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In this chapter we describe deep generative and discriminative models as they
have been applied to speech recognition and related pattern recognition problems.
The former models describe the distribution of data or the joint distribution
of data and the corresponding targets, whereas the latter models describe the
distribution of targets conditioned on data. Both models are characterized as
being ‘deep’ as they use layers of latent or hidden variables. Understanding
and exploiting tradeoffs between deep generative and discriminative models is a
fascinating area of research and it forms the background of this chapter. We
focus on speech recognition but our analysis is applicable to other domains. We
suggest ways in which deep generative models can be beneficially integrated with
deep discriminative models based on their respective strengths. We also examine
the recent advances in end-to-end optimization, a hallmark of deep learning that
differentiates it from most standard pattern recognition practices.

1. Introduction

In pattern recognition, there are two main types of mathematical models: gener-

ative and discriminative models. The distinction between them is based on what

probability distribution they model. Generally speaking, the main goal of pattern

recognition models is to predict some output variable y given the value of an input

variable or pattern x. Discriminative models, including neural networks trained

in a way that allows their output to be interpreted as approximate posterior class

probabilities, directly compute the probability of an output given an input. On

the other hand, generative models provide the joint probability distribution of the

input and the output. That is, a discriminative model aims to estimate p(y|x),
and a generative model aims to estimate p(x, y). For the latter, one can obtain

p(y|x) using Bayes’ theorem in order to indirectly perform pattern recognition or

classification tasks, while the former, discriminative model performs directly.

The generative-discriminative distinction and their tradeoffs were a popular

topic in the pattern recognition and machine learning literature over a decade

ago (Ng and Jordan, 2002; Bouchard and Triggs, 2004; McCallum et al., 2006;

27
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Bishop and Lasserre, 2007; Liang and Jordan, 2008). Both theoretical and empir-

ical studies pointed out that while discriminative models achieve lower asymptotic

classification error, generative methods tend to be superior when training data

are limited. And the bound of the asymptotic error is reached more quickly by

a generative model than a discriminative model. While these general conclusions

still hold, the dramatic development of deep learning over the past several years

(Hinton et al., 2006; Yu and Deng, 2011; Hinton et al., 2012; Krizhevsky et al.,

2012; Dean et al., 2012; Bengio et al., 2013; Deng and Yu, 2014; Yu and Deng,

2014; Schmidhuber, 2015) warrants a reexamination of the fundamental issue of

generative-discriminative modeling tradeoffs for two reasons. Firstly, the amount

of training data (both labeled and unlabeled) and computing power available today

is much greater than in previous decades. Secondly, significantly deeper and wider

models are commonly used now. This provides the opportunity to embed more do-

main knowledge into the structure of these models. This was difficult to do in the

earlier shallow models because they lacked modeling capacity (Deng, 2014). One

main goal of this chapter is to seize these newly surfaced opportunities and to ex-

plore ways that deep generative and deep discriminative models can be beneficially

integrated to achieve the best of both worlds. Another goal is to explore the recent

advances in deep discriminative models with the end-to-end optimization strategy.

End-to-end optimization was difficult to carry out for deep models many years ago,

but recently many of the difficulties have been overcome. In these explorations, we

will focus on the issues related to pattern recognition applied to speech signals.

The remainder of this chapter is organized as follows. In Section 2 we start

by reviewing deep generative models of speech from the 1990’s that were inspired

by properties of speech production by the human vocal apparatus and its motor

control driven by phonological units. In Section 3, we describe how understanding

some weaknesses of these generative models led to an exploration of another type of

generative models, Deep Belief Networks (DBN), in speech recognition towards the

end of last decade. The work on DBNs led to subsequent revival of discriminative

models for speech recognition. In Section 4 we contrast different aspects of deep

generative and discriminative models. In Section 5, we discuss the deep discrim-

inative models that have brought about significant progress in speech recognition

accuracy. The tremendous success of these discriminative methods has meant that

generative models have taken a back seat for the last several years. However, re-

cently there has been significant progress in generative models and we survey some

of these techniques, and outline how they might be used in future speech mod-

els. Until now, speech recognition experiments have required the use of traditional

HMMs and or language models. Recent progress in deep learning has led to end-

to-end methods that do not require traditional models. We explore some of these

methods in Section 6. In Section 7 we discuss how generative and discriminative

models may come together in the future. We conclude the chapter by a discussion

of future avenues for research in speech pattern recognition.
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2. Early Deep Generative Models for Speech Pattern Recognition

Prior to 2010 when deep neural nets (DNN) started to be adopted by the speech

recognition community, a shallow generative approach based on the Hidden Markov

Model (HMM) with Gaussian Mixture Models (GMM) as its state’s output distri-

bution had been the dominant method for many years (Baker et al., 2009, 2009a;

Deng and O’Shaughnessey, 2003). In the meantime, there had been a long history

of research where human speech production mechanisms were exploited to construct

deep and dynamic structure in probabilistic generative models (Deng et al., 1997,

2000; Bridle et al., 1998; Picone et al., 1999; Deng, 2006). More specifically, the

early work described in (Deng 1993; Deng et al., 1994, 1997; Ostendorf et al., 1996;

Chengalvarayan et al., 1998) generalized and extended the conventional shallow and

conditionally independent GMM-HMM structure by imposing dynamic constraints

on the HMM parameters. Subsequent work added new hidden layers into the dy-

namic model, giving rise to deep hidden dynamic models, to explicitly account for

the target-directed, articulatory-like properties in human speech generation (Deng,

1998, 1999; Bridle et al., 1998; Picone et al., 1999; Togneri and Deng, 2003; Seide

et al., 2003; Zhou et al., 2003; Deng and Huang, 2004; Ma and Deng, 2003, 2004).

