Urban Computing

-Using Big Data to Solve Urban Challenges

Dr. Yu Zheng Lead Researcher, Microsoft Research Chair Professor at Shanghai Jiao Tong University

http://research.microsoft.com/en-us/projects/urbancomputing/default.aspx

Big Challenges in Big Cities

Big Data in Cities

Tackle the Big challenges in Big cities using Big data!

Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.

Key Focuses and Challenges

- Sensing city dynamics
 - Unobtrusively, automatically, and constantly
 - A variety of sensors: Mobile phones, vehicles, cameras, loops,...
 - Human as a sensor: User generated content (check in, photos, tweets)
 - Loose control and unreliable \rightarrow data missing and skewed distribution
 - Unstructured, implicit, and noisy data
 - Trade off among energy, privacy and the utility of the data
- Computing with heterogeneous data sources
 - Geospatial, temporal, social, text, images, economic, environmental,...
 - Learn mutually reinforced knowledge across a diversity of data
 - Efficiency + Effectiveness: Data Management + Mining + Machine Learning
- Blending the physical and virtual worlds
 - Serving both people and cities (virtually and physically)
 - Hybrid systems: Mobile + Cloud, crowd sourcing, participatory sensing...

Air Quality Data

boundaries by the EPA.

Good Moderate USG Unhealthy Very Hazardous ! Action Day

BeijingWeather Forecast (2013-08-20 18:00)

4-7 Days Forecast

Date		weath	nerForecast	Temperature	wind
Tuesday Aug 20	night	~	Shower	Low: 23°C (73°F)	<12km/h
Wednesder Aug 21	day	20	Cloudy	High: 30°C (86°F)	<12km/h
weunesday Aug 21	night	>	Cloudy	Low: 22°C(72°F)	<12km/h
Thursday Aug 22	day	*	Sunny	High: 29°C (84°F)	<12km/h
Thursday Aug 22	night		Sunny	Low: 22°C(72°F)	<12km/h
Eniden Ang 02	day	*	Sunny	High: 32°C (90°F)	<12km/h
Friday Aug 25	night		Sunny	Low: 22°C(72°F)	<12km/h

Check-in: Entertainment

Check-ins: Nightlife Spot

Occupied Taxis

Non-occupied Taxis

4344

2163

Parked Taxis

Total

Heat Maps of Beijing (2011)

Route Construction from Uncertain Trajectories

Finding Smart Driving Directions

Discovery of Functional Regions

Passengers-Cabbie Recommender system

Anomalous Events Detection KDD'11 and ICDM 2012

Urban Computing for Urban Planning

Diagnose urban noises using big data

Infer air quality using big data

Real-time gas consumption and pollution emission

Real-time and large-scale dynamic ridesharing

Real-time city-scale gas consumption sensing

Residential Real estate ranking and clustering

When Urban Air Meets Big Data

KDD 2013

http://urbanair.msra.cn/

Background

• Air quality monitor station

We do not really know the air quality of a location without a monitoring station!

Inferring **Real-Time** and **Fine-Grained** air quality throughout a city using **Big Data**

Zheng, Y., et al. U-Air: when urban air quality inference meets big data. KDD 2013

Difficulties

- Incorporate multiple heterogeneous data sources into a learning model
 - Spatially-related data: POIs, road networks
 - Temporally-related data: traffic, meteorology, human mobility
- Data sparseness (little training data)
 - Limited number of stations
 - Many places to infer
- Efficiency request
 - Massive data
 - Answer instant queries

Methodology Overview

- Partition a city into disjoint grids
- Extract features for each grid from its impacting region
 - Meteorological features
 - Traffic features
 - Human mobility features
 - POI features
 - Road network features

- Co-training-based semi-supervised learning model for each pollutant
 AQI Values Levels of Health Concern Colors
 - Predict the AQI labels
 - Data sparsity
 - Two classifiers

