
TPC: Target-Driven Parallelism Combining Prediction and
Correction to Reduce Tail Latency in Interactive Services

Myeongjae Jeon†, Yuxiong He†, Hwanju Kim∗1, Sameh Elnikety†, Scott Rixner‡, Alan L. Cox‡
†Microsoft Research ∗University of Cambridge ‡Rice University
Redmond, WA, USA Cambridge, UK Houston, TX, USA

Abstract
In interactive services such as web search, recommenda-
tions, games and finance, reducing the tail latency is crucial
to provide fast response to every user. Using web search as a
driving example, we systematically characterize interactive
workload to identify the opportunities and challenges for re-
ducing tail latency. We find that the workload consists of
mainly short requests that do not benefit from parallelism,
and a few long requests which significantly impact the tail
but exhibit high parallelism speedup. This motivates esti-
mating request execution time, using a predictor, to identify
long requests and to parallelize them. Prediction, however, is
not perfect; a long request mispredicted as short is likely to
contribute to the server tail latency, setting a ceiling on the
achievable tail latency.

We propose TPC, an approach that combines prediction
information judiciously with dynamic correction for inaccu-
rate prediction. Dynamic correction increases parallelism to
accelerate a long request that is mispredicted as short. TPC
carefully selects the appropriate target latencies based on
system load and parallelism efficiency to reduce tail latency.

We implement TPC and several prior approaches to com-
pare them experimentally on a single search server and on a
cluster of 40 search servers. The experimental results show
that TPC reduces the 99th- and 99.9th-percentile latency by
up to 40% compared with the best prior work. Moreover,
we evaluate TPC on a finance server, demonstrating its ef-
fectiveness on reducing tail latency of interactive services
beyond web search.

1 Currently with EMC

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA.
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2872362.2872370

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Threads

General Terms Algorithm, Design, Performance

Keywords Interactive Service, Tail Latency, Parallelism,
Thread Scheduling, Machine Learning, Web Search

1. Introduction
Interactive online services such as web search, financial trad-
ing, and online games provide consistently fast responses to
every user request, which translates to requirements on the
tail for request response times [9, 19]. Reducing response la-
tency is important because it generates extra revenues: The
saved latency can be used for adding extra capabilities and
new features. It can also be used for cost savings as the sys-
tem capacity increases: Under the same latency SLA and in-
put workload, fewer servers are deployed when servers em-
ploy the latency reduction techniques to support the higher
load. This paper presents an approach to reduce the tail la-
tency of interactive services, where we use web search as a
driving example.

For large-scale commercial search engines, the web index
is typically partitioned among many servers, and therefore a
user request (or query) is processed on several servers [3,
8, 20]. The slowest server determines the request latency.
On a single server, it is important to reduce the tail latency
rather than the average. We illustrate this point with a simple
example of a cluster containing 40 search servers. Here,
the request response is aggregated from the 40 servers, and
to obtain a 99th-percentile latency of X time units, each
server must achieve a substantially stricter tail latency [9,
19], specifically 40

√
99/100 × 100 = 99.98 th-percentile

latency of X .
We characterize the server workload to investigate how to

reduce tail latency. The study shows that computation time
dominates disk and network IO as well as queueing laten-
cies. CPU is the bottleneck resource, making parallel pro-
cessing on a multi-core server a promising approach. More-
over, data center environments collect extensive telemetry
data, including system load, query logs, and workload in-

129

formation, which can be exploited to provide better perfor-
mance.

However, workload characterization reveals important
challenges. Queries exhibit large latency variability, where
the service demand of long queries is orders of magnitude
higher than the median. Moreover, not all queries bene-
fit equally from parallelization: Parallelization has a non-
negligible overhead, particularly for short queries. This mo-
tivates estimating request execution time, using a predictor,
to identify which queries are long. Prediction, however, is
not perfect; a long request mispredicted as short is likely
to contribute to the server tail latency. In effect, prediction
inaccuracy sets a ceiling on the achievable tail latency re-
duction.

Prior work on using parallel processing to reduce query
latency falls into two categories according to whether pre-
diction information is used. (1) Techniques in the first cat-
egory ignore per-query prediction information completely.
For example, recent work [20, 33] determines the parallelism
degree before running the query according to system load
without differentiating short and long queries, resulting in
substantial overhead as short requests are parallelized. An-
other approach [15] increases the parallelism degree during
query execution, but misses the opportunity to parallelize
long queries early, leading to longer completion time and
impacting the tail latency. (2) Recent work in the second
category relies primarily on per-query prediction informa-
tion [21]. The parallelism degree can be decided according
to the predicted query execution time. The latency reduction
is, however, limited because the mispredicted long queries
impact the tail substantially.

To overcome the limitations of the prior work, we pro-
pose a novel approach that exploits prediction information
judiciously with dynamic correction for inaccurate predic-
tion. Dynamic correction ramps up the degree of parallelism
to accelerate long queries mispredicted as short. Ramping up
parallelism must be done carefully: If it is invoked too early,
it wastes resources that could have been used to reduce the
tail latency. If it is invoked too late, the request completes
late directly impacting the tail latency.

Our main contribution is TPC, standing for Target-driven
parallelism combining Prediction and Correction, which is
an algorithm to reduce the very high tail latency. TPC ex-
ploits several factors jointly, including per-query prediction
information, instantaneous system load information, statisti-
cal workload information (i.e., average parallelism speedup).
It has three key insights:

First, TPC determines a common target completion time
to determine how aggressively to parallelize requests and
when to invoke dynamic correction. The target is used for
two purposes: (1) to allocate the least amount of resources
so that majority of requests complete before the target, and
(2) to determine which requests take longer than expected,
e.g., due to under-estimating their service demands. The

requests taking longer than the target are likely to impact the
tail. If additional resources are available, they are allocated
to accelerate those requests. The target value depends on
the current system load and overall parallelism efficiency of
requests.

