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Abstract

Image rectification is the process of applying a pair of 2 dimensional projective transforms, or
homographies, to a pair of images whose epipolar geometry is known so that epipolar lines in the
original images map to horizontally aligned lines in the transformed images. We propose a novel
technique for image rectification based on geometrically well defined criteria such that image
distortion due to rectification is minimized. This is achieved by decomposing each homography
into a specialized projective transform, a similarity transform, followed by a shearing transform.
The effect of image distortion at each stage is carefully considered.

1 Introduction

Image rectification is an important component of stereo computer vision algorithms. We assume
that a pair of 2D images of a 3D object or environment are taken from two distinct viewpoints and
their epipolar geometry has been determined. Corresponding points between the two images must
satisfy the so-called epipolar constraint. For a given point in one image, we have to search for its
correspondence in the other image along an epipolar line. In general, epipolar lines are not aligned
with coordinate axis and are not parallel. Such searches are time consuming since we must compare
pixels on skew lines in image space. These types of algorithms can be simplified and made more
efficient if epipolar lines are axis aligned and parallel. This can be realized by applying 2D projective
transforms, orhomographies, to each image. This process is known asimage rectification.

The pixels corresponding to point features from a rectified image pair will lie on the same hori-
zontal scan-line and differ only in horizontal displacement. This horizontal displacement, ordisparity
between rectified feature points is related to the depth of the feature. This means that rectification can
be used to recover 3D structure from an image pair without appealing to 3D geometry notions like
cameras. Algorithms to find dense correspondences are based oncorrelating pixel colors along epipo-
lar lines [1]. Seitz has shown[4] that distinct views of a scene can bemorphed by linear interpolation
along rectified scan-lines to produce new geometrically correct views of the scene.

1.1 Previous Work

Some previous techniques for finding image rectification homographies involve 3D constructions[1,
4]. These methods find the 3D line of intersection between image planes and project the two images
onto the a plane containing this line that is parallel to the line joining the optical centers. While



this approach is easily stated as a 3D geometric construction, its realization in practice is somewhat
more involved and no consideration is given to other moreoptimal choices. A strictly 2D approach
that does attempt to optimize the distorting effects of image rectification can be found in [3]. Their
distortion minimization criterion is based on a simple geometric heuristic which may not lead to
optimal solutions.

1.2 Overview

Our approach to rectification involves decomposing each homography into a projective and affine
component. We then find the projective component that minimizes a well defined projective distortion
criterion. We further decompose the affine component of each homography into a pair of simpler
transforms, one designed to satisfy the constraints for rectification, the other is used to further reduce
the distortion introduced by the projective component.

This paper is organized as follows. In Section 2 we present our notation and define epipolar geom-
etry. In Section 3 we define rectification and present results needed for our homography computation.
In Section 4 we give details of our decomposition. In Sections 5-7 we compute the component trans-
forms needed for rectification. Finally, we present an example of our technique and make concluding
remarks.

2 Background

We work entirely in 2 dimensionalprojective space. Points and lines are represented by lower-case
bold symbols, e.g.p and l. The coordinates of points and lines are represented by 3 dimensional
column vectors, e.g.p = [ pu pv pw ]T andl = [ la lb lc ]

T . The individual coordinates are sometimes
orderedu; v; w for points, anda; b; c for lines. Transforms on points and lines are represented by3�3
matrices associated with bold upper case symbols, e.g.T. Unless identified to the contrary, matrix
entries are given subscripted upper-case symbols, e.g.T11; T12; : : : ; T33. Pure scalar quantities are
given lower-case Greek symbols.

As projective quantities, points and lines arescale invariant, meaningp = �p (� 6= 0) represent
the same point. Points withw-coordinate equal to zero are known asaffine vectors, directions or
points at 1. Points with a non-zerow-coordinate are known asaffine points when the scale has been
fixed so thatp = [ pu pv 1 ]T . The set of all affine points is known as theaffine plane. For our
purposes, we consider the image plane to be an affine plane where points are uniquely identified byu
andv, w is presumed to be equal to one.

