · · (j − b+ 1)
(
r(1)
z

)j−b
b∏

a=1
r̂(πa) = zP (b)(t(1)z )

b∏
a=1

r̂(πa). (3.13)

For the Poisson distribution, zP (b)(t(1)z ) = t(1)z , independently of b. This leads to the sim-
ple result t̂(λ) = t(1)z

∏b
a=1 r̂(πa), and the desired result (3.11) then follows by substituting

(3.12) into this identity recursively. For general offspring distributions, degree-dependent
vertex factors will arise in (3.11).

It remains to prove (3.12). We do this by conditioning on whether the length of the
tree’s backbone path, corresponding to the edge of π incident on the root, is equal to or
greater than 1. This leads, by conditioning as in (3.6), to

r̂(π) = ζD̂(k)t̂(π̄) + ζD̂(k)t(1)z r̂(π). (3.14)

Solving and using (2.8) and (3.4), we obtain

r̂(π) =
ζD̂(k)

1− ζD̂(k)t(1)z

t̂(π̄) = r̂
(2)
z,ζ(k)

1

t
(1)
z

t̂(π̄). (3.15)

✷
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4 Convergence to ISE

In Sections 4.1 and 4.2, we prove Theorem 2.4. Section 4.3 contains an additional state-
ment concerning convergence of backbones. As we will explain at the end of Section 4.1,
our proof of Theorem 2.4 provides a construction of the measure µISE.

4.1 Moment measures

To prove weak convergence of probability measures on M1(Ṙd), it is sufficient to prove
weak convergence of the moment measures [8, Lemma 2.4.1(b)]. The lth moment measure
M (l) of a probability measure µ on M1(Ṙd) is the probability measure on (Ṙd)l defined,
for l ≥ 1, by dM (l)(x1, . . . , xl) =

∫
M1(Ṙd) dµ(ν)dν(x1) · · · dν(xl). To prove weak conver-

gence of the moment measures, it is sufficient to prove pointwise convergence of their
characteristic functions. We begin by introducing the ISE moment measures.

Let m ≥ 2. Given a shape σ ∈ Σm, we associate to edge j (oriented away from vertex
0) a nonnegative real number tj and a vector yj in Rd. Writing �y = (y1, . . . , y2m−3) and
�t = (t1, . . . , t2m−3), we define

a(m)(σ; �y,�t) =


2m−3∑

j=1
tj


 e−(

∑2m−3
j=1 tj)2/2

2m−3∏
j=1

1
(2πtj)d/2 e

−y2
j /2tj (4.1)

and
A(m)(σ; �y) =

∫ ∞

0
dt1 · · ·

∫ ∞

0
dt2m−3 a

(m)(σ; �y,�t). (4.2)

Then
∫

Rd(2m−3) A(m)(σ; �y)d�y = 1/(2m−5)!!, so the sum of this integral over shapes σ ∈ Σm

is equal to 1. Let �k ·�y = ∑2m−3
j=1 kj · yj, with each kj ∈ Rd. The Fourier integral transform

Â(m)(σ;�k) =
∫

Rd(2m−3) A(m)(σ; �y)ei�k·�yd�y is given by

Â(m)(σ;�k) =
∫ ∞

0
dt1 · · ·

∫ ∞

0
dt2m−3 â

(m)(σ;�k,�t), (4.3)

with

â(m)(σ;�k,�t) =


2m−3∑

j=1
tj


 e−(

∑2m−3
j=1 tj)2/2

2m−3∏
j=1

e−k2
j tj/2. (4.4)

The functions (4.1) and (4.2) are further discussed in [2] (see also [1, 9, 20, 23, 25]).
The lth moment measure M (l) for ISE can be written in terms of A(l+1), for l ≥ 1.

This is a deterministic measure which is absolutely continuous with respect to Lebesgue
measure on Rdl. The first moment measureM (1) has density A(2)(x). The second moment
measure M (2) has density

∫
A(3)(y, x1 − y, x2 − y)ddy. In general, the density of M (l) at

x1, . . . , xl, for l ≥ 3, is given by integrating A(l+1)(σ, �y) over Rd(l−1) and then summing
over the (2l − 3)!! shapes σ. Here �y consists of integration variables yj corresponding
to the edges j on paths from vertex 0 to vertices of degree 3 in σ, and the other ya

are fixed by the requirement that each external vertex xi is given by the sum of the ye
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over the edges e connecting vertices 0 and i in σ. Thus, the integration corresponds
to integrating over the l − 1 internal vertices, with the l + 1 external vertices fixed at
0, x1, . . . , xl. For example, the contribution to the density of M (3) due to σ1 of Figure 1
is