Second, TPC applies predictive parallelism: it predicts
the execution time of each request to compute its degree of
parallelism. More precisely, TPC selects the smallest par-
allelism degree so that the request meets its target comple-
tion time while accounting for the request parallelism effi-
ciency. As a result, short requests complete within the target
using sequential execution and long requests are parallelized
to meet the target using minimum resources.

Third, TPC introduces dynamic correction to handle mis-
predictions — long requests that are mispredicted as short
and execute sequentially or with a low parallelism degree.
TPC increases parallelism for requests that exceed the tar-
get completion time while considering the available spare
resources, reducing latency for the very high-percentile.

To assess the benefits of TPC, we implement it in the
context of Microsoft Bing search engine and evaluate it
experimentally using a production workload. The empirical
results show that TPC consistently outperforms the prior
work [20, 21, 33]. TPC effectively reduces the very high-
percentile latency. The server 99.9th-percentile latency is
reduced by up to 40% compared with the best prior work.
Moreover, as each server completes requests by meeting
the computed target resulting in lower latency variance and
lower tail latency, at the cluster level tail latency is reduced.
Our results show that the 99th-percentile tail latency of a 40-
server cluster is reduced by 66% compared with sequential
and 29% compared with the best prior work.

Furthermore, we generalize the TPC approach to a wider
class of CPU-intensive interactive services exhibiting the
properties of highly-variant request demand, parallelizable
request execution and predictable sequential execution time.
As an example, we implement TPC on a finance server and
show its effectiveness on reducing tail latency.

We structure the paper around our contributions: First,
we conduct a comprehensive workload characterization that
shows the opportunities and challenges of using paralleliza-
tion to reduce request tail latency (Section 2). Second, we
develop a new policy, TPC, that applies prediction infor-
mation judiciously with dynamic correction under inaccu-
rate prediction (Section 3). Third, we implement and evalu-
ate TPC experimentally in a commercial search engine. We
find that TPC consistently outperforms the prior work (Sec-
tion 4). Finally, we implement and evaluate TPC on a finance
server, demonstrating its effectiveness beyond web search
(Section 5).

130

ISNs

Aggregator

top-k top-k top-k top-k

query response

Figure 1. Index serving system architecture.

2. Workload Characterization
The index serving system in a search engine retrieves doc-
uments relevant to user queries, generating an interactive
workload that we characterize carefully to motivate TPC de-
sign.

2.1 System Overview
System architecture. Figure 1 illustrates the partition-
aggregate architecture of an index serving system. It consists
of an aggregator (also known as a broker) and search servers
called index serving nodes (ISNs). The index contains in-
formation about web documents, is document-sharded [3]
and distributed among the ISNs. When a user sends a query
and the query response is not cached, the aggregator prop-
agates the query to all ISNs hosting the web index. Each
ISN searches its fragment of the web index to return the
top-k most relevant results to the aggregator. The aggre-
gator receives the results from the ISNs, and merges them
to compute the response to the user query. The aggregator
waits for all of its ISNs to respond so it will not miss any
search results. ISNs are the workhorse of the index serving
system. They constitute over 90% of the total hardware re-
sources and account for the majority of the query processing
time. This architecture is similar to others discussed in prior
work [3, 8, 20].

Query processing. The ISN manages a number of worker
threads that can process several queries concurrently on mul-
tiple cores. Newly arrived queries first join the waiting queue
of the ISN. When a worker thread is idle, it dequeues a query
from the waiting queue and starts to process it. The worker
thread searches its web index fragment to produce a list of
documents matching the keywords in the query. As there are
a fixed number of worker threads, some queries may experi-
ence a delay in the waiting queue. Thus, a query’s response
time consists of both its queueing delay and execution time.

2.2 Computationally Bound Workload
Several factors make web search a computationally bound
workload. First, the inverted indices are sharded across a
large number of ISNs, each of which has 10s of GBs of

DRAM for caching its part of these indices. This caching
substantially reduces the amount of disk I/O performed by
the ISNs [20]. For example, under production workloads, the
average amount of disk I/O by each ISN is only 0.3 KB/s.
Consequently, the CPU spends little or no time blocked on
disk I/O. Second, a search engine is an interactive applica-
tion. Therefore, it is not operated at extremely high loads
to avoid queueing delay and quality degradation [20]. Our
measurements show that even under a relatively high CPU
utilization of 73%, the average queueing delay at the ISN is
0.35 ms. Third, the time for network I/O is a small fraction
of the overall query latency. The average time for network
I/O per query is only 2.13 ms, while the computation by the
CPU represents the largest fraction, with a service demand
of 13.47 ms on average or up to more than 200 ms. We have
observed this small impact of the non-computation parts re-
gardless of the query length. Therefore, query latency reduc-
tion is best achieved by speeding up the computation.

Queries running concurrently exhibit little interference or
memory contention. [20] reports that a query suffers less
than a 5% slowdown while running together with other
queries at 50% CPU utilization, as compared to running
alone. We have observed similar behavior under our work-
loads. In summary, we have a computationally bound work-
load with little interference among queries. So, we believe
that query parallelization has a good chance of reducing
latency.

