
Web Sites Should Not Need to Rely On Users
to Secure Communications∗†‡

Andy Ozment Stuart E. Schechter Rachna Dhamija
MIT Lincoln Laboratory MIT Lincoln Laboratory Harvard University

March 8, 2006

∗This work is sponsored by the I3P under Air Force Contract FA8721-05-0002. Opinions, interpretations, conclusions and recommendations are those of
the author(s) and are not necessarily endorsed by the United States Government.

†This work was produced under the auspices of the Institute for Information Infrastructure Protection (I3P) research program. The I3P is managed by Dart-
mouth College, and supported under Award number 2003-TK-TX-0003 from the U.S. Department of Homeland Security, Science and Technology Directorate.
Points of view in this document are those of the authors and do not necessarily represent the official position of the U.S. Department of Homeland Security, the
Science and Technology Directorate, the I3P, or Dartmouth College.

‡This paper was presented at the: W3C Workshop on Transparency and Usability of Web Authentication. New York, NY, USA: March 15-16, 2006.

Web Sites Should Not Need to Rely On Users to Secure Communications Ozment, Schechter, and Dhamija

1 Position Overview
The https scheme has been the switch used to turn on se-
cure channels since support for HTTPS was first added to
web browsers. The insecure HTTP protocol remains the de-
fault, and it is applied when users enter domain names into
their browser’s address bar. Thus the burden of specifying
the level of security for a web site has fallen on the user of
the browser, rather than the operator of the site that the user
wishes to access.

To help users reach their secure site, many site operators
use the insecure HTTP protocol to redirect their users to an
HTTPS-enabled URL. However, this approach leaves users
vulnerable to man-in-the-middle attacks.

Users cannot prevent man-in-the-middle attacks when
they rely upon insecure HTTP to redirect them to a secure
site. Instead, they are expected to verify that they have se-
curely reached the correct web site. This verification requires
two steps:

1. A secure channel has been established
The user must verify either the presence of the https

scheme in their browser’s address bar or the presence
of the closed lock icon in the browser’s window frame.
The user must not confuse these indicators with similar
looking content within the displayed web page, like the
lock icons frequently displayed next to login forms on
popular financial sites.

A user who fails to verify that the channel has been
secured will not detect a man-in-the-middle attack that
prevents redirection to a secure URL.

2. The channel leads to the correct domain
The user must also verify that the domain name of
the server that has been authenticated by the browser
is indeed that which they have requested. If redirec-
tion changes the domain name, the user must be able
to recognize whether the new name belongs to the
same organization. For example, the user must know
that ebay.reallysecuresite.com is not necessar-
ily controlled by the same entity as ebay.com.

A user who fails to recognize such changes to the do-
main name will not detect a man-in-the-middle attack
that redirects him to an HTTPS site in a portion of the
name space controlled by the attacker.

Few users verify that they are at the correct domain and
using a secure channel—indeed, users may not even know
how to verify these requirements [?].

Why are users burdened with the responsibility of request-
ing or verifying the use of security? If web site operators
must choose whether or not their site will support HTTPS,
why can’t they also choose whether or not browsers use
HTTPS to contact the site? The problem lies in the absence
of a mechanism through which browsers can learn whether a

site requires HTTPS. Paradoxically, communicating whether
or not a secure channel should be used is a process that itself
requires a secure channel from the site to the browser. Uni-
versal deployment of such a mechanism might, at first, ap-
pear more difficult to achieve than universal deployment of
HTTPS.

However, the pieces required to construct a secure channel
for the transmission of site security requirements are almost
in place. The domain name system (DNS) already provides a
mechanism through which a web site’s operators can publish
information, such as the IP addresses of the site’s servers,
to client software. The deployment of the DNS Security
(DNSSEC) standard [?, ?, ?] will enable client browsers to
verify the integrity of any information published by a domain
name holder. We propose the creation of the final piece to
complete the puzzle: a DNS resource record in which to store
the security requirements for each of the site’s services. We
call this the Service Security Requirement (SSR) record [?].

The SSR resource record will specify the protocols with
which a site is willing to communicate. For example, the
operator of a web site could specify that the site will only ac-
cept HTTPS connections, and will never communicate over
plaintext HTTP. Furthermore, the web site could specify that
it requires those HTTPS connections to use SSL version 3 or
higher.