∫
A(4)(σ1; y1, x1 − y1, y3, x2 − y1 − y3, x3 − y1 − y3)ddy1d

dy3.
The characteristic function ofM (l) can be written in terms of the functions (4.3). For

l = 1, M̂ (1)(k) = Â(2)(k). Similarly, for l = 2, there is a single shape and M̂ (2)(k1, k2) =∫
A(3)(y, x1 − y, x2 − y)eik1·x1eik2·x2ddyddx1d

dx2 = Â(3)(k1 + k2, k1, k2). For l ≥ 3, there is
more than one shape, and

M̂ (l)(k̄) =
∑

σ∈Σl+1

Â(l+1)(σ;�k) (4.5)

with each of the 2m−3 components of �k given by a specific linear combination (depending
on σ) of the l components of k̄ = (k1, . . . , kl). For example, for l = 3 and the shape σ1

of Figure 1, (σ1;�k) = (σ1; k1 + k2 + k3, k1, k2 + k3, k2, k3).
Next, we introduce the moment measures M (l)

n of the mean-field lattice trees. For
l ≥ 1, let

s(l+1)
n (x1, . . . , xl) =

∑
(T,ϕ):|T |=n

P(T, ϕ)
∑

i1,...,il∈T

l∏
j=1

I[ϕ(ij) = xj]. (4.6)

Recall the definition of µn above Theorem 2.4. Writing x̄ = (x1, . . . , xl), the lth moment
measure M (l)

n of µn is the deterministic probability measure on Rdl which places mass
[nlP(|T | = n)]−1s(l+1)

n (x̄) at x̄d1/2n−1/4, for x̄ ∈ Zdl. The characteristic function M̂ (l)
n (k)

of M (l)
n is given by

M̂ (l)
n (k̄) =

1
nlP(|T | = n)

ŝ(l+1)
n (k̄d1/2n−1/4), (4.7)

where k̄ · x̄ = k1 · x1 + · · ·+ kl · xl and

f̂(k̄) =
∑
x̄

f(x̄)eik̄·x̄. (4.8)

To prove Theorem 2.4, it suffices to prove that

lim
n→∞ M̂ (l)

n (k̄) = M̂ (l)(k̄), (l ≥ 1). (4.9)

In fact, proving (4.9) provides a construction of ISE, as we now explain. Because
M1(Ṙd) is compact, some subsequence of the sequence µn converges to a limit µ. Given
(4.9), it follows that µ has moments M (l), which uniquely characterises the measure µ.
But it then follows, again from (4.9), that µn must converge to µ. Thus it follows from
(4.9) that a limiting measure µ exists, and this provides a construction of µISE = µ.
Initially, this constructs µISE as a measure on M1(Ṙd). However, since the moment
measures M (l) have no mass at the point at infinity, µISE is in fact a measure on M1(Rd).
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4.2 Convergence of moment measures

In this section, we complete the proof of Theorem 2.4 by proving (4.9). Define t(m)
n (σ; �y),

for m ≥ 2, by

t
(m)
z,�1
(σ; �y) =

∞∑
n=1

t(m)
n (σ; �y)zn. (4.10)

For m = 2, 3, there is only one shape and, suppressing σ in the notation, we have

s(2)
n (x) = t(2)n (x), s(3)

n (x1, x2) =
∑
y

t(3)n (y, x1 − y, x2 − y). (4.11)

The relation between s(m)
n and t(m)

n , for m ≥ 4, will be discussed below. The basic
ingredient of the proof of (4.9) is the following lemma. In its statement, the notation
f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1.

Lemma 4.1 For m ≥ 2, kj ∈ Rd, and n → ∞,

t̂(m)
n (σ;�kd1/2n−1/4) ∼ 1√

2π
nm−5/2Â(m)(σ;�k). (4.12)

Proof. By Cauchy’s theorem,

t̂(m)
n (σ;�k) =

1
2πi

∮
t̂
(m)
z,�1
(σ;�k)

dz

zn+1 , (4.13)

where the integral is around a circle of radius less than 1, centred at the origin. By
Theorem 2.3,

t̂
(m)
z,�1
(σ;�k) = t(1)z

2m−3∏
j=1

1

1− t
(1)
z D̂(kj)

. (4.14)

By Taylor’s theorem,

D̂(k) = 1− k2

2d
+O(k4), (4.15)

as k → 0. Also, using (2.5) it can be shown that

t(1)z = 1 +O(|1− z|1/2) and t(1)z = 1−
√
2(1− z) +O(|1− z|), (4.16)

with the error terms uniform in C\[1,∞). Substituting (4.15)–(4.16) into (4.14) gives

t̂
(m)
z,�1
(σ;�kd1/2n−1/4) = [1 +O(|1− z|1/2)]

2m−3∏
j=1

2
n−1/2k2

j + 23/2
√
1− z +O(n−1k4

j + |1− z|) .
(4.17)

It is then an exercise in contour integration, as in [9, Section 4.2], to deform the contour
in (4.13) to the branch cut [1,∞) of the square root to conclude (4.12). ✷
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By Stirling’s formula and (2.6),

P(|T | = n) = (2π)−1/2n−3/2[1 +O(n−1)]. (4.18)

Convergence of the first and second moments, i.e., (4.9) for l = 1, 2, then follows imme-
diately from (4.11) and Lemma 4.1. The higher moments require further discussion.

