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ABSTRACT
Supporting entity extraction from large document collec-
tions is important for enabling a variety of important data
analysis tasks. In this paper, we introduce the “ad-hoc” en-
tity extraction task where entities of interest are constrained
to be from a list of entities that is specific to the task. In such
scenarios, traditional entity extraction techniques that pro-
cess all the documents for each ad-hoc entity extraction task
can be significantly expensive. In this paper, we propose an
efficient approach that leverages the inverted index on the
documents to identify the subset of documents relevant to
the task and processes only those documents. We demon-
strate the efficiency of our techniques on real datasets.

1. INTRODUCTION
The task of extracting names of people, products, loca-

tions and other such named entities is important for several
applications. Enterprise search and ad-hoc business ana-
lytics and reporting applications over document collections
can significantly benefit from entity extraction technology.
Traditionally, the goal of entity extraction is to identify all
named entities occurring in the input documents. For exam-
ple, given a document d2 in Figure 1, a product entity ex-
tractor may identify the occurrence of the entity “Sony Vaio
FS740” starting at word position 2. Leading approaches
primarily rely on machine learning (ML) and natural lan-
guage processing (NLP) techniques in order to identify vari-
ous types of entities in documents (e.g., people names, loca-
tions, products) [4]. Sometimes a set of entities is provided
as input to aid the entity extraction process but the entities
extracted from the documents are not limited to this input
set.

In this paper, we focus on a subclass of entity extrac-
tion scenarios with unique characteristics. These extraction
tasks enable rich data mining and analysis over document
collections. We now discuss a few such tasks.

1. Consider an analyst mining the news articles that ap-
peared in the past one year for popular handheld de-
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vices. The list of interesting devices may be explicitly
given or obtained via a query over a different database.
The analyst needs to extract all occurrences of hand-
held devices in the given list from the news articles in
order to perform the comparative analysis of handheld
devices. The same news document repository may also
be mined (perhaps, by a different analyst) for articles
on a set of celebrities or on a set of movies.

2. Consider an analyst mining a product review reposi-
tory for reviews pertaining to a set of electronic prod-
ucts obtained from CNET.com or from PriceGrab-
ber.com. Once again all occurrences of the selected
products in the documents must be extracted in or-
der to enable the required analysis. The same review
repository may also be mined for reviews on a set of
kitchen appliances or gadgets.

3. Consider a researcher mining a medical documents
database for a set of articles on bacteria, viruses,
and parasites related to mosquito-borne diseases. The
list of bacteria, viruses, and parasites may be ob-
tained from the drug adminstration or an environmen-
tal agency. The same medical document database may
be mined by another researcher looking for reports on
variations of Flu viruses.

Each of the above entity extraction tasks exhibit the fol-
lowing set of unique characteristics.

• Dictionary-constrained extraction: The entities to be
identified in a document repository is constrained to
be from a given list of entities. This is unlike classical
entity extraction schemes where the entity list is used
as an aid, but not necessarily to restrict the entities
extracted from documents.

• Ad-hoc entity sets: The set of entities to be extracted
from the documents is not predefined, much like fil-
ter conditions in traditional database queries. Hence,
identifying the relevant documents at the time of in-
sertion of a document into the repository is not possi-
ble. Further, as seen in many practical scenarios (say,
movies in news articles), these entity sets can often be
large.

• Approximate match: To robustly support the entity
identification tasks such as in the examples above, even
if the entire entity string is not mentioned in the doc-
ument, identifying sub-strings containing a meaning-
ful subset of tokens of the original entity, e.g., “Vaio
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Figure 1: Ad-hoc Entity Extraction

FS740” instead of “Sony Vaio FS740” is desired.1

Therefore, given a list E of entities, matching against
variations obtained through limited subsetting of the
tokens is very important in practice.

In this paper, we define the ad-hoc entity extraction task as
one that takes a collection of documents D and an ad-hoc
reference set E of entities, and extracts all entities in E
whenever they occur in the given documents. Note that the
goal is to extract only the entities in E and we leverage this
unique characteristic in our paper. We initially focus on
exact match between entity strings and their occurrences in
documents, and discuss the issue of approximate match in
Section 4. Figure 1 illustrates the ad-hoc entity extraction
scenario, and the two steps enabling it. The document
filtering step identifies all documents that contain any
entity string in E along with entity strings they contain.
We refer to these documents as “hit documents”. Then,
the entity recognition step analyzes the entity strings in the
hit documents and their document contexts (using ML and
NLP techniques) in order to ensure that the entity string in
the document is actually a reference to the entity and not a
generic phrase in the language. For example, the distinction
between the movie “60 seconds” versus a phrase “60 sec-
onds” (in reference to time) is important while extracting
a set of movies. We apply known techniques for the entity
recognition step [10, 15]. In this paper, we focus on the first
step of document filtering for entity extraction. We now
consider two simple approaches for ad-hoc entity extraction.

Document Scan Approach: A basic approach, as illustrated
in Figure 2, is to scan each document and check whether
or not the document contains any reference entity string.
We can apply standard string matching techniques [3] for
entity string matching. Only the documents that contain
one or more reference entity strings are passed to the entity
recognition step. In an ad-hoc entity extraction scenario,
users can dynamically provide new or updated reference
entity sets. Hence, unlike traditional entity extraction, we
cannot piggy back on the processing of documents while
building the inverted index. Consequently, we pay the
stiff performance penalty (for each ad-hoc entity extraction

1In this paper, we refer to words as tokens.
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task) of scanning all the documents and processing them to
identify the hit documents for the given task.

Phrase Query Approach: Inverted index exists on document
collections to enable efficient keyword search. Instead of
scanning the documents, we can use the inverted index to
identify the hit documents. A straightforward approach to
do so is illustrated in Figure 3. We issue one phrase query
per entity in the reference set against the inverted index
and union the results to obtain the identifiers of all the
hit documents. For example, for the reference entity set
in Figure 1, we issue 5 phrase queries “Sony Vaio FS740”,
“Sony Vaio VX88P”, “Sony PlayStation 3”, “XBox 360
Core System” and “XBox 360 Wireless Controller” and
union the results to get all the hit documents. We then
retrieve the documents and pass it to the entity recognition
step. However, we observe that in many domains, there are
sets of tokens that are shared among the different entities.
For example, “Sony Vaio VX88P” shares a number of tokens
with “Sony Vaio FS740”. Furthermore, to handle approxi-
mate matches, we need to generate variations of the original
entities and add them to the reference set. The variations
of an entity tend to have a high degree of overlap among
themselves as well as with the original entity.2 For example,
the entity “Sony Vaio FS740” may produce variants “Vaio
FS740” and “Sony FS740”, all of which share a number of
tokens with the original entity. The phrase query approach
ends up scanning the document lists of these overlapping
tokens multiple times and intersecting them multiple times,
and is hence expensive (as illustrated in Section 6).

Our Approach: In this paper, we present efficient document
filtering techniques for ad-hoc entity extraction tasks. Like
the phrase query approach, we also exploit the inverted in-
dex. However, our key insight is to reduce the cost of query-
ing against the inverted index by exploiting the overlap of
tokens among the set of entities. Our main contributions
are summarized as follows.