More efficient implementation of this deep architecture with hidden dynamics was

achieved with non-recursive or finite impulse response (FIR) filters in more recent

studies (Deng et al., 2006, 2006a).

Reflecting on these earlier primitive versions of deep and dynamic generative

models of speech, we note that neural networks, being used as “universal” nonlin-

ear function approximators, have been incorporated in various components of the

generative models. For example, the models described in (Bridle et al., 1998; Deng

and Ma, 2000; Deng, 2003) made use of neural networks to approximate the highly

nonlinear mapping from articulatory configurations to acoustic features. Further, a

version of the hidden dynamic model described in (Bridle et al., 1998) has the full

model parameterized as a dynamic neural network, and backpropagation algorithm

was used to train this deep and dynamic generative model. Like DNN training of

speech models, this method uses gradient descent for optimization. However, the

two methods optimize very different kinds of loss functions. In the DNN case, the

loss is defined as label mismatch. In the deep generative model, the loss is defined

as the mismatch at the observable acoustic feature level via analysis-by-synthesis

using labels to generate the acoustics. These deep-structured, dynamic generative

models of speech can be shown as special cases of the more general dynamic net-

work model and even more general dynamic graphical models (Bilmes, 2010), which

can comprise many hidden layers to characterize the complex relationship among

the variables including those in speech generation. Such deep generative graphical

models are a powerful tool in many applications as they can incorporate domain

knowledge and model uncertainty in real-world applications quite naturally. How-

ever, the approximations in inference, learning, prediction, and topology design
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that arise in these intractable problems can reduce their effectiveness in practical

applications.

In fact, the above difficulties in generative models have hindered progress in

improving speech recognition accuracy (Lee et al., 2003, 2004); see a review and

analysis in (Deng and Togneri, 2014). In these early studies, variational Bayes for

learning the intractable deep generative model was adopted, with the idea that

during inference (i.e. the E step of learning), factorization of posterior probabilities

was assumed while in the M-step rigorous estimation is expected to compensate for

the approximation errors introduced by the factorization. It turned out that the in-

ference results for the continuous-valued mid-hidden vectors were surprisingly good

but those for the continuous-valued top-hidden layer (i.e. the linguistic symbols

such as phones or words) were disappointing. Moreover, computation complexity

for the inference step was extremely high. However, after additional assumptions

were incorporated into the model structure, the inference of both continuous- and

discrete-valued latent spaces performed satisfactorily and gave strong phone recog-

nition results (Deng et al., 2006).

3. Inroads of Deep Neural Nets to Speech Pattern Recognition

The above deep and dynamic generative models of speech were critically examined

in fruitful collaborations between Microsoft Research and University of Toronto re-

searchers during 2009-2010. While the speech community was developing layered

hidden dynamical models outlined in the previous section, the machine learning

community made significant strides in the development of a different type of deep

generative model. These models were also characterized by layered architectures,

similar to neural network. These were the DBN (Hinton et al., 2006), which has

an intriguing property: The rigorous inference step is much easier than that for

the hidden dynamic model. Therefore, there is no need for approximate varia-

tional Bayes as required for the latter. This highly desirable property associated

with the DBN, however, comes with the simplicity of not modeling dynamics, and

thus making the DBN not directly suitable for speech modeling. In order to rec-

oncile these two different types of deep generative models, an academic-industrial

collaboration was formed between Microsoft Research and University of Toronto

researchers toward end of 2009, preceding the NIPS Workshop on Deep Learning

for Speech Recognition and Related Applications, where the first paper on the use

of DBNs for phone recognition was presented (Mohamed et al., 2009, 2012). This

initial study and the ensuring collaborative work effectively made three simplifying

assumptions that turned the deep generative models of speech discussed in Section

2 into DNNs. Firstly, to remove the complexity of rigorously modeling speech dy-

namics, one can for the time being remove such dynamics but one can compensate

for this modeling inaccuracy by using a long time window to approximate the effects

of true dynamics. This approximation leaves the task of modeling speech dynamics

at the symbolic level to the standard HMM state sequence. Secondly, the direction
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of information flow in the deep models can be reversed from top-down in the deep

generative models to bottom-up in the DNN. This made inference fast and accurate.

Thirdly, a DBN was used to “pre-train” the DNN based on the original proposal

of (Hinton et al., 2006) since it was assumed, back then, that neural networks were

very difficult to train. However, larger-scale experiments and careful analyses con-

ducted during 2010 at Microsoft (Yu et al., 2010; Seide et al., 2011; Dahl et al.,

2011) showed that with bigger datasets and careful weight initialization, generative

pre-training DNNs using DBNs became no longer necessary (Yu et al., 2011).

Adopting the above three “tricks” shaped the deep generative models, rather

indirectly, into the DNN-based speech recognition framework. The initial exper-

imental results using pre-trained DNNs with DBNs showed rather similar phone

recognition accuracy to the deep hidden dynamic model of speech on the standard

TIMIT task. The TIMIT data set has been commonly used to evaluate speech

recognition models. Its small size allows many different configurations to be tried

quickly and effectively. More importantly, the TIMIT task concerns phone-sequence

recognition, which, unlike word-sequence recognition, permits very weak “language

models” and thus the weaknesses in the acoustic modeling aspect of speech recog-

nition can be more easily analyzed. Such an analysis on TIMIT was conducted

at Microsoft Research during 2009–2010 that contrasted the phone recognition ac-

curacy between deep generative models of speech (Deng and Yu, 2007) and deep

discriminative models including pre-trained DNNs and deep conditional random

fields (Mohamed et al., 2010, 2012, 2009; Yu and Deng, 2009, 2010). A number

of very interesting findings surfaced in such detailed analyses, suggesting a need to

integrate deep generative and discriminative models.

