
Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

Abstract—This paper discusses the security

implications of Web Services and proposes a
framework for providing security based on
current and future requirements. The
framework provides a basis for achieving end-
to-end security for Web Services within the
pre-existing security environment. Finally,
lessons from initial experiences with Web
Services security and advice for the future are
provided.

Keywords: Web Services, XML, Security,
Authentication, Authorization, Encryption.

1 Web Services and Security
Web Services require stronger security than Web sites.
They expose functionality (typically business logic) in
an open, standardized way. This implies that they are
more vulnerable than when business processes were
exposed in proprietary ways. This means that security
will become an automatic part of any Web Services
development. In addition, Web Services will be
interwoven with existing applications, so the Web
Services security must also accommodate existing
security infrastructure. The new Web Services security
software and protocols are interesting, but suffer from
immaturity, lack of widespread adoption (no critical
mass), and lack of technical staff with specific
knowledge. The first wave of Web Services, and the
products used to build them, have used well-known
and accepted security technology (such as access
control and authentication) that have been borrowed
from the Internet and the World Wide Web. However,
Web Services have not reached beyond the
requirement for basic security. The objective of this

paper is to describe a public framework for Web
Services, based on an analysis of current and near-
future usage scenarios for Web Services.

1.1 Current Usage Scenarios
There is a long-term vision for Web Services where
there will be “millions of Web Services” commercially
available to consumers and organizations will use Web
Services to expose systems to customers and partners.
However, in the meantime, the most immediate use of
Web Services is for tactical projects that rely on the
technical advantages offered by Web Services:
• Enterprise Application Integration: SOAP can be

used to integrate Java and EJBs with logic
deployed in other enterprise systems such as
CORBA and .NET. The best initial projects for
Web Services in organizations often involve the
reuse of existing back-end systems – with Web
Services used to expose them in a new way. This
approach has the added benefit that the focus of
the project has been the Web Services rather than
developing some new business logic. For internal
integration, the security implications for this have
tended to depend on factors such as the sensitivity
of the internal information being passed around
and whether the information ever moves beyond
the internal firewall at any point (which can
happen if, for example, branch offices are
connected over the Internet).

• Exposing back-end logic to multiple types of
clients at the same time, such as Visual Basic and
Java GUIs. Many projects have an attractive value
proposition for using mainstream developers
(Visual Basic programmers, for example) to
develop the front-end clients while reserving the
EJB programmers (a relatively small percentage of
the very best software developers) for developing
business logic. The security implications for this
have tended to depend on factors such as the
sensitivity of the internal information being passed
around (with authentication and access control

A Public Web Services Security Framework Based on
Current and Future Usage Scenarios

J. Thelin P.J. Murray
Chief Architect, CapeConnect Product Manager, CapeConnect

Cape Clear Software, Inc. Cape Clear Software, Inc.

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

being common security solutions) and whether the
information ever moves beyond the internal
firewall at any point (which can happen if, for
example, branch offices are connected over the
Internet) SSL has tended to be used in the cases
where deployments have been across a
combination of intranets and the Internet.

• Deploying applications across firewalls: SOAP
(when HTTP is used as the transport layer) can be
used to integrate applications or clients across
firewalls. This has been particularly useful for
projects deadlines that need to avoid the
organizational issues usually involved with
firewalls. This also has been useful for projects
that involved integrating with business partners
with heterogeneous firewall security requirements.
The security implications of what is essentially a
shortcut are often ignored due to tight deadlines.

• EJB Component Reuse: The UDDI repository can
be used by organizations to make their existing
business systems available for reuse within their
organizations. The value proposition to
organizations for such projects is not just the rapid
return on investment but also new opportunities.
Because this is for internal use, organizations to
date have been happy with the various user
identification systems in the UDDI registries.

• Web Services technology allows organizations to
expose existing (business) logic for reuse in ad-
hoc EAI projects. This is done by generating
WSDL for existing logic (typically component-
based logic such as Java, CORBA, or Enterprise
JavaBeans) and registering them in a UDDI
registry. An EAI project can then be reduced to
looking up the registry for a suitable service. An
example is a company implementing the logic for
credit card validation once, but making it available
for reuse anywhere it is needed. The security
implications for such projects have tended to be as
varied as the projects.

