A “Fifteen Puzzle” in Fran

Conal Elliott

October, 1998

Technical Report
MSR-TR-98-54

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

A “Fifteen Puzzle” in Fran

Conal Elliott

http://ww. research. m crosoft.conf ~conal
Microsoft Research
October, 1998

1. Introduction

This note describes a Fr an implementation of the classic “Fifteen Puzzle”, and in doing so conveys by example the Fran
style of programming interactive behavior [3][1]. See [2] for more discussion of this style and a comparison with more
conventional programming styles, using the example of an interactive curve editor.

It is a good design practice is to decompose a problem into simpler pieces, solve the pieces independently, and compose the
solutions. This practice, which is the essence of modularity, makes the tasks of programming and maintenance more
manageable mentally, and sometimes gives rise to reusable components. As this note demonstrates, Fran promotes
modularity by providing a high-level vocabulary in which to express the data exchanged by components of the overall
solution. Fran’s host language, Haskell [5][7], provides complementary support for modularity, through polymorphism,
higher-order functions, and laziness [6].

2. The Fifteen Puzzle

The Fifteen Puzzle, shown in Figure 1, was invented 121 21141 6 1 2 3
Sam Loyd sometime around 1870. The object of {
puzzle is to move the pieces around by sliding until th 519l 3|13 4lslsel7

are in order, with the blank space being in the upper-ri
corner. If a piece is adjacent to the blank space, it may

moved there. For instance, in the configuration on 1011 8 8 9 110]11
left half of the figure, the “1” piece may be moved ea

the “3” piece south, the “8” west, or the “15” north. 7111)115] 4 1211314115
one of these moves is made, then the blank spot ang <ot

moved piece trade locations. (example) finish

It turns out that exactly half of the possible initig Figure 1. The Fifteen Puzzle

configurations are solvable. Sam Loyd, being a practi
joker and genius puzzler, offered $1000 to the first person to solve the puzzle from a configuration that was all ordered but
with the “14” and “15” swapped. Loyd never had to pay, because this configuration is unsolvable [4].

3. Functional reactive animation

The Fifteen Puzzle, and indeed any interactive program, may be seen as having the overall structure shown in Figure 2. The
details of the “input stream” and the “display stream” are specific to a given operating/windows system. The input stream
contains event structures containing a integer to denote the type of event (button click, mouse motion, key press, window
resize, etc.), together with a few fixed fields indicating mouse position, which key was pressed, etc. Under Windows®, the
display stream consists of calls to GDI and DirectX (perhaps via a higher-level library).

Fran simplifies construction of interactive applications by
providing higher-level abstractions to input and display. As
illustrated in Figure 3, the box labeled “application” of
Figure 2 is decomposed into three components, logic

running in parallel. user
“Input packaging” converts the raw input stream into

higher-level, operating-system-independent data type ca input stream display stream
“User ”, defined by Frart. TheUser type separates the ra\
input stream into several independent, strongly typed ey
streams for more convenient use, and provides tempor
continuous “behaviors” for quantities like mouse and sty application
positions and window size.

“Display” converts from a high-level ‘mageB” value into a
stream of display commands that displays it. TihegeB
type (for “image behavior”) represents a time-varying image
(or “animation”), as a self-contained first-class value.

Figure 2. I nteractive application

Between input packaging and display, lies the interactive animation itself, which maps tfi®en avalue to an mageB
value.

— application —l

display
stream

input input

stream packaging [S€r—* anim —lmageB» display

Figure 3. Fran application

A benefit of decomposing the interactive application into these three components is that the first and third pieces are
independent of a particular application, and so are provided by Fran. The application writer can then focus his or her effort
on the content of the application, rather than details of input capture and display generation. Note also that the remaining
component requires no operating-system-specific programming.

