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Abstract

Image rectification is the process of applying a pair of 2 dimensional projective transforms, or
homographies, to a pair of images whose epipolar geometry is known so that epipolar lines in the
original images map to horizontally aligned lines in the transformed images. We propose a novel
technique for image rectification based on geometrically well defined criteria such that image
distortion due to rectification is minimized. This is achieved by decomposing each homography
into a specialized projective transform, a similarity transform, followed by a shearing transform.
The effect of image distortion at each stage is carefully considered.

1 Introduction

Image rectification is an important component of stereo computer vision algorithms. We assume
that a pair of 2D images of a 3D object or environment are taken from two distinct viewpoints and
their epipolar geometry has been determined. Corresponding points between the two images must
satisfy the so-called epipolar constraint. For a given point in one image, we have to search for its
correspondence in the other image along an epipolar line. In general, epipolar lines are not aligned
with coordinate axis and are not parallel. Such searches are time consuming since we must compare
pixels on skew lines in image space. These types of algorithms can be simplified and made more
efficient if epipolar lines are axis aligned and parallel. This can be realized by applying 2D projective
transforms, ohomographies, to each image. This process is knowriraage rectification.

The pixels corresponding to point features from a rectified image pair will lie on the same hori-
zontal scan-line and differ only in horizontal displacement. This horizontal displacemelgparity
between rectified feature points is related to the depth of the feature. This means that rectification can
be used to recover 3D structure from an image pair without appealing to 3D geometry notions like
cameras. Algorithms to find dense correspondences are based dating pixel colors along epipo-
lar lines [1]. Seitz has shown[4] that distinct views of a scene camdsphed by linear interpolation
along rectified scan-lines to produce new geometrically correct views of the scene.

1.1 PreviousWork

Some previous techniques for finding image rectification homographies involve 3D constructions|1,
4]. These methods find the 3D line of intersection between image planes and project the two images
onto the a plane containing this line that is parallel to the line joining the optical centers. While



this approach is easily stated as a 3D geometric construction, its realization in practice is somewhat
more involved and no consideration is given to other maptimal choices. A strictly 2D approach

that does attempt to optimize the distorting effects of image rectification can be found in [3]. Their
distortion minimization criterion is based on a simple geometric heuristic which may not lead to
optimal solutions.

1.2 Overview

Our approach to rectification involves decomposing each homography into a projective and affine
component. We then find the projective component that minimizes a well defined projective distortion
criterion. We further decompose the affine component of each homography into a pair of simpler
transforms, one designed to satisfy the constraints for rectification, the other is used to further reduce
the distortion introduced by the projective component.

This paper is organized as follows. In Section 2 we present our notation and define epipolar geom-
etry. In Section 3 we define rectification and present results needed for our homography computation.
In Section 4 we give details of our decomposition. In Sections 5-7 we compute the component trans-
forms needed for rectification. Finally, we present an example of our technique and make concluding
remarks.

2 Background

We work entirely in 2 dimensiongrojective space. Points andlines are represented by lower-case
bold symbols, e.g.p andl. The coordinates of points and lines are represented by 3 dimensional
column vectors, e.gp = [pu P» pw ]’ andl = [I, I, I.]7. The individual coordinates are sometimes
orderedu, v, w for points, ands, b, ¢ for lines. Transforms on points and lines are represented3»3
matrices associated with bold upper case symbols, B.gUnless identified to the contrary, matrix
entries are given subscripted upper-case symbols,&g71s, .. .,T33. Pure scalar quantities are
given lower-case Greek symbols.

As projective quantities, points and lines aoale invariant, meaningp = ap (a # 0) represent
the same point. Points witlv-coordinate equal to zero are known affine vectors, directions or
points at co. Points with a non-zeras-coordinate are known aafine points when the scale has been
fixed so thatp = [p, p, 1]7. The set of all affine points is known as théfine plane. For our
purposes, we consider the image plane to be an affine plane where points are uniquely identified by
andv, w is presumed to be equal to one.

2.1 Epipolar Geometry

We now formally define the epipolar geometry between a pair of imagesC'lagtd C' be a pair of
pinhole cameras in 3D space. Leim andm’ be the projections through camer@sandC’ of a 3D
point M in imagesZ andZ’ respectively. The geometry of these definitions is shown in Fig. 1. The
epipolar constraint is defined

m'"Fm =0, (1)

for all pairs of images correspondenaasandm, whereF is the so-calledundamental matrix [1].