The second simplifying solution above to the problem is the only one that has

not been fixed in today’s state of the art speech recognition systems. It is con-

ceivable, however, that an entirely discriminative pipeline, such as that reported by

Chorowski et al. (2014) may side-step these issues. We will explore these alternative

directions of future research in later sections of this chapter.

4. Comparisons Between Deep Generative and Discriminative Models

As discussed earlier, pattern recognition problems attempt to model the relation-

ship between target variables y (discrete or continuous) given input, covariate data

x. A deep discriminative model, such as a DNN, makes use of layered hierarchical

architectures to directly optimize and compute p(y|x).A deep generative model,

with examples given in Section 2 and Section 5 later, also exploits hierarchical ar-

chitectures but the goal to estimate p(x, y) and then to determine p(y|x) indirectly
via Bayes rule.

It has been well known that all theoretical guarantees associated with generative

models are valid only if the model assumptions for data x are correct. Otherwise,

their effectiveness for discriminative pattern recognition tasks is questionable as
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incorrect assumptions on the data would lead to incorrect assessment of p(y|x).
Since discriminative methods optimize p(y|x) directly, even if the model is not

as expressive and powerful, the criterion that is optimized at training time may

lead to superior pattern recognition performance at test time. However, the pa-

rameters of generative models can also be learned discriminatively using the same

criterion of p(y|x). There have not been theoretical results on the degree to which

model correctness is essential for discriminatively learned (deep) generative models

to be superior or inferior to the purely discriminative models, such as DNNs that

compute posterior probabilities directly with no probabilistic dependency among

latent variables as common in deep generative models. While rigorous proofs ex-

ist for the equivalence between discriminative and generative models for certain

shallow-structured models (Heigold et al., 2011), in general, deep generative and

discriminative models have different expressive capabilities with no solid theoretical

results on their contrasts. Hence, comparisons between these two classes of deep

models need be based on empirical ground.

To this end, we make such empirical comparisons in Table 1. Fifteen key at-

tributes are listed in the table, based on which deep generative models (right col-

umn) and deep neural networks (mid column), the most popular form of deep

discriminative models, are contrasted.

Table 1. High-level comparisons between deep neural networks, a most popular form of deep
discriminative models (mid column), and deep generative models (right column), in terms of 15
attributes (left column)

Deep Neural Networks Deep Generative Models

Structure Graphical; info flow: bottom-up Graphical; info flow: top-down
Domain knowledge Hard Easy
Semi/unsupervised Harder Easier
Interpretation Harder Easy (generative “story”)
Representation Distributed Local or Distributed
Inference/decode Easy Harder (but note recent progress

in Section 5.2)
Scalability/compute Easier (regular computes/GPU) Harder (but note recent progress)
Incorp. uncertainty Hard Easy

Empirical goal Classification, feature learning,
etc.

Classification (via Bayes rule),
latent variable inference, etc.

Terminology Neurons, activation/gate
functions, weights, etc.

Random variables, stochastic
“neurons”, potential function,
parameters, etc.

Learning algorithm Almost a single, unchallenged
algorithm — Backprop

A major focus of open research,
many algorithms, & more to
come

Evaluation On a black-box score — end
performance

On almost every intermediate
quantity

Implementation Hard, but increasingly easier Standardized methods exist, but
some tricks and insights needed

Experiments Massive, real data Modest, often simulated data
Parameterization Dense matrices Sparse (often); Conditional PDFs
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Most of these differentiating attributes are obvious. For example, for the at-

tribute of “incorporating uncertainty,” deep generative models are designed to cap-

ture the distribution of observed variables using a hierarchy of random variables

where the variables in the lower layers (child nodes) are modeled conditionally

on the variables in the higher layers (parent nodes). Such a model gives rise to

“explaining away” in which the posterior over parent variables is a complicated, ex-

pressive distribution that cannot be factorized. This is not possible to achieve with

DNNs that use softmax layers, because the parents are assumed to be condition-

ally independent, given the children. Therefore, if the real data and applications

require representing such “explaining away” with uncertainty modeling, then deep

generative models would do better than their discriminative counterparts.

One common difficulty of DNN models is their general lack of interpretability.

Generative models on the other hand are easy to interpret since one can readily use

p(x|y) to analyze what kinds of features x are associated with each class of y. Such

an analysis, however, is difficult to perform for discriminative models, which only

compute p(y|x). Making DNN models interpretable is an active ongoing research.

In our opinion, implementation of learning algorithms for DNNs often involve

many tricks known only to experienced researchers. In contrast, for deep generative

models, standardized techniques often exist, such as variational EM, MCMC-based,

and belief propagation methods. On the other hand, as these are approximation

methods, their effectiveness often depends on the insights to the problem at hand

which would help select the most appropriate approximation method while making

algorithm implementation feasible in practice.