Before considering the third and higher moments, we note that the above n−3/2

behaviour is associated more generally with the size distribution of Galton–Watson trees
whose offspring distribution has finite variance (see [1, Proposition 24]). This behaviour
is associated with the

√
1− z appearing in (4.17) and is thus closely connected with the

occurrence of ISE as the scaling limit. This is consistent with the statement in [2] that
the scaling limit is ISE for more general offspring distributions having finite variance.
However, we are treating only the Poisson case here.

We will now consider the higher moments. For l ≥ 3, Lemma 4.1 implies that

lim
n→∞

∑
σ∈Σl+1

t̂(l+1)
n (σ;�kd1/2n−1/4)

nlP(|T | = n)
=

∑
σ∈Σl+1

Â(l+1)(σ;�k). (4.19)

If it were the case that ŝ(l+1)
n (k̄) were equal to

∑
σ∈Σl+1

t̂(l+1)
n (σ;�k), convergence of all

moments would be immediate. But ŝ(l+1)
n (k̄) is not equal to

∑
σ∈Σl+1

t̂(l+1)
n (σ;�k), because

it is not the case that s(m)
n (x̄) is equal to the sum of t(m)

n (σ; �y) over all (σ; �y) that are
compatible with x̄ in the sense that the xi are given by the sum of the yj as prescribed by
the shape σ. The discrepancy arises from degenerate trees whose backbone corresponds
to a strict subshape with at least one shape edge contracted.

For example, there is a unique tree T having just two vertices, i.e., the tree in
which the root has one child and there are no further descendants. Thus s(4)

2 (0, 0, e1) =
(2d)−1e−2, where e1 = (1, 0, . . . , 0). However, this mean-field lattice tree containing the
sites x1 = x2 = 0, x3 = e1, contributes (2d)−1e−2 to each of three choices of t(4)2 (σ; �y),
namely to t

(4)
2 (σ1; 0, 0, 0, 0, e1), t

(4)
2 (σ2; 0, 0, 0, 0, e1), and t

(4)
2 (σ3; 0, e1, 0, 0, 0); see Figure 1.

Thus it is not the case, in general, that s(l+1)
n (x̄) is given by the sum of t(l+1)

n (σ; �y) over
all (σ; �y) compatible with x̄.

In view of (4.7), (4.12), (4.18) and (4.19), to prove convergence of the lth moments,
for l ≥ 3, it suffices to show that

∣∣∣ŝ(l+1)
n (k̄)− ∑

σ∈Σl+1

t̂(l+1)
n (σ;�k)

∣∣∣ ≤ O(nl−2), (4.20)

where �k is determined by k̄ and σ as in (4.5). This difference then constitutes an error
term, down by n−1/2 compared to ŝ(l+1)

n (k̄), by Lemma 4.1. The remainder of the proof
is devoted to obtaining (4.20).

Let l ≥ 3, and suppose T � i1, . . . , il. If the backbone of (T, ı̄) corresponds to a full
(l + 1)-skeleton with no contracted edges, then ı̄ determines a labelling of an (l + 1)-
skeleton and therefore uniquely determines an (l+1)-shape. Whether or not the backbone
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corresponds to a full (l + 1)-skeleton, given a shape consistent with the backbone, the
2l−1 displacements �y (possibly zero) consistent with that shape are uniquely determined
by an embedding of T . Degeneracy of (σ; �y) thus requires the backbone to correspond to
a strict subshape, and in that case, the maximum possible number of compatible choices
for (σ; �y) is the number of shapes, which is (2l − 3)!!.