1. We propose a novel document filtering approach that
judiciously chooses a set of DNF (disjunctive nor-
mal form) queries and executes them against the in-
verted index. This approach exploits the overlap of

2This is the only feasible strategy to handle approximate match
if we use the phrase query approach. We study more efficient
strategies in the context of our approach in Section 4. These
strategies also introduce a high degree of overlap of tokens in the
reference set.



tokens among the entities and is significantly more effi-
cient compared to the phrase query approach described
above. Unlike the phrase query approach that returns
the exact set of hit documents, the DNF queries will
return a superset of the hit documents. These doc-
uments need to be processed subsequently using the
entity string matcher to filter out the false positives.
While the document scan and phrase query approaches
lie at two ends of the spectrum with a high document
processing cost (but no query cost) and a high query
cost (but no document processing cost) respectively,
our DNF query approach tries to carefully trade-off
between the two costs in order to reduce the overall
execution cost. We propose a cost model to quantify
the overall execution cost and develop heuristic algo-
rithms to pick the DNF queries that minimize the over-
all execution cost. Furthermore, if the inverted index
engine exposes a relational view of the inverted index
which supports efficient join with a potentially large
set of tokens, we can further improve the performance
of document filtering techniques.

2. We develop techniques for identifying approximate
matches between entity strings in the reference set and
their mentions in documents based on popular notions
of similarity such as weighted Jaccard similarity [5,
10].

3. We evaluate our techniques over real datasets and show
that they significantly improve the efficiency of ad-hoc
entity extraction tasks in most cases. We also pro-
vide cost estimates for choosing among the candidate
techniques.

The remainder of the paper is organized as follows. In
Section 2, we formally define the document filtering for ad-
hoc entity extraction problem and discuss our architecture.
In Section 3, we present the cost model and the algorithm.
In Section 4, we extend our solution to enable approximate
matches between entity strings and their mentions in doc-
uments. Section 5 discusses some extensions. In Section 6,
we present a thorough experimental study on real datasets.
In Section 7, we review relevant related work and conclude
in Section 8.

2. PROBLEM DEFINITION
In this paper, we focus on developing efficient techniques

for the document filtering step, which we now formalize. Let
gE be an entity string matcher which takes a document d
and returns the mentions in d of all entities from E. We
say a document d mentions an entity e ∈ E at position pos
iff the contiguous sub-sequence of tokens in d at position
pos is identical to the sequence of tokens in entity e and is
defined by the triplet (d, e, pos). We denote the output of
gE on d by gE(d). An example instantiation for gE is the
trie-based Aho-Corasick technique [3], which builds a trie
over all entities in E. The trie is used to significantly reduce
the number of comparisons between subsequences of words
in an input document d and those in the entity set E.

Definition 1. (Document Filtering for Ad-hoc En-
tity Extraction) Given a set D of documents and the
set E of entities, the task of document filtering for ad-
hoc entity extraction is to return the set {(d, gE(d)) : d ∈
D and gE(d) 6= φ}.

Entities Covering Covering
Tokens Token Pairs

Sony Vaio FS740 Vaio Sony, Vaio
Sony Vaio VX88P
Sony Playstation 3 Playstation Sony, Playstation
XBox 360 Core System XBox XBox, 360
XBox 360 Wireless Controller

Table 1: Entity Cover

Example 1. Consider the reference entity set E =
{e1, e2, e3, e4, e5} and the document collection D = {d1, d2}
in Figure 1. Document d1 mentions the entities e4 and e3
at word positions 2 and 7 respectively while document d2
mentions entity e1 at word position 2. The result of docu-
ment filtering with respect to E will include the document d1
along with mentions (d1, e4, 2) and (d1, e3, 7) and document
d2 along with mention (d2, e1, 2).

2.1 Inverted Index APIs
We assume that the following queries are efficiently sup-

ported over an inverted index by a full text search engine.

2.1.1 DNF Formula over Set of Token Sets
Consider a set {T1, . . . , TK} of token sets. We use small

letters such as t to denote an individual token and capital
letters such as T to denote a set of tokens (also referred
to as “token set”). The DNF formula dnf({T1, . . . , TK})
over the set {T1, . . . , TK} of token sets is a disjunction
of K conjuncts where the ith conjunct is formed by and-
ing the tokens in token set Ti. Formally, let and(Ti)

denote the and query over the tokens t1i , · · · , t
|Ti|
i in to-

ken set Ti, i.e., and(Ti) = (t1i and . . . and t
|Ti|
i ). Then,

dnf({T1, . . . , TK}) = (and(T1) or . . . or and(TK)). Note
that the above formula when executed on the inverted in-
dex returns the result

⋃K
i=1

⋂
t∈Ti D(t). where D(t) denotes

the set of identifiers (referred to as docids) of all documents
d ∈ D that contain the token t. We refer to the above re-
sult as the docid set of the DNF formula. For example, the
dnf formula for the set of token sets {{Sony, Vaio}, {XBox,
360}} is ((’Sony’ and ’Vaio’) or (’XBox’ and ’360’)).

2.1.2 Or Query over Entity Phrases
We first consider a phrase query for a single en-

tity. The phrase query phrQ(e) for an entity e
containing the sequence of tokens [t1, . . . , t|e|] is the
query “t1 . . . t|e|”. The or query over entity phrases
orPhrQ(e1, . . . , eK) for a set {e1, . . . , eK} of entities is
the query (phrQ(e1) or . . . or phrQ(eK)). Note that the
above query returns the identifiers of the documents that
contain one or more phrases from the above set. For exam-
ple, or query of phrases for the entities {Sony Vaio FS740,
Sony Vaio VX88P} is (“Sony Vaio FS740” or “Sony Vaio
VX88P”).

For the phrase query approach discussed in Section 1, in-
stead of executing separate phrase queries for each entity, it
would be better to execute a single or-query of all the entity
phrases as this would avoid incurring the initialization cost
for each query. For example, for the reference entity set in
Figure 1, we issue the query (“Sony Vaio FS740” or “Sony
Vaio VX88P” or “Sony PlayStation 3” or “XBox 360 Core
System” or “XBox 360 Wireless Controller”). Note that
such an or-query would have |E| terms which can be in the



order of thousands. However, typical inverted index engines
support queries containing only a small number, order of ten
to hundred, terms. In such a case, we batch the execution
by partitioning the large or-query into multiple smaller or-
queries such that each smaller or-query has the maximum
number of allowed terms. We write the result of each smaller
or-query into a temporary relation and then union the re-
sult. The above batching strategy also applies to the DNF
query approach as discussed in detail in Section 3.

2.2 Our Approach
Our main insight is to exploit the overlap of tokens among

entities in order to reduce the cost of querying against the
inverted index. If a set of entities share a set of tokens T , we
reduce the query cost by executing the simpler query and(T )
instead of the complex phrase query (or queries) correspond-
ing to the entities that share T . Note that since a document
that mentions an entity e also contains every subset of the
set of tokens in e, the query and(T ) will return a superset
of the docids returned by the corresponding phrase queries.
This superset property guarantees correctness, i.e., the filter
will not miss any hit documents. The false positives can be
filtered out by processing the returned documents using the
entity string matcher.

For example, consider the set of reference entities shown
in Table 1.3 The token ‘Vaio’ is shared by the first two
entities; we can execute the query (‘Vaio’) instead of the
phrase queries “Sony Vaio FS740” and “Sony Vaio VX88P”.
Similarly, we can execute the query (‘Playstation’) instead
of the phrase query “Sony PlayStation 3” and the query
(‘Xbox’) instead of the phrase queries “XBox 360 Core Sys-
tem” and “XBox 360 Wireless Controller”. The benefit is
that the overall cost of executing these three single token
queries is much less compared to the five phrase queries.
On the down side, the single token queries might return a
much larger set of documents which need to be processed
by the entity string matcher. This high document process-
ing cost might offset the savings in the query cost. In that
case, we might consider issuing more constrained queries to
reduce the document processing cost. For example, since
the first two entities share the token pair {Sony, Vaio}, we
can execute the query (‘Sony’ and ‘Vaio’) instead of those
two phrase queries. Similarly, we can issue the query (‘Sony’
and ‘Playstation’) instead of the third phrase query and the
query (‘Xbox’ and ‘360’) instead of the fourth and the fifth
phrase queries. Executing these is more expensive than the
single token queries presented above because we now need to
perform pairwise intersections of the docid sets of the indi-
vidual tokens. However, the document processing cost may
be much lower since the resulting superset may be much
smaller than in the single token case.