2.3 Latency Variability
Server requests have varying computational demands. Most
queries are short, with more than 85% taking below 15 ms. A
few queries are, however, very long, taking up to 200 ms. In
particular, the average service demand is 13.47 ms, while the
99th-percentile service demand is 200 ms, which is 15 times
the average. The gap between the median and the 99th-
percentile is even larger at 56 times. We observe that this
variability is fairly consistent across a few hundred ISNs in
the index serving cluster.

Many factors affect query execution time, and we discuss
two typical factors responsible for long execution. First,
long queries tend to have more documents to match and
score, which consumes more processor cycles. Second, long
queries involve the intersection of inverted indices for a
larger number of keywords. It is known that the average
latency of queries with ten keywords can be approximately
an order of magnitude greater than that of queries with only
two keywords [36].

The distributed query processing further increases latency
variability. In a partition-aggregate cluster where a search
query runs in parallel and its results are aggregated over a
large number of ISNs (in Figure 1), speeding up the long
queries at each ISN is necessary to reduce the cluster tail la-
tency, which directly affects end-to-end response time. Our
experimental evaluation on a Bing search cluster (in Sec-
tion 4.5) also shows that reducing tail latency of the clus-

131

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6

Sp
e

e
d

u
p

Degree of parallelism

Short (<30ms)

Mid (30-80ms)

Long (>80ms)

Figure 2. Average speedup for processing queries in paral-
lel grouped by their execution time.

ter requires reducing a much higher percentile at each ISN.
Thus, each server should be optimized for both moderate
(e.g., 95th- to 99th-percentile) and even high (e.g., higher
than 99th-percentile) tail latency. We conclude that to de-
liver low-latency responses to users, it is crucial to speed up
long queries at each ISN.

2.4 Query Parallelization Efficiency
Multiple threads can process a single query to exploit the
modern multi-core processors. We adopt a state-of-the-art
query parallelization approach from prior work [20], where
the index data is partitioned into small tasks, forming a
task pool, and the query threads retrieve tasks from the
pool and process them. A query can be assigned a num-
ber of threads upon the start of query execution [20], and
later on the scheduler can add additional threads to a query
during its execution [15]. As observed in many applica-
tions [1, 11, 23, 33, 38], parallelization incurs overhead due
to various factors, such as task creation, synchronization and
speculated execution [15, 20]. The parallelization efficiency
varies among queries for two reasons, which impact on short
queries: (1) Some steps are not parallelized, e.g., query pars-
ing and rescoring of the top results. (2) Load imbalance
among tasks adversely affects parallelism speedup [12].

We study query parallelization efficiency empirically us-
ing a production index and query log. We classify the queries
into three classes based on execution time and show the
speedup with different parallelism degrees in Figure 2. The
long queries that run more than 80 ms achieve more than
4 times speedup on 6 threads, reducing their mean execution
time from 168 ms to 41 ms. In contrast, using 6 threads,
the short queries that complete in under 30 ms achieve
only 1.16 times speedup. In addition, medium queries that
run between 30 and 80 ms have modest speedup, around
2 times with parallelism degree 6. The parallelization effi-
ciency thus depends on the query service demand, as has
been observed in other search workloads [12]. We conclude

that parallelization is more effective for long queries than
short queries.

2.5 Impact of Prediction Accuracy
Prior work uses machine learning techniques to predict (se-
quential) execution time of a query before running it to iden-
tify long queries [21, 26]. We adopt a predictor [21] that uses
both term and query features such as IDF (inverted docu-
ment frequency) and the number of augmented keywords,
and uses a boosted-tree regressor to predict query execution
time. Regressor accuracy is commonly measured using L1
error, representing the difference of the predicted and ac-
tual query execution time. The L1 error of our predictor is
14 ms using production indices and query logs. To illustrate
the impact of prediction accuracy on tail latency, we present
a more intuitive view from a classifier’s perspective as we
show in the experimental evaluation: The predictor identifies
long queries, classifying each query as either long or short.
Classifier accuracy is measured using precision (the fraction
of detections which are truly long queries) and recall (the
fraction of truly long queries which are detected).

High recall is essential; We should identify the majority
of long queries and subsequently process them faster to
reduce their response time. A misprediction due to imperfect
recall means that a long query is processed as a short query
and therefore is likely to increase tail latency. In contrast,
misprediction due to imperfect precision is directly related to
how many short queries are mispredicted as long, resulting
in higher overhead: Resources are wasted to parallelize short
queries with no benefit for reducing tail latency.

Across the 40 ISNs, the average recall is 0.86 and pre-
cision is 0.91 for identifying queries running longer than a
latency threshold of 80 ms. Since the workload has 4% of
long queries (> 80 ms) and the predictor correctly identifies
86% of them, the remaining long queries, which are 0.56%
of all queries, are misidentified as short. These mispredicted
long queries will not affect the 99th-percentile tail latency
(as they are less than 1%) but they significantly affect the
higher tail such as 99.9th-percentile (as they constitute more
than 0.1% of all queries). Prediction alone cannot effectively
reduce any tail latency beyond the 99.44th-percentile.

2.6 Implications for Tail Latency
This workload characterization shows both opportunities
and challenges for reducing tail latency. On one hand, par-
allelization can effectively reduce query execution time par-
ticularly for long queries. On the other hand, queries exhibit
different parallelization efficiency, and impact the tail dif-
ferently according to their service demands. Execution time
prediction identifies the majority of long queries (acceler-
ating them to reduce tail latency) and identifies the major-
ity of short queries (avoiding their parallelism overhead).
However, it is not sufficient to reduce latency in very high
percentiles because of the mispredicted long queries.