1.2 Emerging Uses of Web Services
With current Web Services technology, there are still
higher-order integration problems that have yet to be
fully solved with Web Services, such as data
transformation, business logic integration,
synchronous/asynchronous issues, and so on. The next
generation of Web Services implementations, which
will address these higher-order integration problems,
will be generally driven by business needs (rather than
tactical projects, which are based on Web Services
technical advantages). It is no coincidence that these
projects generally have considerably great security

implications than the initial ad-hoc uses of Web
Services.

The emerging uses of Web Services include:

1.2.1 Point-to-point System Integration
Web Services are ideal when ‘Lite’ internal
integration needs exist within an organization. ‘Lite’
integration is the transfer of data between two or more
systems. A typical scenario is when a company’s
employee information needs to be passed into various
downstream applications.
 The threshold, however, stands at more complex
integration technology: for example, transaction
processing, business process automation, and so on.
Web Services excels at communicating data, but
currently not at operational processing. When
composition of business services is required in a single
atomic operation with complex workflow, Web
Services do not yet provide such mechanisms.
 The security implications for such point-to-point
integration projects will largely depend on factors
such as the sensitivity of the internal information
being passed around and whether the information ever
moves beyond the internal firewall at any point (which
can happen if, for example, branch offices are
connected over the Internet).
 Simple communication security technology such
as SSL is usually sufficient to address the security
problems here.

1.2.2 Enterprise Application Integration
Bridging across a complex architecture comprised of
multiple systems residing on multiple platforms using
different object models based on different
programming languages has previously required
complex and expensive EAI technology, but Web
Services provides a more effective communication
technology for this than traditional EAI technology.
 However in many instances, Web Services
currently lack many of the enterprise features of an
EAI solution, especially around process management,
transactions, administration, and so on, although this
will change over time.
 The security implications for such technology
integration projects will probably be the most critical
technical issue. There are currently no standards for
mapping security features across all the different
possible technologies being integrated, and this is even
true when using established EAI technology to some
extent.
 Web services platform products are now starting
to provide a unifying security layer when integrating

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

disparate technologies by including implementations
of all the basic security features such as user
authentication, access control, activity auditing and
reporting that are required for enterprise applications.

1.2.3 Technology Integration
One of the largest categories of usage scenarios for
web services at the moment is about the integration of
diverse applications build on various different
implementation technologies – i.e. true technology
integration. This can involve such simple things are
Microsoft VB clients talking to Java EJB systems –
something that just 12 months ago was considered
virtually impossible to achieve.
 Crossing a technology gap such as this usually
highlights a corresponding security gap that needs to
be addresses also.
 So for example, a Microsoft VB (Visual Basic)
program will most likely be obtaining user identity
information from the Windows ActiveDirectory
system and the native NT Authentication scheme,
while a Java program this VB program needs to talk to
may be using JAAS (Java Authentication and
Authorization Services) technology to access an
LDAP repository and the EJB (Enterprise JavaBeans)
declarative security system to control access.
 Web service platforms and security product
vendors typically need to address the security gap
associated with the technology gap being bridged in
one of two ways:
• Use products and technology that can “map”

credentials and user information between the
different security schemes (e.g. mapping Windows
ActiveDirectory credentials to LDAP credentials).
This can obviously prove increasingly harder as
the number of technologies being used increases.
This is where products such as Quadrasis’ EASI
product can add great value in an organization.

• Provide a unifying security layer in the web
services platform that to a large extent can replace
the other existing security control mechanisms.

