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ABSTRACT
A drive-by download attack occurs when a user visits a
webpage which attempts to automatically download mal-
ware without the user’s consent. Attackers sometimes use
a malware distribution network (MDN) to manage a large
number of malicious webpages, exploits, and malware exe-
cutables. In this paper, we provide a new method to de-
termine these MDNs from the secondary URLs and redirect
chains recorded by a high-interaction client honeypot. In
addition, we propose a novel drive-by download detection
method. Instead of depending on the malicious content used
by previous methods, our algorithm first identifies and then
leverages the URLs of the MDN’s central servers, where a
central server is a common server shared by a large percent-
age of the drive-by download attacks in the same MDN. A
set of regular expression-based signatures are then generated
based on the URLs of each central server. This method al-
lows additional malicious webpages to be identified which
launched but failed to execute a successful drive-by down-
load attack. The new drive-by detection system named AR-
ROW has been implemented, and we provide a large-scale
evaluation on the output of a production drive-by detection
system. The experimental results demonstrate the effective-
ness of our method, where the detection coverage has been
boosted by 96% with an extremely low false positive rate.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing
and Information Systems-Security and Protection

General Terms
Security

Keywords
Drive-by download, malware distribution network, signature
generation, detection

1 Introduction
As more people use the Internet for entertainment, com-

merce, and communication, the web is attracting an increas-
ing number of attacks. In particular, drive-by download at-
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tacks are one of the most significant and popular threats on
the Internet [12] since they do not usually require user inter-
action. In drive-by download attacks, attackers embed ma-
licious content in either the original webpage visited by the
user, denoted as the landing page, or some content directly,
or indirectly, referenced by the landing page, which is usu-
ally hosted on a compromised web server. When a browser
renders these webpages, the malicious content attempts to
exploit a browser vulnerability. A successful exploit attempt
often causes malware to be downloaded allowing the attacker
to control the underlying operating system for various ma-
licious activities (e.g., information stealing, denial of service
attacks, etc.).

Multiple steps are usually involved in a drive-by download
attack, as illustrated in Figure 1(a). The malicious content
embedded in the compromised webpage, which is initially
rendered by the browser, usually does not directly exploit
the browser. Instead it redirects the browser to other redi-
rection servers which either provide external webpage con-
tent or further redirect to additional servers. After visit-
ing one or more, possibly benign, redirection servers, the
browser will eventually encounter a malicious redirection
server which further redirects to the servers that attempt to
exploit the browser and download malware. The malicious
redirection server can be used to manage the attacks and
decide the exploit server to use, which has the best match-
ing set of exploits (e.g., IE exploits for IE browsers). A
set of different drive-by downloads can be managed by the
same attackers for a particular purpose (e.g., distributing
the same malware binary for a botnet) and form a malware

distribution network (MDN). In this paper, we define a MDN
to be a collection of drive-by downloads that serve the same
malicious objective such as distributing related malware ex-
ecutables.

Several methods [2, 6, 8, 9, 10, 20] have been proposed
to detect drive-by download attacks and are described in
detail in Section 2. Most of these methods [2, 6, 9, 10,
20] depend on the malicious webpage content returned by
servers used for exploits or malware distribution to detect
the attacks. For example, [2, 6, 10, 20] require the exploit
content whereas [9] needs the downloaded binary. These
systems may fail to detect a large number of drive-by down-
load attacks (i.e. false negatives) if no exploit is detected
for several reasons. The attackers can be aware of IP ad-
dresses of the detection systems. In this case, they can feed
the browsers with benign content. Additionally, the detec-



(a) Drive-By Download (b) MDN with Central
Server

Figure 1: Examples

tors may not be configured correctly to match an attack.
For example, the detector may present an unpatched ver-
sion of Internet Explorer, but the malicious landing page
may target a FireFox vulnerability. Finally, since the exploit
and malware distribution servers may be hosted on compro-
mised servers, their stability will be affected by the network
churn. So when the browser visits these servers, they may be
temporally unavailable and thus no exploit attempt occurs
in the victim’s browser. Although not capable of detecting
drive-by download attacks, WebCop [8] (see Section 2 for de-
tails), can handle this problem since it is based on the URLs
of exploit/malware-distribution servers. However, the host-
names, IP addresses or the parameter values in the URLs
can be frequently changed to make WebCop ineffective since
it matches the entire URL of the malicious executable.

In this paper, we propose a novel detection method, de-
scribed in Section 3, by leveraging the URL information of
the central servers in MDNs, where a central server is a
common server shared by a large percentage of the drive-
by download samples in the same MDN. An example of an
MDN with a central server is presented in Figure 1(b), where
“3b3.org” serves as a central server. A central server usu-
ally provides some critical information to make the drive-by
download successful, and it is not necessarily the server used
for exploit attempts or malware distribution. For example,
it can be a redirection server used to optimize the MDN per-
formance. A central server can even be a legitimate server
where certain information is retrieved to calculate the loca-
tion of the exploit servers dynamically, as presented in Sec-
tion 4.3. To be specific, our method bootstraps from the
drive-by download samples detected using existing meth-
ods, where we first aggregate drive-by download samples
into MDNs based on the malware (i.e., hash value) informa-
tion or the URL of the exploit server. For each MDN, we
next discover the central servers if they exist. We further
generate signatures in the form of regular expressions based
on the URLs for the central servers. These signatures can
then be distributed to a search engine or browsers to detect
drive-by downloads. The lower half of Figure 2 illustrates
our method. These signatures can boost the detection cov-
erage in three ways. First, if a drive-by download attempt
reaches the central server without hitting the servers for ex-
ploit attempts or malware distribution, our signatures can
still detect the attack. Second for a drive-by download at-
tempt, if there is only a URL request to the central server
without malicious webpage content returned, our signatures
can still detect it since the signatures are independent of
the webpage content. Third, the signatures are in the form

Figure 2: Drive-by Download Detection Methods

of regular expressions, which can capture the structural pat-
terns of a central server’s URL and therefore outperform ex-
act string matching used by WebCop. It is noteworthy that
we do not intend to use our method to replace the current
systems; we view it as a complementary way to boost the
coverage of existing drive-by download detectors.