132

threads

(for the request)
Target table

construction

System load Target E Predictive

parallelism

Dynamic

correction

Offline Processing Online Processing

Runtime information

additional threads

(for the request)

Figure 3. Online/Offline processing workflow in TPC.

3. TPC Algorithm
We propose TPC — Target-driven parallelism combining
Prediction and Correction — which exploits the benefits
of prediction and uses dynamic parallelism to handle the
issues of mispredicted long queries. Ramping up parallelism
on mispredicted queries can further reduce tail latencies
beyond using prediction alone. However, the challenge is
to determine “when” to start ramping up the parallelism
dynamically. If we do this too early, we end up wasting
resources of parallelizing queries that will not impact the
tail; if we do it too late, we end up increasing latency. TPC
carefully selects the appropriate target latencies based on
system load to leverage prediction and dynamic correction
to reduce tail latency.

TPC computes a target completion timeE for all requests
based on current system load. Resources are allocated to
a request such that it completes within the target E. Short
requests can complete within E using sequential execution,
but long requests must be parallelized.

If the predicted sequential execution time is longer than
E, parallelism is carefully used to shorten the request com-
pletion time to be within E using the minimum resources.
Providing extra resources to complete a request earlier than
E is not beneficial to reducing the tail, and it takes resources
that could have been used by other requests to meet E.

Since prediction is not 100% accurate, long requests mis-
predicted as short would affect the tail. We develop a dy-
namic correction mechanism, to ramp up request parallelism
and use available idle cores to speed up the requests that have
not completed as expected, mitigating the tail.

Figure 3 presents an overview of TPC. As scheduling de-
cisions must be made quickly, we split the scheduling algo-
rithm into two parts: online and offline. The offline compo-
nent constructs a table, called the target table, that maps
the system load to target completion time E. We develop an
efficient algorithm using gradient descent method to search
for the appropriate targets. During online processing, TPC
utilizes the target E from the table according to the current
system load, and it determines the parallelism degree of re-
quests through two steps: predictive parallelism and dynamic
correction. Predictive parallelism decides the parallelism de-
gree before executing the request. It exploits the predicted
request execution time and request parallelism efficiency to
meet E by using minimum resources. When a request does

not complete by the target time E, TPC employs dynamic
correction, increasing its parallelism at runtime to complete
it faster. We next focus on the online component of TPC:
predictive parallelism and dynamic correction.

3.1 Predictive Parallelism
We use the predicted request execution time to parallelize the
long requests, reducing tail, and execute the short requests
sequentially, saving resources.

Inputs. Predictive parallelism takes three inputs to decide
request parallelism degree: (1) Target completion time. TPC
reads the current system load to retrieve the target comple-
tion time E from the target table. (2) Predicted request exe-
cution time. To identify long requests, TPC uses a predictor
from prior work [21] to estimate request execution time L
before running a request. (3) Parallelization efficiency. The
degree of parallelism should depend on the parallelization
efficiency. To illustrate, consider the case of perfect paral-
lelization efficiency, in which the response time decreases
linearly with increased parallelism. Here, we should use as
many cores as possible. In contrast, if parallelization effi-
ciency is too low, response time does not decrease with in-
creased parallelism, making sequential execution the best
option. Realistic requests fit between these extremes, and
better efficiency allows a higher degree of parallelism.

We use a speedup profile to model request parallelization
efficiency. The speedup profile maps request parallelism de-
gree to its speedup. We denote it by {Si|i = 1, 2, ...P},
where Si is the request speedup with parallelism degree i
and P is the maximum degree. In practice, request speedup
is hard to predict accurately. However, since long requests
exhibit better speedup than short ones, we classify requests
into groups based on their sequential execution time and
measure the average speedup in each group, e.g., as shown in
Figure 2. Given a request, we use its predicted sequential ex-
ecution time to determine its group and retrieve the speedup
profile.

Algorithm. Upon request arrival, TPC retrieves the tar-
get completion time E based on system load, predicts the
execution time L of the request, and identifies its speedup
profile {Si}. With a speedup Si, the request execution time
using parallelism degree i is estimated as Ti = L/Si. TPC
finds the smallest parallelism degree d to meet E, i.e., d =
arg min1≤i≤P {Ti|Ti ≤E}. Putting extra resources to com-
plete a request much earlier thanE is not beneficial to reduc-
ing the tail, as it consumes resources that could have been
used by other requests to meet their target completion time.

3.2 Dynamic Correction
If a request has not completed within the target E, TPC
increases the request’s parallelism degree dynamically at
runtime to complete the request quickly.

Motivation. In Section 2.5, we demonstrate that using
prediction alone cannot reduce latency beyond 99.44th-
percentile due to the limited predictor accuracy: There are

133

0.56% of requests are long but misidentified as short re-
quests. For reducing even higher percentile latency, e.g.,
99.9th or higher, dynamic correction is needed to recover
prediction errors.

Technique. When a request has not finished its execu-
tion by the target E, TPC dynamically increases the re-
quest’s parallelism degree at runtime to complete the request
quickly. In particular, TPC increases the request parallelism
degree up to using all the available resources or reaching the
maximum parallelism degree of the request. The available
resources can be measured in several ways, including num-
ber of idle cores (or hardware contexts with SMT), and the
number of idle worker threads. In the experiments, TPC uses
the number of idle worker threads. Dynamic correction ac-
celerates long requests mispredicted as short, and therefore
reduces the very high percentile tail latency that predictive
parallelism cannot optimize effectively.