AQI	Values Levels of Health Concern	Colors
0-50	Good (G)	Green
51-100	Moderate (M)	Yellow
101-150	Unhealthy for sensitive groups (U-S)	Orange
151-200	Unhealthy (U)	Red
201-300	Very unhealthy (VU)	Purple
301-500	Hazardous (H)	Maroon

Semi-Supervised Learning Model

- Philosophy of the model
 - States of air quality
 - Temporal dependency in a location
 - Geo-correlation between locations
 - Generation of air pollutants
 - Emission from a location
 - Propagation among locations
 - Two sets of features
 - Spatially-related
 - Temporally-related

Semi-Supervised Learning Model

- Temporal classifier (TC)
 - Model the temporal dependency of the air quality in a location
 - Using temporally related features
 - Based on a Linear-Chain Conditional Random Field (CRF)

Semi-Supervised Learning Model

• Spatial classifier (SC)

- Model the spatial correlation between AQI of different locations
- Using spatially-related features
- Based on a BP neural network

Input generation

- Select *n* stations to pair with
- Perform *m* rounds

Learning Process of Our Model

Zheng, Y., et al. U-Air: When Urban Air Quality Inference Meets Big Data. KDD 2013

Inference Process

Spatially-related features

Evaluation

• Overall performance

Yu Zheng, et al. U-Air: when urban air quality inference meets big data. KDD 2013

- Transferred to CityNext and Bing Map China
- Working with Chinese Ministry of Environmental Protection
- Forecasting air quality in the near future
- To identify the root cause of the air pollution

Diagnosing Urban Noises using Big Data

UbiComp 2014

Background

- Many cities suffer from noise pollutions
 - Traffic, loud music, construction, AC...
 - Compromise working efficiency
 - Reduce sleep quality
 - Impair both physical and mental health

- Urban noise is difficult to model
 - Change over time very quickly
 - Vary by location significantly
 - Depends on sound levels and people's tolerance
 - The composition of noises is hard to analyze

Loud Music/Party 25.5 Loud Talking 13 Vehicle 12 Construction 10.7 AC/Ventilation 5.7

Yu Zheng, et al. Diagnosing New York City's Noises with Ubiquitous Data. UbiComp 2014.

311 in NYC

- 311 Data
 - A platform for citizen's non-emergent complaints
 - Associated with a location, timestamp, and a category
 - Human as a sensor \rightarrow crowd sensing
 - Implies people's reaction and tolerance to noises

311 in NYC

- Correlation between 311 complaints and real noise levels
 - Measured the real noise levels of 36 locations in Manhattan
 - People's tolerances vary in time of day

Goal

- Reveal the noise situation of each region in each hour
 - A noise indicator denoting the noisy level
 - Composition of noises in each location

• Partition NYC into regions by major roads

- Build a 3D tensor to model the noises
 - Region
 - Time slot
 - Noise categories
- Supplement the missing entries through
 - A context-aware tensor decomposition
 - In collaborative filtering

Yu Zheng, et al. Diagnosing New York City's Noises with Ubiquitous Data. UbiComp 2014.

- Simple idea: Tensor Decomposition
- Not very accurate
- Need more inputs from other sources

$$\mathcal{L}(S, R, C, T) = \frac{1}{2} \|\mathcal{A} - S \times_R R \times_C C \times_T T\|^2 + \frac{\lambda}{2} (\|S\|^2 + \|R\|^2 + \|C\|^2 + \|T\|^2)$$

Yu Zheng, et al. Diagnosing New York City's Noises with Ubiquitous Data. UbiComp 2014.

- Geographical Features
 - Road networks
 - Number of intersections f_s
 - Length of road segments in different levels f_r
 - POIs
 - Total number of POIs f_n and density of POIs f_d
 - Distribution over different categories f_c

Yu Zheng, et al. Diagnosing New York City's Noises with Ubiquitous Data. UbiComp 2014.