4. User interface vs. model

The decomposition in the previous section is provided by Fran. Another generally applicable decomposition may be applied
to the interactive animation component:

e conversion of user input into “abstract input”;
e an “interactive model” that maps abstract input to abstract output; and
e visualization of the abstract output over time, i.e., conversion into a 2D or 3D animation, possibly with sound

To apply this general decomposition, which may be termed “user interface vs. model”, we first need to identify the types of
the abstract input and output. In the case of the Fifteen Puzzle, we take as abstract input an event indicating a desired
movement directiof.(Fran events are streams of “occurrences”, each of which is a time-stamped value.) In Fran, this type is
called ‘Event Dir”, meaning an event each of whose occurrences contains a value &f typ&heDi r type is defined

for this particular application. It is a simple enumerated type containing the four EakiesWést , Nor t h, andSout h.

! The ‘User ” type is somewhat misnamed, since it represents only the input coming from the user into an interactive animation.

2 This definition of abstract input is not the only possibility. An alternative is a location-valued event telling what.to move

For the abstract output, we will use a list of time-varying puzzle piece “locations”. This type is WritieoB] ", where
LocB is a time-varying puzzle piece location, and the brackets indicate a list. The static (non-time-varying) location type is
calledLoc, and is simply a pair of integers, indicating column and row numbers respectively.

Given these choices of abstract input and output types, the Ul-vs-model decomposition of the puzzle is shown in Figure 4.
Note again that the three components logically work concurrently. The corresponding Haskell code for this visual definition,
and all of those given below, are given in Appendix A.

Figure 4. Ul-vssmodel decomposition

5. Model decomposition

In the previous section, we broke the interactive animation into three components, which can then be implemented in any
order. We turn our attention first to the “model”, ipuzzl e.

Because the workings of the abstract puzzle are somewhat complicated, we would like to decompose it even further. This
time we have no generally applicable guidelines to offer. Considering the nature of the Fifteen Puzzle, however, suggests one
obvious breakdown:

* the movement of a single puzzle piece; and
* the combination of fifteen individual pieces into a whole puzzle

Unlike the Ul-vs-model decomposition, this one involves replication of one component. Another important difference is that
the two components feed information to each other, rather than being composed in a directed pipeline. The combination
clearly depends on the individual pieces. The reason for the reverse dependency is that each piece needs to know the locatio
of the blank spot, and that location is influenced by the actions of each piece.

Consider first the activity of a single puzzle piece, as
computed by a component calleshePi ece, whose
signature (inputs and outputs) are shown in Figure 5 move request Event Event
piece needs to know the blank’s location at the time d withblankloc ™ (Dir, Loc) I
move request in order to decide whether to move. 1
piece’s move request must then contain the blg
location in addition to the desired directibrit also

needs to know where to start. In order for the puzzlg Figure5. Single piece (Sgnature)
track the blank spot, each piece yields not only its tin
varying location, but also an event indicating when and from where the piece fnoved.

move

L from
onePi ece oc

start location Loc —» I LocB—s Piece

location

We can construct the input event need
for onePi ece by snapshotting the
location of the blank whenever : move
directional move request is made. Doing froms
requires a means of tracking the blank,

supplied by the componen
trackBl ank, whose signature is showr
in Figure 6.

blank

—[Event Loc] = trackBl ank |—LocB—+ location

Figure 6. Tracking the blank (signature)

3Thetype(Di r, Loc) meansthetypeof pairs(d, |), whered isadirectionand | isa (static) location.

* The “when” is implicitly part of all events, while the “from where” is explicit in the event type.

4

; —LocB
onePi ece | :
move | . start1l ——Loc [LocB] — piece
——— Event Dir / locations
request | Event (Dir, Loc)
| : Event Lgc |
snapshot -
| —»{ t rackBl ank |-LocBw . LocB |
| Event (Dir, Loc) |
| onePi ece |
| start15 ——Loc—» L Event Loc |

I_ [Event Loc]

Figure7. puzzl e decomposition

To congtruct the puzzle, we place t r ackBl ank into a feedback cycle with fifteen uses of onePi ece, as illustrated in
Figure 7. (The circular nodes containinf.“. .] " indicate list construction.)

