Where to Find My Next Passenger?

Jing Yuan ${ }^{1}$ Yu Zheng ${ }^{2}$ Liuhang Zhang ${ }^{1}$ Guangzhong Sun ${ }^{1}$
${ }^{1}$ University of Science and Technology of China
${ }^{2}$ Microsoft Research Asia
September 19, 2011

Motivation

- Taxis in big cities (103,000 in Mexico, 67,000+ in Beijing)
- Problems brought by cruising taxis: gas, time, profit

Motivation

- Taxis in big cities (103,000 in Mexico, 67,000+ in Beijing)
- Problems brought by cruising taxis: gas, time, profit, traffic jams, energy, air pollution

Motivation

- Taxis in big cities (103,000 in Mexico, 67,000+ in Beijing)
- Problems brought by cruising taxis: gas, time, profit, traffic jams, energy, air pollution
- Passengers are still hard to find a vacant taxi sometimes

Recommender Scenario

A) Taxi recommender

Recommender Scenario

A) Taxi recommender

B) Passenger recommender

Recommender Scenario

A) Taxi recommender

B) Passenger recommender

Recommender Scenario

A) Taxi recommender

B) Passenger recommender

Data

- Beijing Taxi Trajectories
- 33,000 taixs in 3 month
- Total distance: 400 Mkm
- Total number of points: 790M
- Average sampling interval: 3.1 minutes, 600 meters
- Beijing Road Network
- 106,579 road nodes
- 141,380 road segments

Profit-variant taxi drivers

Figure 1: Statistics on the profit distribution and occupied ratio

Cruise More, Earn More?

Figure 2: Density scatter of cruising distance/unit time w.r.t. profit

System overview

System overview

Parking Place Detection

Parking Place: the places where the taxis frequently wait for passengers. (not a parking slot).

- Candidates Generation
- Filtering
- Density-Based Clustering

Parking Place Detection

- Candidates Generation

A group of points satisfying δ, τ; connect them if overlap exists

Filtering
Density-Based Clustering

Parking Place Detection

Candidates Generation

- Filtering

Distinguished from traffic jams (bagging classifier) features used: spatial-temporal (d_{c}, MBR...), POI, ...

Density-Based Clustering

Parking Place Detection

Candidates Generation

Filtering

- Density-Based Clustering

Aggregate the candidates belonging to a single parking place

Parking Place Detection

Taxi Recommender

A "good" parking place (to go towards):

- the probability to pick up a passenger \Uparrow (Possibility)
the expected duration from T_{0} to the time the next passenger is picked up \Downarrow (Cost)
the distance/duration of the next trip \uparrow (Benefit)

Taxi Recommender

A "good" parking place (to go towards):

- the probability to pick up a passenger \Uparrow (Possibility)
- the expected duration from T_{0} to the time the next passenger is picked up \Downarrow (Cost)
the distance/duration of the next trip \uparrow (Benefit)

Taxi Recommender

A "good" parking place (to go towards):

- the probability to pick up a passenger \Uparrow (Possibility)
- the expected duration from T_{0} to the time the next passenger is picked up \Downarrow (Cost)
- the distance/duration of the next trip \Uparrow (Benefit)

Probability

Probability

Situation 1: Pick up during the route at r_{1}

r_{i}	road segment i
t_{i}	travel time from r_{1} to r_{i}
p_{i}	the probability that a taxi picks up a passenger at r_{i} (at time $T_{0}+t_{i}$)

Probability

Situation 1: Pick up during the route at r_{2}

r_{i}	road segment i
t_{i}	travel time from r_{1} to r_{i}
p_{i}	the probability that a taxi picks up a passenger at r_{i} (at time $T_{0}+t_{i}$)

Probability

Situation 1: Pick up during the route at r_{3}

r_{i}	road segment i
t_{i}	travel time from r_{1} to r_{i}
p_{i}	the probability that a taxi picks up a passenger at r_{i} (at time $T_{0}+t_{i}$)