We therefore need to examine the tradeoff between issu-
ing fewer and more efficiently executable queries against the
inverted index versus that of processing more documents us-
ing entity string matcher before sending them to the entity
recognizer. Consider a token set T . Let E(T ) denote the
set of all entities in E whose token sets are a superset of
the token set T (also referred to as the entities covered by
T ). Let D(T ) denote the intersection ∩t∈TD(t). We refer to
D(T ) as the docid set of the token set T . Let D(e) denote

3This example shows the overlap among the original entities. In
reality, the overlap can be much higher due to presence of the
variants generated for approximate match.
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the set of docids of the documents that mentions the entity
e. We refer to D(e) as the docid set of the entity e. Note
that D(e) corresponds to the result of phrase query phrQ(e).
Intuitively, a token set T is a good candidate if (i) |E(T )| is
large and (ii) |D(T )| − |

⋃
e∈E(T )D(e)| is small. (i) implies

that we can cover a large number of phrase queries with a
single and-query and (ii) implies that the number of extra
documents (false positives) to be processed by the entity
string matcher is low.

We now illustrate empirically that there does exist sev-
eral such token sets that we can pick to reduce the overall
cost of document filtering. We use a real news dataset con-
sisting of about one million documents and real-life people
and product entity sets. Figure 4 is a scatter plot where
each point represents a randomly chosen token t occurring
in people names. The X-value |E(t)| represents the number
of entities t covers while the Y-value represents the number
of extra documents (false positives) to process if t is picked.
Points with high X values and low Y values are desirable;
that is, these tokens (or token sets) can replace many phrase
queries and still not be processing a very large number of
documents. Observe the clustering of points at low Y values.
This is promising since there exists a large number of tokens
that occur in many entities while the number of additional
documents we need to process by choosing them is small.
Figure 5 plots a similar distribution for a randomly chosen
set of consumer and electronic products. Similar conclusions
can be drawn here as well.

Observe that our approach exploits the overlap of tokens
among multiple entities. Whenever we find token sets which
only cause a small number of additional documents to be
processed while covering a large number of entities (i.e.,
reducing a large number of phrase queries), we are able to
significantly improve efficiency. In Section 3, we present the
algorithm to pick such token sets.

2.3 Architecture
We now describe the architecture, which is illustrated in

Figure 6. The input consists of (i) a reference set E of
entities, (ii) a set D of documents, and (iii) an inverted index
II (full text index) built over D. The output is the set of
true mentions of entities in E in D. As discussed earlier,
we consider a two step approach. The output of the first
Document Filtering step is the set of hit documents along
with the entity strings they mention. However, the mentions
may not actually be referring to an entity in E (as illustrated
by the “60 seconds” example in Section 1). The second
Entity Recognition step applies an ML-based or NLP-based
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entity recognizer to detect the true entity mentions. In this
paper, we focus on developing efficient techniques for the
first step. We now briefly discuss the main components in
the document filtering step.

The document filtering step has three components. The
first component Entity Cover Filter takes as input the refer-
ence set E of entities and the inverted index II, and outputs
the set F of filtered document identifiers. F is a superset
of the hit documents. The second document retrieval com-
ponent retrieves each document whose docid is in F . The
third entity string matching component processes each re-
trieved document using the entity string matcher gE (which
is implemented using the Aho-Corasick algorithm) to filter
out the false positives.4 The third component’s output is
the result of document filtering for ad-hoc entity extraction
problem over D and E. We apply known techniques for
the second and third components in the Document Filtering
step. In the next two sections, we describe efficient tech-
niques for the first step (Entity Cover Filter component).

3. ENTITY COVER FILTER
We now describe techniques for the Entity Cover Fil-

ter component in Figure 6. Consider the DNF formula
dnf({Tokens(e1), . . . , T okens(e|E|)}) formed from all enti-
ties in E = {e1, . . . , e|E|} where Tokens(ei) denotes the set
of tokens in entity ei. The docid set of this formula is the
superset of the hit documents and is hence a valid output of
the entity cover filter. But, as discussed earlier, there are a
large number of other DNF formulas which can also be used
to obtain a superset. Each formula has a different querying
cost and returns a different superset (i.e., has different entity
string matching cost). Our goal is to find the DNF formula
with the lowest overall cost. We first formalize the class of
formulas whose result sets are guaranteed to contain all the
hit documents.

Definition 2. (Entity Cover (EC)) We say that a
token set T covers an entity e if T ⊆ Tokens(e). A set EC
of token sets is an entity cover for a set E of entities if for

4Observe that the entity string matching and entity recognition
steps can be performed at the same time to avoid parsing the
relevant documents twice. We separated them in order to crisply
define the document filtering problem we address in this paper.

every entity e ∈ E there exists a token set T ∈ EC which
covers e.

Given an entity cover EC, it may be used to identify a
superset of hit documents. The intuition is to prepare the
DNF formula dnf(EC) over all the token sets in EC. If
{T1, . . . , TK} are the token sets in EC, we prepare the for-
mula dnf(EC) = (and(T1) or . . . or and(TK)) and execute
it against the inverted index in a batched fashion.
Observation 1 (Correctness): Given an entity cover EC
for the set E of entities, the docid set of dnf(EC) includes
identifiers of all the hit documents.

Example 2. Consider the reference entity set E in Ta-
ble 1. The set of token sets in the third column of Table 1 is
an entity cover for E. The dnf formula for the above entity
cover is ((‘Sony’ and ‘Vaio’) or (‘Sony’ and ‘Playstation’) or
(‘Xbox’ and ‘360’)). The above query when executed against
the inverted index produces a superset of hit documents.

3.1 Cost Model
We now define our cost model, which forms the basis for

picking the “best” entity cover to solve the document filter-
ing problem. The cost has two main parts:
• DNF Query Cost: the cost of executing the DNF formula
against the inverted index. As discussed above, we only
consider DNF formulas over tokens to query the inverted
index.
• Entity String Matching Cost: the cost of processing the
documents in the docid set of the DNF formula using entity
string matcher (gE) to filter out the false positives.

DNF Query Cost: We model the cost of a DNF query as the
total cost of scanning the document lists of each token in
each conjunct of the DNF query plus a fixed initialization
cost.

Full text search engines typically execute a DNF query
dnf({T1, . . . , TK}) by executing each conjunct and(Ti) and
then union-ing the results. Executing a conjunct and(Ti)
involves scanning the document lists corresponding to the
tokens in the conjunct and merging them. We model the
cost of execution of a conjunct to be proportional to the sum
of sizes of document lists of the tokens in the conjunct, i.e.,
the cost of executing and(Ti) is (

∑
t∈Tokens(Ti) |D(t)|) ·Cidx

where Cidx is a constant obtained by calibration experi-
ments. The union cost is insignificant compared to the other
costs and is hence omitted from the cost formula.