Figure 1: Epipolar geometry between a pair of images.

The fundamental matri¥ is a3 x 3 rank-2 matrix that maps points #ito lines inZ, and points
in Z’ to lines inZ. That is, ifm is a point inZ thenFm = Y is anepipolar line in Z' since from
Eq. (1),m'”l' = 0. In fact, any pointm’ that corresponds witin must line on the epipolar linEm.

For a fundamental matrik there exists a pair of unique pointésc Z andé€ € 7’ such that

Fe = 0 = FTe, (2)

where0 = [0 0 0]7 is thezero vector. The pointse ande are known as thepipoles of imagesZ and
T’ respectively. The epipoles have the property that all epipolar linépass througle, similarly all
epipolar lines inZ’ pass through'.

In 3D spacee ande’ are the intersections of the lii@C’ with the planes containing imageand
7'. The set of planes containing the li6eC’ are calledepipolar planes. Any 3D pointM not on line
C C" will define an epipolar plane, the intersection of this epipolar plane with the plane contdining
or Z’ will result in an epipolar line (see Figure 1).

In this paper, we assume thBtis known. An overview of techniques to fifdl can be found
in [5]. If the intrinsic parameters of a camera are known, we say the images are calibrated, and
the fundamental matrix becomes the essential matrix [1]. Our method of rectification is suitable for
calibrated or uncalibrated images pairs, provided Ehagt known between them.

3 Rectification

Image rectification can be view as the process of transforming the epipolar geometry of a pair of
images into a canonical form. This is accomplished by applying a homography to each image that
maps the epipole to a predetermined point. We follow the convention that this painrt e 0 07

(a point ato ), and that the fundamental matrix for a rectified image pair be defined

7 00 0
01 0

We use the notatiofix ] to denote the antisymetric matrix representing the cross productxwith
Under these conventions, it is easy to verify that rectified images have the following two properties:



i. All epipolar lines are parallel to the u-coordinate axis,
ii. Corresponding points have identical v-coordinates.

These properties are useful in practice since rectification maps epipolar lines to image scan-lines.

Other conventions for canonical epipolar geometry may be useful under special circumstances.
Let H andH’ be the homographies to be applied to imagesdZ respectively, and latn € 7

andm’ € 7' be a pair of points that satisfy Eq. (1). Consider rectified image pairtadm’ defined

m=Hm and m'=H'm'

It follows from Eq. (1) that

m’Fm = 0,
m”HTFHm = 0,
——
F
resulting in the factorization
F=HT"[i], H. 3)

Note that the homographid® andH’ that satisfiy Eq. (3) are not unique. Our task is to find a pair of
homographied andH’ minimize image distortion.
Letu, v, andw be lines equated to the rows Hf such that

u Ug  Up Ue
H=| vl | =] v, v v |. 4
w’ W Wy We

Similarly, let linesu/, v/, andw’ be equated to the rows & . By definition we have that
He = [ u’e vle wle ]Tz [ 1 0 0 ]T.

This means that the lines andw must contain the epipole. Similarly v andw’ must contain the

other epipolee’. Furthermore, we show in Appendix A that linesandv/, and linesw andw’ must be
corresponding epipolar lines. This has a simple geometric interpretation illustrated in Figure 2. This
result establishes a linkage between the homografliemd H. This linkage is important when
minimizing distortion caused by rectification.

4 Decomposition of the Homographies

We compute rectifying homographi&s andH by decomposing them into simpler transforms. Each
component transform is then computed to achieve a desired effect and satisfy some conditions.
It is convenient to equate the scale invariant homogradghwith a scale variant counterpart

Ug Up U
H= Vg UVp Ve |, (5)
we wp 1
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Figure 2: The linesr andv/, andw andw’ must be corresponding epipolar lines that lie on common
epipolar planes.

by dividing outw,. We similarly divide outs], from H'. This will not lead to difficulties arising from
the possibility thatu,. or w/, be equal to zero since we assume the image coordinate system origin is
near the image and our minimization procedure will tend to keep the Yinaadw away from the
images.