The SSR resource record will be stored in the site’s DNS
zone, alongside the resource records that provide the IP ad-
dress of the web server. The zone must be signed using the
DNSSEC standard to ensure the integrity of these records.

To retrieve the resource record matching a DNS name, a
client traverses the domain name hierarchy from the top (the
root zone) down to the named zone. For example, to ac-
cess w3c.org the client would first access the root zone,
then the .org zone, and finally the w3c.org zone. Start-
ing with only a key for the DNS root zone, a client can use
DNSSEC to establish the authenticity of keys at each step
down the hierarchy. This verification is performed by induc-
tion, starting from the root. The authenticity of each child
zone’s key can be established by verifying the signature of
its parent. Signatures also indicate whether or not each child
zone is signed, thwarting attempts to substitute an unsigned
zone for a signed zone. DNSSEC also provides a means to
establish which records are not stored in a zone. By veri-
fying proofs of nonexistence, clients can thwart attempts to
make security-critical records appear to be absent. This en-
sures that attempts to block SSR records from being read by
clients will be detected.

Our SSR proposal does not face the chicken and egg boot-
strapping problems that often face new technologies. The
prerequisites to deployment are support for SSR in the user’s
client software and the deployment of DNSSEC in the do-
main name hierarchy above the site’s zone. For sites under
.com, this means only the root zone and the operator of the
.com zone (VeriSign) must have deployed DNSSEC.

2 of 5

Web Sites Should Not Need to Rely On Users to Secure Communications Ozment, Schechter, and Dhamija

. (root) zone

DNS server

.org zone

DNS server

w3c.org

web server

Alice

Browser

w3c.org zone

DNS server

Recursive

Resolver

5

2

3

4

9

7

6

8

1

Figure 1: The steps through which Alice’s browser estab-
lishes a trusted connection to w3c.org.

2 How SSR Works: An Example
Suppose Alice wants to access an account hosted at w3c.org
by typing its domain name into her browser’s address bar.
Figure 1 illustrates the steps through which Alice’s browser
uses DNSSEC and the SSR resource record to establish a
trusted connection to w3c.org.

The chain of trust that is used to establish the authentic-
ity of the w3c.org site is illustrated in Figure 2. The roman
numerals and gray arrows indicate trusted components and
relationships. The arabic numerals indicate information that
can be verified via the trusted components. For example, the
arrow from the user Alice (bubble i in the figure) to her com-
puter’s client software (ii) shows that she trusts this client
software. If a node that is trusted is not trustworthy, the con-
nection will not be secure.

We also see that the client software must trust the owners
of keys with which it has been pre-configured. These include
the public key signing key of the DNS root zone (iii). They
may also include the keys of certificate authorities (iv), who
certify the public keys used by web servers.

For this example we will assume that Alice’s computer has
a DNS configuration common to most client hosts: a stub re-
solver on Alice’s computer issues its requests through a re-
cursive resolver at her ISP or on her corporate network. The
recursive resolver retrieves the requested records and returns
the results to Alice’s stub resolver.

We will now proceed through each numbered step in Fig-
ure 1, describing the means by which the w3c.org domain
name is resolved and the chain of trust to the server is estab-
lished (shown in Figure 2). The arabic numbers in Figures 1
and 2 correspond to the numbered steps below.

1. Alice types ‘w3c.org’ in her browser’s address bar.
The stub resolver in Alice’s browser uses issues a DNS
request to the recursive resolver located at her ISP.

user

client software

root zone KSK

root zone ZSK

.org zone KSK

.org zone ZSK

w3c.org KSK

w3c.org ZSK

SSR

w3c.org (HTTPS)

i

ii

iii

4

7

9

iv CA KEY

w3c.org HTTPS KEY

The user (1) enters `w3c.org’ into the address bar of

their client software (2), placing her trust in the

software to connect her to this server.

The client software comes preconfigured to trust the

key signing key, or KSK, of the DNS root zone (3). It

may also trust a set of Certificate Authority keys (4).

Cryptographic signatures are used to establish the

integrity of all the remaining links in a chain of trust. At

each zone in the DNS chain, the client uses each

zone’s key signing key (KSK) to verify the authenticity

of the zone signing key (ZSK) used by that zone to

sign the its resource records. Among the resource

records that are signed are those of the key signing

keys (KSKs) of the zone’s children.