6. One puzzle piece

The inner workings obnePi ece are shown in Figure 8. In order for a single piece to move around, it compares its own
location with the blank’s when asked to move. The blank location is part of the move request, thamick® ank and
snapshot (see Figure 7) but the piece’s own location must also be snapshotted. The resulting enriched event is “filtered”
to accept only legal moves (as judgeddiyhvbve, defined in Appendix A), and to remove the direction, which is no longer
useful. The result of filtering is an event containing the source and destination location, and indicating that the falece shou
move. This pair-valued move event is then “unzipped” into two separate events, containing just the source and just the
destination. The former is useddnePi ece’s result, and the latter is used to define the piece’s location sisEgper .

moverequest _ o . (Dir,Loc)— | _Event Loc—s MOvE

with blank | Event filterE| Event . from
| snapshot ((Dir,Loc), Loc) ™ okMove (Loc, Loc) unzi pE I

| |
star_t | Loc > | i
location | st epper LocB | , Piece
| |

’—> location
Event Loc

Figure 8. Activity of single puzzle piece

7. Tracking the blank

The blank-tracking component is shown in Figure 9. Whenever any piece fnovea location, the blank movde that
location. To track the location of the blank, therefore, we can use Fnay event operator to merge all of the move-from
events produced bgnePi ece, to form a single move-from event. From this combined event, which tells when and to
where the blank should move, and the starting location of the blank space, we usstrepp'er function to construct the
blank’s time-varying location. (In generalny E combines a list of events,..., €, into a single everd that occurs exactly
when any of the occurs.)

| bl ankSt art —LOCL |
| | blank

I stepper [—LOCB> | iion

ngr\:Z —I[Event Loc] —» anyE —Event Loc—» |

Figure9. Tracking the blank piece

8. User Interface

Now we have finished with the abstract puzzle, but it still needs a user interface. Conversion of user input to abstract input
(direction-valued events) is shown in Figure 10. Given a user value, puzzl el n first extracts the keyPr essAny event,

whose occurrence values contain a “virtual key code”. This key-press event is filtered thioegbia function, which

maps each key code to the corresponding direction, if any. The up-arrow key maps to north, right-arrow to east, etc. Key
presses other than the arrows yield no occurrence of the resulting direction-valued event.

I_____puzzleln______.

| :
concrete filterE , move
input Use|r—> keyPressAny —Event VKey- keyDi r —Ever|1t Di r—»requ s

Figure 10. Conversion to abstract input

Finally, visualization of abstract puzzle output (lists of location behaviors) is given in Figure 11. Every piece is given a
number image from the listum ms. That number image is moved to a position that corresponds to the piece’s location,
using the functiommoveTolLoc. (The asterisk in the figure is intended to indicate thmteToLoc is applied to each
corresponding location/image pair in the lists, and that the resulting images are collected into a result list.)

|______puzzlea/t______
piece
locations [LocB] * ! puzde
noveToLoc* (—[| mageB] & overs [—InageB» . "~
| vizualization
| [I mageB] |
| num ns |
Figure 11. Visualization of abstract output

9. Input variations

The Fifteen Puzzle is not much of a puzzle until the pieces are mixed up. We could ask a user to do the mixing up, but why
not simulate the user doing so? All we need is an another way to generate abstract input, i.e., an altepatizedbn,

having the same signature, but producing random moves. This new input component is shown in Figure 12. The resulting
direction-valued event occurs at each “behavior update”, a Fran event occurring roughly ten times per second. The (Haskell)
functionr andomtakes an integer range, in this case zero to three, and a “seed” integer, and produces an infinite stream of

6

pseudo-random integers. The Fran function wi t hEl em_ takes an event and a list, and replaces the event’s occurrence

values with values from the list. Finally, theEnumfunction is used to transform the integers to directions (bedusés
an enumeration type).

l——————_puzzleln.‘?and_________|
l E 0 |
—User —» updat eDone —Event — Event == o
| withEl em — int " toEnum —Event Dir—»
| (0.3) — |
random ——L1nt] |
| 77—
- - - -_ - __|
Figure 12. Random puzzle input