We have implemented our method in a system named AR-

ROW and validated it using data generated from a large-scale
production search engine. The experimental results in Sec-
tion 4 demonstrate that our method can significantly in-
crease the detection coverage by 96%, with an extremely low
false positive rate. A discussion of the system is provided
in Section 5. In summary, the paper includes the following
contributions:

1. We provide a method to identify malware distribution
networks from millions of individual drive-by download
attacks.

2. By correlating drive-by download samples, we propose
a novel method to generate regular expression signa-
tures of central servers of MDNs to detect drive-by
downloads.

3. We build a system called ARROW to automatically gen-
erate regular expression signatures of central servers
of MDNs and evaluate the effectiveness of these signa-
tures.

2 Related Work
Researchers have made great efforts to analyze and de-

tect web-based malware attacks. These existing methods,
summarized in Table 1, can be categorized into 2 classes,
namely top-down and bottom-up. The table also illustrates
how ARROW compares to prior work based on other features
including whether the detection examines the content or the
URL of the webpage, uses the results of the static or dynamic
crawler, and correlates multiple instances of an attack.

The top-down approach for drive-by detection adopts a
crawler-scanner based architecture. For drive-by downloads,
the crawler collects URLs by traversing the dynamic web
graphs in the forward direction, while in parallel, a scanner
identifies drive-by download attempts. The scanner could
be a client honeypot using signature [4] and anomaly detec-
tion [3] methods. By rendering a URL, the scanner inves-
tigates the suspicious state change of the operating system



Approach Top-Down Bottom-Up Page URL static dynamic Correlation of multiple
Content crawler crawler Drive-by Downloads

HoneyMonkey [20] X X X

Crawler-Based Spyware Study [2] X X X X

Capture-HPC [3, 5] X X X

IFrame [12] X X X

PhoneyC [6] X X X

Malicious JavaScript Detection [10] X X X X

Blade [9] X X X

WebCop [8] X X X

ARROW X X X X

Table 1: Comparison of Different Detection Methods

or analyzes the webpage to detect drive-by downloads. The
upper-left part of Figure 2 presents the architecture of Hon-
eyMonkey as an example for the top-down approach. Most
of the drive-by download detection approaches [2, 5, 6, 9,
10, 12, 20] fall in the top-down category. For example, a
high-interaction client honeypot scanner [3] has been used to
dynamically execute the webpage content [2, 5, 20]. Provos
et al. [12] also adopted high-interaction client honeypots to
conduct large-scale measurements of drive-by downloads in
the wild. Nazario [6] proposed a lightweight, low-interaction
client honeypot called PhoneyC to detect drive-by down-
loads by analyzing the webpage content. Cova et al. [10]
developed a machine learning-based detector to investigate
the JavaScript embedded in webpage content for drive-by
download detection. Recently, Lu et al. [9] designed a de-
tector to identify drive-by downloads by correlating user ac-
tion and the binary downloading events. These approaches
have shown promising results. However, their effectiveness
is significantly limited by the availability of a successful re-
sponse with malicious content from a drive-by download at-
tack. The lack of a malicious response will make these ap-
proaches ineffective and thus may introduce a large number
of false negatives.

To deal with the limitations introduced by analyzing web-
page content, Stokes et al. [8] proposed a bottom-up based
approach, called WebCop, to identify webpages that host ma-
licious binaries. WebCop takes two inputs, i) a set of URLs
for malware distribution sites that are contributed by a large
number of anti-malware clients, and ii) a static web graph.
WebCop traverses the hyperlinks in the web graph in a re-
verse direction to discover the malicious landing pages link-
ing to the URLs for malware distribution sites. In Figure 2,
the upper-middle part illustrates the architecture of WebCop.
Nevertheless, WebCop has two limitations. First, WebCop uses
an exact match to discover the malware distribution sites in
the web graph, which may easily introduce false negatives
especially when the parameter values are changed. Second,
the web graph is based on static hyperlinks, which limit the
detection of WebCop. For example, a malicious landing page
may redirect the browser to the exploit server only if its dy-
namic content (e.g., malicious JavaScript code) is executed
in the browser. Therefore, a static web graph has very lim-
ited visibility of the route from malicious landing pages to
the malware distribution sites.

Provos et al. [12] proposed a method to discover mal-
ware distribution networks from drive-by download sam-
ples. This method requires the parsing and matching op-
eration of the webpage headers (e.g., Referer) and content
(e.g., JavaScript), which is heavyweight. Furthermore, the
attackers could potentially obfuscate the webpage content
to prevent their MDNs from being discovered. In contrast,
ARROW identifies MDNs by aggregating drive-by download

samples into different groups according to the malware hash
values and URL information of exploit servers. Although
this method provides less information of MDNs for measure-
ment purpose (e.g., the number of redirection steps) com-
pared to [12], it provides enough information for ARROW to
detect central servers. In particular, this approach is more
efficient and robust, which can identify more MDNs given a
large number of drive-by download samples.