- Check in data in NYC
 - Gowalla: 127,558 check-ins (4/24/2009 to 10/13/2013)
 - Foursquare: 173,275 check-ins (5/5/2008 to 7/23/2011)
- Correlation with noises
- Y implies
 - correlation between different time slots
 - correlation between different regions

Check-in: Entertainment

Check-ins: Nightlife Spot

Noise: Loud Music/Party

Yu Zheng, et al. Diagnosing New York City's Noises with Ubiquitous Data. UbiComp 2014.

• Correlation between different noise categories

Categories	%	Categories	%
c_1 . Loud Music/Party	42.2	c_8 . Alarms	1.7
c_2 . Construction	17.2	c ₉ . Private carting noise	0.8
c_3 . Loud Talking	14.6	c_{10} . Manufacturing	0.3
c_4 . Vehicle	13.7	c_{11} . Lawn care equipment	0.3
c_5 . AC/Ventilation	3.9	c_{12} . Horn Honking	0.2
<i>c</i> ₆ .Banging/Pounding	2.1	c_{13} . Loud Television	0.1
c7. Jack Hammering	2.1	c_{14} . Others	0.8

A) weekday

B) weekend

311 complaints about noises

Methodology

Ŧ

Y

 $\mathcal{L}(S, R, C, T, U) = \frac{1}{2} \|\mathcal{A} - S \times_R R \times_C C \times_T T\|^2 + \frac{\lambda_1}{2} \|X - RU\|^2 + \frac{\lambda_2}{2} \operatorname{tr}(C^T L_Z C) + \frac{\lambda_3}{2} \|Y - TR^T\|^2$ $+\frac{\lambda_4}{2}(||S||^2+||R||^2+||C||^2+||T||^2+||U||^2)$

 $\mathcal{L}(S, R, C, T, U) = \frac{1}{2} \|\mathcal{A} - S \times_R R \times_C C \times_T T\|^2 + \frac{\lambda_1}{2} \|X - RU\|^2 + \frac{\lambda_2}{2} \operatorname{tr}(C^T L_Z C) + \frac{\lambda_3}{2} \|Y - TR^T\|^2 + \frac{\lambda_4}{2} (\|S\|^2 + \|R\|^2 + \|C\|^2 + \|U\|^2)$

http://citynoise.azurewebsites.net/

- Accuracy of the inferences
 - Remove 30% non-zero entries
 - Metrics: RMSE & MAE
 - Compared with six Baseline methods

Mothoda	Week	days	Weekends		
wiethous	RMSE	MAE	RMSE	MAE	
AWR	4.736	2.582	4.446	2.599	
AWH	4.631	2.461	4.42	2.522	
MF	4.600	2.474	4.393	2.516	
Kriging	4.59	2.424	4.253	2.495	
TD	4.391	2.381	4.141	2.393	
TD+ X	4.285	2.279	4.155	2.326	
TD+ <i>X</i> + <i>Y</i>	4.160	2.110	4.003	2.198	
TD + X + Y + Z	4.010	2.013	3.930	2.072	

Yu Zheng, et al. Diagnosing New York City's Noises with Ubiquitous Data. UbiComp 2014.

- Relative ranking performance
 - Ranked by the inferred noise indicators
 - Ground truth: measured by a mobile phone running a client program
 - Metric: NDCG

- 311 vs. Inferences
 - 2.75% of entries on weekdays are from 311 data (97.25% by inference)
 - 1.83% of entries on weekends are from 311 data (98.17% by inference)

A) Vehicles (6am-6pm)

Inferring Gas Consumption and Pollution Emission of Vehicles throughout a City

KDD 2014

Questions

How many liters of gas have been consumed by the vehicles, in the entire city, in the past one hour?

What is the volume of PM2.5 that has been generated accordingly?