Recall that usually inverted indexes allow only a small
number of literals in the DNF formula. We model this re-
striction by allowing only a small the number of conjuncts,
say at most B, to be present in each DNF query. We
therefore partition a large DNF formula with K conjuncts
into multiple smaller DNF sub-formulas with at most B
conjuncts each. We execute the sub-formulas independently
against the inverted index and union the results. We assume
that each DNF query issued against an inverted index has
a fixed initialization cost Cini. Thus, the execution cost of
the entire DNF formula consisting of K conjuncts corre-
sponding to token sets T1, . . . , TK is the sum of execution
costs of the dK

B
e smaller DNF queries:

( K∑
i=1

∑
t∈Tokens(Ti)

|D(t)|
)
· Cidx + dK

B
e · Cini



Example 3. Consider the dnf formula ((‘Sony’ and

‘Vaio’) or (‘Sony’ and ‘Playstation’) or (‘Xbox’ and ‘360’))
from Example 2. Suppose the number of documents con-
taining the tokens ‘Sony’, ‘Vaio’, ‘Playstation’, ’Xbox’ and
‘360’ are 1000, 500, 600, 800 and 400 respectively. Sup-
pose B = 2. Suppose Cidx and Cini are 0.1 and 10 re-
spectively. The DNF query cost of the above formula is
(1000 + 500 + 1000 + 600 + 800 + 400) · 0.1 + d 3

2
e · 10 = 450.

Entity String Matching Cost: Processing the documents in
the docid set of the DNF formula involves (i) retrieving the
documents and (ii) applying the entity string matcher on
each of the retrieved documents. The document process-
ing cost is proportional to the size of docid set of the DNF
formula, i.e., |

⋃
iD(Ti)|. Estimating |

⋃
iD(Ti)| accurately

(using the inclusion-exclusion principle) requires maintain-
ing not only the cardinalities of docid sets of candidate token
sets but also those of intersections of docid sets of pairs of
candidate token sets. Since the number of pairs of candi-
date token sets can be very large, this involves maintaining
a very large amount of statistics. Hence, we ignore the over-
lap among docid sets of individual conjuncts and model it as∑
i |D(Ti)|. Although this approximation would cause this

particular component of the cost to be over estimated, our
experiments show that even this approximate model leads
to the choice of DNF formulas that significantly reduce the
overall cost. The entity string matching cost is modeled as∑
i |D(Ti)| ·Cdoc where Cdoc is the average cost of retrieving

a document and applying gE on it. Cdoc, like Cidx and Cini,
is also obtained via system calibration.

So, the overall cost of document filtering using a given
DNF formula fdnf = dnf(T1, . . . , TK) is the sum of the DNF
query processing and the entity string matching costs:

cost(fdnf) =

DNF Query Cost︷ ︸︸ ︷( K∑
i=1

∑
t∈Tokens(Ti)

|D(t)|
)
· Cidx +

⌈
K

B

⌉
· Cini

+

(∑
i

|D(Ti)|
)
· Cdoc︸ ︷︷ ︸

Entity String Matching Cost

(1)

3.2 Min-Cost Entity Cover
Our goal is to choose the entity cover that has the mini-

mum cost. Formally, we can state the problem as follows.

Definition 3. (Min-Cost Entity Cover Problem)
Given a set E of entities and a set D of documents, find
the entity cover EC∗ over E such that for any other entity
cover EC of E, cost(dnf(EC∗)) ≤ cost(dnf(EC))

The min-cost entity cover problem is NP-hard in the num-
ber of tokens in E, i.e., |

⋃
e∈E Tokens(e)|. The reduction

follows from the weighted set cover problem.

Theorem 1. For given sets E of entities and D of doc-
uments, the problem of identifying the min-cost entity cover
is NP-hard.

3.3 Greedy Heuristic
We now discuss the greedy heuristic to solve the min-

cost entity cover problem. This is motivated by the greedy
heuristic for the weighted set cover problem. We empirically
show in Section 6 that the greedy heuristic results in a low
cost entity cover.

Consider the DNF formula dnf(E) = dnf(Tokens(e1), . . . ,
T okens(e|E|)). Our approach is to iteratively pick the best
candidate token set Tbest and replace all conjuncts in
dnf(E) corresponding to the entities that Tbest covers with
and(Tbest). We continue this as long as it reduces the cost
of the DNF formula. We start with a set of candidate token
sets Tcands from which we pick the token sets. We discuss
the generation of candidate token sets in Section 3.3.1.

The best token set at any stage of the algorithm is the one
that results in the maximum reduction in cost of the current
DNF formula. We refer to this reduction of cost as the ben-
efit of the token set. In the ith iteration, let Covi(E) be the
set of entities already covered by one of the previously cho-
sen token sets. Given a candidate token set T to be picked
in the current iteration, let Ei(T ) = E(T )−Covi(E) denote
the set of entities covered by T , but not by any previously
chosen token set. The benefit Benefit(T) of T is the reduc-
tion in cost of the current DNF formula by replacing the
conjuncts corresponding to the entities in Ei(T ) with the
conjunct and(T ):

( ∑
e∈Ei(T )

∑
t∈Tokens(e)

|D(t)| −
∑

t∈Tokens(T )

|D(t)|
)
· Cidx

+

(
|Ei(T )| − 1

B

)
·Cini −

(
|D(T )| − |

⋃
e∈Ei(T )

D(e)|
)
·Cdoc

(2)

Note that benefit computation requires cardinalities of do-
cid sets of all the candidate tokensets as well the of all the
entities. In Section 3.3.1, we describe sampling based esti-
mators for these cardinalities. As before, due to the hard-
ness of estimating |

⋃
e∈Ei(T )D(e)| accurately, we model it

as
∑
e∈Ei(T ) |D(e)|.

The pseudocode for the greedy algorithm is shown in Fig-
ure 7; it takes E and Tcands as input. Let TokenSet(e) denote
the set of token sets in Tcands which cover the entity e. At
any point in the algorithm, let Uncovered denote the set of
entities that are not yet covered by any chosen token set in
the entity cover EC, and Covered be the set covered by at
least one token set in EC.
Initialization: Recognize that, in each iteration, we need to
(i) pick the best token set and (ii) update the benefits of the
token sets impacted by this choice. To support (i) efficiently,
we build a priority queue over the candidate token sets. We
compute the initial benefit of each candidate in Tcands using
Equation 2. We insert them into the priority queue with
the benefit as the priority. For (ii), we need to lookup the
set of entities E(T ) covered by a given token set T and the
set TokenSet(e) of token sets that cover a given entity e.
While there are several choices for data structures to make
this lookup efficient, we use in-memory hash tables.
Iteration: In the ith iteration, the greedy algorithm picks
the token set Tbest with the maximum benefit from the pri-
ority queue, adds it to the entity cover EC and then up-
dates the benefit of the impacted token sets in the prior-
ity queue. The impacted token sets are the ones covering
some entity in Ei(Tbest), i.e.,

⋃
e∈Ei(Tbest)

TokenSet(e). We

can obtain Ei(Tbest) by intersecting the set Uncovered with
E(Tbest). We obtain E(Tbest) and TokenSet(e) by looking
up the hash tables containing the associations. For any en-
tity e ∈ Ei(Tbest), we reduce the benefit of the impacted to-



GreedyEntityCover (E, Tcands)
00 Build priority queue PQ over Tcands by benefit
01 UnCovered = TokenSets(E), Covered = {}