Automatic signature generation based on network infor-
mation has been studied in previous work [7, 14, 15, 19,
21, 22] and has been used to detect various attacks. For
example, most [7, 15, 19, 22] focus on worm fingerprinting.
Perdisci et al. [14] generate signatures to detect HTTP-based

malware (e.g., bots). AutoRE [21] outputs regular expression
signatures for spam detection. Compared to these meth-
ods, ARROW mainly differentiates itself by detecting a differ-
ent attack (a.k.a, drive-by download). Although ARROW uses
a similar approach to build keyword-based signature trees
proposed by Xie et al. [21], we have adapted it to drive-
by download detection since drive-by downloads have dif-
ferent characteristics compared to those of spam (e.g., “dis-
tributed” and “bursty”), which are critical to guide AutoRE

to build the signature tree.

3 System
Figure 3 presents the architecture of the ARROW system.

The input of the system is a set of HTTPTraces, which will
be described in the following sections, and the output is a set
of regular expression signatures identifying central servers of
MDNs. There are three processing components in the sys-
tem. The first component, Hostname-IP Mapping, discovers
groups of hostnames closely related by sharing a large per-
centage of IP addresses. The second component, central
server identification, aggregates individual drive-by down-
load samples which form MDNs and then identifies the cen-
tral servers. For an MDN with one or more central servers,
the third component generates regular expression signatures
based on the URLs and also conducts signature pruning.
The following sections describe the system’s input, process-
ing components, and output in detail.

3.1 HTTPTraces
HTTPTraces are initially collected from a cluster of high-

interaction client honeypots, and an HTTPTrace example
is presented in Table 2. Each honeypot visits the URL of
the landing page and executes all of the dynamic content
(e.g., JavaScript). By detecting state changes in the browser
and the underlying operating system and file system, a hon-
eypot can identify whether the landing page is suspicious.
The suspicious landing page and other URLs consequently
visited are recorded. If any exploit content is detected on



Figure 3: System Architecture

HTTPTrace
Landing Page www.foo.com/index.php

URLs

www.bar.com/go.js
www.redirect.com/rs.php
www.exploit.com/hack.js
www.malware.com/binary.exe

IPs

www.bar.com - 192.168.1.2
www.redirect.com - 192.168.1.3
www.exploit.com - 192.168.1.4
www.malware.com - 192.168.1.5

exploitURLs
www.exploit.com/hack.js
www.malware.com/binary.exe

bHASH 4A19D50CBBBB702238....358

isDriveBySucc True

Table 2: An Example of an HTTPTrace

a webpage, the crawler will also record its corresponding
URL in “exploitURLs”. Otherwise “exploitURLs” is set to
be empty. Simply visiting a webpage with no user inter-
action should never cause an executable to be written to
the file system. If the high-interaction client honeypot de-
tects that an executable is written to disk, the file’s hash
value (e.g. SHA1) is stored in “bHash”. The IP address
corresponding to the hostname involved in each URL is also
recorded. Either the non-empty “exploitURLs” or the non-
empty “bHash” implies that a drive-by download attack has
been successfully launched and detected, where “isDriveBy-
Succ” is set as TRUE. Otherwise, “isDriveBySucc” is set as
FALSE. It should be noted that “isDriveBySucc=FALSE”may
indicate a false negative. For example, the exploit content is
hosted in a compromised server and is temporally unavail-
able at the moment of detection. Although “isDriveBySucc”
is set to be FALSE in this case, this exploit webpage is still
considered to be harmful to other users.

3.2 Hostname-IP Mapping
We typically use a hostname or an IP address to represent

a server. However, attackers can introduce great diversity
of hostnames and IP addresses for an individual server. On
one hand, IP addresses may exhibit great diversity due to
fast-flux techniques [16, 17], where one hostname can be
resolved to a large number of IP addresses. In this case,
using the IP address to represent one server decreases the
possibility of identifying central servers that share the same
hostname but distribute to different IP addresses. On the
other hand, attackers can register a number of hostnames
(and thus domain names) and resolve them to one or a small
pool of IP addresses. In this case, if we use a hostname to
represent one server, we may fail to identify central servers
with the same IP address but different hostnames.

In order to eliminate the diversity introduced by host-
names and IP addresses for representing a server, we design
a data structure named Hostname-IP Cluster (HIC) to
represent a group of hostnames that share a large percent-
age of IPs. A similar technique [13] was proposed to discover
fast-flux networks. Each HIC has a set of hostnames and
a set of IP addresses, denoted as HIC = {SHost, SIP }. We
follow the steps below to discover HICs:

1 As the initialization phase, for each hostname (hi) we

Figure 4: Hostname-IP Mapping

have observed in the HTTPTraces, we identify all of
the IP addresses resolved for hi (IP1, IP2, . . . , IPn).
We initiate one HICi using HICi.SHost = {hi} and
HICi.SIP = {IP1, . . . , IPn}.

2 Suppose we have N Hostname-IP clusters, denoted as
HIC1, . . . , HICN . For each pair of HICi and HICj,

we investigate rHIC =
|HICi.SIP ∩HICj.SIP |

|HICi.SIP ∪HICj.SIP |
, the over-

lap of the IP addresses of the two clusters. If rHIC >
THIC , where THIC is a pre-defined threshold and 0 ≤
THIC < 1, we first merge the second cluster into the
first cluster using HICi.SIP = HICi.SIP ∪HICj .SIP

and HICi.SHost = HICi.SHost∪HICj.SHost and then
discard HICj.

3 Repeat step 2 until no HICs are merged into other
clusters.

THIC is a pre-defined threshold to determine whether two
HICs should be merged or not. A small value for THIC

indicates a relaxed condition. For example, THIC = 0 means
that if two HICs share a single common IP, they are going to
be merged together. This may introduce significant noise in
the merged HICs. A large value of THIC enforces a strong
condition for two HICs to be merged. For example, a THIC

value close to 1 requires that two HICs share almost the
same IPs. This may significantly decrease the possibility of
merging more related HICs. In the current system, we set
THIC = 0.5.