2.1 Epipolar Geometry

We now formally define the epipolar geometry between a pair of images. LetC andC0 be a pair of
pinhole cameras in 3D space. Letm andm0 be the projections through camerasC andC0 of a 3D
pointM in imagesI andI0 respectively. The geometry of these definitions is shown in Fig. 1. The
epipolar constraint is defined

m0TFm = 0; (1)

for all pairs of images correspondencesm andm0, whereF is the so-calledfundamental matrix [1].
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Figure 1: Epipolar geometry between a pair of images.

The fundamental matrixF is a3� 3 rank-2 matrix that maps points inI to lines inI0, and points
in I 0 to lines inI. That is, ifm is a point inI thenFm = l0 is anepipolar line in I0 since from
Eq. (1),m0T l0 = 0. In fact, any pointm0 that corresponds withm must line on the epipolar lineFm.

For a fundamental matrixF there exists a pair of unique pointse 2 I ande0 2 I 0 such that

Fe = 0 = FTe0 (2)

where0 = [ 0 0 0 ]T is thezero vector. The pointse ande0 are known as theepipoles of imagesI and
I 0 respectively. The epipoles have the property that all epipolar lines inI pass throughe, similarly all
epipolar lines inI0 pass throughe0.

In 3D space,e ande0 are the intersections of the lineC C0 with the planes containing imageI and
I 0. The set of planes containing the lineC C0 are calledepipolar planes. Any 3D pointM not on line
C C 0 will define an epipolar plane, the intersection of this epipolar plane with the plane containingI

or I 0 will result in an epipolar line (see Figure 1).
In this paper, we assume thatF is known. An overview of techniques to findF can be found

in [5]. If the intrinsic parameters of a camera are known, we say the images are calibrated, and
the fundamental matrix becomes the essential matrix [1]. Our method of rectification is suitable for
calibrated or uncalibrated images pairs, provided thatF is known between them.

3 Rectification

Image rectification can be view as the process of transforming the epipolar geometry of a pair of
images into a canonical form. This is accomplished by applying a homography to each image that
maps the epipole to a predetermined point. We follow the convention that this point bei = [ 1 0 0 ]T

(a point at1 ), and that the fundamental matrix for a rectified image pair be defined

�F = [ i ]� =

2
4 0 0 0

0 0 �1
0 1 0

3
5 :

We use the notation[x ]� to denote the antisymetric matrix representing the cross product withx.
Under these conventions, it is easy to verify that rectified images have the following two properties:
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i. All epipolar lines are parallel to the u-coordinate axis,

ii. Corresponding points have identical v-coordinates.

These properties are useful in practice since rectification maps epipolar lines to image scan-lines.
Other conventions for canonical epipolar geometry may be useful under special circumstances.

LetH andH0 be the homographies to be applied to imagesI andI0 respectively, and letm 2 I

andm0 2 I 0 be a pair of points that satisfy Eq. (1). Consider rectified image points�m and �m0 defined

�m = Hm and �m0 = H0m0:

It follows from Eq. (1) that

�m0T �F �m = 0;

m0T H0T �FH| {z }
F

m = 0;

resulting in the factorization
F = H0T [ i ]�H: (3)

Note that the homographiesH andH0 that satisfiy Eq. (3) are not unique. Our task is to find a pair of
homographiesH andH0 minimize image distortion.

Let u, v, andw be lines equated to the rows ofH such that

H =

2
4 uT

vT

wT

3
5 =

2
4 ua ub uc

va vb vc
wa wb wc

3
5 : (4)

Similarly, let linesu0, v0, andw0 be equated to the rows ofH0. By definition we have that

He =
�
uTe vT e wTe

�T
=
�
1 0 0

�T
:

This means that the linesv andw must contain the epipolee. Similarly v0 andw0 must contain the
other epipolee0. Furthermore, we show in Appendix A that linesv andv0, and linesw andw0 must be
corresponding epipolar lines. This has a simple geometric interpretation illustrated in Figure 2. This
result establishes a linkage between the homographiesH andH0. This linkage is important when
minimizing distortion caused by rectification.