Synergy between Predictive Parallelism and Dynamic
Correction. When request execution time is predictable, dy-
namic correction may not be as efficient as predictive paral-
lelism. First, prediction allows us to parallelize those really
long requests at the very beginning of query execution with
high parallelism while dynamic correction would defer the
decision and prolong their execution time. Moreover, when
we identify a request as long, we can parallelize the request
early using smaller parallelism degree to meet its target E,
whereas dynamic correction parallelizes the request late us-
ing a higher parallelism degree. Since the parallelism effi-
ciency decreases with increasing parallelism degree, predic-
tive parallelism completes the request while using fewer re-
sources.

Therefore, TPC uses predictive parallelism to parallelize
the majority of long requests effectively using fewer re-
sources, and it applies dynamic correction to only mispre-
dicted long requests when necessary. The two techniques are
synergistic in reducing the tail latency.

3.3 Computing the Target Table
Instantaneous load on a server varies over time [29], im-
pacting the availability of idle resources. This motivates the
need for adaptation to exploit the currently available idle re-
sources. TPC defines target table to map the current load
value to its corresponding target completion time. When
load increases, TPC chooses a larger target because the sys-
tem has fewer spare sources. It parallelizes requests less ag-
gressively and uses spare resources for really long requests
only. This section describes a systematic way to construct the
target table, which searches the desired targets across loads
using gradient descent method. Our algorithm is applicable
to a variety of system load metrics, such as request arrival
rate, number of active threads, and processor utilization.

We formally represent the target table Φ as a list of (load,
target) pairs with m entries, i.e., Φ = [(d0, e0), ..., (di, ei),
..., (dm−1, em−1)]. Here (di, ei) denotes a (load, target) pair
and the loads are sorted in ascending order, i.e., di−1 < di.

For a given instantaneous load d, TPC chooses a target value
E = ei such that di−1 < d ≤ di.

Algorithm 1 describes the procedure — BUILDTARGET-
TABLE — that searches for the desired target completion
times across loads and builds the target table. Instead of
using exhaustive search, which is costly, we develop an
efficient heuristic algorithm using greedy gradient descent
method. The algorithm takes two inputs: an initial target ta-
ble and the search step size. For example, when using the
number of active threads as load metric, the initial table con-
sists of load values {di} ranging from 0, 1, 2, ..., d̂,∞. Here
d̂ is the maximum number of active threads observed un-
der the production setting. The entry ∞ maps to any load
d > d̂. Moreover, we initialize the targets {ei} in the ta-
ble to a set of small values, e.g., the latency of an unloaded
system where every single request is parallelized using all
cores, which gives the smallest target we may ever achieve.

BUILDTARGETTABLE searches for the desired target val-
ues iteratively using gradient descent method. Starting from
the initial table, we increase the target value of each load
entry one by one with step size δ (Line 7) and measure the
latency impact of a set of new tables experimentally using
MEASURETAIL (Line 8). MEASURETAIL is an experimen-
tal procedure that takes a target table as input, runs a pre-
defined experiment to cover all production load ranges, and
returns a weighted sum of their tail latencies across the load
ranges. Among all the new tables {tmpTablei}, we identify
the one tmpTablei∗ that gives the smallest tail latency (Line
10). If this latency is smaller than that of the current table,
we update the target table to tmpTablei∗ and continue the
search (Line 12). Otherwise, if the current table has smaller
latency, we stop the search and return the current table as our
final target table (Line 15).

The complexity of BUILDTARGETTABLE is measured
using the number of times MEASURETAIL is invoked. It
is upper bounded by mEmax/δ, where Emax denotes the
maximum latency target. In an interactive system like web
search, the value of Emax is within a few hundred millisec-
onds. The step size δ presents a tradeoff between search time
and search quality. We use 1ms in our experiments because it
is the smallest unit for tail latency measurements. The result
of Emax/δ bounds the number of iterations we take to com-
plete the search in the while loop (Line 5). Comparing with
exhaustive search incurring cost of (Emax/δ)

m, our search
algorithm is much more efficient. We demonstrate its effec-
tiveness empirically in Section 4.

There are a few remarks related to target table construc-
tion. (1) Section 4.6 compares several system load metrics
and shows the number of active threads of long queries is a
good metric, which we use as default. (2) The target table
can be computed periodically as system parameters change.
(3) At web search clusters, the workloads are fairly evenly
partitioned and well balanced across ISNs. Our experimen-

134

Algorithm 1 Algorithm for Target Table Construction
1: procedure BUILDTARGETTABLE(initial target table

Φ0, step size δ)
2: Φ = Φ0 . initialize target table Φ
3: m = |Φ| . get the number of entries of Φ
4: curLatency = MEASURETAIL(Φ)
5: while true do
6: for i = 0; i < m; i+ + do
7: tmpTablei = [(Φ.d0,Φ.e0), ..., (Φ.di,Φ.ei+
δ), ..., (Φ.dm−1,Φ.em−1)]

8: newLatencyi = MEASURETAIL(tmpTablei)
9: end for

10: i∗ = argmin0≤i<m(newLatencyi)
11: if newLatencyi∗ < curLatency then
12: Φ = tmpTablei∗ . update the table
13: curLatency = newLatencyi∗
14: else
15: return Φ; . found the final target table
16: end if
17: end while
18: end procedure

tal results on a cluster of 40 ISNs show that these ISNs have
the same target table.

Summary. TPC reduces server tail latency using three
insights. (1) It coordinates request completion time using
a common target, which is used to identify long requests
that are likely to impact the tail, and thus accelerates them
through parallelization. (2) It applies predictive parallelism
to parallelize the majority of long requests from the begin-
ning of request execution using minimum resources, and to
execute short requests sequentially. (3) It exploits dynamic
correction to speed up long requests mispredicted as short,
further reducing the tail.