Once the chain is established down to the zone

signing key for w3c.org (5), this key is used to

establish the authenticity of the zone’s SSR resource

records (6). In this case we assume that this record

indicates that the HTTPS protocol is required for all

transactions.

Depending on the other security requirements in the

SSR record, a certificate authority key (4) or the zone’s

signing key (5) may be used to establish the

authenticity of the HTTPS key for w3c.org (7). This

key authenticates the web server that serves requests

sent to w3c.org.

2

2

3

3

Figure 2: The chain of trust from Alice to w3c.org.

2. The recursive resolver passes the request to the server
for the DNS root zone, which returns a set of resource
records. One record holds the root zone’s public Zone
Signing Key (ZSK). This key is signed with the root
zone’s Key Signing Key (KSK), thereby delegating to
the keyholder the ability to sign records within the root
zone. Recall that the browser is configured to trust the
key signing key (iii) at the source of this delegation.

The root server also returns resource records delegating
the .org zone as the next step in the chain. Some of
these records contain the addresses of the .org zone’s
servers. Others contain the key signing keys that are
delegated the authority to sign within the .org zone.
These delegation records are themselves signed by the
root server’s zone signing key. Thus the keys of the root
zone can be used to authenticate the addresses and keys
of its child zone, .org.

3. The recursive resolver now obtains resource records
from a DNS server for .org. Once again the key sign-
ing key for the zone is used to establish the authenticity
of a zone signing key. The resource records obtained
from .org provide the address of the w3c.org zone’s
servers and the key signing key. Again, all resource
records are signed.

4. The recursive resolver now queries the DNS server for
w3c.org. It receives a list of resource record types sup-
ported in the zone. It also receives the address of the
web server. Once again, all records are signed.

5. The recursive resolver returns to Alice’s stub resolver
the resource records needed to establish the chain of
trust to w3c.org, as well as the requested records

3 of 5

Web Sites Should Not Need to Rely On Users to Secure Communications Ozment, Schechter, and Dhamija

within that zone. Alice’s stub resolver uses its pre-
installed root zone key to verify the chain.

6. Detecting the presence of an SSR record, Alice’s
browser requests that the recursive resolver retrieve this
record.

7. The recursive resolver, having cached the resource
records needed to identify the w3c.org zone, routes
the DNS request directly to that zone’s servers. It then
verifies that the result is signed with the correct zone
signing key.

8. The recursive resolver returns the signed SSR record
back to Alice’s browser, which also authenticates the
record.

9. In our example the SSR record indicates that w3c.org
only accepts HTTPS connections. It could also in-
dicate other security requirements: e.g. that HTTPS
connections must use SSL version 3 or higher. The
SSR record may also specify which mechanism is re-
quired to establish the validity of the HTTPS authenti-
cation key: it may require that the HTTPS authentica-
tion key be signed by one of the Certificate Authority
keys stored in the browser. Alternatively, it may require
that the HTTPS authentication key be stored in the DNS
zone [?] and be signed with the zone signing key for
w3c.org .

Once the authenticity of the HTTPS key is established,
the secure HTTPS connection can be established.

3 Architecture & Design Decisions
We have developed a draft Service Security Requirement
(SSR) specification [?] in collaboration with the IETF’s DNS
Extensions Working Group.

While working on that draft, we have encountered a num-
ber of difficult design decisions: which options should be
encompassed within each SSR record, which options need
not be part of the record, and how can new options be added
when new security technologies become available? The SSR
record should be applicable to services beyond the web, so
we must also decide how an SSR record can indicate the ser-
vices to which it should be applied.

Sections 3.1 and 3.2 discuss some of these design deci-
sions and elaborate on our current approach.

3.1 Security requirement options
The realm of possible options for securing connections goes
well beyond the choices of ‘secure channel’ or ‘insecure
channel’. Web-based services may support a combination
of the SSLv2, SSLv3, or TLS protocols. Other services may

be secured through a different set of protocols, such as IPsec
or SSH.

Should SSR records explicitly list those protocols
it supports or explicitly forbid those protocols that
do not provide the required level of security?