4 Decomposition of the Homographies

We compute rectifying homographiesH andH0 by decomposing them into simpler transforms. Each
component transform is then computed to achieve a desired effect and satisfy some conditions.

It is convenient to equate the scale invariant homographyH with a scale variant counterpart

H =

2
4 ua ub uc

va vb vc
wa wb 1

3
5 ; (5)
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Figure 2: The linesv andv0, andw andw0 must be corresponding epipolar lines that lie on common
epipolar planes.

by dividing outwc. We similarly divide outw0c fromH0. This will not lead to difficulties arising from
the possibility thatwc or w0

c be equal to zero since we assume the image coordinate system origin is
near the image and our minimization procedure will tend to keep the linesw andw0 away from the
images.

We decomposeH into
H = HaHp;

whereHp is a projective transform andHa is an affine transform. We define

Hp =

2
4 1 0 0

0 1 0
wa wb 1

3
5 : (6)

From Eqs. (5) and (6) it follows that

Ha = HH�1

p =

2
4 ua � ucwa ub � ucwb uc

va � vcwa vb � vcwb vc
0 0 1

3
5 :

The definitions ofH0

a andH0

p are similar but with primed symbols.
We further decomposeHa (similarlyH0

a) into

Ha = HsHr

whereHr is similarity transformation, andHs is a shearing transformation. The transformHr will
have the form

Hr =

2
4 vb � vcwb vcwa � va 0

va � vcwa vb � vcwb vc
0 0 1

3
5 : (7)

We defineHs as

Hs =

2
4 sa sb sc

0 1 0
0 0 1

3
5 :

Note thatHs only effects theu-coordinate of a point, therefore it will not effect the rectification of an
image.

We now consider how to compute each component transforms just defined.
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5 Projective Transform

The transformsHp andH0

p completely characterize the projective components ofH andH0. These
transforms map the epipolese ande0 to points at1 (points withw-coordinate equal to zero). By
definition,Hp andH0

p are determined by linesw andw0 respectively.
The linesw andw0 are not independent. Given a directionz = [� � 0 ]T in imageI, we find

w = [ e ]�z and w0 = Fz: (8)

This result follows from the correspondence ofw andw0 as epipolar lines (see Appendix A for
details). Any suchz will define a pair of corresponding epipolar lines; we are trying to findz that
minimizes distortion, to be defined below.

Let pi = [ pi;u pi;v 1 ]T be a point in the original image. This point will be transformed byHp to
point [ pi;u

wi

pi;v
wi

1 ]T with weight

wi = wTpi:

If the weights assigned to points are identical then there is no projective distortion and the homography
is necessarily an affine transform. In order to map the epipolee from the affine (image) plane to a
point at1,Hp cannot in general be affine. However, as the image is bounded we can attempt to make
Hp as affine as possible. This is the basis of our distortion minimization criterion.

5.1 Distortion Minimization Criterion

Although we cannot have identical weights in general (except when the epipole is already at1), we
can try to minimize the variation of the weights assigned to a collection of points over both images.
We use all the pixels from both images as our collection, but some other subset of important image
points could also be used if necessary. The variation is measured with respect to the weight associated
with the image center. More formally, we compute

nX
i�1

�
wi � wc

wc

�
2

; (9)

wherewc = wTpc, wherepc = 1

n

Pn
i=1 pi is theaverage of the points. This measure will be zero

if the weights for all the points are equal, occurring only ifHp is an affine map, and the epipole is
already at1. By minimizing Eq. (9) we findHp andH0

p that are as close to affine as possible over
the point setpi.