5. Successes of Deep Discriminative Neural Nets in Speech

Recognition

The early experiments on phone recognition and error analysis discussed in Section

2, as well as on speech feature extraction which demonstrated the effectiveness of us-

ing raw spectrogram features (Deng et al., 2010), had pointed to strong promise and

practical value of deep learning. This early progress excited industrial researchers

to devote more resources to pursue speech recognition research using deep learning

approaches. The small-scale speech recognition experiments were soon expanded

to larger scales (Dahl et al., 2011, 2012; Seide et al., 2011; Deng et al., 2013b),

and from Microsoft to other companies including Google, IBM, IflyTech, Nuance,

Baidu, etc. (Jaitly et al., 2012; Sak et al., 2014, 2014a, 2015; Bacchiani and Ry-

bach, 2014; Senior et al., 2014; Sainath et al., 2011, 2013, 2013a,b,c; Saon et al.,

2013; Hannun et al., 2014). The experiments in speech recognition carried out at

Microsoft showed that with increasing amounts of training data over the range of

close to four orders of magnitude (from TIMIT to voice search to Switchboard), the

DNN-based systems outperformed the GMM-based systems not only in absolute

but also in relative percentages. Experiments at Google revealed that this advan-

tage was retained even when the training sizes were expanded to 5000 hours of voice
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search data (Jaitly et al., 2012). This level of improvement in accuracy had rarely

been achieved in the long speech recognition history.

The initial success of DNNs for speech recognition during 2009-2011 has led to

an explosive development of new techniques. The first important development was

pioneered by Microsoft Research related to the use of structured output distributions

in the form of context-dependent (CD) phone and state units as the targets of DNNs

(Yu et al., 2010; Dahl et al., 2011). Context dependent phones had been previously

shown to be useful for shallow-net models (Bourlard et al., 1992), but these models

decomposed the probability into separate models for the left and right contexts

in order to control the number of parameters. The Microsoft Research approach

instead involved modeling the entire CD state distribution in the output layer. This

type of design for the DNN output representations drastically expanded the output

neurons from the context-independent phone states with the size of 100 to 200

commonly used in 1990’s to the context-dependent ones with the size in the order

from 1,000 to 30,000. Such design follows the traditional GMM-HMM systems, and

was motivated initially by saving huge industry investment in the speech decoder

software infrastructure. Early experiments at Microsoft further found that due

to the significantly increased number of the HMM output units and hence the

model capacity, the CD-DNN gave much higher accuracy when large training data

supported such high modeling capacity. The combination of the above two factors

accounted for why the CD-DNN has been so quickly adopted for deployment by the

entire speech recognition industry.

For training CD-DNNs, GMM-HMM systems were used to generate alignments

in the training data. However, the CD states used in these models were themselves

created from acoustic confusability under the GMM-HMM models and may not

be the best CD state inventory for DNN-HMM systems since DNNs may confuse

phones differently from GMMs. In addition, it introduces an additional steps in

the speech recognition pipeline. Google researchers have developed approaches that

no longer require the initial GMM-HMM systems (Senior et al., 2014; In these

approaches, the model training starts directly from a DNN-HMM hybrid model on

context independent (CI) states. The CI model is used to seed the creation of a CD

state inventory based on the confusability of activations. It was shown that the CD

state inventory can be grown with an online algorithm, producing improvements in

word error rate as the model is trained (Bacchiani and Ryback, 2014).

For future studies in this area, the output representations for speech recognition

can benefit from more linguistically-informed structured design based on symbolic

or phonological units of speech. The rich phonological structure of symbolic nature

in human speech has been well known for many years. Likewise, it has also been

well understood for a long time that the use of phonetic or its finer state sequences,

even with (linear) contextual dependency, in engineering speech recognition sys-

tems, is inadequate for representing such rich structure (e.g., Deng and Erler, 1992;

Ostendorf, 1999; Sun and Deng, 2002). Such inadequacy thus leaves a promising

open door to improve speech recognition systems’ performance.
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The second major area where DNNs have made a significant impact in speech

recognition is to move from hand-crafted features to automatic feature extraction

from raw signals. This was first explored successfully in the architecture of deep

autoencoder on the “raw” spectrogram or linear filter-bank features, showing its su-

periority over the Mel-frequency cepstral coefficient (MFCC) features which contain

a few stages of fixed transformation from spectrograms (Deng et al., 2010).

The feature engineering pipeline from speech waveforms to MFCCs and their

temporal differences goes through intermediate stages of log-spectra and then (Mel-

warped) filter-banks. Deep learning is aimed to move away from separate design of

feature representations and of classifiers. This idea of jointly learning classifier and

feature transformation for speech recognition was already explored in early studies

on the GMM-HMM-based systems (Chengalvarayan and Deng, 1997; 1997a; Rathi-

navalu and Deng, 1997). However, greater speech recognition performance gain is

obtained only recently in the recognizers empowered by deep learning methods. For

example, Mohamed et al. (2012a) and Li et al., (2012) showed significantly lowered

speech recognition errors using large-scale DNNs when moving from the MFCC

features back to more primitive (Mel-scaled) filter-bank features. This work was

motivated, in part by the experiments on generative models for raw speech signals,

which showed that features found from generative models of raw waveforms were

better than MFCCs for speech recognition (Jaitly et al. 2011).

Compared with MFCCs, “raw” spectral features not only retain more informa-

tion, but also enable the use of convolution and pooling operations to represent

and handle some typical speech invariance and variability expressed explicitly in

the frequency domain. For example, the convolutional neural network (CNN) can

only be meaningfully and effectively applied to speech recognition (Abdel-Hamid

et al., 2012; 2013, 2014; Deng et al., 2013) when spectral features, instead of MFCC

features, are used. More recently, Sainath et al. (2013b) went one step further to-

ward raw features by learning the parameters that define the filter-banks on power

spectra.