We now write s(l+1)
n (x̄) = u(l+1)

n (x̄) + e(l+1)
n (x̄), where un comprises the contributions

to sn from full (l+1)-skeletons and en comprises the contributions to sn from degenerate
skeletons. It follows from the above discussion that, for l ≥ 3,

∣∣∣ŝ(l+1)
n (k̄)− ∑

σ∈Σl+1

t̂(l+1)
n (σ;�k)

∣∣∣ ≤ [(2l − 3)!!− 1]ê(l+1)
n (0̄). (4.21)

It suffices to argue that the right side of (4.21) is at most O(nl−2). For this, we
introduce the generating function E(l+1)(z) =

∑
n ê(l+1)

n (0̄)zn. This is a sum of terms of
the form t̂(λ), where λ is a strict subshape and all kj = 0, ζj = 1. By (3.11), (3.4) and
(4.17), it follows that |E(l+1)(z)| ≤ O(|1−z|−(l−1)) uniformly in |z| < 1, where the power
l− 1 = 1

2(2l− 2) arises because at least one of the 2l− 1 backbone paths is trivial. Then
[10, Lemma 3.2(i)] or [12, Theorem 4] implies the desired bound ê(l+1)

n (0̄) ≤ O(nl−2).
This completes the proof of Theorem 2.4.

4.3 Backbone convergence

The following lemma can be proved exactly as in [9, Section 4.2], so we omit the proof
here.

Lemma 4.2 For m ≥ 2, �u = (u1, . . . , u2m−3) with uj ∈ [0,∞), �k = (k1, . . . , k2m−3) with
kj ∈ Rd, and for n → ∞,

t̂(m)
n (σ;�kd1/2n−1/4, ��un1/2�) ∼ 1√

2π
1
n
â(m)(σ;�k, �u). (4.22)

In (4.22), the backbone scaling is n1/2. Since space is being scaled as n1/4, this is Brow-
nian scaling. The lemma provides an interpretation of the variables uj in â(m)(σ;�k, �u) as
rescaled Brownian time variables along backbone paths.

5 Weakly self-avoiding lattice trees

Proof of Theorem 2.5. The first statement of the theorem, for non-injective ϕ, follows
immediately from the definition of Qβ

n.
For the second statement of the theorem, let Ln denote the set of n-site lattice trees

containing the origin. This has cardinality 'n. We will prove that
∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) = (2d)−(n−1)e−n (5.1)
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for every L ∈ Ln. The important point for our proof is that the right side is the same
for all L ∈ Ln, and its precise value plays no role. In fact, given (5.1), we then have

Z∞
n =

∑
L∈Ln

∑
(T,ϕ):ϕ(T )=L

P(T, ϕ) = 'n(2d)−(n−1)e−n, (5.2)

which gives the desired result that

∑
(T,ϕ):ϕ(T )=L

Q
∞
n (T, ϕ) =

1
Z∞

n

∑
(T,ϕ):ϕ(T )=L

P(T, ϕ) =
1
'n

. (5.3)

To prove (5.1), we first note that by (2.1) and (2.2),

∑
(T,ϕ):ϕ(T )=L

P(T, ϕ) = (2d)−(n−1)e−n
∑

(T,ϕ):ϕ(T )=L

∏
i∈T

1
ξi!

, (5.4)

where ξi is the number of offspring of vertex i. It suffices to show that

∑
(T,ϕ):ϕ(T )=L

∏
i∈T

1
ξi!
= 1. (5.5)

Let b0 be the degree of 0 in L, and given nonzero x ∈ L, let bx be the degree of x in L
minus 1. Then the set {bx : x ∈ L} must be equal to the set of ξi for any T that can be
mapped to L. Defining ν(L) = #{(T, ϕ) : ϕ(T ) = L}, (5.5) is therefore equivalent to

ν(L) =
∏
x∈L

bx!. (5.6)

We prove (5.6) by induction on the number N of generations of L. By this, we mean
the length of the longest self-avoiding path in L, starting from the origin. The identity
(5.6) clearly holds if N = 0. Our induction hypothesis is that (5.6) holds if there are
N −1 or fewer generations. Suppose L has N generations, and let L1, . . . , Lb0 denote the
lattice trees resulting from deleting from L all bonds incident on the origin. We regard
each La as rooted at the neighbour of the origin in the corresponding deleted bond. It
suffices to show that ν(L) = b0!

∏b0
a=1 ν(La), since each La has fewer than N generations.

To prove this, we note that each mean-field configuration (T, ϕ) with ϕ(T ) = L
induces a set of (Ta, ϕa) such that ϕa(Ta) = La. This correspondence is b0! to 1, since
(T, ϕ) is determined by the set of (Ta, ϕa), up to permutation of the branches of T at its
root. This proves ν(L) = b0!

∏b0
a=1 ν(La). ✷

For a general offspring distribution, the above proof gives

∑
(T,ϕ):ϕ(T )=L

Q
∞
n (T, ϕ) =

∏
x∈L pbx bx!∑

L∈Ln

∏
x∈L pbx bx!

, (5.7)

which associates degree-dependent weights to each vertex in a lattice tree.
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[24] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, (1993).
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