1.2.4 Business Partner Collaboration
Until the introduction of Web Services standards,
business partners faced a difficult task to integrate
their systems. Solutions were almost always once-off,
customer integrations. They were difficult to
implement and difficult to maintain. Changes at either
partner could easily unravel the entire system.
Collaboration between multiple partners was strictly
the domain of very large companies.
 For example, a yellow-pages site may be created
for automotive parts vendors. A parts-provider may

thus desire to provide a Web Service to integrate their
services into the marketplace through the UDDI
registry.
 Web Services offer a standards-based way for
business partners to collaborate. The usual business
and organizational issues will still be the substantive
amount of work that is done with a new business
partnership. However, a common technology
framework ensures that the focus is the business
benefits rather than resolving technological integration
problems.
 The key security requirement here is for
standards to exist to avoid the need to implement a
custom security solution for each different partner
being communicated with, in the same way that the
interaction technology has typically converged to
SOAP and WSDL.

1.2.5 Composite Business Processes
Once backend services are available in a standardized
manner through exposing them with XML Web
Services technologies and standards like SOAP and
WSDL, it makes the task of reusing these core
business services in new applications and new usage
scenarios significantly simpler.
 New business processes can be created by
combining together the existing business process
components in innovative and exciting new ways,
without having to worry about the traditional
technology barriers that have hindered much of this
work in the past.
However, this can easily lead to exactly the same sorts
of problems with security gaps as found in the
Technology Integration usage scenarios unless all the
web services being composed utilize the same set of
XML security standards. This clearly highlights the
importance of mature implementations of standards
that have been widely adopted in the industry.

1.2.6 Reducing I.T. Lifecycle Costs
There are a number of factors that make Web Services
a better choice than older technologies from the
perspective of lifecycle costs:
• Web Services are comparatively cheaper to

implement, lowering the investment part of any
return-on-investment calculation.

• Web Services are generally quicker to implement
(assuming productivity tools like CapeStudio are
used). This results in a faster time to market and
lower development costs.

• Lower ongoing maintenance and transaction costs.
For example, because tools like CapeStudio
automatically expose application logic without

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

coding, changes can be implemented quickly and
seamlessly.

The trend towards the web services platform providing
the unified security policy enforcement layer also
creates considerable cost savings in that using a single
security system considerably reduces staff training and
operations costs.

1.2.7 I.T. Investment Protection
By allowing the functionality of existing I.T. systems
to be published and re-used through SOAP, WSDL
and UDDI is considerably more cost effective than re-
designing from scratch. Adding a web services
interface onto an existing legacy system can provide a
new lease of life for the system, and take away much
of the immediate pressure to replace highly complex
systems immediately.
 Using web service technology as the
standardized form for publishing and re-using
application services also helps to protect future I.T.
investment, by providing a degree of separation
between the interface definition and the underlying
implementation.
 The use of web service security standards based
on XML similarly provide a level of future proofing as
the implementation of this security framework can be
changed while still relying on the technology-
neutrality of standards based on XML
communications.

2 A Public Web Service Security
Framework

2.1 Security through Product Generations
This section describes a public framework for Web
Services. It is a real-world case study, from a
commercial product called CapeConnect.
 CapeConnect has always provided security
features since it was first released in November 2000.
The initial security features provided in the early
generations of CapeConnect used well-known security
technology already widely used on the Internet and
World Wide Web:
• Confidentiality: Existing web technology such as

SSL (Secure Socket Layer / Transport Layer
Security) can be used to ensure the confidentiality
of data in transit.

• Authentication: SOAP request’s user credentials
are authenticated against an XML data store. The
authentication module is also pluggable.

• Authorization: Access control can be applied to
Web Services created by CapeConnect.

• HTTP Authentication: HTTP Basic authentication
is supported for password protected Web sites.

• Importing of external security credentials: Security
credentials are automatically imported from the
Web tier without additional development work.

• Single sign-on: A single sign-on service is
included in the CapeConnect product.

The feature list is typical of early generation Web
Services platform.

The benefits of Secure Sockets Layer (SSL) are:
• SSL is implicitly supported in the SOAP 1.1

specification, in that the transport layer for the
SOAP message is HTTP based.

• SSL is a well know and well understood
technology, which implies that there are many
software developers available to exploit it.