4. Experimental Evaluation
We implement TPC along with competing techniques in the
index serving nodes (ISNs) of Microsoft Bing, and conduct
evaluation using production workload. We show that TPC
consistently outperforms prior work across loads in reduc-
ing tail latency. In a nutshell, TPC reduces both the 99th-
percentile and 99.9th-percentile latency in the ISN by up
to 40% compared to the best performing policy (Figure 4
and 5). Moreover, TPC reduces the 99th-percentile latency
in a cluster of 40 ISNs by 29% from the best prior work
(Figure 8(a)). The saved latency improves user experiences
on multiple folds, including providing faster response, en-
abling extra capabilities such as better ranking, or using a
larger web index size.

4.1 Experimental Setup and Methodology
Machine setup and workload. Each ISN machine has two
2.27GHz 6-core Intel Xeon processors with hyperthread-

Algorithm Information use
Predicted exec. time System load Para. efficiency

TPC 3 3 3
AP 7 3 3

Pred 3 7 7
WQ-Linear 7 3 7

Table 1. Information used in parallelism policies.

ing enabled for a total of 24 concurrent hardware threads.
The ISN manages a 160 GB web index partition on SSD
and uses 17 GB of memory to cache recently accessed web
index data. The number of worker threads is set to 28 as
a worker thread may occasionally block for disk or net-
work I/O. The Windows OS scheduler dynamically sched-
ules worker threads on the available cores.

We conduct experiments both on a single ISN and across
a cluster of 40 ISNs. We employ a client that plays queries
from a trace of 100K user queries using a Poisson process
in an open loop. We vary the load by changing the query ar-
rival rate, i.e., queries per second (QPS). The cluster setup
includes an aggregator as illustrated in Figure 1, and Sec-
tion 4.5 discusses the cluster experiments. All other experi-
ments are conducted using the single-ISN setup.

Policies for comparison. We compare TPC to the fol-
lowing parallelization strategies from prior work. Table 1
compares the information used in choosing the parallelism
degree for a query.

• AP. Adaptive Parallelism (AP) approach [20] takes into
account the average parallelism speedup of all queries
and the waiting queue length. The algorithm chooses the
parallelism degree for a query such that the total response
time of all queries in the system is minimized.

• Pred. Pred [21] predicts query execution time using ma-
chine learning to parallelize long queries using a fixed
parallelism degree. All other queries are executed se-
quentially.

• WQ-Linear. Work Queue Linear (WQ-Linear) [33] con-
siders only system load, which is the number of queries
waiting in the queue. Queries are parallelized with a de-
gree inversely proportional to the system load.

• Sequential. Baseline system with sequential execution.

TPC and Pred use a state-of-art predictor [21], which is
memory efficient and achieves high accuracy as explained in
Section 2.5. As queries executed across ISNs share common
characteristics and features, we build the predictor from one
selected ISN and distribute it to all ISNs. Therefore, the cost
of building the predictor is constant and not affected by the
size of cluster.

We limit the maximum parallelism degree to six in TPC
and AP. TPC measures system load using the number of ac-
tive threads running long queries, and it uses the number of
idle worker threads as the available resources for dynamic

135

correction. To model parallelism efficiency, queries are clas-
sified into three groups, short (<30 ms), mid (30–80 ms),
and long (>80 ms) as depicted in Figure 2. We discuss other
groupings and load metrics in the sensitivity study in Sec-
tion 4.6.

Performance metrics. We use the 99th-percentile (P99)
and 99.9th-percentile (P99.9) of query response time as the
tail latency metrics. Query response time of the ISN or the
cluster is measured from the time it receives the query to
the time it responds to the client. We do not report response
quality (i.e., relevance scores) because parallelism decisions
do not affect the response quality [20].

4.2 Comparison to Competing Techniques

50 150 250 350 450 550 650 750 850 950

QPS

50

100

150

200

9
9

th
-p

e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
) Sequential

WQ-Linear

AP

Pred

TPC

Figure 4. 99th-percentile latency for parallelism policies.

We compare TPC with AP, Pred and WQ-Linear to show
the importance of using both query and system load informa-
tion in TPC. Figure 4 presents P99 latencies of the policies.
We vary the load over a wide range from 50 to 900 QPS over
the x-axis. For Pred, queries predicted to execute longer than
80 ms run with 3-way parallelism following the reported
guidelines [21].

Exploiting predicted query execution time. Figure 4
shows that using per-query information, both TPC and Pred
significantly reduce tail latency even at moderate and heavy
load. For example, in the range of 500–700 QPS, TPC and
Pred achieve approximately 100 ms at P99, while all other
approaches have 200 ms or higher P99 latency. TPC and
Pred achieve such low tail latencies by parallelizing long
queries only; avoiding parallelizing short queries gives more
resources to long queries. In contrast, WQ-Linear and AP
have high tail latencies since they do not differentiate long
and short queries that have different parallelization effi-
ciency and different impact on tail latency. Thus, as load
increases, they reduce the parallelism degree for all queries,
but short queries may still get parallelized unnecessarily,
wasting resources, and long queries are not sufficiently par-
allelized.