Figure 4 gives an example of identifying Hostname-IP
clusters, where Hostname1 and Hostname2 share 3 out of
4 IP addresses (rHIC = 75%) and are grouped in one clus-
ter. After identifying all the HICs, we use the index of each
HIC to replace the hostname in each URL. For instance as
described in Figure 4, the URLs of hostname1/t.php?s=1

and hostname2/t.php?s=2 will be represented as HIC1/t.

php?s=1 and HIC1/t.php?s=2. Therefore, instead of taking
hostname1 and hostname2 as two different servers, we use
the HIC to discover their relationship and represent them
as a single server.

3.3 Identification of Central Servers
To identify the MDNs with one or more central servers,

we need to first discover MDNs from a set of HTTPTraces.
In ARROW, we use the hash value of the malware executable
(“bHash”) and URLs of exploit webpages (“exploitURLs”)
to aggregate HTTPTraces into MDNs. On one hand, we



group all HTTPTraces with the same value of “bHash” into
one MDN. It is possible that multiple organizations may in-
stall the same malware causing the two groups’ MDNs to
be merged. This should not be a major problem for the fol-
lowing reason. For malware that is automatically generated
from a toolkit, a malicious executable is often customized
for each attacker yielding different executable hash values:
these similar attacks will be grouped into separate MDNs.
On the other hand, for each URL in“exploitURLs”, we iden-
tify its corresponding HIC and group all the HTTPTraces
with same HIC index into one MDN. For each MDN, we do
not consider the landing pages as candidate URLs for dis-
covering central servers, since they are usually compromised
websites that are unlikely to serve as central servers. Also,
we do not consider the URLs of “exploitURL” as candidate
URLs; therefore, the identified central servers are likely used
for redirection purpose.

After we aggregate all of the HTTPTraces into different
MDNs, we eliminate (i.e. filter) the MDNs with a small
number of HTTPTraces since small MDNs have a higher
likelihood of incorrectly identifying central servers. For ex-
ample, an MDN with two HTTPTraces may have a high
probability of belonging to the same advertisement network,
and thus the benign, advertisement server will be incorrectly
identified as a central server in the MDN. Therefore AR-

ROW only identifies MDNs containing more than THTTPTrace

drive-by download samples where THTTPTrace is currently
set as THTTPTrace = 20.

Then for each MDN, we identify the central servers as the
nodes (represented by an HIC index) that are contained
in a majority of the HTTPTraces. Given an MDN with
K HTTPTraces where each trace contains a collection of
URLs, we have first replaced the hostname for each URL
using its corresponding HIC. For each HIC, we determine
the count, C, of the number of HTTPTraces employing this
HIC. If rcen = C

K
is greater than the pre-defined ratio

Tcen, where 0 ≤ Tcen ≤ 1, we take this HIC as a central
server. We conservatively set Tcen with a large value (cur-
rently Tcen = 0.9) to guarantee the “central” property of
the central server. For any two MDNs sharing one or more
central servers, we merge them together into a new MDN.
The shared central servers are taken as the central servers
for the new MDNs, while the other central servers are dis-
carded. This operation eliminates redundant central servers
without compromising their coverage, and thus reduces the
total number of signatures and consequently computation-
ally expensive, regular expression matching operations. Also
by merging smaller MDNs, we increase the number of URLs
corresponding to each central server, which helps to gener-
ate more generic signatures. Figure 5 illustrates an exam-
ple of discovering MDNs and central servers. In Figure 5,
S1, S2 and S3 are initially identified as central servers since
most of the HTTPTraces corresponding to “Malware1/2/3”
(bHash1/2/3) contain S1/2/3. The central server S1, which is
shared by two MDNs, is ultimately identified as the central
server for the newly merged MDN. Although S2 is discarded,
S1 still guarantees its coverage of drive-by download samples
in this MDN.

3.4 Regular Expression Generation
In this section, we discuss how to generate regular expres-

sions corresponding to the central servers in order to de-
tect additional HTTPTraces exhibiting drive-by download

Figure 5: Discover MDNs and Identify Central Servers

attempts. There are two straight forward approaches to us-
ing the central server information to detect HTTPTraces
of drive-by downloads. One option is to use the network
level information of central servers (i.e. hostname and IP
address). For example, if any URL in an HTTPTrace con-
tains the hostname or IP address of any central server, this
HTTPTrace will be labeled as suspicious. However, this de-
tection approach is too coarse and may introduce a large
number of false positives, especially when the central server
is benign such as the example described in Section 4.3. An-
other option is to use exact string matching of URLs in
the MDNs corresponding to central servers. For example,
if any URL in an HTTPTrace exactly matches any of the
URLs of central servers, this HTTPTrace will be labeled as
suspicious. However, this approach is too specific resulting
in false negatives. For example, a simple change in values
for the parameters in the URL makes the exact match fail.
These examples provide motivation to design generic signa-
tures that can capture the invariant part of the URLs for
central servers and also give an accurate description of the
dynamic portion of these URLs. Thus ARROW generates reg-
ular expression signatures for each central server by investi-
gating the structural patterns of its corresponding URLs.

To generate regular expressions, ARROW follows two steps:

1. For each central server in a MDN, generate tokens out
of all the URLs that are contained in this MDN and
corresponding to the central server, and then build the
signature tree according to the coverage of each token.

2. Identify the branches with high coverage, and then
generate signatures in the form of regular expressions.

These items are discussed in detail in the next two sections.