Goals

- Estimate the gas consumption and vehicle emissions
 - on arbitrary road segment
 - at any time intervals
 - using GPS trajectories of a sample of vehicles

Our Approach

- Using the GPS trajectories of a sample of vehicles
 - Estimate travel speed on each road segment
 - Infer the traffic volume of each road segment
 - Calculate the gas consumption and emission of vehicles

Difficulties

- Data sparsity
- From speed to volume
 - Depends on multiple factors, such as
 - the current travel speeds and density of vehicles
 - the length, shape, and capacity of a road
 - weather conditions
 - Insufficient training data
 - Biased distribution of the samples
- Real-time and citywide
 - Over 100,000 road segments to infer
 - Need to finish it in a few minutes

Traffic Volume Inference (TVI)

- Objective: From travel speed to traffic volume
- Traffic volume depends on
 - the current travel speeds and density of vehicles
 - the length, shape, capacity of a road, and weather conditions
- Biased distribution between taxis and other vehicles
- Unsupervised learning approach

Energy and Emission Calculation

 $EF = (a + cv + ev^2)/(1 + bv + dv^2).$

	а	b	С	d	е
CO	71.7	35.4	11.4	-0.248	0
Hydrocarbon	5.57× 10 ⁻²	3.65×10^{-2}	-1.1× 10 ⁻³	-1.88×10^{-4}	1.25× 10 ⁻⁵
Nox	9.29× 10 ⁻²	-1.22× 10 ⁻²	-1.49× 10 ⁻³	3.97×10^{-5}	6.53× 10 ⁻⁶
Fuel Consumption	217	9.6×10^{-2}	0.253	-4.21× 10 ⁻⁴	9.65× 10 ⁻³

 $E = EF \times r. N_a \times r. n \times r. len$

• Evaluation on TSE

Methods	RMSE of \overline{v}	RMSE of dv	Time (sec)
$MF(M'_r)$	2.172	1.833	2.2
$MF(M'_r + Z)$	1.939	1.385	18.2
$\mathbf{MF}(M'_r + M'_g + Z)$	1.908	1.314	20.2
TSE	1.369	1.035	22.2
Kriging	2.340	1.300	1,000
KNN	3.360	1.590	0.14

RMSE	level 0-1	level 2	level 3	level >=4
Speed	2.575	1.189	0.977	1.612
Variance	1.526	1.128	0.628	1.234

• Evaluation on TVI

Methods	MAE	MRE	Inference time (us/road)
TVI	3.01	29%	7.27
TVI w/o dv	3.19	31%	7.18
TVI w/o w	3.15	29%	7.10
LR	3.06	27%	0.15
FD	2.66	16%	0.13
FD-SC	3.9	42%	0.13
FD-DC	6.7	137%	0.13

	level 0-1	level 2	Weekday	Weekend
MAE	5.55	2.23	2.97	3.28
MRE	22%	41%	29%	30%

Time	7:00	~ 10	:00	10	10:00~16:00		16:00~20:00		after 20:00			total	
Level	0,1	2	3	0,1	2	3	0,1	2	3	0,1	2	3	
Holiday	0	0	0	6	14	4	6	8	1	4	6	0	49
Workday	7	28	8	29	74	9	28	92	7	6	17	4	309
Total		43			136			142			37		358

• Efficiency

Online components	Time	Offline components	Time
Map-matching	4.94min	Geo-feature extraction	149s
TSE	22.2s	Historical pattern extraction	240s
TVI (inference)	0.84s	TVI learning	89s
Total	5.32min	Total	478s

Time of Day

Computing with Multiple Heterogeneous Data Sources

Co-Training-based Semi-supervised learning

Context-aware Tensor Decomposition

Matrix Factorization + Graphical Models

Take Away Messages

- 3**B**: *B*ig city, *B*ig challenges, *B*ig data
- 3M: Data Management, Mining and Machine learning
- 3W: Win-Win-Win: people, city, and the environment

3-BMW

Search for "Urban Computing"

Thanks!

Download Urban Air App yuzheng@microsoft.com

Yu Zheng

<u>Homepage</u>