We decomposél into

H=HH,,
whereH,, is a projective transform anH,, is an affine transform. We define
1 0 O
H,=| 0 1 0][. (6)
we wp 1

From Egs. (5) and (6) it follows that

Ug — UeWq Up — UeWp  Ug
H, = HH; 1= Vg — VeWq Up — VeWp Ve
0 0 1

The definitions offf;, andHj, are similar but with primed symbols.
We further decomposH, (similarly H))) into

H, = H,H,

whereH,. is similarity transformation, an#ll; is a shearing transformation. The transfaHn will

have the form
Vp — VeWp  VeWq — Vg 0

H, = | v, —v.w, vp—vewp Ve |- @)
0 0 1
We defineH, as
Sa Sb S
H,=| 0 1 0
0 0 1

Note thatH, only effects thas;-coordinate of a point, therefore it will not effect the rectification of an
image.
We now consider how to compute each component transforms just defined.

5



5 Projective Transform

The transformd,, andH;, completely characterize the projective componentBicindH. These
transforms map the epipolesande’ to points atoo (points withw-coordinate equal to zero). By
definition, H,, andH,, are determined by lines andw’ respectively.

The linesw andw’ are not independent. Given a directior= [\ 1 0] in imageZ, we find

w=[e]xz and w' =Fz. (8)

This result follows from the correspondence wfand w as epipolar lines (see Appendix A for
details). Any suche will define a pair of corresponding epipolar lines; we are trying to firtthat
minimizes distortion, to be defined below.
Letp; = [piu piw 1]T be a point in the original image. This point will be transformedHpyto
point[ Zox Fie 117 with weight
w; = WTpZ'.

If the weights assigned to points are identical then there is no projective distortion and the homography
is necessarily an affine transform. In order to map the epipdtem the affine (image) plane to a

point atoo, H,, cannot in general be affine. However, as the image is bounded we can attempt to make
H,, as affine as possible. This is the basis of our distortion minimization criterion.

5.1 Distortion Minimization Criterion

Although we cannot have identical weights in general (except when the epipole is alreadyved

can try to minimize the variation of the weights assigned to a collection of points over both images.
We use all the pixels from both images as our collection, but some other subset of important image
points could also be used if necessary. The variation is measured with respect to the weight associated
with the image center. More formally, we compute

n 2
W; — We
Z[ " ] ©)

i—1

wherew, = w’ p., wherep, = % > i, pi is theaverage of the points. This measure will be zero
if the weights for all the points are equal, occurring onlyHf is an affine map, and the epipole is
already abo. By minimizing Eq. (9) we findH,, andH;, that are as close to affine as possible over
the point sep;.

Over one image, Eq. (9) can be written as

2
zn: [WT(pz’ - pc)]
i=1 w'Ppe ,
or as a matrix equation
w! PP w

10
WTppTw’ (10)



whereP is the3 x n matrix

Piou —Pcu P2u —Peu *°° Pnu — Pecu
P= Piw = Pew P20 —Pew *°° Pnw — Pew

We similarly definep, andP’ for the other image.
Sincew = [e ]z andw’ = Fz, we rewrite Eq. (10) over both images to get

A A’
——t —
z' [e]'PPT[e]yz 2z FTP'P"Fz

z" [e]lp.p.[e]xz 2T F'p.p/Fz’

B B’

or simply
z'Az  z"A'z
zI' Bz + zI'B'z’
whereA, B, A’, andB’ are3 x 3 matrices that depend on the point sptindp’;. Since thew-
coordinate ok is equal to zero, only the upper-leftx 2 blocks of these matrices are important. In
the remainder of this section, we denate- [\, "
We now consider the specific point set corresponding to a whole image. We assume that an image
is a collection of pixel locations denoted

(11)

pij=1]1 j 1]T,

wherei =0,...,w —1andj =0,...,h — 1, andw andh are the width and height of image The

image center is the point
_ _ T
pe=[*+ "7 1],
We similarly define primed counter-parts for imafe Under these assumptiorBP” is reduced to
the following simple form:

wh w? —1 0 0
PPT=E 0 h2-1 0|,
0 0 0

and
. (w—1)? (w—1)(h —1) 2(w—1)
pp; =7 | (w—1)(h—1) (h—1)? 2(h —1)
Y w1 2(h — 1) 4

Using these results, we compute the 2 matricesA, B, A’, andB’ in Eq. (11).