EC = {}, LazyUpdates = {}
02 while (Uncovered not empty)
03 if (PQ is empty) break
04 else T ← PQ.pop()
05 while (T ∈ LazyUpdates)
06 Remove T from LazyUpdates & update Benefit(T)
07 if Benefit(T)>0 push T in PQ
08 T ← PQ.pop()
09 EC = EC ∪ {T}
10 Add token sets covering any entity in

E(T )− Covered to LazyUpdates
11 Uncovered = Uncovered− E(T )
12 Covered = Covered ∪ E(T )
13 return (EC, Phrase queries for uncovered entities)

Figure 7: Greedy min-cost Entity Cover Algorithm

ken set T ∈ TokenSet(e) by |D(e)|·Cdoc + (
∑
t∈eD(t))·Cidx

+ Cini
B

. This follows directly from Equation 2; this is the in-
cremental update to the benefit of T if we update Ei(T ) by
removing e from it. Note that if an impacted token set covers
multiple entities in Ei(Tbest), the above reduction will occur
multiple times, once for each entity it covers. If the benefit
of an impacted token set becomes negative, it is not consid-
ered in subsequent iterations. We continue to iterate until
we have either covered all entities or there are no remaining
token sets with positive benefit. The latter might happen
when there are few uncovered entities remaining and none of
the remaining token sets cover enough entities among these
uncovered ones to result in any reduction in overall cost. In
that case, we issue phrase queries for the uncovered entities
in addition to the DNF query dnf(EC).
Lazy Updates: A straightforward approach that would re-
duce the benefit of impacted token sets in the priority queue
as soon as Tbest is picked would cause many wasteful updates
as those updated values will probably not be used. We lazily
update benefits of impacted token sets as follows. Instead
of updating all impacted tokens in the priority queue, we
add all impacted token sets to a “LazyUpdates” hash ta-
ble. Whenever we pick the token set with the highest ben-
efit from the priority queue, we check whether it is in the
LazyUpdates hash table. If it is, we update its benefit and
insert it into the priority queue, and then pop again from the
priority queue. Since most of the impacted tokens never sur-
face to the top of the priority queue, we reduce a significant
number of unnecessary updates to the priority queue.

3.3.1 Candidate Tokensets & Statistics
We now discuss the generation of candidate token sets and

the estimation of cardinalities of their docid sets.
In general, any subset of tokens of any entity e ∈ E is

a candidate token set. We restrict the space of candidate
token sets to subsets of cardinality ≤ m. In our experiments,
we chose m = 3.

Recall that computing the benefit of a token set T re-
quires us to estimate |D(T )| and |D(e)| for entities in E(T ).
We take a sampling based approach. We draw a small uni-
form random sample (fraction p) of documents. For each
candidate token set, we count the number of documents in
the sample that contains the token set. We do the same for
each entity string in E. We scale these counts by a factor 1

p

Entities Set of Signatures
Sony Vaio FS740 {Vaio, FS740}, {Sony, FS740}
Sony Vaio VX88P {VX88P}
Sony Playstation 3 {Playstation, 3}
Microsoft XBox 360 Core System {XBox, 360}
Microsoft XBox 360 Wireless
Controller {Xbox, Wireless, Controller}

Table 2: Entities and their corresponding signatures

to obtain the estimates. For any token set or entity which
is not observed even once in the sample, we assign the esti-
mates to be 0.5

p
. This is based on the smoothing technique

commonly applied in Statistics [2] when counts are unknown
because the sample may be too small. We compute the ini-
tial benefit for each candidate token set based on the above
estimates. We only add candidate token sets with positive
initial benefit to Tcands.

4. APPROXIMATE MATCH
In the previous sections, we focused on identifying men-

tions in documents that exactly match with some entity
string in the reference set. However, an entity in the ref-
erence set, say “Microsoft Xbox 360 Core system”, may be
mentioned in documents under other representations: “Mi-
crosoft Xbox 360” and “Xbox 360”. It is important to rec-
ognize such approximate mentions in order to improve the
accuracy of entity extraction [10]. Note that the set of tokens
corresponding to an approximate mention (e.g., “Microsoft
Xbox 360”) in a document has high overlap with the set
of tokens in the matching entity. We now extend our tech-
niques to identify sub-strings (i.e., subsequences of tokens)
in documents that have considerable overlap with some en-
tity string in the reference set. In this paper, we focus on
token based similarity and do not consider closeness due to
edit or spelling errors, i.e., if Microsoft is incorrectly spelt as
“microsft” we do not attempt to match these tokens. The
reason is that inverted indexes over document collections
only index documents on individual tokens, and hence do
not support docid retrieval for sub-tokens. We now present
a technique based on signatures that enables approximate
match.

The problem of approximate string matching based on
string similarity functions such as Jaccard similarity and
edit distance has received significant interest (e.g., [16, 5]).
These approaches efficiently identify pairs of strings which
are closer than a specified similarity threshold. Their gen-
eral approach is to generate a set of “signatures” for every
string such that two strings have high similarity only if they
match exactly on at least one of these signatures. These sig-
natures are sets of tokens, usually a subset of those in the
original string. Table 2 illustrates an example reference set
and the signatures—according to a signature scheme called
WtEnum [5] which we use in this paper. For example, the
entity string “Sony Vaio 740” has two signatures, {Vaio,
FS740} and {Sony, FS740}, while the entity string “Sony
Vaio VX88P” has one signature {VX88P}.
WtEnum Signature Scheme: We illustrate the WtEnum
signature scheme using the weighted token overlap similarity
function which is fairly general and allows us to model other
known similarity functions such as Jaccard similarity. The
details of the WtEnum signature scheme can be found in
[5].



Similarity: Let w(t) denote the weight of a token t, and
w(T ) denote the sum of weights of all tokens in T . The (un-
weighted) token overlap similarity (ov) between two strings
s1 and s2 equals |Tokens(s1) ∩ Tokens(s2)|, the size of the
intersection between their token sets. The weighted over-
lap similarity (wov) between s1 and s2 is w(Tokens(s1) ∩
Tokens(s2)).
Signatures: Let sig be a signature generator for the weighted
overlap similarity function and θ be a threshold. Given a
string s, sigθ(s) returns a set of signatures such that if for
two strings s1 and s2, wov(s1, s2) > θ then sigθ(s1)∩sigθ(s2)
is non-empty. For example, assuming all tokens have weight
1, sig2(“Sony Vaio FS740”) = {{Vaio, FS740}, {Sony,
FS740}, {Sony, Vaio}}.
Identifying Approximate Mentions Using Signa-
tures: We say a sub-string s in a document is an approx-
imate mention of an entity string s′ iff wov(s, s′) > θ. A
sub-string in a document is an approximate mention of an
entity string only if it contains all the tokens of at least one
of the signatures of the entity [5]. For example, a substring
is an approximate mention of the entity “Sony Vaio FS740”
if and only if it either contains both ‘Vaio’ and ‘FS740’ or
both ‘Sony’ and ‘FS740’.

Recall the architecture shown in Figure 6. We can identify
the filtered set F of docIds as follows. We build a signature
reference set by taking each signature of each entity in the
reference set, concatenating the tokens in the signature to
form a string and adding it to the signature reference set.
Once the signature reference set is built, we apply the tech-
niques described in Section 3 against this signature reference
set instead of on the entity reference set, i.e., execute a DNF
formula that covers the signature reference set. Note that we
concatenate the tokens in each signature to generate a string
for each signature because our filtering techniques take as
input a reference set of (tokenizable) strings. However, the
order in which the tokens are concatenated does not mat-
ter as the DNF formula treats each reference string as a
set of tokens and disregards the order of the tokens in it.
For example, we can simply concatenate the set of tokens
in each signature in sigθ(e) in the order they appear in e
with whitespace between tokens. We use sigθ(e) to not only
refer to the set of signatures of e but also the set of con-
catenated strings. For example, sig2(“Sony Vaio FS740”)
also denotes the set {“Vaio FS740”, “Sony FS740”, “Sony
Vaio”} of strings generated from the signatures.