Suppose a web site operator wants to specify that the site
should only be accessed via the SSLv3 or TLS protocols.
Should the SSR record for that web site state that SSLv3 and
TLS are required, or should it state that regular HTTP and
SSLv2 are forbidden? We have chosen the former approach.
Requiring a service provider to explicitly forbid services is
impractical: new services may be introduced over time, and
a service provider may not be aware of each service that it
does not support. Furthermore, in order to support the ma-
jority of Internet services, clients must continue to default to
insecure protocols when no SSR record is present. As a re-
sult, it is acceptable to assume that the presence of an SSR
record indicates that the operator will list all supported proto-
cols. If operators are not even aware of which protocols they
support, they certainly cannot establish that their services are
secure.

At what level of detail should SSR requirements be
specified?

The standard should support as fine a granularity as is
required by each underlying security protocol (TLS, IPsec,
etc.).

The SSR specification will support protocol-specific op-
tions for each allowable protocol. We will use a hierar-
chical name space to prevent collisions. For example, an
option for TLS should be preceded by the protocol name
and a delimiter: e.g., “tls.selfsigning=‘never’” or
“tls.selfsigning.never”.

How can future protocols and options be sup-
ported?

An IANA registry will be created for security protocol
names and the names of the services that use these proto-
cols. When proposing new standards, authors must specify
how the protocols or options they introduce will be integrated
into the SSR record.

Will the SSR record support redirection?

Secure redirection is an important component of any pro-
posal to link domain names to secure services. It is necessary
because many secure web services are provided on servers
that fall under a subdomain of the organizations zone (e.g.
secure.w3c.org). The SSR specification could add this
feature by incorporating the IETF’s S-NAPTR standard [?],
which provides for secure redirection from one zone to an-
other. However, incorporating S-NAPTR would increase the

4 of 5

Web Sites Should Not Need to Rely On Users to Secure Communications Ozment, Schechter, and Dhamija

number of standards that must be supported by the develop-
ers of client software. Operators of secure services would
also need to learn how to use the S-NAPTR standard to pro-
tect their zones.

On the other hand, adding support for redirection directly
into the SSR standard will make it more complex. As we
work with browser developers to complete the SSR specifi-
cation, we will determine whether secure redirection should
be a feature of SSR or whether it should be implemented via
S-NAPTR.

3.2 Scope for applying requirements

Once we have a mechanism for specifying the security re-
quirements of a service, we need to step back and ask an
important question.

What constitutes a service?

This seemingly simple question adds a surprising amount
of complexity to the design decisions for SSR.

Do HTTP and HTTPS provide the same service, or does
the use of a secure channel and a different IP port make these
services different? If they are different services, multiple
SSR records will need to be stored. Services that do not want
to be reached via HTTP will need a separate record to indi-
cate that the HTTP service should not be used. A means of
redirecting the browser to a secure service may also become
a necessity. Treating HTTP and HTTPS as different services
also sets a precedent that site operators must include SSR
records for services that they do not support. If an operator
of a service offered over a secure protocol is unaware of the
existence of a corresponding insecure protocol, he will not
include the SSR record.

If we assume that HTTP and HTTPS are the same service,
we might then need to ask if SOAP over HTTP is a different
service than a request for an HTML page? If so, where do
we draw the line between services?

Our current specification considers HTTP and HTTPS to
provide the same service. New services can be created as
necessary, and can provide finer granularity if a site wishes
to distinguish between different services built on top of pro-
tocols such as HTTP.

4 Conclusion

Securely connecting to a web site is more difficult than it
should be. DNSSEC was not available to the authors of
the first browsers to support HTTPS. Without DNSSEC,
browsers could not retrieve the security requirements for a
site. Instead, users are stuck with the responsibility of spec-
ifying whether a requested site should be accessed via a se-
cure channel.

As a result, today’s users must either type a URL prefixed
by the HTTPS scheme before connecting to a site, or they
must verify the security of the connection after the fact. This
verification requires that the user understand the structure of
domain name addresses and the meaning of browser secu-
rity indicators. These requirements make it unnecessarily
arduous for users to detect attacks on sites they believe to be
secure.

Now that the underlying technology is ready, it’s time to
use DNSSEC to free users from this burden. We hope to use
our presentation at this workshop to discuss the decisions we
face in designing the SSR record and to solicit assistance in
developing this new standard.

5 of 5