3.4.1 Token and Signature Tree Generation
Since URLs are well-structured strings, ARROW generates

tokens based on the structure of each URL. ARROW collects
tokens for the following 5 categories: the HIC index, the
name for each directory, the name of the file, the suffix of
the file and the name of the parameters. The information
from the last four categories indicates the information of
the toolkit that attackers use to organize the MDNs. For
example, the name of the directory represents the directory
or the sub-directory that organizes the scripts. The suf-
fix of a script, which implies the script language, is usually



Figure 6: An Example of a Signature Tree

identical in the same MDN for a script with the same func-
tionality, even if the file names differ from each other. Tak-
ing the 7 URLs in Figure 6 as an example, we find the set
of tokens as {HIC1,default,index,.php,?id=,&category=
,upload,&class=,peer,test,exploit,?vuln=,fig,script,

image,src,bin,include,temp}.
We build the signature tree based on the approach intro-

duced in [21]. We denote the set of all URLs as Uall, and the
set of URLs containing one token/node Ni as UN

i . The set of
URLs covered by a particular branch B = {Nroot, N1 . . . Ni}
is given by UB

i , where UB
i = UN

root ∩ UN
1 · · · ∩ UN

i . To build
the tree, two operations are defined: building the root node
and building the child nodes. To build the root node, the
token with the largest coverage of the URLs is taken as the
root (Nroot). To identify the child node(s) for one node Ni

in branch B = {Nroot, N1 . . . Ni}, we follow the two steps
below.

1. Let UB
Rest = UB

i and Setnodes = {Nroot, N1 . . . Ni}.

2. If UB
Rest = ∅, exit. Otherwise, for each node Nj /∈

Setnodes, select the one with maximum |UB
Rest ∩ UN

j |

as the child node. If max(|UB
Rest ∩ UN

j |) == 0, exit.

Otherwise, suppose this node is Nk, then let UB
Rest =

UB
Rest−UN

k and Setnodes = Setnodes∪Nk. Repeat this
step.

Returning to Figure 6, an example of the signature corre-
sponding to the 7 URLs is presented. Since the HIC index,
HIC1, is always contained in all of the URLs, we take it as
the root of the tree.

3.4.2 Signature Generation
For each branch in the signature tree, we obtain more

specific patterns for a subset of URLs as we approach the
leaves. To learn the general pattern representing the URLs,
we define a node Ni as a critical-node if |UN

i |/|Uall| ≥ R
and none of its child nodes satisfy this condition where the
threshold 0 ≤ R ≤ 1. We name the branch from the root
to this critical-node as a critical-branch. In Algorithm 1 we
describe a method to identify each critical-node. We run
this algorithm multiple times by decreasing R until all the
URLs are covered by the critical-nodes, which is described
in Algorithm 2. In our system, we initialize R = 0.3 and
α = 0.9. For the signature tree described in Figure 6, we
identify the critical-nodes by following the steps below.

1. R = 0.3. Identify critical-node “&category=”.

2. R = 0.3 ∗ 0.9. Identify critical-nodes “&class=” and
“?vuln=”.

After identifying the critical-nodes in the signature tree, we
traverse the tree to find the branches from the root to each
critical-node. The nodes in one of these branches composite
one set of candidate tokens. For each token, we further
investigate its average distance from the beginning of the
URLs. For one set of candidate tokens, we sort the tokens
according to the average distance and then obtain a sequence
of candidate tokens. For the example above, ARROW generates
three sequences:

1. seq1 = { HIC1,default,.php,?id=,&category= }

2. seq2 = { HIC1,default,.php,?id=,&class= }

3. seq3 = { HIC1,default,.php,exploit,?vuln= }

Next, for each pair of consecutive tokens (and also for the
last token and the end of URLs), we investigate the following
properties of the strings that reside between them.

1. Are these strings identical?

2. The minimum and maximum length of the strings.

3. Are the characters in these strings lower or upper case?

4. Are the characters in these string letters or numbers?

5. Enumerate special characters (e.g., “.” and “?”) in
these strings.

Finally, we summarize these properties in order to gener-
ate the regular expression. If these strings are identical, we
directly present such string in the regular expression. Oth-
erwise, we describe the properties in the regular expression
format. For our running example, we obtain the three reg-
ular expressions:

1. reg1 = HIC1/[a-z]{3,5}/default/[a-z]{5,6}.php?id=[0-9]{1}
&category=[0-9]{1}

2. reg2 = HIC1/[a-z]{3,3}/default/[a-z]{4}.php?id=[0-9]{1}
&class=[0-9]{1}

3. reg3 = HIC1/[a-z]{4,7}/default/exploit.php?vuln=[0-9]{1}

We further refer to the hostnames and IP addresses in
HIC1. We generate the domain names for the hostnames
and replace HIC1 using the domain names and IP addresses
to get the regular expression signatures. For example, if
HIC1 = {{cnt1.foo1.com, cnt2.foo1.com, cnt1.foo2.com},
{192.168.1.2, 192.168.1.4}}, we replace HIC1 using foo1.

com, foo2.com, 192.168.1.2 and 192.168.1.4 for reg1,
reg2 and reg3. For example, reg3 will be extended to be
four signatures:

1. reg3.1 = foo1.com/[a-z]{4,7}/default/exploit.php?
vuln=[0-9]{1}



2. reg3.2 = foo2.com/[a-z]{4,7}/default/exploit.php?
vuln=[0-9]{1}

3. reg3.3 = 192.168.1.2/[a-z]{4,7}/default/exploit.php?
vuln=[0-9]{1}

4. reg3.4 = 192.168.1.4/[a-z]{4,7}/default/exploit.php?
vuln=[0-9]{1}.

It is possible that some signatures are prone to induce false
positives during detection. For example, a signature may be
too general corresponding to a legitimate domain name. To
decrease the possibility of false positives, we apply signature
pruning. To be specific, we evaluate each signature using a
large set of legitimate HTTPTraces, where each HTTPTrace
is associated with a high-reputation landing page. We dis-
card any signature successfully matching any URL in these
legitimate HTTPTraces.