Over one image, Eq. (9) can be written as

nX
i=1

�
wT (pi � pc)

wTpc

�2
;

or as a matrix equation
wTPPTw

wTpcpTc w
; (10)
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whereP is the3� n matrix

P =

2
4 p1;u � pc;u p2;u � pc;u � � � pn;u � pc;u

p1;v � pc;v p2;v � pc;v � � � pn;v � pc;v
0 0 � � � 0

3
5 :

We similarly definep0c andP0 for the other image.
Sincew = [ e ]�z andw0 = Fz, we rewrite Eq. (10) over both images to get

zT

Az }| {
[ e ]T

�
PPT [ e ]� z

zT [ e ]T
�
pcp

T
c [ e ]�| {z }

B

z
+
zT

A0z }| {
FTP0P0TFz

zT FTp0cp
0T
c F| {z }

B0

z
;

or simply
zTAz

zTBz
+
zTA0z

zTB0z
; (11)

whereA, B, A0, andB0 are3 � 3 matrices that depend on the point setspi andp0j . Since thew-
coordinate ofz is equal to zero, only the upper-left2 � 2 blocks of these matrices are important. In
the remainder of this section, we denotez = [�; � ]T .

We now consider the specific point set corresponding to a whole image. We assume that an image
is a collection of pixel locations denoted

pi;j =
�
i j 1

�T
;

wherei = 0; : : : ; w � 1 andj = 0; : : : ; h� 1; andw andh are the width and height of imageI, The
image center is the point

pc =
�

w�1
2

h�1
2

1
�T

:

We similarly define primed counter-parts for imageI0. Under these assumptions,PPT is reduced to
the following simple form:

PPT =
wh

12

2
4 w2 � 1 0 0

0 h2 � 1 0
0 0 0

3
5 ;

and

pcp
T
c =

1

4

2
4 (w � 1)2 (w � 1)(h � 1) 2(w � 1)

(w � 1)(h� 1) (h� 1)2 2(h� 1)
2(w � 1) 2(h� 1) 4

3
5 :

Using these results, we compute the2� 2 matricesA,B,A0, andB0 in Eq. (11).

5.2 Solving the minimization problem

Solvingz by minimizing Eq. (11) is a nonlinear optimization problem.z = [��]T is defined up to a
scalar factor. Without loss of generality, we can set� = 1. (If � is much smaller than�, we can set
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� = 1, but the following discussion still holds.) Quantity (11) is minimized when the first derivative
with respect to� is equal to 0. This gives us a polynomial of degree 7, because (11) is the sum of two
rational functions, each the ratio of quadratic polynomials. The root can be found iteratively starting
from an initial guess.

The initial guess is obtained as follows. We first minimizezTAz=zTBz and zTA0z=zTB0z

separately (see below), which gives us two different estimations ofz, denoted bŷz1 and ẑ2. Their
average,(ẑ1=kẑ1k+ ẑ2=kẑ2k)=2, is used as the initial guess ofz. It turns out that this is very close to
the optimal solution.

Minimizing zTAz=zTBz is equivalent to maximizingzTBz=zTAz, denoted byf(z). AsA is
symmetric and positive-definite, it can be decomposed asA = DTD. Let y = Dz. Then,f(z)
becomes

f̂(y) =
yTD�TBD�1y

yTy
:

Sincey is defined up to a scale factor, we can imposekyk = 1, andf̂(y) is maximized wheny is
equal to the eigenvector ofD�TBD�1 associated with the largest eigenvalue. Finally, the solution
for z is given byz = D�1y. Exactly the same procedure can be applied to findz which minimizes
zTA0z=zTB0z.

6 Similarity Transform

In the previous section, the transformsHp andH0

p were found that map the epipolese ande0 to points
at1. In this section we define a pair of similarity transformsHr andH0

r thatrotate these points at1
into alignment with the directioni = [ 1 0 0 ]T as required for rectification. Additionally, a translation
in thev-direction on one of the images is found to exactly align the scan-lines in both images.

