Where to Find My Next Passenger?

Jing Yuan¹ Yu Zheng² Liuhang Zhang¹ Guangzhong Sun¹

¹University of Science and Technology of China ²Microsoft Research Asia

September 19, 2011

Jing Yuan et al. (USTC,MSRA)

Where to Find My Next Passenger?

September 19, 2011 1 / 19

- Taxis in big cities (103,000 in Mexico, 67,000+ in Beijing)
- Problems brought by cruising taxis: gas, time, profit

- Taxis in big cities (103,000 in Mexico, 67,000+ in Beijing)
- Problems brought by cruising taxis: gas, time, profit, traffic jams, energy, air pollution

- Taxis in big cities (103,000 in Mexico, 67,000+ in Beijing)
- Problems brought by cruising taxis: gas, time, profit, traffic jams, energy, air pollution
- Passengers are still hard to find a vacant taxi sometimes

A) Taxi recommender

Jing Yuan et al. (USTC,MSRA)

A) Taxi recommender

B) Passenger recommender

B) Passenger recommender

B) Passenger recommender

Jing Yuan et al. (USTC,MSRA)

Where to Find My Next Passenger?

September 19, 2011 4 / 19

Profit-variant taxi drivers

Figure 1: Statistics on the profit distribution and occupied ratio

Jing Yuan et al. (USTC,MSRA)

Cruise More, Earn More?

Jing Yuan et al. (USTC,MSRA)

Where to Find My Next Passenger?

System overview

System overview

Jing Yuan et al. (USTC,MSRA)

Parking Place: the places where the taxis frequently wait for passengers. (not a parking slot).

- Candidates Generation
- Filtering
- Density-Based Clustering

Candidates Generation

A group of points satisfying δ , τ ; connect them if overlap exists

- ► Filtering
- Density-Based Clustering

Candidates Generation

Filtering

Distinguished from traffic jams (bagging classifier) features used: spatial-temporal(d_c ,MBR...), POI, ...

Density-Based Clustering

- Candidates Generation
- Filtering
- Density-Based Clustering Aggregate the candidates belonging to a single parking place

Parking Place Detection

A "good" parking place (to go towards):

- ► the probability to pick up a passenger ↑ (Possibility)
- be the expected duration from T₀ to the time the next passenger is picked up ↓ (Cost)
- ► the distance/duration of the next trip ↑ (Benefit)

A "good" parking place (to go towards):

- ► the probability to pick up a passenger ↑ (Possibility)
- the expected duration from T₀ to the time the next passenger is picked up ↓ (Cost)
- the distance/duration of the next trip \Uparrow (Benefit)

A "good" parking place (to go towards):

- ► the probability to pick up a passenger ↑ (Possibility)
- the expected duration from T₀ to the time the next passenger is picked up ↓ (Cost)
- ► the distance/duration of the next trip
 (Benefit)

Situation 1: Pick up during the route at r_1

ri	road segment i
ti	travel time from r_1 to r_i
p_i	the probability that a taxi picks up a passenger at r_i (at time $T_0 + t_i$)

Situation 1: Pick up during the route at r_2

ri	road segment i
ti	travel time from r_1 to r_i
p_i	the probability that a taxi picks up a passenger at r_i (at time $T_0 + t_i$)

Situation 1: Pick up during the route at r_3

ri	road segment i
ti	travel time from r_1 to r_i
p_i	the probability that a taxi picks up a passenger at r_i (at time $T_0 + t_i$)

Situation 2: Pick up at a parking place

W	the event that a taxi waits at a parking place
ti	travel time from r_1 to r_i
<i>p</i> *	the probability that a taxi picks up a passenger at a parking place (at time $T_0 + t_n$)

Situation 3: Fail to pick up a passenger

W	the event that a taxi waits at a parking place
ti	travel time from r_1 to r_i
<i>p</i> *	the probability that a taxi picks up a passenger at a parking place (at time $T_0 + t_n$)

Duration before the next trip T

$$\mathbf{E}[T|S] = \mathbf{E}[T_R|S] + \mathbf{E}[T_P|S]$$
$$= \frac{\sum_{i=1}^n t_i \operatorname{Pr}(S_i) + t_n \operatorname{Pr}(S_{n+1}) + \operatorname{Pr}(W) \sum_{j=1}^m p_*^j t_j^*}{\operatorname{Pr}(S)}.$$

• Distance of the next trip D_N

• Duration of the next trip T_N

(1)

🔘 Taxi Recommender

- S1. $Topk_{max}{\mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S]} : Pr(S) > P_{\theta}$. most profitable, given a probability guarantee.
- S2. $Topk_{min}\{\mathbb{E}[T|S] : Pr(S) > P_{\theta}, D_N > D_{\theta}\}.$ fastest to find a passenger, given probability and distance guarantee
- S3. $Topk_{max}{\Pr(S) : \mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] > F_{\theta}}.$ most likely to find a passenger, given profit guarantee

S4. ..

Passenger Recommender

 $r = \operatorname*{argmax}_{r \in \Omega} \Pr(C; r|t).$

🔘 Taxi Recommender

- S1. $Topk_{max}{\mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] : \Pr(S) > P_{\theta}}.$ most profitable, given a probability guarantee.
- S2. $Topk_{min}\{\mathbb{E}[T|S] : Pr(S) > P_{\theta}, D_N > D_{\theta}\}.$ fastest to find a passenger, given probability and distance guarantee
- S3. $Topk_{max}{\Pr(S) : \mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] > F_{\theta}}.$ most likely to find a passenger, given profit guarantee

S4. ..