Definition 4. (Signature Reference Set) Given
a reference set E of entities, the signature reference set
sigθ(E) = ∪e∈Esigθ(e) is the reference set obtained by
adding the concatenated signatures for each entity in E.

Note that we cannot use the phrase query approach here
since the tokens in the concatenated signatures may not oc-
cur contiguously and in the same order in the documents
containing the approximate mentions. For example, if we is-
sue the phrase query “XBox wireless controller” correspond-
ing to the signature {XBox, wireless, controller}, we will
miss documents mentioning “Microsoft XBox 360 Wireless
Controller”. We can only issue intersection queries involving
all tokens in a signature. Note that our algorithm executes
phrase queries for uncovered entities; in the approximate
match case, we execute intersection queries instead of the
phrase queries.

Our experiments show that the number of strings in the
signature reference set is not significantly larger than the

number of reference entities. In our experiments, it is 2-3
times the number of entities in the reference set. Further,
all signatures added to the reference set contain only a sub-
set of tokens from the original entity. So, no new token sets
are added to the signature reference set. At the same time,
the overlap among tokens across the strings is significantly
increased. Therefore, we anticipate that the number of doc-
uments in the result of the dnf(EC) formula and the cost
of executing the DNF query does not change significantly.
In Section 6, we demonstrate that our approach (i) does not
result in the signature set exploding significantly, and (ii) is
very efficient.

After the entity cover filter identifies documents that may
contain approximate mentions of reference entities, we need
to apply a approximate string matcher which can identify
such approximate mentions. Given a document d, this ap-
proximate string matcher returns all approximate mentions
(according to the weighted overlap similarity and threshold
θ) of entities in E from d. We denote the output by g

wovθ
E (d).

Such document processing procedures have been described
in [8, 7], which we use in this paper.

Definition 5. (Document Filtering with Approximate
Match) Given a set D of documents and the set E of entities,
the goal of document filtering with approximate match is to
return {d : d ∈ D and g

wovθ
E (d) 6= φ}.

Observation 2 (Correctness): Given a set D of docu-
ments and the set E of entities, let D′ ⊆ D be the fil-
tered set of docIds returned by the entity-cover filtering
techniques with respect to D and the signature reference
set sigθ(E). Then, {d : d ∈ D and g

wovθ
E (d) 6= φ} =

{d : d ∈ D′ and g
wovθ
E (d) 6= φ}.

In summary, our algorithm first generates a signature ref-
erence set and then applies the entity cover filter we de-
scribed in Section 3 on that set. We then process each fil-
tered document using g

wovθ
E .

5. EXTENSIONS
Choice of Document Filtering Strategy: We discussed
three choices for the document filtering problem: (i) Phrase
query approach, (ii) Entity Cover approach, and (iii) Doc-
ument Scan approach. We can choose the best document
filtering strategy using our cost model.
Phrase Query vs. Entity Cover: Note that our approach
gracefully degenerates to the phrase query approach when
we cannot find token sets that reduce the cost of the original
DNF formula. In our algorithm (Figure 7), each entity in
the set Uncovered will generate a phrase query. This situa-
tion arises when (i) the overlap of token sets among entities
is not significant or (ii) the overlapping token sets are too
expensive to use in that there are too many false positives.
Document Scan vs. Entity Cover: With respect to the
choice between the document scan approach and our DNF
formula approach, we use our cost model to decide between
the two. If the estimated cost of our approach is higher
than that for the document scan approach, one can choose
a document scan. Figure 14 in Section 6 illustrates our
predictions based on the cost model.

Exploiting Relational View of Inverted Index: As
mentioned earlier, most inverted index engines only allow
queries with a small number of tokens. But, the DNF
formulas that we execute may have a large number of to-
kens. As discussed earlier, we can batch these queries in



order to execute them against a typical inverted index en-
gine. However, some of the inverted index engines (e.g.,
Microsoft SQL Server 2008 Integrated Full Text Search)
expose a relational view of the inverted index. For in-
stance, the relational view over the inverted index may be
II −RelationalV iew[Token,DocId, Pos]. If this view sup-
ports efficient join with a potentially large set of tokens, we
can execute a union of docid sets of a large number of single
tokens efficiently (referred to as bulk union). For example,
the following SQL query would get us the union of docid
lists of a set of single tokens in a TokenTable[Token].

SELECT distinct R.DocId

FROM II-RelationalView R, TokenTable S

WHERE R.Token = S.Token

We can exploit the above view by taking the single to-
kens in the entity cover and issuing the above join query.
The remaining token sets in the entity cover are executed
as batched DNF queries. In Section 6, we demonstrate em-
pirically that our entity cover contains a large number of
single tokens and hence the above modification can result in
significant benefits.

6. EXPERIMENTAL EVALUATION
We now present the results of an extensive empirical

study to evaluate the techniques described in this paper.
The major findings of our study can be summarized as
follows:
• Effectiveness of entity cover approach: The entity
cover approach for document filtering is effective in improv-
ing the efficiency of ad-hoc entity extraction. In most cases,
it is about 2 times faster than the phrase query approach
and 1-2 orders of magnitude faster than the document scan
approach.
• Further improvement using relational view: Ex-
ploiting the relational view further improves the perfor-
mance of entity cover approach.
• Ability to exploit overlap: The entity cover approach
is effective in exploiting overlap in tokens among entities:
higher the degree of overlap, lower the cost of the entity
cover approach.
• Effectiveness of entity cover for approximate
match: The entity cover approach is effective in the case
of approximate match as well and significantly outperforms
the intersection query as well as document scan approaches.

All experiments reported in this section were conducted
on an AMD x64 machine with two 1.99GHz AMD Opteron
processors and 8GB RAM, running Windows 2003 Server
(Enterprise x64 edition).

6.1 Experimental Methodology
Datasets and Pre-processing: We consider two docu-
ment collections—the news articles collection and the web
pages collection. The news collection consists of 955,571
news articles that appeared on the MSNBC news portal
between 2003 and 2005. The web page collection consists of
26.9 million web pages obtained by crawling a small part of
the web. We store the document collections as text columns
in two separate tables in Microsoft SQL Server 2005 and
build separate inverted indexes on them. To enable the bulk
union API, we explicitly build the inverted index relation

II[TokenId, DocId, Pos] and TokenTable[Token, TokenId]
by using custom tools. We consider two reference entity
sets: a product entity set consisting of 304,940 product
names obtained from MSN Shopping Product catalog and
a person entity set consisting of 2.04 million person names
extracted from Wikipedia, IMDB, Encarta and DBLP data.
We implement the entity string matcher gE using the Aho
Corasick pattern matching algorithm [3].