Probability

Situation 2: Pick up at a parking place

W	the event that a taxi waits at a parking place
t_{i}	travel time from r_{1} to r_{i}
p_{*}	the probability that a taxi picks up a passenger at a parking place (at time $T_{0}+t_{n}$)

Probability

Situation 3: Fail to pick up a passenger

W	the event that a taxi waits at a parking place
t_{i}	travel time from r_{1} to r_{i}
p_{*}	the probability that a taxi picks up a passenger at a parking place (at time $T_{0}+t_{n}$)

Cost and Benefit Analysis

- Duration before the next trip T

$$
\begin{align*}
& \begin{array}{l}
\mathbf{E}[T \mid S] \\
= \\
= \\
\mathbf{E}\left[T_{R} \mid S\right]+\mathbf{E}\left[T_{P} \mid S\right] \\
= \\
\sum_{i=1}^{n} t_{i} \operatorname{Pr}\left(S_{i}\right)+t_{n} \operatorname{Pr}\left(S_{n+1}\right)+\operatorname{Pr}(W) \sum_{j=1}^{m} p_{*}^{j} t_{j}^{*} \\
\operatorname{Pr}(S)
\end{array} .
\end{align*}
$$

- Distance of the next trip D_{N}
- Duration of the next trip T_{N}

Recommendation Strategies

- Taxi Recommender
$\operatorname{Topk}_{\max }\left\{\mathrm{E}\left[D_{N} \mid S\right] / \mathrm{E}\left[T+T_{N} \mid S\right]: \operatorname{Pr}(S)>P_{\theta}\right\}$.
most profitable, given a probability guarantee.
Tonk $\left\{\left[\mathbf{E}[T \mid S]: \operatorname{Pr}(S)>P_{0}, D_{N}>D_{0}\right\}\right.$.
fastest to find a passenger, given probability and distance guarantee

Ton $_{\max }\left\{\operatorname{Pr}(S): \mathbb{E}\left[D_{N} \mid S\right] / \mathbb{E}\left[T+T_{N} \mid S\right]>F_{\theta}\right\}$.
most likely to find a passenger, given profit guarantee
(2) Passenger Recommender

$$
r=\underset{\operatorname{argmax}}{\operatorname{Pr}}(C ; r \mid t)
$$

Ω : search space within a walking distance

Recommendation Strategies

- Taxi Recommender

S1. Topk $\max ^{\max }\left\{\mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]: \operatorname{Pr}(S)>P_{\theta}\right\}$. most profitable, given a probability guarantee.
$T_{o p} k_{\min }\left\{\mathbb{E}[T \mid S]: \operatorname{Pr}(S)>P_{\theta}, D_{N}>D_{\theta}\right\}$.
fastest to find a passenger, given probability and distance guarantee
$T o p k_{\max }\left\{\operatorname{Pr}(S): \mathbb{E}\left[D_{N} \mid S\right] / \mathbb{E}\left[T+T_{N} \mid S\right]>F_{\theta}\right\}$.
most likely to find a passenger, given profit guarantee
(a) Passenger Recommender
$r=\underset{r \in \Omega}{\operatorname{argmax}} \operatorname{Pr}(C ; r \mid t)$.
Ω : search space within a walking distance

Recommendation Strategies

- Taxi Recommender

S1. Topk $\max ^{\max }\left\{\mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]: \operatorname{Pr}(S)>P_{\theta}\right\}$. most profitable, given a probability guarantee.
S2. Topk $k_{\min }\left\{\mathbf{E}[T \mid S]: \operatorname{Pr}(S)>P_{\theta}, D_{N}>D_{\theta}\right\}$. fastest to find a passenger, given probability and distance guarantee
most likely to find a passenger, given profit guarantee

Passenger Recommender
$r=\underset{r \in \Omega}{\operatorname{argmax}} \operatorname{Pr}(C ; r \mid t)$.
Ω : search space within a walking distance