5.2 Solving the minimization problem

Solvingz by minimizing Eq. (11) is a nonlinear optimization problem= [ n[ is defined up to a
scalar factor. Without loss of generality, we can get 1. (If 1 is much smaller that, we can set



A = 1, but the following discussion still holds.) Quantity (11) is minimized when the first derivative
with respect to\ is equal to 0. This gives us a polynomial of degree 7, because (11) is the sum of two
rational functions, each the ratio of quadratic polynomials. The root can be found iteratively starting
from an initial guess.

The initial guess is obtained as follows. We first minimiZeAz/z' Bz and z' A'z/z" B'z
separately (see below), which gives us two different estimatiorns dénoted by, andz,. Their
average(zi/||z1|| + z2/||z2]|) /2, is used as the initial guess ®f It turns out that this is very close to
the optimal solution.

Minimizing z” Az/z” Bz is equivalent to maximizing’ Bz/z” Az, denoted byf(z). As A is
symmetric and positive-definite, it can be decomposedhas D' D. Lety = Dz. Then, f(z)
becomes

fly) = ¥R BBy
Y yly '
Sincey is defined up to a scale factor, we can impfigd = 1, andf(y) is maximized whery is
equal to the eigenvector @~ "BD~! associated with the largest eigenvalue. Finally, the solution
for z is given byz = D~ 'y. Exactly the same procedure can be applied to finchich minimizes
2z A'z/z" B'z.

6 Similarity Transform

In the previous section, the transforis andH;, were found that map the epipolesinde to points
atoo. In this section we define a pair of similarity transforlisandH_. thatrotate these points ato
into alignment with the direction=[1 0 0]" as required for rectification. Additionally, a translation
in thewv-direction on one of the images is found to exactly align the scan-lines in both images.

At this stage, we assume that the lineandw’ are known. We can therefore eliminatgandu,
from Eq. (7) by making use of the following:

F = H'[i],H (12)
! ! ! ! ! !
VW, — vhw,  vywh — vlwy,  vew!, — vl
= VoWp, — VpWq  VpWy, — VpWh VW, — V)
Vg — Vhwg vp — VLW Ve — VL

Using the last row of this matrix equation, we determine that

v = Fs1 4 viw,, (13)
vy = Fi3+vLwp, (14)
v. = F33+ Ué. (15)

Egs. (13-15) are substituted into Eq (7), resulting in

F3o —wpF33  weF33 — F3 0
H, = | F31 — w33 Fiz—wyFss F3+0), |. (16)
0 0 1



Similarly, v}, andv; can be eliminated to get

wyFy3 — Foz Fiz —w,F33 0
H;, = w(’IF33 - F13 ng33 - F23 Ué . (17)
0 0 1

Note that there remains a translation term involvih@ Egs. (17) and (16). This shows that transla-
tion in thewv-direction is linked between the two images, and that an offsé;ofs needed to align
horizontal scan-lines. We fing so that the minimum-coordinate of a pixel in either image is zero.

As similarity transformsH,. andH.. can only rotate, translate, and uniformly scale the im&ges
andZ’. None of these operations introduce any additional distortion.

The combined transforme, H,,, andH; H;, are sufficient to rectify images andZ'. However,
there remains additional freedom, corresponding &mdu of Eq. (4). These elements take the form
of shearing transforms described below, that can be leveraged to reduce distortion and to map the
images into a more practical pixel range.

7 Shearing Transform

In this section the freedom afforded by the independenaeasfdd is exploited to reduce the distor-
tion introduced by the projective transforril andHj,. Due to this independence, we consider only
one image, as the procedure is carried out identically on both images.

We model the effect ofi as a shearing transform

b 0
S = 10
0 1

o O

We set the translation componentsSofo zero since these terms add no useful freedom at this stage.
Leta=[22 01T, b=[w—-122 17T c=[21h-11]F, andd = [0 2L 1]T be
points corresponding to the midpoints of the edge®.ofurthermore, let = H,H,a, be a point in
the affine plane by dividing through so tiat = 1; similarly defineb, &, andd.
In general H, is a projective transform, so it is not possible to undisfodompletely using the
affine transformS. Instead we attempt to preserve perpendicularity and aspect ratio of thbdines
andca. Let

_a

—a.

o>

X

y

(el

As the difference of affine pointg andy are vectors in the euclidean image plane. Perpendicularity
is preserved when
(Sx)"(Sy) =0, (18)

and aspect ratio is preserved if
= —. (29)



Egs. (18) and (19) represent quadratic polynomialg andb (the unknown elements &) whose
simultaneous satisfaction is required. Using the method outlined in [2] we find the real solution

. h2x2 + w?y? and b= h2z,z, + w2yuyv’
hw(xvyu - xuyv) hw(xuyv - xvyu)

up to sign; the solution where is positive is preferred. We defifd; (and similarlyH) to be S
composed with a uniform scaling and translation as discribed below.