Table 2 shows the query parallelism degree distribution
for TPC and AP at low (150 QPS) and high (600 QPS) load.
Due to high prediction accuracy, TPC is able to parallelize
long queries with high degrees in both loads. At 150 QPS,
98.1% of long queries exploit the maximum degree 6. While

QPS Policy Group 1T 2T 3T 4T 5T 6T

150

TPC Short 93.7 0.8 0.5 0.5 0.3 4.2
Long 0 0 0.4 0.5 1.0 98.1

AP Short 0 1.5 30.5 43.9 15.1 9.0
Long 0 1.5 29.8 44.9 14.4 9.4

Pred Short 98.1 0 1.9 0 0 0
Long 18.6 0 81.4 0 0 0

600

TPC Short 96.8 0.6 0.4 0.3 0.2 1.7
Long 0.3 2.5 5.5 8.4 10.3 73.0

AP Short 57.0 42.1 0.9 0 0 0
Long 55.5 43.3 1.2 0 0 0

Pred Short 98.1 0 1.9 0 0 0
Long 18.6 0 81.4 0 0 0

Table 2. Parallelism degree distribution by percentages.

the ratio decreases to 73% at high load, up to 91.7% of long
queries are parallelized with fairly high degrees (>3). More-
over, short queries are rarely parallelized. In contrast, AP
gives short and long queries the same parallelism. Thus, long
queries receive fewer parallelism degree and less resources
compared with TPC. The situation gets worse at higher load:
At 600 QPS, 98.8% of long queries are executed with 1 or 2
threads.

Exploiting system load. TPC and Pred have similar tail
latency under heavy load, but TPC reduces tail latency from
100 ms of Pred to 60 ms under low to moderate load. The
reason is that Pred does not adapt to varying system load and
it always parallelizes long queries using the same parallelism
degree. In comparison, TPC has more flexibility; it decides
which queries to parallelize and by how much according to
system load.

We use Table 2 to compare TPC to Pred in detail. At
150 QPS, TPC selects a higher degree for long queries than
Pred. Interestingly, even those long queries that are mispre-
dicted as medium or short are often given high degree if
idle cores are available. Moreover, unlike Pred, TPC can se-
lect any degree among the possible options for better perfor-
mance. For example, at 600 QPS, although TPC still prefers
high parallelism degree for long queries, it exploits all par-
allel degrees to execute long queries, adapting to transient
overload or underload. This adaptation allows TPC to per-
form better than Pred, which uses fixed parallelism for long
queries.

In summary, these results show that it is essential to use
both predicted query execution time and adapting to system
load to reduce tail latency.

4.3 Using Predictive Parallelism Alone
We discuss if predictive parallelism alone is adequate. Fig-
ure 5 compares TPC with the prior policies with respect to
a higher-percentile latency, i.e., P99.9. Optimizing for the
higher tail at each ISN is important because to reduce tail
latency at the aggregator, we need to reduce a much higher
percentile at each ISN (further details in Section 4.5). Fig-
ure 5 shows that TPC provides the lowest P99.9 latency,
outperforming all other policies. Under moderate and high

136

50 150 250 350 450 550 650 750 850 950

QPS

50

100

150

200

250

9
9

.9
th

-p
e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
) Sequential

WQ-Linear

AP

Pred

TPC

Figure 5. 99.9th-percentile latency for parallelism policies.

load (>400 QPS), TPC reduces the P99.9 latency by up to
40% compared with the best results from prior work. More
specifically, the relative latency gap from AP and WQ-linear
to TPC is similar to that for the P99 latency (Figure 4). Pred,
however, performs poorly at P99.9, almost as high as Se-
quential, for all the loads, although Pred performs reason-
ably well for P99 latency.

The primary reason for a big difference on the perfor-
mance of Pred with respect to the P99 and P99.9 latency is
the limited accuracy of the predictor. As discussed in Sec-
tion 2.5, assuming a tail latency target of 80 ms, which is
set for Pred, some long queries are misidentified as short,
and they constitute 0.56% of total queries. These queries do
not affect P99 (as they are less than 1%) but P99.9 (as they
are more than 0.1%). This is why Pred, which uses predic-
tion only, performs poorly for the higher percentile latency.
In contrast, TPC uses dynamic correction to recover from
prediction errors, effectively reducing the higher tail latency.

50 150 250 350 450 550 650 750 850

QPS

60

80

100

120

140

160

9
9
th

-p
e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
)

TP

TPC

(a) 99th-percentile latency

50 150 250 350 450 550 650 750 850

QPS

50

100

150

200

250

9
9

.9
th

-p
e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
)

TP

TPC

(b) 99.9th-percentile latency

Figure 6. Tail latency for TP and TPC.

To measure the contribution of dynamic correction at
TPC, we compare it with TP, which is the same as TPC but
does not employ dynamic correction. Figure 6(a) and 6(b)
show the P99 and P99.9 latency, respectively, TPC and TP.
As expected, for P99 latency, they perform almost the same
since prediction is accurate enough to reduce P99 range.
However, TPC is better in P99.9 latency. As Figure 6(b)
shows, dynamic correction reduces P99.9 by 40–65 ms more
than TP. The analysis on the query parallelism degree distri-
bution shows that adding dynamic correction increases the
percentage of the long queries parallelized with high degrees
(> 3) from 95% to 99.5% at 150 QPS and from 79.2% to
91.7% at 600 QPS.

50 150 250 350 450 550 650 750 850

QPS

60

80

100

120

140

160

9
9

th
-p

e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
) RampUp (20ms)

RampUp (10ms)

RampUp (5ms)

TPC

Figure 7. 99th-percentile latency of TPC and RampUp.