• SSL is widely used in the Internet and World
Wide Web

The limitations of using SSL are well understood:
• SSL encryption and decryption is CPU-intensive,

thereby reducing transaction handling capacity and
hence scalability.

• SSL can only protect data while it is in transit, but
not while it is on the host at either end of the
connection.

• After the SSL protected SOAP message arrives
and is decrypted, it is no longer protected and
therefore the contents are vulnerable to
unauthorized usage.

• While SSL can assist in providing client
credentials through the use of mutual
authentication on the connection so that both the
client and server have to present a valid PKI
certificate from a trusted source, this does not
completely cover all the requirements necessary
for complete support for non-repudiation.

• SSL can only protect data on a single connection
hop, and this degree of protection may lapse where
multiple hops are necessary to reach the final
processing destination due to such things as
protected network topologies.

It became apparent as CapeConnect was deployed into
more production environments in major corporations
that a public security framework was needed to
accommodate a wide range of third-party security
products already in use as part of the corporate
infrastructure.

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

The main focus of security enhancements in
CapeConnect Four were to:
• Provide more complete support for end-to-end

propagation of security credentials throughout the
SOAP processing stack within CapeConnect

• Allow custom libraries to be plugged-in at various
points along the processing chain to support a
range of external security products.

CapeConnect now provides a complete end-to-end
security framework flexible enough to allow the easy
customization of the product to suit the specific
requirements of individual organizations and vertical
market partners.

There are several key steps in the security strategy,
which are described in later sections:

1) Establishment of user credentials on the client;
2) Transportation of those credentials to the server,

and importation of those credentials into the
server process;

3) The flow of credentials through the server
process to the back end application processes;

4) The application of any Web Service security
policy.

2.2 Client Side Credential Establishment
There are two possible methods that security
credentials can be established for communication with
a CapeConnect server:
• The user can perform a login through the

SoapDirect API using the SDLoginManager class.
This will result in an authentication call to the
CapeConnect security service via SOAP.

• The user can perform a login through the standard
JAAS (Java Authentication and Authorization
Service) API. Depending on the JAAS
configuration on the client, this will result in one
of the following:

o authentication to a “third-party” security
product like Kerberos, and so on

o authentication to the CapeConnect security
service by sending of a SOAP call.

The CapeConnect client-side runtime, including the
SoapDirect library, can pick up the credentials
established in the previous steps, and then will
transport them in an appropriate manner within the
SOAP message sent to the CapeConnect server.
 The client-side transports can use SSL based
connections or encrypted SOAP messages using the
XML Encryption standard to ensure message
confidentiality, and can also use techniques like

signing SOAP messages using the XML Digital
Signatures standard to ensure message integrity. In the
same way, the CapeConnect server can be configured
to require some or all of these security measures to be
present for messages it receives, so enforcing the level
of security desired for a particular application. For
example, an application can be configured so that it
will only accept SOAP messages sent over a secure
SSL connection where a client-side certificate was
used.

2.3 CapeConnect Security Service
The CapeConnect security service (know as
ccauthenticate) provides a means of a clients to
authenticate themselves to the CapeConnect server,
and obtaining a session ticket that is then used to track
their session credentials and enforce access control
policies for secure Web Services running in
CapeConnect.
 A timeout value is applied to all session tickets,
and the contents of these tickets are cryptographically
secured to prevent “ticket stealing” attacks.
 The ccauthenticate security scheme can operate
in conjunction with, or instead of, the other transport-
level security controls such as HTTP / J2EE
configuration controls available for the CapeConnect
server.

2.3.1 Plug-in API for Authentication
The CapeConnect security service supports an API to
plug in an external authentication provider to replace
its default scheme.

Standard plug-ins are provided for:
• The default CapeConnect file-based storage of

user details
• An LDAP Directory Server
• Any GSS-API based authentication provider.
• Any JAAS-based authentication provider.