Implementation of Various Approaches and Cost
Computation: We have implemented 4 approaches: doc-
ument scan, phrase query, entity cover described in Section
3 and entity cover using the relational view described in
Section 5.
Document Scan: The document scan approach simply
runs the entity string matcher gE on every document and
outputs the docids of those documents d ∈ D for which
gE(d) 6= ∅. The overall cost is the cost of running gE on all
documents.
Phrase Query: We partition the given set E of entities
into batches of size B. For each batch {e1, e2, ..., e|B|} of
entities, we issue the following phrase query:
SELECT DocId FROM DocTable

WHERE CONTAINS(DocText, ’phrQ(e1) OR . . . OR phrQ(e|B|)’)
where phrQ(ei) denotes the phrase corresponding to entity
ei. We write the results of each batch into a temporary
relation and then take the union (by running select distinct
query on the temporary relation). The overall cost is simply
the cost of running the above query for all batches. Since
the phrase query approach returns only hit documents,
there is no additional entity string matching cost.
Entity Cover: We first construct the entity cover for
the given set E of entities using the algorithm described
in Section 3. We partition the tokensets in the cover into
batches of size B. For each batch {T1, T2, ..., T|B|} of
tokensets, we issue the following DNF query:
SELECT DocId FROM DocTable

WHERE CONTAINS(DocText, ’(and(T1)) OR . . . OR
(and(T|B|))’)
We write the results of each batch into a temporary relation
and then take the union. The overall cost is the sum of the
costs of constructing the entity cover, that of running the
above query for all batches and that of running the entity
string matcher on the resulting documents.
Entity Cover using Relational View: We first construct
the entity cover for the given set E of entities. We partition
the tokensets in the entity cover into two parts: single to-
ken and multi-token tokensets. For the first part, we insert
the single tokens into a single column temporary relation
TokenTable and obtain the union of docids lists by issuing
the SQL query in Section 5. For the second part, we follow
the batched execution discussed above. Finally, we take the
union of the two results.
Approximate Match: For approximate match, we build
the signature reference set using the WtEnum signature
scheme [5]. We construct the entity cover on the signatures
and issue batched DNF queries as discussed above.

To measure the query times accurately, we always start
with a clean database cache and buffers. We use B = 50
as that was the maximum size of the DNF query typically
allowed.

6.2 System Calibration
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Our entity cover technique relies on 3 system constants:
(1) the average cost Cdoc of running entity string matcher
on a document, (2) the average cost Cidx of scanning an el-
ement in a document list in the inverted index and (3) the
initialization cost Cini of a executing a DNF query on the
inverted index. We calibrate the system for each document
collection and entity set to obtain the values of these con-
stants. To obtain Cidx and Cini, we execute DNF queries
of various sizes on the inverted index and plot the overall
execution time of each query against the sum

∑
|D(t)| of

document frequencies of each token t in the DNF formula as
shown in Figure 8. We then fit the above data to the best
straight line using least-squares fitting. The slope of this
line is Cidx and the y-intercept is Cini. Figure 8 shows the
result of the calibration for product entities over news data
where Cidx turns out to be 0.005 milliseconds and Cini to
be 543.1 milliseconds. We obtain Cdoc by processing a small
set of documents and dividing the overall time by the num-
ber of documents processed. Cdoc is 0.35 ms for the news
documents and 3.52 ms for the web data. This is consistent
with the fact that the documents in the web collection are
on average 10 times larger compared to those in the news
collection.

6.3 Experimental Results
Comparison with document scan and phrase query

approach: Figure 9 shows the overall execution times of the
3 approaches for the product name extraction task on the
news collection for various sizes of the reference entity set.
The entity cover approach is about 2 times faster than the
phrase query approach. This is because the size of the DNF

query executed for entity cover is 1-2 orders of magnitude
smaller than that for phrase query as shown in Figure 10.
For example, the DNF query for entity cover of 84000 en-
tities contains 3513 tokensets (out of which 2222 are single
tokens) while the phrase query contains all the 84000 enti-
ties. Since a large fraction of the tokensets are single tokens,
we can exploit the faster bulk union API for the single to-
ken part of the query. This results in further improvement
of performance of the entity cover approach as shown in
Figure 9. The entity cover approach also outperforms the
document scan by 1-2 orders of magnitude. This is because
the entity cover approach processes much fewer documents
compared to the latter as shown in Figure 11. For example,
entity cover processes 5 times fewer documents than doc-
ument scan approach for entity set size 10K. In summary,
while document scan incurs a high document processing cost
and phrase query incurs a high query cost, the entity cover
achieves a good tradeoff between the two costs and hence
performs better that those approaches.

We also executed the people extraction task on the news
data collection. Figures 12 and 13 show the overall exe-
cution times and number of documents processed by the 3
approaches. The entity cover approach again outperforms
the the phrase query approach. When compared to doc-
ument scan, the entity cover approach is faster for entity
sets of size below 350K. For very large entity sets (> 350K),
document scan is faster than entity cover approach. This is
because the entity cover approach ends ups processing about
70% of the documents for these entity sizes. Hence, the sav-
ings in document processing is too low to offset the query
cost at such sizes of the entity set. This is a consequence
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Figure 18: Execution times of ap-

proximate match on news data
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Figure 19: Number of document

processed for approximate match

on news data

of the fact that news documents are quite dense in terms
of people names. For example, more that 50% of the docu-
ments mention entities from the people reference set. This
sets an upper bound on the filtering factor and hence re-
stricts the benefit of the filtering approaches. In such cases,
we can use the cost model to estimate the costs of the two
approaches and choose the one with the lower estimated
cost. Figure 14 shows the estimated as well as true costs of
the two approaches. For document scan, the estimated cost
(Cdoc ∗ |D| where D is the document collection) is typically
almost identical to the true cost. For entity cover approach,
the estimated cost is quite accurate for smaller entity sizes
but tends to overestimate for larger document sizes. This is
due to estimation of union size | ∪i D(Ti) by |

∑
iD(Ti) as

discussed in Section 3.1. This gap can be reduced by using
better estimators of union size.

Figure 15 shows the overall execution times of the 3 ap-
proaches for the product name extraction task on the much
larger web page collection. The entity cover approach is
about 2 times faster than the phrase query approach for this
dataset as well. The entity cover approach also outperforms
document scan by 1-2 orders of magnitude as the former
processes much fewer documents compared to the latter.
The gap between document scan and the other approaches
is wider in this dataset compared to the news dataset due
to the higher cost of processing a web page (Cdoc is 3.52 ms
for web pages vs 0.35 ms for news documents).

Sensitivity of entity cover approach to overlap: In
order to test the ability of entity cover approach to exploit
overlap among entities, we need entity sets with varying
degrees of overlap. We synthetically generate such entity

sets as follows. We first generate entities of a fixed length l
with no overlap by picking l distinct tokens from the docu-
ments and concatenating them. We then generate m vari-
ants of each such entity e by picking subsets of tokens from
Tokens(e) having Jaccard similarity with e above a certain
threshold θ. We vary the degree of overlap among enti-
ties by varying m. We use l = 6 and θ = 0.8 for this
experiment. We fixed the size of entity set comprising of
all the variants to 20000. Figure 16 shows the size of the
DNF query executed by entity cover and phrase query ap-
proaches for various values of m. As the overlap increases,
the DNF query for the entity cover becomes smaller as the
entity cover approach picks token sets that cover more en-
tities. On other other hand, the size of the phrase query is
always |E|=20000. Figure 17 shows the execution cost of
the two approaches for varying degrees of overlap. The cost
of entity cover approach decreases with increasing overlap
due to the reduced query cost. The cost of the phrase query
approach is relatively flatter but also shows a small decrease
with increasing overlap due to caching effects.