We could now replacpuzzl el n with puzzl el nRand in the definitionani m(Figure 4), and the resulting puzzle would

run entirely by itself, making random moves. Instead, we want the puzzle to switch to randomizing or normal mode
whenever the user presses tHedr space key, respectively. We achieve this behavior by yet another producer of abstract

input, shown in Figure 13. The changeMbde component, defined below, produces an event whose occurrence values are
direction-valued events, indicating to change input modes. The swi t cher function takes an initial mode and the “mode-
valued” event generated lmhangeMode, and produces a new direction event that starts out behaving like puzzleln and
changes whenevethangeMbde comes up with a new mode.

puzzleln Event Dir——» | .
| switcher |—Event Dir—»

—User 1 |

| Event (Event Dir)

| changeMode — |

Figure 13. Switching between random and nor mal input modes

The mode-changing component is shown in Figure 14. It uses a fuobtorPr essU that makes an event indicating when

a given character is pressed on the user’s keyboard. The occurrence values contain a “residual user”, which is passed throug!
puzzl el nRand if the 'r’ key is pressed, or throughuzzl el n if the space key is pressed. The two resulting events,
whose values are input modes (direction-valued events) are then merged into a single event of the same type, with Fran’s
“.| . " operator, which is the binary version of the functiony E, used in definingpuzzl e (Figure 7).

| s char PressU | _Event ==
User |puzzl el nRand|™

|
Event |
| (Event Dir)

_ N Event |
, A T (event DinT”

| Event |

N — (Event Dir) |

Event ==>
| charPressU — puzzl el n |

Figure 14. Input mode change

10.Output variations

Another simple variation on the Fifteen Puzzle constructed above is replacing the piece images. We could then redefine
puzzl eCut to have a different single set of piece images wired into its definition, but instead, we generalize it to take the
piece image list as an argument, as in Figure 15. (The Fran over s function combines a list of images im, ..., im, into a
single composite image made by stacking all of the imagesin the list, with im; on top and im,, on bottom.)

{_———pUZZ/eOJt/——____]
piece — '
images [| mageB] _ | |

| | puzze

| moveToloc* |—{ | mageB] > overs —ImageB—> ;g
piece [ITOCB] |
locations

-

Figure 15. Visualization with given piece images

We generalize ani min Figure 16. The original ani mmay be constructed simply by feeding num ns into ani i .

—— — — — anim ——————————]
piece |
images ; [1 mageB] |

| " puzzle

puzzl eQut | |—Il mageB—» . "=~

Cci’ggru?e —User —» puzzleln —Event Dir—% puzzle (—LocB—» ' vizualization

|

o1 — = _|

Figure 16. Interactive puzzle with given pieceimages

Many versions of the puzzle consist of a single picture covering the whole puzzle area. For such a puzzle, we could redefine
the piece images, using a function that chops up an image into puzzle-piece-sized parts. This cropping version takes an
arbitrary animation (I mageB value), which includes static imported pictures as a special case, as shown in Figure 17.

[____— animorop — — — — 7
.Vﬁrféi —I mageB—» croplms —[| mageB] —» | puzde

| ani m —| MageB> i alization
concrete . User I |

input L ____________

Figure 17. Fifteen Puzzle with chopped-up image

11.Conclusions

In this note, we have developed a Fran implementation of the classic “Fifteen Puzzle”, along with a few variations. Fran's
high-level data types and declarative orientation allowesbdular formulation, in which the entire problem into several
simpler components. These components are mentally manageable and separately testable.

12.Acknowledgement

Ken Hinckley provided extensive comments on earlier versions of this paper, resulting in greatly improved readability.

8

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Conal Elliott, Composing Reactive Animations, Dr. Dobb’s Journal, July 1998. Expanded version with animated GIFs:
http://ww. research. mi crosoft.conl ~conal/fran/tutorial.htm

Cona Elliott, Declarative Event-Oriented Programming, MSR-TR-98-24. ftp://ftp.research. m crosoft. -
coni pubs

Cona Elliott and Paul Hudak, Functional Reactive Animation, in Proceedings of the 1997 ACM S GPLAN
International Conference on Functional Programming, http://wm. research. m crosoft. com ~conal / -
papers/icfp97. ps

Martin Gardner, The Scientific American book of Mathematical Puzzles and Diversions, Simon and Schuster, 1959

Paul Hudak and Joseph H. Fasd, A Gentle Introduction to Haskell. SIGPLAN Notices, 27(5). See
http://haskell.org/tutorial/index.htnl forlatest version.