Ultimately, deep learning would go all the way to the lowest level of raw features

of speech, i.e., speech sound waveforms, as was reported by Sheikhzadeh and Deng

(1994). Jaitly and Hinton (2011) showed that a DBN trained on waveforms could

discover features that outperform MFCCs, even though the features were learned

in an entirely unsupervised task. Although the features did not outperform Mel

filterbanks, it is clear that supervised learning of these features should produce

better results. In fact, recent work by Sainath et al. (2015) shows that with

supervised training raw signals can achieve accuracy comparable to filter banks.

Similarly Tuske et al. (2014) reported excellent results based on raw waveforms for

speech recognition using a DNN.

Third, better optimization criteria and methods are another area where signif-

icant advances have been made over the past several years in applying DNNs to

speech recognition. In 2010, researchers at Microsoft recognized the importance
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of sequence training based on their earlier experience on GMM-HMMs (He et al.,

2008; Yu et al., 2007, 2008) and started working on full-sequence discriminative

training for the DNN-HMM in phone recognition (Mohamed et al., 2010). Unfortu-

nately, the right approach was not found to effectively control the model overfitting

problem. Effective solutions were first reported by Kingsbury et al. (2012) using

Hessian-free training, and then by Su et al. (2013) and by Vesely et al. (2013) based

on stochastic gradient descent training. Other better and novel optimization meth-

ods include distributed asynchronous stochastic gradient descent (Dean et al., 2012;

Sak et al., 2014a), primal-dual method for applying natural parameter constraints

(Chen and Deng, 2014), and Bayesian optimization for automated hyper-parameter

tuning (Bergstra et al., 2012).

The fourth area in which DNNs have made a big impact in speech recognition

is noise robustness. Research into noise robustness in speech recognition has a long

history, mostly before the recent rise of deep learning. See a comprehensive review

in (Li et al., 2014), where the class of feature-domain techniques developed origi-

nally for GMMs can be directly applied to DNNs. A detailed investigation of the

use of DNNs for noise robust speech recognition in the feature domain was reported

by Seltzer et al. (2013), who applied the C-MMSE (Yu et al., 2008) feature en-

hancement algorithm onto the input feature used in the DNN. By processing both

the training and testing data with the same algorithm, any consistent errors or ar-

tifacts introduced by the enhancement algorithm can be learned by the DNN-HMM

recognizer. Strong results were obtained on the Aurora4 task. Kashiwagi et al.

(2013) successfully applied the SPLICE feature enhancement technique developed

for GMMs (Deng et al., 2001, 2002) to a DNN speech recognizer.

Fifth, deep learning has been influencing multi-lingual or cross-lingual speech

recognition, the most interesting application of multi-task learning. Prior to the

rise of deep learning, cross-language data sharing and data weighing were already

shown to be useful for the GMM-HMM system (Lin et al., 2009). For the more

recent, DNN-based systems, these multi-task learning applications in speech recog-

nition became much more successful. In the studies reported by Huang et al. (2013)

and Heigold et al. (2013), two research groups independently developed closely re-

lated DNN architectures with multi-task learning capabilities for multilingual speech

recognition.

The sixth major area of progress in deep learning for speech recognition is the

better architectures. For example, the tensor version of the DNN was reported by

Yu et al. (2013) and showed substantially lower speech recognition errors com-

pared with the conventional DNN. Another deep learning architecture effective for

speech recognition is locally connected architectures, or (deep) convolutional neu-

ral networks (CNN). With appropriate changes from the CNN designed for image

recognition to that taking into account speech-specific properties, the CNN has

been found effective for speech recognition (Abdel-Hamid et al., 2012, 2013, 2014;

Sainath et al., 2013; Deng et al., 2013). Further, the deep learning architecture



September 26, 2015 11:12 Handbook of Pattern Recognition and Computer Vision 9.75in x 6.5in FA b2252-ch1-2 page 37

Deep Discriminative and Generative Models for Pattern Recognition 37

of (deep) recurrent neural network (RNN), especially its long-short-term memory

(LSTM) version, is currently a hot topic in speech recognition. The RNN was re-

ported to give very low error rates on the benchmark TIMIT phone recognition task

(Graves et al., 2013; Deng and Chen, 2014). More recently, the LSTM was shown

high effectiveness on large-scale tasks with applications to Google Now, voice search,

and mobile dictation with excellent accuracy results (Sak et al., 2014, 2014a).

Another set of novel deep architectures, which are quite different from the stan-

dard DNN, are reported in (Deng et al., 2011, 2012; Tur et al., 2012; Vinyals et al.,

2012) for successful speech recognition and related applications including speech un-

derstanding. These models are exemplified by the Deep Stacking Network (DSN),

its tensor variants (Hutchinson et al., 2012, 2013), and its kernel version (Deng

et al., 2012a). The novelty of this type of deep models lies in its modular design,

where each module is constructed by taking its input from the output of the lower

module concatenated with the original data input, and in the specific way of com-

puting the error gradient of the weight matrices in each module (Yu and Deng,

2012a).

In addition to the six main areas of recent advances in deep learning for speech

recognition summarized above, other important areas of progresses include adapta-

tion of DNNs for speakers (Yao et al., 2012; Yu et al., 2012, 2013a), better regu-

larization methods, better nonlinear units, speedup of DNN training and decoding,

and exploitation of sparseness in DNNs (Yu et al., 2012a).

6. Recent Developments of Deep Generative Models

In this chapter we have explored the connections between generative and discrimi-

native models extensively. Discriminative models such as DNNs have the advantage

that they can model arbitrarily complex posterior distributions, whereas the pos-

teriors over generative models are defined by the expressiveness of the generative

models themselves. As such a simple GMM-HMM system has uninteresting decision

surfaces for complicated problems; deep trajectory models with latent dynamic lay-

ers such as those described in (Deng, 2006) on the other hand has more constraints

built in, and is much more expressive. Recent developments in more powerful gener-

ative models thus deserve serious attention since these models have very expressive

generative distributions that could lead to posterior distribution of arbitrary ex-

pressiveness. Furthermore, models such as the variational autoencoder (Kingma

and Welling, 2014), DRAW (Gregor et al., 2015), and Stochastic Generative Net-

works (Yoshua, et al., 2013) are not associated with difficult inference problems that

plagued earlier generative models, and are even applicable to model dynamics.