2.3.2 Server Side Credential Importation
Once the credentials reach the server process, it is the
job of the message listeners to import those credentials
and reassert them inside the server process in an
appropriate manner.
 The message listeners are able to import and
accept various types of transport –level and message-
level authentication credentials, including the
following:

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

2.3.3 Transport-Level Credentials
There are several different ways that security
credentials can be encoded and sent at the transport
level:
• HTTP Basic authentication [2]
• HTTP Digest authentication [2]
• J2EE Form-based authentication
• External Web server plug-in – e.g. LDAP plug-in

to Tomcat
• SSL credentials as a result of mutual-

authentication over an SSL connection where a
client-side certificate was available and presented.

• Transport connections using Kerberos tickets for
encryption and mutual authentication, probably
via the GSS-API in JDK 1.4

• SAML (Security Assertions Markup Language)
authentication HTTP headers [4]

The transport-level credential import points are
illustrated in Figure 1:

Figure 1: Credential import points –
Transport Level

2.4 Message-Level Credentials
There are several ways that security credentials can be
encoded and sent at the message level, and processing
of these may either be handled automatically by the
SOAP infrastructure, or directly by the application
itself.
• Custom credentials sent in the header of a SOAP

message and recognized by the runtime platform.
This typically requires a custom handler to be
plugged in to the CapeConnect engine for the
particular credentials format to be handled, such as
SAML. Expected credential formats are:

o CapeConnect authentication service session
tickets

o SAML authentication SOAP headers [4]
o The SOAP Extensions for Basic and Digest

Authentication [5]
• For credentials not handled automatically by the

runtime platform, a web service application can
extract the credentials for itself by accessing the
SOAP headers for the request. All mature web
service runtime platforms allow this to be done
fairly easily. The application is then responsible
for decoding and validating the application
specific credentials and accepting or rejecting
access on that basis. This is the way authorization
and access control is handled with UDDI, which is
just a regular web service with a well defined
XML message format and an application specific
security token.

Message-level credentials require a custom handler
(either in the infrastructure or in the application itself)
to pull the appropriate credential items from the SOAP
message header, and then perform whatever import /
authentication actions are required to confirm the
validity of these credentials.

The message-level credential import points are
illustrated in Figure 2:

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

Figure 2: Credential import points –
Message level

2.5 Plug-in API for Credential Importation
This is the API that custom security message handlers
will need to follow to be able to support application
protocol specific credential handling such as SAML
SOAP headers.
 These message handlers will be given the
contents of the SOAP message, and will need to
extract the appropriate credentials from the message
and return a suitable java.security.Principal object
corresponding to these details.

2.6 Credential Propagation to Call Handlers
Transport-level credentials are associated with the
incoming message data as it is taken off the wire.
Those credentials are then automatically propagated
through the CapeConnect engine to the backend call
handlers.
 In the process of passing the call invocation and
credential details through the SOAP Engine to the
backend call handlers, an optional role-based Web
Service security policy can be applied for each Web
Service application configured with the CapeConnect
SOAP Server.

2.6.1 Role-based Security Policy
As part of the routing of the SOAP message to the
back end call handlers, a Web Service can be
configured in CapeConnect to say whether an access
control policy should be applied. If an access policy is

present, a role-based authorization check will be
performed to confirm that the current caller is in a role
that is permitted to perform the required operation.
This is very similar to the operation of the EJB
declarative security model.
 This check is performed at the Web Service tier
rather than relying on the underlying distributed
component technology (such as EJB or CORBA) to
perform this function, so that a uniform security model
can be applied to Web Services, and also allowing the
option of applying differing access controls depending
on whether the call is coming via a Web Service or
from an internal call direct to the EJB server.
 The authorization check is performed at the
level of the specific method / operation being called,
to provide very fine grained control of the security
policy for any individual web service.

2.6.2 Plug-in API for Authorization
The role-based security service supports an API to
plug in an external authorization provider to replace
the default scheme.
Standard plug-ins are provided for:
• The default CapeConnect file-based storage of

user role details
• An LDAP Directory Server to store user attribute

properties

2.7 Credential Propagation from Call
Handlers to Back-end Systems

There are several options for how credential
information can be propagated from the call handlers
to the backend application systems, and to a large
extent it the method used depends on a particular
Application Server. These options are illustrated in
Figure 3, and then described in more details following.