John Hughes, Why Functional Programming Matters. The Computer Journal, 32(2), pp. 98-107, April 1989.
http://ww. cs. chal mers. se/ ~rj mh/ Paper s/ whyf p. ps.

Simon Thompson, Haskell: The Craft of Functional Programming. Addison-Wesley, 1996.
http://stork. ukc. ac. uk/ conput er _sci ence/ Haskel | _craft/.

Appendix A. Haskell version of fifteen puzzle

User interface vs model

puzzleln :: User -> Event Dir

data Dir = East | West | North | South deriving Enum

puzzleCQut :: [LocB] -> |InageB

Locations are (columm,row) pairs

type Loc = (Int, Int)
type LocB = Behavi or Loc -- time-varying

puzzle :: Event Dir -> [LocH]

anim:: User -> | nmageB
animu = puzzleQut (puzzle (puzzleln u))

Model decomposition

onePiece :: Event (Dir, Loc) -> Loc -> (Event Loc, LocB)
trackBl ank :: [Event Loc] -> LocB

puzzl e noveDir = | ocBs

wher e

(moveFroms, |ocBs) =
-- Start each piece going with shared noveWt hBl ank event and own start
-- location. Unzip list of (noveFrom locB) pairs into pair of lists.
unzip [onePiece moveWthBlank start | start <- startLocs]

nmoveW t hBl ank = nmoveDir ‘ snapshot‘ (trackBl ank noveFrons)

-- Starting |ocations
bl ankStart : startlLocs =
[(col,row) | row<- [0 .. rows-1], col <- [0 .. cols-1]]

rows, cols :: Numa => a
rows = 4; cols =4

One puzzle piece

onePi ece noveWBl ank startLoc =(noveFrom | ocB)
wher e
| ocB = stepper startlLoc noveTo
(moveFrom noveTo) =
unzi pE (noveWBl ank ‘ snapshot’ locB ‘filterE noveCkay)

noveCkay ((dir, bLoc), |oc)

| lToc +* dir == bLoc = Just (loc, bLoc)
| otherw se = Not hi ng
(+") :: Loc -> Dir -> Loc

(col,row) +" dir = case dir of
West -> (col-1, row)
East -> (col+1, row)
North -> (col , row1)
South -> (col , rowtl)

Tracking the blank spot
trackBl ank noveFrons = stepper blankStart (anyE noveFrons)
User Interface
puzzleln u = keyPressAny u ‘filterE keyDr
keyDir :: VKey -> Maybe Dir
keyDir vkey = assoc [(VK LEFT , West),
(VK_RI GHT, East),
(vK_UP , North),
(vK_DOMN , South)] vkey

puzzl eCut |ocBs =
overs [nmoveTo (locToPoint locB) im| (locB, in) <- zip |locBs numns]

num ns :: [l nmageB]
numins = [stretch 2 (showmi) | i <- [1 .. rows * cols]]

-- LocB to Point2B conversion

| ocToPoint :: LocB -> Point2B
| ocToPoi nt | ocB = poi nt2XY x vy
wher e

(col, row) = pairBSplit |ocB

row =rows - 1 - row
Xx = (fromntB col + 0.5) * pieceWdth - puzzleWdth /2
y = (fromntB row + 0.5) * pieceHeight - puzzl eHeight/2

10

-- Di mensi ons
puzzl eWdth, puzzl eHei ght, pieceWdth, pieceHeight ;. Real B

puzzleWdth = 2; puzzleHeight = 2
pi eceHei ght = puzzl eHeight / cols
pi eceWdth = puzzleWdth / rows
pi eceSi ze :: Vector2B

pi eceSi ze = vector2XY pieceWdth pieceHei ght
Some variations
puzzl el nRand, puzzlelnSwitch :: User -> Event Dir

-- Random noves
puzzlelnRand u =
updat eDone u ‘withEl enE_* random (0,3) 5 ==> tolnt ==> toEnum