Deep generative models also deserve consideration as they facilitate principled

unsupervised and semi-supervised learning. The models we have discussed so far

are largely supervised — during training, we are provided pairs of acoustic data and

sequence labels. However, there is a vast amount of unlabeled acoustic and textual
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data available in the web that can be used for semi-supervised and unsupervised

learning. Generative models that attempt to model the distribution of acoustics

and text independently and/or jointly could be used to improve supervised learning

in the future.

6.1. Deep Distributed Generative Models

Boltzmann Machines can be regarded as the earliest generative models (Hinton and

Sejnowski, 1986). Inspired by the computational model of the brain, these models

are “distributed” in the sense that they describe the distribution of data in terms

of the activities of a population of variables, instead of just individual variables

that encapsulate discrete, distinct concepts. That is, the information about data

is “distributed” across the activities of a large number of variables, which leads

to a compact representation. These models are formally described using principles

of statistical physics — an energy function is defined over the states of variables

and is used in a Boltzmann distribution which defines a probabilistic generative

model over states of the variables. The authors showed how the parameters of

these models could be trained using Gibbs sampling and simulated annealing to

model interesting distributions. These models were slow both in inference and in

learning for reasonably small sized problems, because of the exponentially large

state spaces involved. Restricted Boltzmann Machines (RBMs) (Smolensky, 1986)

make inference easier by introducing a layered structure where units can be updated

in parallel using block Gibbs sampling, but learning is still difficult.

It was not until much later that it was discovered that these models could be

trained by a simple algorithm called Contrastive Divergence (Hinton, 2002). Boltz-

mann machines inspired the development of Sigmoid Belief Networks in which the

symmetric connections between variables were replaced by directed connections

(Neal, 1992). This model bears similarities with Belief networks that were origi-

nally introduced by Pearl (1988) to represent domain knowledge in an expert using

a probabilistic graphical structure. However, unlike the earlier models, the param-

eters of these graphical models were learnt. In Sigmoid Belief Networks the data

resides at the lowest layer of the graph, and can be generated from an ancestral

pass over the stochastic binary latent variables in the model. Inference in these

models can be performed by Gibbs sampling over the latent variables; the partition

function of the distribution is local to the units and can thus be computed as part

of the inference step itself. However, this computation requires a separate ances-

tral pass for each variable and thus the computation process is still not suitable

for large models. Subsequently Mean Field methods were developed for learning in

such networks (Saul et al., 1996). This method used the variational technique for

approximating the intractable distribution over latent variables with another dis-

tribution that is more tractable and assumes independence amongst the variables.

Helmholtz machines extended the intuition of Sigmoid Networks by introducing a

model with several layers of directed models for generating data, and solve the diffi-
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cult inference problem by coupling the layers to recognition weights that were used

to compute approximate posteriors using variational techniques.

The wake-sleep algorithm was used to tune the generative and recognition

weights by alternating between wake phase, when hidden unit states were inferred

from the recognition weights and the generative weights were modified to generate

the data, and the sleep phase, when the generative model was used to fantasize

data and the recognition weights were modified to copy the generative process.

Subsequently there was also an enormous amount of work done on Gaussian latent

variable models, such as mixtures of factor analyzers (e.g. Ghahramani and Hinton,

1996), which can be trained with the Expectation Maximization (EM) algorithm.

It was shown by Neal and Hinton (1998) that the EM algorithm could itself be

derived from Mean Field methods. Then, an algorithm, called Contrastive Diver-

gence, was invented that could be used to learn parameters of a Product of Experts

(PoE) model using approximate gradients of the log likelihoods of data, which were

computed from block Gibbs sampling over a small number of steps (Hinton, 2002).

Later, it was shown that the CD could even be used on multilayer neural networks

with a defined energy function (Hinton et al., 2006a).

Various extensions on these generative models were developed for data with

dynamical structure. For example, the Product of HMMs is a marriage of HMMs

and Product of Experts (PoE) that uses multiple latent variables at each time step,

rather than a single categorical variable at each time step that is used by HMMs.

The generative distribution at each time step is a product model of the latent

variables at that time step. It was shown that this model could be trained with the

CD algorithm (Brown and Hinton, 2001; Taylor and Hinton, 2009). PoE seems to

have led to modest gains in speech recognition accuracy (Airey and Gales, 2003)

but product of HMMs seem largely to have been untested in the domain of speech

recognition.

Other interesting deep distributed generative models for dynamic data have been

developed that use the CD algorithm for training (Sutskever et al., 2009; Taylor and

Hinton, 2009, 2009a). Here, sequences are modeled using next step prediction. At

each time step, a product of experts conditioned on past latent and visible variables

is used to model the data at that time step. The models produce very interesting

distributions over sequences and can model sequential data from Motion Capture,

bouncing balls, etc. However, these models do not seem to have been applied to

modeling acoustic data.