Algorithm 1 IdentifyCriticalNode(curNode, R, N)

curNode: one Node in the tree.
R: the threshold (0 < R < 1).
N : N = |Uall|.
numRest: global variable initiated as |Uall|.

begin
if curNode.isCriticalNode() then

return;

Boolean flag = true;
foreach Node oneNode in curNode.getChildNodes()
do

if
|UB

oneNode|

N
≥ R then

flag = false;
break;

if flag &&
|UB

curNode|

N
≥ R then

curNode.setCriticalNode();
numRest = numRest − |UB

curNode| ;
return;

else
if curNode.isLeaf() then

return;

else
foreach Node oneNode in
curNode.getChildNodes() do

IdentifyCriticalNode(oneNode, R, N);

end

Algorithm 2 ExploreTree(R)

R: the threshold (0 < R < 1).
N : N = |Uall|.
numRest: global variable.
α: decreasing ratio.

begin
numRest = |Uall|;
while numRest > 0 do

IdentifyCirticalNode(rootNode, R, N);
R = R ∗ α;

end

4 Evaluation
We have implemented a prototype system named ARROW,

and evaluated it using a large volume of HTTPTraces. The
HTTPTraces, described in Section 3 and Table 2, were col-
lected by evaluating their landing pages using a production
cluster of high-interaction client honeypots. The following
sections describe the experimental setup and evaluation re-
sults.

Trace Num

Stotal 3,500,000,000
Smalicious 1,345,890
Sunlabeled 3,498,654,110

Sbenign1 10,811,805
Sbenign2 10,733,282

Table 3: HTTPTraces for Experiments

4.1 Experiment Setup
Among all the HTTPTraces produced by the honeypot

cluster, we randomly selected a set of 3.5 billion HTTP-
Traces (Stotal). Out of Stotal, 1, 345, 890 HTTPTraces (de-
noted as Smalicious) are identified as drive-by download at-
tacks. The remaining HTTPTraces are taken as the un-
labeled dataset (denoted as Sunlabeled). In order to obtain
benign HTTPTraces for signature pruning and false positive
evaluation, we use the following approach. We first collect a
list of 87k hostnames and URLs with high reputation scores
that were recently confirmed by the analysts, where a high
reputation score for a host indicates an extremely low proba-
bility that its webpages are associated with malicious activ-
ities including drive-by download attacks, phishing, scam-
ming and spamming. We then randomly divide this list
into two sublists and collect HTTPTraces whose landing
pages contain one of these hostnames or URLs. The set
of HTTPTraces corresponding to the first sublist (denoted
as Sbenign1) is used for signature pruning. The remaining
HTTPTraces (denoted as Sbenign2), which correspond to the
second sublist, are used for false positive evaluation. Table 3
summarizes the number of HTTPTraces included in each
data set described above, indicating a large-scale evaluation
of the ARROW system.

The ARROW system applies regular expression signatures to
match URLs in HTTPTraces. Regular expression matching
is naturally computationally expensive. To speed up the
matching process, we first aggregate the domain name and
IP address associated with each signature into a set. For a
URL, only in case its domain name or the corresponding IP
address is contained (by a fast hash-based operation) in that
set, signature matching is applied. The matching process is
further implemented in a large-scale distributed computing
infrastructure. Since the signatures will only match on rare
occasion, the computational overhead to match ARROW
signatures is negligible.

4.2 Evaluation Results
We first ran ARROW on the Smalicious HTTPTraces to dis-

cover Hostname-IP Clusters and identified 14, 648 HICs.
Some hostnames show strong fast-flux patterns. For exam-
ple, one HIC has only 6 hostnames but 1, 041 IP addresses,
while another HIC has 34, 882 hostnames which resolve to
a single IP address. The HIC structure can effectively dis-
cover and represent the relationship among such hostnames
and IP addresses.

After representing each server with the HIC index, AR-
ROW follows the approach described in Section 3.3 to iden-
tify MDNs and central servers. For the HTTPTraces in
Smalicious that are identified as drive-by download attacks
by grouping them based on “bHash” or the HIC index of
each URL in “exploitURLs”, ARROW identified 6, 937 MDNs
in total and 97 MDNs (1.4%) using one or more central
servers. By analyzing the URLs for the central servers of
these 97 MDNs, ARROW generated 2, 592 regular expression



Signature

twitter\.com\/trends\/daily\.json\?date\=2[0-9&-]{10,10}callback\=callback2

experimentaltraffic\.com\/cgi\-bin\/009[0-9a-zA-Z?=/.]{4,101}

saeghiebeesiogoh\.in\:3129\/js

qsfgyee\.com\:3129\/js

google\-analitics\.net\/ga\.js\?counter\=[0-9]{1,2}

servisesocks5\.com\/el\/viewforum\.php\/[0-9a-z]{32,32}\?spl\=mdac

chura\.pl\/rc\/pdf\.php\?spl\=pdf_ie2

trenz\.pl\/rc\/getexe\.php\?spl\=m[a-z_]{3,6}

Table 4: Examples of Signatures
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Figure 7: Detection Results on a Daily Basis

signatures. After pruning these signatures with Sbenign1 ,
ARROW produced 2, 588 signatures including the examples
presented in Table 4.

We further evaluate the quality of the signatures to answer
two questions. i) How many new suspicious HTTPTraces
can the signatures contribute? ii) How many false positives
are generated by the signatures?