Effectiveness of entity cover approach for approxi-
mate match: Figure 18 shows the execution times of entity
cover, intersection query and document scan approaches for
approximate match. Note that we cannot use phrase queries
for this approach as discussed in Section 4. Instead, we use
intersection queries involving all the tokens in each signa-
ture. The entity cover approach significantly outperforms
the intersection query and document scan approaches in this
scenario as well. Figure 19 shows the number of documents
processed by each of the approaches. The number of docu-
ments scanned by the entity cover approach is higher than



in the exact match case but is still 2-3 times fewer compared
to the document scan approach.

7. RELATED WORK
Entity extraction has been an area of extensive research.

Commercial software is available from companies such as
Verity, Inxight (which target enterprise document analyt-
ics) to assist the extraction of entities such as people and
products from documents (e.g., [4]). There are two basic
approaches to this problem, namely, linguistic grammar-
based and machine learning (ML)-based approaches [4, 12,
15, 18]. While both approaches depend on lexicons contain-
ing common first and last names for people, common brand
names for products, etc., they typically do not constrain the
extracted entities to a (potentially large) reference sets of
entities. The FASTUS system [14] focuses on a dictionary
constrained scenario. However, they adopt a document scan
approach and do not try to exploit the inverted index.

Cohen and Sarawagi showed that exploiting reference en-
tity sets can improve the accuracy of entity extraction [10].
They incorporate similarity (according to a string similarity
function) of a substring of a document to a reference en-
tity as a feature in the entity classifier. Recently, Chandel
et al. proposed an algorithm for sharing string similarity
computation across overlapping substrings and integrating
it deeply with a specific entity classification algorithm [8].
Since the reference entity set is used as an additional feature
of the classifier and not to constrain the extracted entities,
they still need to process all the documents.

An alternative approach to avoid processing irrelevant
documents would be to very efficiently classify whether or
not each document is relevant based on its content [17].
That is, whether a document is likely to have any entity in
the target set. However, most of these techniques still need
to process the content of a document for classification thus
defeating the purpose of avoiding the documents to be pro-
cessed for entity string matching in the first place. Second,
these classification techniques can still make several errors.
They may misclassify documents as not relevant and hence
may miss several documents. In any case, they may still be
used in conjunction with the techniques we developed in this
paper, say, by further applying these classification filters on
the filtered documents we return.

Another proposal that avoids processing all documents is
to use rule-extraction algorithms to derive queries from the
classifier that recognizes the entities (e.g., [1, 13]). Sub-
sequently, these queries are issued against the database or
a search engine to retrieve promising documents. Etzioni
et al. also propose to query search engines for extracting in-
formation from the web [6, 11]. None of these techniques
exploit the overlap among the queries, nor do they consider
“hybrid” strategies that try to trade-off between query and
document processing costs. Their techniques if adapted to
our setting would correspond to the phrase query approach.
[13] proposes a cost model to choose between the document
scan and querying strategies but does not consider hybrid
strategies. Furthermore, their cost model assumes a fixed
cost for all queries which is inadequate for our scenario.

Factorization of complex boolean formulas has been ex-
plored in the context of query processing (e.g., [9]). These
approaches focus on exact rewriting, i.e., the results are
identical. In contrast, our approaches in this paper focus
on deriving DNF formulas which obtain a superset of re-

sults obtained by using the original formula.

8. CONCLUSIONS
In this paper, we considered the problem of ad-hoc entity

extraction from indexed document collections. Our main
observation is that in many scenarios, there exists a sig-
nificant overlap of tokens among entities. We exploit this
observation to develop techniques to efficiently identify a
set of documents which need to be processed for entity ex-
traction. Through an extensive empirical evaluation using
real datasets, we demonstrated that our techniques result in
significant improvements over prior approaches.
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Reference Entities |D(e)|
Sony Vaio FS740 100
Sony Vaio VX88P 50
Sony Playstation 3 150

Table 3: Reference entities and their docid set sizes

Token sets |D(T )| Initial Benefit after
Benefit iteration 1

Sony 1000 185 -585
Vaio 500 -80 -80
FS740 100 150 150
VX88P 50 150 150
Playstation 600 150 -
3 5000 -4690 -
Sony, Vaio 150 170 170
Vaio, FS740 100 100 100
Sony, FS740 100 50 50
Vaio, VX88P 50 100 100
Sony, VX88P 50 50 50
Sony, Playstation 300 350 -
Playstation, 3 200 -390 -
Sony, 3 600 50 -

Table 4: Token sets and benefit computation

APPENDIX
A. EXAMPLE ILLUSTRATING GREEDY

ALGORITHM
Consider the reference entities in Table 3. Suppose we

only consider token sets of sizes 1 and 2. The candidate
token sets and their |D(T )| are shown in Table 4. Sup-
pose B = 2. Suppose Cidx, Cini and Cdoc are 0.1, 10 and
1 respectively. The initial benefits are shown in the third
column of Table 3. For example, the initial benefit of the
token set {‘Sony’} is computed as follows. Ei(‘Sony

′) is the
set of all three entities. The

∑
t∈Tokens(e) |D(t)| for these

entities are 1600, 1550 and 6600 respectively (|D(t)| for the
tokens are shown in Table 4). So, the initial benefit of the

token set Sony is ((1600+1550+6600)-1000)*0.1 + (3−1)
2

*10
- (1000-300)*1 = 185.

In the first iteration, we pick the tokenset {Sony, Playsta-
tion} as that has the maximum benefit. Ei(T ) for the
above tokenset consists of only “Sony PlayStation3”, so the
impacted tokensets are {Sony}, {Playstation}, {3}, {Sony,
Playstation}, {Playstation, 3} and {Sony, 3}. For example,
we reduce the benefit of {Sony} by 150*1 + 6600*0.1 + 5 =
815 to -630. The updated benefits are shown in the fourth
column in Table 4. Token sets with empty Ei(T ) are shown
with ‘-’ and are not considered in subsequent iterations. In
the second iteration, we pick the tokenset {Sony, Vaio} as
that has the maximum benefit. At this point, the algorithm
terminates since all entities are covered. So, the entity cover
produced is {{Sony, Playstation}, {Sony, Vaio}}.

B. MEMORY REQUIREMENT AND COM-
PLEXITY ANALYSIS OF GREEDY AL-
GORITHM

Memory Requirement: The algorithm maintains four
data structures in memory: the priority queue that contains
at most |Tcands| token sets (the identifier and the benefit
value of each tokenset), the LazyUpdates hash table that
contains at most |Tcands| token sets (the identifier and the
benefit value of each tokenset) and the two hash tables that
store the tokenset to E(T ) associations and the entity to
TokenSet(e) associations respectively (identifier pairs only).
Each of the latter two hash tables store

∑
e∈E |TokenSet(e)|

associations. Since
∑
e∈E |TokenSet(e)| >> |Tcands|, the

overall memory requirement is
∑
e∈E |TokenSet(e)|. If we

only consider token sets up to size m, the memory require-
ment comes to

∑
e∈E(|Tokens(e)| +

(|Tokens(e)|
2

)
+ . . . +(|Tokens(e)|

m

)
). In our experiments, we use m = 3.

Time Complexity: Initially, the algorithm inserts
Tcands token sets and their benefits into the priority queue.
Assuming a Fibonacci heap implementation of the priority
queue, inserts are O(1) operations. The algorithm performs
worst-case |EC| · Tcands updates to the LazyUpdates hash
table which are also O(1) operations. The algorithm per-
forms at least |EC| pop operations on the priority queue
which are O(logn) amortized time, resulting in complexity
|EC| ·O(log |Tcands|). In the worst case, the number of pop
operations is |EC| · Tcands. However, in practice, the time
complexity of the algorithm is tends to be |EC| · Tcands.