6.2. Variational and Other Methods for Deep Generative Models

Variational methods were very popular for training probabilistic models in the late

1990’s but their use was limited by several factors. In the original formulation,

the intractable posterior distributions over latent variables were approximated with

simpler distributions such as independent Gaussian distributions over the latent

variables, where the KL divergence between the approximating distribution and the
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intractable distribution could be analytically treated. As such it could be applied

only to a specific class of distributions where such approximations could be com-

puted analytically. Second, such methods are difficult to apply to really large data

because of the tricky optimization procedures required. Thus it was difficult to

apply them to problems requiring a large number of parameters. Deep learning

methods such as DNNs, however, did not suffer this drawback since stochastic gra-

dient descent has proven resilient to massive amounts of training data and large

model sizes.

Recent developments have addressed some of these shortcomings, thus opening

up renewed interest in the use of variational methods. Hoffman et al. (2013) re-

ported a method for using Stochastic Gradient descent with Variational Bayesian

inference. This method allows for online learning of the type used for neural network

training, where the model can be progressively trained as more data arrives. The au-

thors show how the model can be used to train LDA models and Hierarchical Dirich-

let processes on very large news corpora successfully. While the paper uses stochas-

tic gradient descent with mini-batches, it seems obvious that recent developments in

parallel gradient descent algorithms such as asynchronous gradient descent and Hog-

wild (Dean et al., 2012, Recht et al., 2011) could further help scale up such methods

to even larger datasets. These methods nevertheless require traditional variational

techniques to compute the gradients for the mini-batches — namely, having an an-

alytical solution for the gradients of the variational parameters, which requires a

careful selection of the approximating distributions and limits the use of arbitrary

distributions in these settings. Recently, however, there have been breakthroughs

that address these problems (Wingate and Weber, 2013; Kingma and Welling, 2014;

Ranganath et al., 2013; Mnih and Gregor, 2014). These methods replace the ana-

lytical optimization of the Evidence Lower Bound over the variational distribution,

with a stochastic gradient optimization step computed by Monte Carlo. The sam-

pling steps can result in gradient estimates that have high variance which must be

controlled. Ranganath et al. (2013) reduce the variance through the use of Rao-

Blackwellization (Casella, 1996) and control variates. Kingma and Welling (2014)

use continuous latent variables with prior distributions such as location-scale distri-

butions that can be easily sampled from, and where the gradients of the samples with

respect to model parameters can be computed analytically. Mnih and Gregor (2014)

use a centering technique that is in essence similar to the methods of control variates

described by Ranganath et al. (2013). Further, they use conditional gradients for

different layers, which is similar to Rao-Blackwellization. Both these methods use

neural networks for the posterior distributions and for the generative models. As a

result, the two models, Variational Autoencoders and Neural Variational Inference

and Learning (NVIL) are very powerful, flexible generative models. See Gregor et al.

(2015) for an extremely powerful generative model derived from these techniques.

These methods have recently been applied to sequential data with very promising

results (Bayer and Osendorfer, 2014; Chung et al., 2015). Future applications to

speech domains are likely to follow.
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Another really interesting approach to learning generative models comes from

Bengio et al. (2014). Here the authors approach generative models from the per-

spective of Markov transition operators that go from corrupted data to clean data.

Under certain conditions on the learned transition operators, the authors show that

the learnt transition operator can be used to recover the data distribution. Fur-

ther, the model is easy to sample from and can be trained with backpropagation

and sampling. The implications of this approach to generative modeling for speech

recognition are yet to be explored.

7. End-to-End Deep Discriminative Models

Deep learning experts have advocated training end-to-end models for pattern recog-

nition systems since the 1990s (LeCun et al., 1998). Originally inspired by discrim-

inative sequence training methods in speech recognition systems, these ideas are

being extensively explored in machine learning currently for a variety of tasks, es-

pecially those involving sequences, such as machine translation, speech recognition

and parsing (Sutskever et al., 2014; Vinyals et al., 2014; Chorowski et al., 2014;

Graves and Jaitly, 2014). Part of this revival is fueled by the observation that deep

learning systems based on discriminative neural networks often work better when

the input data is minimally preprocessed. It is hoped that the same applies as the

output loss functions are more directly related to the final objective that the overall

system aims to optimize, not a surrogate loss that is correlated with the overall

aim of the system. As a side benefit, end-to-end training is simpler as there are no

additional complexities arising due to system integration issues. Recent successes

in the above applied domains support this assertion. We summarize some of this

work here because it is likely these methods will play an important role in speech

recognition in the future.

Connectionist Temporal Classification (CTC) is a method for learning to map

from a sequence to a shorter sequence of discrete symbols that have a monotonic

alignment. It has been applied to handwriting recognition, speech recognition and

grapheme-to-phoneme mapping (e.g. Graves et al., 2006). This method has led

to improved accuracy in speech recognition, but suffers from the assumption that

the state predictions at each frame are independent of the predictions at the other

frames.

The sequence to sequence model of (Sutskever et al., 2004) addresses the the-

oretical shortcoming of these models, by modeling p(y|x) directly where y is the

transcript and x is the input utterance using an RNN and the chain rule, i.e. p(y|x)
= p(y1|x) p(y2|y1, x). . . p(yT−1|yT, x). Here, each of the terms in the chain rule

is computed using an RNN that first inputs the data, and then the labels, yi , to

perform next step prediction for label yi+1. This method was applied to machine

translation and achieved impressive results, even though it was trained with no

domain knowledge. Chorowski et al. (2014) apply an extension of this idea that

uses additional “attention” on input sequence (Bahdanau, et al., 2015) to speech
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recognition. This model uses a deep bidirectional LSTM-RNN to process acoustic

data to hidden units and a transducer RNN to output the transcript y conditioned

on the hidden codes from the top layer of the acoustic RNN. The transducer RNN

uses its hidden state to produce a blending weight over the input acoustic time

steps, based on similarity between the hidden state and the hidden states of the

acoustic RNN time steps. These weights are used to blend the acoustic RNN hid-

den states (of the top layer) to a single context vector that drives the transducer

network to output the next character, by combining it with the hidden state of

the transducer. A similar model was recently demonstrated for end-to-end speech

recognition on the Google Voice Search Task (Chan et al., 2015) where it was shown

that an attention based sequence to sequence model could transcribe voice search

data directly to a sequence of English letters without the use of language models

or a dictionary. Although not a state of the art model, this model achieves results

within 3% absolute of the best production model based on a DNN-HMM pipeline.