To answer the first question, we apply all the signatures
to the 3.5 billion HTTPTraces in Stotal. We name Hd as the
set of suspicious HTTPTraces already detected by the high-
interaction client honeypots, where Hd = Smalicious. Ha

denotes the set of suspicious HTTPTraces that are detected
by the signatures generated by ARROW. Table 5 compares the
result of the suspicious HTTPTraces detected by existing
honeypots and signatures from ARROW. The column labeled
Ha∩Hd

Hd
illustrates that these central server signatures have a

coverage of 23.8% of the HTTPTraces detected by existing
approaches. The columns of “Hd” and “Ha” indicate that
ARROW signatures identify more suspicious HTTPTraces. In
particular, the ARROW signatures contribute a large number of
new suspicious HTTPTraces (96.0%.) Figures 7(a) and 7(b)
present the number of suspicious HTTPTraces detected by
ARROW compared to the existing approach on a daily basis.
Such boosted detection results demonstrate the significant
advantage using ARROW as a parallel drive-by download detec-
tion system to existing honeypot-based detection techniques.
To answer the second question, we match these signatures
against all URLs in Sbenign2. Out of total 10, 733, 282 legit-
imate HTTPTraces, only 2 HTTPTraces are matched with
the signatures indicating an extremely low false positive rate
of 0.0019%.
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Figure 8: Active Days for the Central Server and Exploit
Servers

4.3 Case Study for the Twitter Signature
Out of the signatures generated by ARROW, “twitter.com”

appears in one signature in Table 4. This signature iden-
tified a large number of 135, 875 suspicious HTTPTraces
as described in column “Ha” in Table 6, contributing 8.4%
( 135875

1612166
) of all detected suspicious HTTPTraces. Since“twit-

ter.com” is a well known website used for social networking
and microblogging, false positives are a concern. In this
section, we conduct a detailed analysis of all HTTPTraces
matched by the “twitter.com” signature to assess whether or
not it is a false positive.

First, we briefly describe why twitter was involved in a
large number of drive-by download pages. Manual analysis
reveals that a suspicious webpage retrieves the week’s top
trending terms using Twitter’s API, dynamically constructs
a hostname from these changing terms, and then instructs
the browser to retrieve the exploit from the server corre-
sponding to that hostname. A detailed description of the
script that performs these actions can be obtained from a
website dedicated to raising awareness of online threats [1].

Figure 8(a) and its zoom-in view Figure 8(b) present the
temporal patterns of the MDN identified by the“twitter.com”
central server. The X-axis illustrates the days the hostname
appears in our collected HTTPTraces over time, whereas
the Y-axis represents the index into the set of dynamically
generated hostnames based on Twitter’s API. As the graph
illustrates, the hostname is switched on a regular basis rep-
resenting a strong fast-flux pattern, while the central server
(“twitter.com”) remains stable. This architecture introduces
a great challenge for the detection techniques that identify



Metric |Hd| |Ha| |Ha ∩ Hd| |Ha − Hd|
|Ha∩Hd|

|Hd|

|Ha−Hd|

|Hd|

Value 1,345,890 1,612,166 320,310 1,291,856 23.8% 96.0%

Table 5: Evaluation Results

Metric |Ha| |Hd|
|Ha−Hd|

|Hd|
|Hk| ReflectRate(Hk, Ha)

Value 135,875 60,159 125.9% 119,774 99.6%

Table 6: Evaluation Results For “Twitter” Signature

the server responsible for hosting the actual exploit. In this
MDN, this server changes every few days. However, the sig-
nature generated by ARROW captures the central server, which
is the most stable point over time. Therefore, signatures gen-
erated by ARROW can detect a large number of the suspicious
HTTPTraces, even if the corresponding server hosting the
exploit changes or is temporarily unavailable.

To assess the false positive rate of the signature, we need
to further categorize the matched HTTPTraces. The col-
umn Ha is described previously. In addition, 60, 159 HTTP-
Traces, denoted as Hd in Table 6, in the Ha traces have been
identified as drive-by downloads by the existing approach.
These HTTPTraces in Ha can be classified as follows into
three categories:

1. The client honeypot retrieves the exploit from the afore-
mentioned server and is compromised. The client hon-
eypot can successfully detect the drive-by downloads
in this scenario.

2. The client honeypot makes a request to the exploit
server but fails to retrieve the exploit.

3. The client honeypot visits “twitter.com”, but no fur-
ther connection attempts are made to the exploit server.

Manual analysis reveals that an HTTP request to the
server hosting the exploit contains specific keywords as part
of the URL’s path. These keywords are listed in Table 7 and
would be an indication of malicious intent (categories 1 and
2 above). In total, 119, 774 or 88.15% of HTTPTraces match
these keywords as described in column “Hk” in Table 6 leav-
ing a large portion of 11.85% as potential false positives.
Since no subsequent requests are made after “twitter.com”
has been contacted for category 3, it is challenging to obtain
evidence on whether these HTTPTraces also have malicious
intent. However, if we assume that a compromised server
hosts a large number of similar malicious webpages, we can
further assess the malicious intent of these HTTPTraces. We
do so with a function called ReflectRate , which expresses the
rate of suspicious HTTPTraces based on that assumption.

keywords “/tre/”, “/nte/”, “/ld/”, “.exe”

Table 7: Keywords for Detection

The ReflectRate is calculated as follows. We use ht to
represent an HTTPTrace and H to denote a set of HTTP-
Traces (H = {ht1, ht2, . . . , htn}). We further use the func-
tions LP () to return the landing page for an HTTPTrace and
Host() to obtain the hostname of a URL. Given H , we intro-
duce a function HostSet() to indicate the set of hostnames
in the landing pages, HostSet(H) = ∪n

i=1{Host(LP (hti))}.
We then define a function Reflect(H1, H2) to return a set of
HTTPTraces Hr = Reflect(H1, H2), where Hr = {hti|hti ∈
H2, Host(LP (hti)) ∈ HostSet(H1)}. Hr represents a sub-
set of HTTPTraces in H2, whose landing pages are hosted
on servers (e.g., HostSet (H1)) that have been confirmed to

serve malicious webpage content. Based on these functions,

we define ReflectRate(H1, H2) = |Hr|
|H2|

. For example, sup-

pose H1 = {ht1, ht2} is a set of suspicious HTTPTraces
detected by existing methods, where LP (ht1) = www.foo.