-- Switches between random and nor nal
puzzlelnSwitch u =
swi tcher (puzzleln u) (
charPressU 'r’ u ==> puzzl el nRand
.|. charPressU’ ' u ==> puzzleln)

-- Crop one immge into puzzle-piece inmges
croplnms :: InmageB -> [| mageB]
croplnms wholelm =
-- For each location, crop the whole inage
-- and nove to origin

[nove (origin2 .-. pos) (crop rect wholelm
| loc <- startlLocs
, let pos | ocToPoi nt (constantB | oc)

rect rect FromCenter Si ze
pos pieceSize]
puzzleQutl :: [LocB] -> [InageB] -> |InmageB

puzzl eQutl | ocBs piecelns =
overs [noveTo (locToPoint locB) im| (locB,im <- zip |ocBs piecelns]

anim :: [lmageB] -> User -> | nageB
anim piecelns u = puzzleQutl (puzzle (puzzlelnSwitch u)) piecelns

Appendix B. Immutable Arrays

The implementation of the Fifteen Puzzle given in this paper suffers from an inherent inefficiency. Every puzzle piece does

some work in response to every move request, although in most cases the work isjust to see that the piece should do nothing.

This property means that the amount of processing required per move is proportional to the puzzle size, and so
responsiveness diminishes as the puzzle size grows. Note, however, that for any given move request, there is at most one

piece that can respond, namely the one adjacent to the blank space on the side opposite from the requested direction (if that
location is on the board). We would like to use this knowledge to “tell” the one relevant piece that it should movegout telli
is an imperative notion.

Many other interactive applications have similar properties to the one in this paper. Any time there is an “environment”
navigated by behaviors, we will want to direct events to the nearby behaviors (unless they have long-distance perception).

We solve the problem of efficient response to local events by adding two new primitives to Fran. One creates immutable
arrays and the other consumes them. The consumer primitive indexes arrays using an index-valued behavior. It applies to
arbitrary “generalized behaviors”, such as behaviors, evéots)dB, | nrageB, andGeonet r yB:

11

('*) :: (GBehavior bv, Ix a) => Array a bv -> Behavior a -> bv
Think of “! *” as an optimized version of some nested conditionals:

ifB (ix ==* constantB ixQ0) (arr ! ix0) $

ifB (ix ==* constantB ixn) (arr ! ixn) $

error "bad index"

In addition to the existing Haskell operations for creating arrays, a new primitive builds arrays of events:

arrayE :: Ix a => (a,a) -> Event (a,b) -> Array a (Event b)

Compare with the basic array constructor:

array :: Ix a =>(a,a) ->[(a,b)] -> Array a b

In practicear r ayE is a way to “post” an occurrence of a run-time-selected event. For instance, we might have a large array
of component animationtsv_1, ..., bv_n, based orb-valued evente 1, ..., e_n. If we construct the array of events
using arrayE, then gnl nt , b) -valued event can choose which of the i should react.

Given these new primitives, we can construct a new implementation of the Fifteen Puzzle that not only eliminates the
inherent inefficiency described above, but is also a higher level specification. The idea is that the puzzleooeles' “
events to the puzzle locations usary ayE, and the pieces tune in to just theveTo events of interest usind * .

Here is the definition. It replacesizzl e, onePi ece, andt r ackBIl ank, and uses-“*", an analog to+/".

puzzle :: Event Dir -> [LocB]
puzzl e noveDir = map pieceLoc |ocOs
wher e
noveFronTo :: Event (Loc, Loc)
nmoveFronTo = noveDir ‘ snapshot® bl ankLoc
==> \ (dir,to) -> (to-~dir,to)

‘suchThat® (legal Loc . fst)

bl ankLoc :: LocB
bl ankLoc = stepper bl ankLocO (moveFroniTo ==> fst)

nmoveTos :: Array Loc (Event Loc)
noveTos = arrayE puzzl eBounds noveFronilo

pi eceLoc :: Loc -> LocB
pi eceLoc |1 ocO = | ocB
wher e

| ocB = stepper |ocO (noveTos !* | ocB)

| egal Loc :: Loc -> Bool
| egal Loc (col,row) = 0 <= col && col < cols & 0 <= row && row < rows

12