Passenger Recommender

 $r = \operatorname*{argmax}_{r \in \Omega} \Pr(C; r|t).$

🔘 Taxi Recommender

- S1. $Topk_{max}{\mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] : \Pr(S) > P_{\theta}}.$ most profitable, given a probability guarantee.
- S2. $Topk_{min}{\mathbf{E}[T|S] : Pr(S) > P_{\theta}, D_N > D_{\theta}}.$ fastest to find a passenger, given probability and distance guarantee
- S3. $Topk_{max}{\Pr(S) : \mathbb{E}[D_N|S]/\mathbb{E}[T + T_N|S] > F_{\theta}}.$ most likely to find a passenger, given profit guarantee

S4. ..

Passenger Recommender

 $r = \operatorname*{argmax}_{r \in \Omega} \Pr(C; r|t).$

🔘 Taxi Recommender

- S1. $Topk_{max}{\mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] : \Pr(S) > P_{\theta}}.$ most profitable, given a probability guarantee.
- S2. $Topk_{min}{\mathbf{E}[T|S] : Pr(S) > P_{\theta}, D_N > D_{\theta}}.$ fastest to find a passenger, given probability and distance guarantee
- S3. $Topk_{max}{\Pr(S) : \mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] > F_{\theta}}.$ most likely to find a passenger, given profit guarantee

S4. ..

```
Passenger Recommender
```

```
r = \operatorname*{argmax}_{r \in \Omega} \Pr(C; r|t).
```

 Ω : search space within a walking distance

Jing Yuan et al. (USTC,MSRA)

Where to Find My Next Passenger?

September 19, 2011 12 / 19

🔘 Taxi Recommender

- S1. $Topk_{max}{\mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] : \Pr(S) > P_{\theta}}.$ most profitable, given a probability guarantee.
- S2. $Topk_{min}{\mathbf{E}[T|S] : Pr(S) > P_{\theta}, D_N > D_{\theta}}.$ fastest to find a passenger, given probability and distance guarantee
- S3. $Topk_{max}{\Pr(S) : \mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] > F_{\theta}}.$ most likely to find a passenger, given profit guarantee

S4. ...

```
Passenger Recommender
```

$$r = \operatorname*{argmax}_{r \in \Omega} \Pr(C; r|t).$$

🔘 Taxi Recommender

- S1. $Topk_{max}{\mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] : \Pr(S) > P_{\theta}}.$ most profitable, given a probability guarantee.
- S2. $Topk_{min}{\mathbf{E}[T|S] : Pr(S) > P_{\theta}, D_N > D_{\theta}}.$ fastest to find a passenger, given probability and distance guarantee
- S3. $Topk_{max}{\Pr(S) : \mathbf{E}[D_N|S]/\mathbf{E}[T + T_N|S] > F_{\theta}}.$ most likely to find a passenger, given profit guarantee

S4. ...

Passenger Recommender

$$r = \operatorname*{argmax}_{r \in \Omega} \Pr(C; r|t).$$

 Ω : search space within a walking distance

Jing Yuan et al. (USTC,MSRA)

Key issue: traffic jams vs. parking places

Features	Precision	Recall
Spatial	0.695	0.670
Spatial+POI	0.716	0.696
Spatial+POI+Collaborative	0.725	0.706
Spatial+POI+Collaborative+Temporal	0.909	0.889

Table 1: Results of parking place filtering

Evaluation on Knowledge Learning

(a) waiting time(b) duration of the first trip (c) distance of the first tripFigure 3: Distribution in parking places (overall)

Jing Yuan et al. (USTC,MSRA)

Where to Find My Next Passenger?

September 19, 2011 14 / 19

Evaluation on Online Recommendation

- Precision (#hits/#recommendations) and Recall (#parking places the drivers actually go to/#suggested parking places)
- NDCG@k
- RME for the hit parking places on T, T_N and D_N .

	S1	S2	S3	B1	B2
Precision	0.63	0.66	0.67	0.60	0.61
Recall	0.59	0.65	0.64	0.57	0.52
RME(T)			0.15		
$RME(D_N)$			0.02		
$RME(T_N)$			0.03		

Table 2: RME, precision and recall

Figure 5: nDCG

Screenshot of Passenger Recommender

Driving Directions T-Finder

Top 3 parking places: (4 in total)

1. distance to parking place 1: 348m

- 2. distance to parking place 2: 264m
- 3. distance to parking place 3: 493m

Top 3 road segments:

- 1. distance to road 1: 245m
- 2. distance to road 2: 446m
- 3. distance to road 3: 458m

A parking place means a place where taxis wait for passengers

A colored road segment means a road where you could find a taxi

The possibility is indicated by the color

Most likely to Most impossible to find a vacant taxi

Jing Yuan et al. (USTC,MSRA)

Screenshot of Taxi Recommender

Driving Directions T-Finder

find a vacant taxi

find a vacant taxi

Where to Find My Next Passenger?

Windows Phone 7 APP

- Waiting time modeling for passenger recommender
- Queueing models for parking places
- More in-the-field study

Thanks!

Jing Yuan yuanjing@mail.ustc.edu.cn

Jing Yuan et al. (USTC,MSRA)

Where to Find My Next Passenger?

September 19, 2011 20 / 19