At this stage, we assume that the linesw andw0 are known. We can therefore eliminateva andvb
from Eq. (7) by making use of the following:

F = H0T [ i ]�H (12)

=

2
4 vaw

0

a � v0awa vbw
0

a � v0awb vcw
0

a � v0a
vaw

0

b � v0bwa vbw
0

b � v0bwb vcw
0

b � v0b
va � v0cwa vb � v0cwb vc � v0c

3
5 :

Using the last row of this matrix equation, we determine that

va = F31 + v0cwa; (13)

vb = F32 + v0cwb; (14)

vc = F33 + v0c: (15)

Eqs. (13-15) are substituted into Eq (7), resulting in

Hr =

2
4 F32 � wbF33 waF33 � F31 0

F31 � waF33 F32 � wbF33 F33 + v0c
0 0 1

3
5 : (16)
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Similarly, v0a andv0b can be eliminated to get

H0

r =

2
4 w0

bF33 � F23 F13 � w0

aF33 0
w0

aF33 � F13 w0

bF33 � F23 v0c
0 0 1

3
5 : (17)

Note that there remains a translation term involvingv0c in Eqs. (17) and (16). This shows that transla-
tion in thev-direction is linked between the two images, and that an offset ofF33 is needed to align
horizontal scan-lines. We findv0c so that the minimumv-coordinate of a pixel in either image is zero.

As similarity transforms,Hr andH0

r can only rotate, translate, and uniformly scale the imagesI
andI 0. None of these operations introduce any additional distortion.

The combined transformsHrHp, andH0

rH
0

p are sufficient to rectify imagesI andI0. However,
there remains additional freedom, corresponding tou andu0 of Eq. (4). These elements take the form
of shearing transforms described below, that can be leveraged to reduce distortion and to map the
images into a more practical pixel range.

7 Shearing Transform

In this section the freedom afforded by the independence ofu andu0 is exploited to reduce the distor-
tion introduced by the projective transformsHp andH0

p. Due to this independence, we consider only
one image, as the procedure is carried out identically on both images.

We model the effect ofu as a shearing transform

S =

2
4 a b 0

0 1 0
0 0 1

3
5 :

We set the translation components ofS to zero since these terms add no useful freedom at this stage.
Let a = [ w�1

2
0 1 ]T , b = [w � 1 h�1

2
1 ]T , c = [ w�1

2
h � 1 1 ]T , andd = [ 0 h�1

2
1 ]T be

points corresponding to the midpoints of the edges ofI. Furthermore, let̂a = HrHpa, be a point in
the affine plane by dividing through so thatâw = 1; similarly defineb̂, ĉ, andd̂.

In general,Hp is a projective transform, so it is not possible to undistortI completely using the
affine transformS. Instead we attempt to preserve perpendicularity and aspect ratio of the lines�bd
and �ca. Let

x = b̂� d̂;

y = ĉ� â:

As the difference of affine points,x andy are vectors in the euclidean image plane. Perpendicularity
is preserved when

(Sx)T (Sy) = 0; (18)

and aspect ratio is preserved if
(Sx)T (Sx)

(Sy)T (Sy)
=

w2

h2
: (19)
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Eqs. (18) and (19) represent quadratic polynomials ina andb (the unknown elements ofS) whose
simultaneous satisfaction is required. Using the method outlined in [2] we find the real solution

a =
h2x2v + w2y2v

hw(xvyu � xuyv)
and b =

h2xuxv + w2yuyv
hw(xuyv � xvyu)

;

up to sign; the solution wherea is positive is preferred. We defineHs (and similarlyH0

s) to beS
composed with a uniform scaling and translation as discribed below.