Recommendation Strategies

- Taxi Recommender

S1. Topk $\max ^{\max }\left\{\mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]: \operatorname{Pr}(S)>P_{\theta}\right\}$. most profitable, given a probability guarantee.
S2. Topk $k_{\min }\left\{\mathbf{E}[T \mid S]: \operatorname{Pr}(S)>P_{\theta}, D_{N}>D_{\theta}\right\}$. fastest to find a passenger, given probability and distance guarantee
S3. $\operatorname{Topk}_{\max }\left\{\operatorname{Pr}(S): \mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]>F_{\theta}\right\}$. most likely to find a passenger, given profit guarantee

Passenger Recommender

Ω : search space within a walking distance

Recommendation Strategies

- Taxi Recommender

S1. Topk $\max ^{\max }\left\{\mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]: \operatorname{Pr}(S)>P_{\theta}\right\}$. most profitable, given a probability guarantee.
S2. Topk $k_{\min }\left\{\mathbf{E}[T \mid S]: \operatorname{Pr}(S)>P_{\theta}, D_{N}>D_{\theta}\right\}$.
fastest to find a passenger, given probability and distance guarantee
S3. $\operatorname{Topk}_{\max }\left\{\operatorname{Pr}(S): \mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]>F_{\theta}\right\}$. most likely to find a passenger, given profit guarantee
S4. ...
Passenger Recommender
$r=\underset{r \in \Omega}{\operatorname{argmax}} \operatorname{Pr}(C ; r \mid t)$.
Ω : search space within a walling distance

Recommendation Strategies

- Taxi Recommender

S1. Topk $\max ^{\max }\left\{\mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]: \operatorname{Pr}(S)>P_{\theta}\right\}$. most profitable, given a probability guarantee.

S2. Topk $k_{\min }\left\{\mathbf{E}[T \mid S]: \operatorname{Pr}(S)>P_{\theta}, D_{N}>D_{\theta}\right\}$.
fastest to find a passenger, given probability and distance guarantee

S3. $\operatorname{Topk}_{\max }\left\{\operatorname{Pr}(S): \mathbf{E}\left[D_{N} \mid S\right] / \mathbf{E}\left[T+T_{N} \mid S\right]>F_{\theta}\right\}$.
most likely to find a passenger, given profit guarantee
S4. ...
(2) Passenger Recommender

$$
r=\underset{r \in \Omega}{\operatorname{argmax}} \operatorname{Pr}(C ; r \mid t)
$$

Ω : search space within a walking distance

Evaluation on Parking Place Detection

- Key issue: traffic jams vs. parking places

Features	Precision	Recall
Spatial	0.695	0.670
Spatial+POI	0.716	0.696
Spatial+POI+Collaborative	0.725	0.706
Spatial+POI+Collaborative+Temporal	0.909	0.889

Table 1: Results of parking place filtering

Evaluation on Knowledge Learning

(a) waiting time Figure 3: Distribution in parking places (overall)

(a) $\operatorname{Pr}(C \leadsto O)$
(b) duration of the first trip (c) distance of the first trip Figure 4: Statistics results of road segments (overall)

Evaluation on Online Recommendation

- Precision (\#hits/\#recommendations) and Recall (\#parking places the drivers actually go to/\#suggested parking places)
- NDCG@k
- RME for the hit parking places on T, T_{N} and D_{N}.

	S1	S2	S3	B1	B2
Precision	0.63	0.66	0.67	0.60	0.61
Recall	0.59	0.65	0.64	0.57	0.52
$R M E(T)$			0.15		
$R M E\left(D_{N}\right)$			0.02		
$R M E\left(T_{N}\right)$			0.03		

Table 2: RME, precision and recall
Figure 5: nDCG

Screenshot of Passenger Recommender

Screenshot of Taxi Recommender

Windows Phone 7 APP

Taxi Finder

Settings

Time $\quad 20.30: 22$

$0: 00$	$12: 00$	$24: 00$

Day of week
\checkmark Weekdavs
Weekends

Distance 600

300	600	900
OK	Default	

\leftarrow
A 0

Next Step

- Waiting time modeling for passenger recommender
- Queueing models for parking places
- More in-the-field study

Thanks!

Jing Yuan
yuanjing@mail.ustc.edu.cn