It raises the exciting possibility that end to end speech recognition may be feasible

with a large corpus.

All end-to-end training methods suffer from the problem that acoustic training

data is limited compared with the pure text data available, but the model attempts

to learn both the acoustic model and language model jointly. However, the tech-

niques of language model blending with acoustic model prediction that are common

in speech recognition with GMM-HMM systems are equally applicable here. The

only trick is to modify the beam searching routine during inference to incorporate

language model probabilities at the right steps of decoding and beam search.

8. Integrating Deep Generative and Discriminative Models

In this section we look at current approaches that blend generative and discrimina-

tive approaches, and outline some possible future approaches to speech recognition

that use discriminative and generative models together. The advantage of using

generative models for processes where the structure of the data is known a priori

is that they can add constraints to the discriminative model. It has been shown

empirically that for certain generative-discriminative model pairs, such as Näıve

Bayes versus logistic regression, generative models can achieve faster convergence

on discriminative tasks, with fewer points, but discriminative models achieve better

convergence with more points (Ng and Jordan, 2002). Lasserre and Bishop (2007)

propose a way of blending these two objectives together by training a discrimina-

tive and a generative model whose parameters are jointly described using a prior

that encourages the parameters to be the same. They note that a discriminative

model performs better than generative models when there is mis-specification of the

generative model compared to the true one. One can develop a similar method of

sharing parameters between discriminative and generative models below, but using

RNNs.
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Early approaches to DNN training for neural networks advocated the use of gen-

erative DBN pre-training before subsequent discriminative fine-tuning for DNNs.

The DBN was trained to maximize the probability of data x itself, and its param-

eters were used to initialize the DNN which was trained discriminatively to model

the HMM state posteriors, given the input data. However, it was subsequently

observed that with very large datasets this pretraining was not necessary.

It should be noted that while GMM-HMM systems are trained generatively

with maximum likelihood, the model is conditioned on the label sequence, y, i.e.

the objective to be optimized is p(x|y), rather than p(x) itself, as is done in DBN

training. To the best of our knowledge, generative pre-training of these models,

akin to DBN pre-training of DNNs, using unsupervised audio data, x, alone has

not been attempted. One possible way of accomplishing this would be to apply a

variational approximation over the (unknown) possible utterances z given input x

and using these to update the generative models p(x|z). An unsupervised approach

taken by Google resembles this method in principle (Kapralova et al., 2014). In

this model good speech recognition models are used without supervision to select

utterances that can be decoded with high levels of confidence. These utterances are

then added to a new dataset for training speech recognition models.

The approach described in Lasserre and Bishop (2007) can be used for semi-

supervised learning by prescribing a common prior over models of speech and audio,

allowing differences between these models. These models would thus be able to

leverage large amounts of unsupervised text and audio data together with labeled,

supervised pairs (x, y). It is expected that in the near future semi-supervised

learning methods will play an important role in speech recognition.

A recent study demonstrated another interesting way of integrating deep genera-

tive and discriminative models for prediction problems using text data (Chen et al.,

2015). In this study, an iterative inference algorithm is first applied to a generative

topic model. Each step of the inference operation is treated as a computational

“cell” and multiple iterations give rise to several such “cell” stacking on top of each

other.

Then, given target labels for the prediction problem in the training data, back-

propagation algorithm can be applied to learn all model parameters in an end-to-end

manner.

9. Summary and Future Directions

In pattern recognition literature and practice, both discriminative and generative

models are popular. Understanding and exploiting the tradeoffs between these two

classes of models have been a long standing research, and we focus on such research

for various deep forms of these models in this chapter. Pattern recognition examples

discussed are drawn mainly from speech recognition, a field which has recently been

revolutionized by the use of deep neural networks, a specific and most successful

form of deep discriminative models.
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Deep discriminative models hold the promise of learning powerful end-to-end

systems given enough labeled training data. However it is conceivable that the per-

formance of these systems will plateau because the discriminative models are either

not powerful enough, or not constrained enough by an appropriate discriminative

architecture for the task of speech recognition. Generative models offer an easy way

of incorporating a “correct” architecture into their models, although inference may

be tricky under a powerful generative model. As such it is conceivable that the

strengths of generative and discriminative models will both be needed for further

progress in speech recognition.

In this vein, an important future challenge lies in how to effectively integrate

major relevant speech knowledge and problem constraints into new deep models

of the future with “correct” architectures. Deep generative models are much bet-

ter able to impose the problem constraints above purely discriminative DNNs or

their variants including recurrent networks. The deep generative models should be

parameterized appropriately to facilitate highly regular, matrix-centric, large-scale

computation. The design of the overall deep computational network architecture

may be motivated by approximate inference algorithms associated with the initial

generative model. Then, powerful discriminative learning algorithms of the type

of end-to-end backpropagation can be developed and applied to learn all network

parameters. Ultimately, the run-time computation follows the inference algorithm

in the generative model, but the parameters will have already been learned to best

discriminate all classes of speech sounds.
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