The combined transformHsHrHp, and similarlyH0

sH
0

rH
0

p, rectify imagesI andI0 with minimal
distortion. However these image may not the appropriate size, or in the most desirable coordinate
system. Therefore, additional uniform scaling and translation may be applied. It is important that
the same scale factor, and the samev-translation be applied to both images to preserve rectification.
Translations in theu-direction have no effect on rectification.

In our examples, we chose a uniform scale factor that preserves the sum of image areas. Other
criteria may work equally well. We also compute translations inu so that the minimum pixel coordi-
nate has au-coordinate of zero. A similar translation is found for thev direction, but the minimum is
taken over both images to preserve rectification.

8 Conclusion

We have presented a procedure for computing rectification homographies for a pair of images taken
from distinct viewpoints of a 3D scene. Figure 3 shows the results of each stage of our technique
on one example. This new method is based entirely on quantifiable 2D image measures and requires
no 3D constructions. Furthermore, these measure have intuitive geometric meaning. We have shown
the technique that minimizes distortion due to the projective component of rectification, and used
additional degrees of freedom in the affine component to further reduce distortion to a well defined
minimum.

A Proof of Correspondence Properties

In this appendix we demonstratei) how corresponding epipolar lines are related by a direction in one
image, andii) that the second and third rows of a pair of rectifying homographies correspond to a
pairs of corresponding epipolar lines. We use the symbol� to indicate correspondence.

Let l 2 I andl0 2 I 0 be a pair of epipolar lines.

Proposition 1. If l � l0 and x 2 I is a direction (point at 1) such that l = [e]�x then

l0 = Fx:

Proof. Let x be the intersection of linesl andk = [ 0 0 1 ]T (the line at1), found byx = [k]�l.
Similarly, letx0 = [k]�l

0. Clearlyl = [e]�x, since[ e ]�[k ]�l = l.
Sincel � l0 it follows thatx0TFx = 0. By defintione0T l0 = e0TFx = 0 andx0T l0 = x0TFx = 0,

which shows that linesl0 andFx both contain pointse0 andx0 and must be the same line.

In the following, we denote the rows ofH andH0 as in Eq. (4), andi = [ 1 0 0 ]T .
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Proposition 2. If H and H0 are homgraphies such that

F = H0T [i]�H; (20)

then v � v0 and w � w0.

Proof. ExpandingH0T [i]�H shows that

F =

2
4 vaw

0

a � v0awa vbw
0

a � v0awb vcw
0

a � v0awc

vaw
0

b � v0bwa vbw
0

b � v0bwb vcw
0

b � v0bwc

vaw
0

c � v0cwa vbw
0

c � v0cwb vcw
0

c � v0cwc

3
5 :

We observe thatF does not depend onu or u0. Without loss of generality, we setu = k = u0; where
k = [ 0 0 1 ]T is the line at1. It is straightforward to show that, up to a scale factor

H�1 =
�
[v ]�w [w ]�u [u ]�v

�
:

Sincev andw are independent (follows from Eq. (20)) and both containe, we conclude that[v ]�w =
e. Lety = [v ]�k andz = [w ]�k. From Eq. (20) we get

H0T [i]� = FH�1�
k v0 w0

�
[i]� = F

�
e z �y

�
�
0 w0 �v0

�
=

�
0 Fz �Fy

�
: (21)

We conclude thatv0 = Fy andw0 = Fz. By Proposition 1 it follows thatv � v0 andw � w0.
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(a) Original image
pair overlayed with
several epipolar
lines.

(b) Image pair
transformed by the
specialized projec-
tive mapping Hp

andH0

p. Note that
the epipolar lines
are now parallel to
each other in each
image.

(c) Image pair
transformed by
the similarity Hr

and H0

r. Note
that the image pair
is now rectified
(the epipolar lines
are horizontally
aligned).

(d) Final image
rectification after
shearing transform
Hs andH0

s. Note
that the image pair
remains rectified,
but the horizon-
tal distortion is
reduced.

Figure 3: An example showing various stages of the proposed rectification algorithm.
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