com/index.php and LP (ht2) = www.bar.com/index.php.
We also find HostSet(H1) = { www.foo.com, www.bar.com}.
Assume we are also presented with a set of unlabeled
HTTPTraces H2 = {hta, htb, htc, htd}, where LP (hta) =
www.foo.com/contact.php, LP (htb) = www.foo.com/test.

php, LP (htc) = www.bar.com/temp.php and LP (htd) =
www.test.com/index.php. We can classify three out of four
HTTPTraces in H2 as suspicious, which is Reflect(H1, H2) =
{hta, htb, htc}, since Host(LP (hta/b/c)) ∈ HostSet(H1).
The resulting ReflectRate(H1, H2) would be 75%.

Applied to our case study of “twitter.com”, we obtain a
ReflectRate of 99.6% leaving 0.4% or 544 of the identified
traces as potential false positives as shown in the last column
of Table 6.

5 Discussion
Our evaluation has shown that the ARROW system success-

fully boosts detection of suspicious pages with an overall
low false positive rate of 0.0019% and a false positive rate
of 0.4% on difficult cases in which the signature points to
a legitimate server, such as “twitter.com”. Considering the
number of webpages inspected by a search engine, even those
low false positive rates result in a large absolute number of
false positives. If we apply the overall false positive rate of
0.0019% to our sample of 3.5 billion webpages, running AR-

ROW will result in approximately 65,000 false positives. The
ability to run ARROW in production may be compromised if
the signatures cause popular websites to be detected as ma-
licious (i.e. false positives). Strategies to reduce the like-
lihood of this happening have been discussed, such as the
ReflectRate introduced in the previous section. Alternative
strategies to avoid false positives, such as white listing or
clustering based on page characteristics, are left for future
work.

Signature pruning as well as our evaluation of the over-
all false positive rate is based on a large data set of benign
HTTPTraces. Collecting a comprehensive dataset of definite
benign traces, however, is very hard in practice. One could
collect URLs corresponding to the most popular queries in
the search engine logs or URLs that are most popular in
the ISP or enterprise networks with the assumption being
that popular webpages are less likely to host drive-by down-
loads. Nevertheless, as attackers usually compromise legit-
imate sites to hijack its traffic as an entry point into their
MDN, this assumption may not always hold true. It may
result in some signatures being pruned that shouldn’t have
been and some HTTPTraces being incorrectly marked as
false positives. However, given that malicious webpages are
overall quite rare among popular webpages (e.g., 0.6% of the
top million URLs in Google’s search results led to malicious



activity according to [12]), the vast majority of HTTPTraces
collected in such a way will indeed be benign and can be used
for pruning and evaluation.

Evasion may be another concern with our system. Similar
to other drive-by download detection systems, by knowing
our detection algorithm, attackers can always carefully re-
design the attack strategy to evade our detection. For ex-
ample, the attackers can generate a different binary for each
time of an attack, which will in consequence cause different
binary hash values and thus prevent ARROW from aggregat-
ing them into the same MDN. To deal with this problem,
more information, such as the similarity of different bina-
ries or behavior characteristics [11, 14, 18], can be adopted
to aggregate polymorphic malware into MDNs. The attack-
ers can also decentralize the MDNs to eliminate the cen-
tral servers or hide the MDN structure from the client (e.g.
through server side includes instead of redirect chains.) As
the MDNs identified by ARROW do not provide comprehensive
coverage on all HTTPTraces (with current coverage 23.8%)
identified by traditional methods, it is an indication that
some of these evasion techniques are used today. These are
accepted shortcomings of our approach, and we will look
towards refining our existing algorithm and exploring new
approaches to detect MDNs as part of our future work.

6 Conclusion
Detecting drive-by download attacks is an extremely im-

portant and challenging problem. We have shown that by
aggregating data from a large number of drive-by download
attempts, we are able to discover both simple malware distri-
bution networks as well as more complex MDNs including
one or more central servers. We have conservatively esti-
mated that 1.4% (97 out of 6,937) of MDNs employ central
servers. While this percentage is currently small, the overall
coverage of these complex MDNs is 23.8% (320,310 out of
1,345,890 malicious traces) which is reasonably large consid-
ering the small number of actual MDNs with central servers.
Going forward, we expect the number of attackers employing
sophisticated methods to manage their operations to grow.

The major hurdle to deploying ARROW to detect MDNs uti-
lizing central servers and block all landing pages which redi-
rect to these servers is developing ways to accurately iden-
tify false positives. This problem is generic to any method
attempting to solve this problem and is not a reflection of
the proposed system. We have shown that the regular ex-
pression signatures have a very low false positive rate when
compared to a large number of high reputation sites. We
have also manually investigated many of the signatures and
found that they appear to be malicious. However, it is not
practical to employ an army of analysts to investigate all
signatures generated by the system, particularly given the
highly dynamic ecosystem being used by attackers today.
Developing better, automated methods of assessing the pur-
pose of these central servers in the absence of a successful
attack needs to be a focus of future research. Without access
to this ideal system in the near term, it may be prudent to
restrict internet content from users (i.e. not display the web-
pages from a search query or serve ads which redirect to the
central server) in order to err on the side of caution. While
this may potentially penalize legitimate content providers
initially as the system is deployed, having a method for an
individual organization to understand the underlying cause
of any true false positives and a method to quickly rectify

any errors will help balance the competing objectives of pro-
viding users the widest range of content while keeping them
safe from harm.
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