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

Figure 3: Credential propagation

 One possibility is to forward the call as a SOAP
message to a listener in the app server, and this SOAP
message could directly contain any SAML or SOAP
Basic/Digest Authentication headers so that the
receiving Application Server can import the
credentials and re-establish the identity information to
be used for the duration of that call. Additionally, the
HTTP transport listeners in the Application Server
may be able to handle SAML HTTP Headers or HTTP
Basic/Digest Authentication headers for automatically
import of the credentials by the Application Server.
 Another possibility is to forward the SOAP
message into a CapeConnect proxy EJB running inside
the target app server, and pass the security credentials
explicitly as an additional parameter on the call to the
proxy bean. The proxy bean requires a means to re-
establish the caller credentials inside the target app
server, and in some cases, this is likely to require
custom code for the proxy bean in each different
Application Server.
 A further possibility is to establish the caller’s
credentials to the client library used for
communicating with the target Application Server
(such as WebLogic’s t3 library) in exactly the same
way that a regular EJB client would. Again, this is
likely to require custom code for the call handler for
each Application Server, but the appropriate

credential-establishment APIs are likely to be more
readily available here than inside the Application
Server itself.
 As a slightly simplified case of the above, where
CapeConnect is running as a J2EE application inside a
J2EE app server, then the task of credential
propagation from servlet to EJB will occur
automatically with no further effort or configuration
changes being required. This clearly represents the
easiest way to achieve this objective.
 Finally, where a standard exists for how security
details are sent across a particular transport scheme
(such as the CSIv2 for propagation of security
credentials across IIOP connections), credentials can
be asserted onto that transport level through applying
that standard. This will typically be how things will
work with EJB 2.0 based J2EE servers, as soon as
these are in widespread deployment.

2.8 Credential Propagation from the
Gateway to the XML Engine

It must be possible to configure the gateway so it
performs an authentication dialog with the XML
Engine (xmlengine) to establish a secure and trusted
channel between the two.
 One obvious way to do this is for the gateway to
use SSL mutual authentication and an X509 certificate
for transport connections. Another way would be
through using a GSS-API based connection to provide
mutual authentication and encryption support on the
link.
 In must cases, the gateway acts as an invisible
proxy for the xmlengine, and is simply concerned with
routing the message rather than actually processing it.
 Where SSL client-side certificate information
was used for authentication, the details of this
certificate need to be attached to the SOAP message
before it is forwarded to the xmlengine. If the gateway
and xmlengine have established a trust relationship,
the xmlengine can accept the presented credentials as
valid and vouched for.
 The SOAP message forwarded by the gateway
includes all the SOAP Headers in the original
message, subject to SOAP’s MustUnderstand rules.
This includes SAML assertions passed as SOAP
header fields.

2.9 Non-Repudiation
The security framework in CapeConnect Four
provides full support for the non-repudiation
requirements of any serious enterprise-grade web
service.

Proceedings of the International Conference on Internet Computing IC ’02 Paper 1039IC

Las Vegas, Nevada, USA, June 23-27, 2002 Copyright 2002 CSREA Press

The use of connections employing client-side
certificates is one of the fundamental features of a
non-repudiation strategy, and CapeConnect has this
support built in as a standard feature.
The other major component of a non-repudiation
strategy is the transmission of messages signed with an
appropriate digital signature, and this is available on
both the client and server side of the connection with
CapeConnect.

3 Conclusions

3.1 Lessons from the First Wave
Some key conclusions can be made from the initial
security efforts with Web Services:
• Basic generic security is sufficient for internal

Web Services projects. The initial technology
provided in most Web Services platforms included
access control, authentication, and the option of
using SSL as the SOAP transport layer.

• As Web Services usage grows, it is necessary to
accommodate a wide range of third-party security
products already in use as part of the corporate
infrastructure.

• A full end-to-end security solution is needed to
avoid security gaps.