The combined transforl,H, H,), and similarlyH, H, H;,, rectify imagesZ andZ’ with minimal
distortion. However these image may not the appropriate size, or in the most desirable coordinate
system. Therefore, additional uniform scaling and translation may be applied. It is important that
the same scale factor, and the sarrteanslation be applied to both images to preserve rectification.
Translations in the-direction have no effect on rectification.

In our examples, we chose a uniform scale factor that preserves the sum of image areas. Other
criteria may work equally well. We also compute translations 8o that the minimum pixel coordi-
nate has a-coordinate of zero. A similar translation is found for thdirection, but the minimum is
taken over both images to preserve rectification.

8 Conclusion

We have presented a procedure for computing rectification homographies for a pair of images taken
from distinct viewpoints of a 3D scene. Figure 3 shows the results of each stage of our technique
on one example. This new method is based entirely on quantifiable 2D image measures and requires
no 3D constructions. Furthermore, these measure have intuitive geometric meaning. We have shown
the technique that minimizes distortion due to the projective component of rectification, and used
additional degrees of freedom in the affine component to further reduce distortion to a well defined
minimum.

A Proof of Correspondence Properties

In this appendix we demonstratghow corresponding epipolar lines are related by a direction in one
image, andz) that the second and third rows of a pair of rectifying homographies correspond to a
pairs of corresponding epipolar lines. We use the symbta indicate correspondence.

Letl € Z andl’ € 7’ be a pair of epipolar lines.

Proposition 1. If1 ~ 1" and x € Z isadirection (point at co) such that 1 = [e]. x then
I = Fx.

Proof. Let x be the intersection of linekandk = [0 0 1] (the line atoo), found byx = [k]x1.
Similarly, letx’ = [k]«1'. Clearlyl = [e]«x, since[e]«[k]x1 =1

Sincel ~ I’ it follows thatx'” Fx = 0. By defintione’’l' = ¢/"Fx = 0 andx’l' = x"Fx = 0,
which shows that line¥ andFx both contain pointg’ andx’ and must be the same line. O

In the following, we denote the rows #f andH as in Eq. (4), and=[100]".

10



Proposition 2. If H and H' are homgraphies such that
F =H"[i],H, (20)
thenv ~ v and w ~ w'.

Proof. ExpandingH'”[i],, H shows that

VWl — vhwe  vpwl, — viwy  vew!, — vhw,

F=| vowy, —vyw, vpwy—vywp, vewy — vywe
VWl — viw,  vpwl — viw,  vew!l — viw,

We observe thaF does not depend amor u. Without loss of generality, we set= k = o/, where
k =[00 1]7 is the line atx. It is straightforward to show that, up to a scale factor

H'= [ [vlxw [w]xu [u]xv ]

Sincev andw are independent (follows from Eq. (20)) and both contégaiwe conclude thdtv | w =
e. Lety = [v]|ck andz = [w]. k. From Eqg. (20) we get

H'i], = FH!
[k v W ][ilx = F[e z -y ]
[0 w —v'] = [0 Fz -Fy]. (21)

We conclude that’ = Fy andw’ = Fz. By Proposition 1 it follows that ~ v andw ~ w'. [
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(a) Original image
pair overlayed with
several  epipolar
lines.

(b) Image pair
transformed by the
specialized projec-
tive mapping H,
and Hj,. Note that
the epipolar lines
are now parallel to
each other in each
image.

(c) Image pair
transformed by
the similarity H,

and H,. Note

that the image pair
is now rectified
(the epipolar lines
are  horizontally
aligned).

(d) Final image
rectification  after
shearing transform
H, and H,. Note
that the image pair
remains rectified,
but the horizon-
tal distortion is
reduced.

Figure 3: An example showing various stages of the proposed rectification algorithm.