• Web Services security procedures and
requirements, both organizational and technical,
have yet to be fully explored. Best practices have
yet to be developed.

• The new XML and Web Services security
specifications have not yet gained any significant
adoption rates in commercial/corporate
environments.

• It is still unclear which of the emerging Web
Services and XML security specifications will
emerge as industry standards. It is therefore
necessary to track all the standards and be careful
about moving ahead of the market.

• A key practical problem for the new XML and
Web Services security specifications is lack of
trained staff. This means that many types of Web
Services projects where the new technology is
ideal do not use it.

3.2 Recommendations for the Future
It can be assumed that Web Services will take a
number of years before the full security implications

are understood and then resolved. In the meantime,
the following actions are recommended:
• Track the usage scenarios within your

organization; these will determine the security
levels.

• “Proof on concept” projects, rather than full scale
commercial projects are recommended.

• It is necessary to have a .NET strategy, because
Microsoft will promote its own security products
and strategies and will inevitably be successful in
acquirement many users.

• Track the new XML and Web Services security
standards initiatives and standards, but remember
that your organization’s existing security
infrastructure is probably the key factor.

4 References

[1] Generic Security Services API (GSS-API)
 Internet Standards: RFC-2743, RFC-2853
 http://www.ietf.org/rfc/rfc2743.txt
 http://www.ietf.org/rfc/rfc2853.txt
[2] HTTP Authentication: Basic and Digest Access

Authentication
 Internet Standard: RFC-2617
 http://www.ietf.org/rfc/rfc2617.txt
[3] Java Authentication and Authorization Service

(JAAS)
 Sun Microsystems, Inc.
 http://java.sun.com/products/jaas/
 http://java.sun.com/j2se/1.4/docs/guide/securit

y/jaas/JAASRefGuide.html
[4] Security Assertions Mark-up Language (SAML)
 OASIS XML-Based Security Services

Technical Committee (SSTC)
 http://www.oasis-open.org/committees/security/
 http://www.oasis-open.org/committees/security/docs/
[5] SOAP Extensions for Basic and Digest

Authentication
 IETF Internet-Draft: draft-cunnings-salz-soap-

auth
 http://www.zolera.com/resources/opensrc/i-d/soap-

auth.html
[6] XML-Signature Standard
 W3C XML-Signature Working Group
 http://www.w3.org/Signature/
 http://www.w3.org/TR/xmldsig-core/

Editors: Hamid R. Arabnia and Youngsong Mun
ISBN: 1-892512-37-8
Copying without a fee is permitted provided that the copies are not
made or distributed for direct commercial advantage, and credit to
source is give.

http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2853.txt
http://www.ietf.org/rfc/rfc2617.txt
http://java.sun.com/products/jaas/
http://java.sun.com/j2se/1.4/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4/docs/guide/security/jaas/JAASRefGuide.html
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/docs/
http://www.zolera.com/resources/opensrc/i-d/soap-auth.html
http://www.zolera.com/resources/opensrc/i-d/soap-auth.html
http://www.w3.org/Signature/
http://www.w3.org/TR/xmldsig-core/

	Web Services and Security
	Current Usage Scenarios
	Emerging Uses of Web Services
	Point-to-point System Integration
	Enterprise Application Integration
	Technology Integration
	Business Partner Collaboration
	Composite Business Processes
	Reducing I.T. Lifecycle Costs
	I.T. Investment Protection

	A Public Web Service Security Framework
	Security through Product Generations
	Client Side Credential Establishment
	CapeConnect Security Service
	Plug-in API for Authentication
	Server Side Credential Importation
	Transport-Level Credentials

	Message-Level Credentials
	Plug-in API for Credential Importation
	Credential Propagation to Call Handlers
	Role-based Security Policy
	Plug-in API for Authorization

	Credential Propagation from Call Handlers to Back-end Systems
	Credential Propagation from the Gateway to the XML Engine
	Non-Repudiation

	Conclusions
	Lessons from the First Wave
	Recommendations for the Future

	References