4.4 Using Dynamic Correction Alone
This section compares TPC with the policies that employ dy-
namic correction without prediction, in order to study how
dynamic correction alone performs. We introduce policies
that increase the query parallelism degree dynamically dur-
ing its execution, which we call RampUp. RampUp starts a
query with sequential execution. Then, if the query does not
complete in a predefined time interval, it increases the query
parallelism degree by 1 until the query either completes or
reaches its maximum parallelism degree (which is set to six).
Using RampUp, short queries complete sequentially, while
long queries get higher parallelism and more resources. It
achieves the goal of parallelizing long queries without know-
ing query execution time. We use different thread ramp-up
intervals (5, 10, and 20 ms) to evaluate RampUp. For exam-
ple, an interval of 5 ms means that we add a thread to the
query at each 5 ms of execution up to 6 threads per query.
The smaller the interval is, the higher the parallelism degree
the query receives.

Figure 7 compares TPC with RampUp for P99 and shows
that TPC achieves lower latency than RampUp for a large
range of loads. TPC outperforms RampUp because it accu-
rately predicts query execution time, making parallelism de-
cision early before executing a long query, whereas RampUp
intrinsically has delay in increasing parallelism, resulting in
higher latency. To reduce the delay, RampUp has to add up
parallelism quickly (e.g., at every 5 ms interval). It effec-
tively reduces tail latency at light load, but this comes with
high parallelism overhead at high load.

Even when the RampUp policy takes load into account,
i.e., using the best RampUp interval at any given load, the
latency is still higher than TPC. The reason is that as long as
the RampUp interval is not 0 (which is the case except very
light load), it cannot parallelize the long queries from the
very beginning and it takes longer to complete those queries
than TPC. Compared to using RampUp with wide range
of intervals, TPC outperforms the best RampUp strategy at
every arrival rate across a large load range. For extremely
lightly (or heavily) loaded systems, both RampUp and TPC
execute queries with maximum parallelism (or sequentially).

137

0 50 100 150 200 250

Latency (msec)

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

Sequential

AP

Pred

TPC

(a) Aggregator latency

0 50 100 150 200

Latency (msec)

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

Cluster

ISN

(b) ISN v.s. aggregator for TPC

Figure 8. CDF of latency for a cluster of 40 ISNs at
300 QPS (zoomed to high cumulative fractions).

Both Section 4.3 and 4.4 show that using either predictive
parallelism or dynamic parallelism alone is not sufficient.
TPC integrates them to effectively lower tail latency.

4.5 Tail Latency in Cluster of ISN machines
This section discusses how TPC improves query responsive-
ness in a cluster of 40 ISNs. We compare four strategies (Se-
quential, AP, Pred, and TPC) and measure response times
at an aggregator. For each query, the aggregator waits for all
ISNs to collect and merge the results. The aggregator latency
is thus decided by the slowest response from the ISNs. La-
tency at the aggregator includes network, I/O, and queueing
delay as well as query processing at the ISNs.

Figure 8(a) shows the cumulative distribution of query
response times from the aggregator at 300 QPS, where Y-
axis depicts high cumulative probability fractions to focus
on slowest query responses. The results show that TPC out-
performs all other policies consistently over a wide range
of tail latency targets, from P95 onwards, leading to much
fewer slow responses at the aggregator. In particular, TPC
has less than 0.4% of queries taking longer than 100 ms,
whereas AP and Pred have 3.3% and 1.7%. Therefore TPC
is the only policy that is able to lower P99 aggregator la-
tency below 100 ms — P99 latency of AP, Pred, and TPC
are 132.2, 108.9, and 77.7 ms, respectively. TPC reduces P99
aggregator latency by 29% compared with the best perform-
ing approach from prior work.

Next, Figure 8(b) compares cumulative distributions for
the latency of TPC at the aggregator and an individual ISN.
As the figure shows, in order to reduce tail latency at the
aggregator, we need to reduce latency of higher tail at the
ISN. For example, the latency of 77.7 ms, which we observe
in P99 at the aggregator, appears at the P99.8 at the ISN.
This indicates that taming P99 aggregator latency requires
reducing P99.8 ISN latency, which is higher tail.

4.6 Sensitivity Study
System load metric. Figure 9 compares various metrics
for identifying instantaneous system load. We show the
results of our baseline (using the number of active long
threads (LongT)), and two alternatives (using CPU utiliza-
tion (CpuUtil) and the total number of active threads (AllT)).
The server retrieves CpuUtil by sending a query to Windows

50 150 250 350 450 550 650 750 850

QPS

50

60

70

80

90

100

110

120

9
9

th
-p

e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
) CpuUtil

AllT

LongT

Figure 9. 99th-percentile latency of TPC for load metrics.

performance counters periodically, for which we use Perfor-
mance Data Helper (PDH) APIs [30]. The intervals are set
to 25 ms in our system considering a tradeoff between more
accurate information and lower overhead.

Because CpuUtil is a moving average heavily weighted
from the past, Figure 9 shows that it performs worse than
other two metrics in capturing instantaneous system load.
The performance of CpuUtil becomes worse with increased
load, as more queries are aggregated in a sampling inter-
val. For example, under 100 QPS, the utilization for 3 past
queries may be aggregated. However, under 500 QPS, that
for 13 past queries may be aggregated, more likely misrep-
resenting the instantaneous load.

In contrast, accounting for the number of active threads
is a good proxy to measure instantaneous system load. In
particular, LongT is the best because threads running long
queries are more likely to stay longer in the system, affecting
the resource availability of the newly scheduled query, while
short queries are transient and could have completed right
after the new queries start.

Prediction accuracy. Dynamic correction in TPC recov-
ers prediction errors and helps cover the performance gap
compared with a perfect predictor. We mimic a perfect pre-
dictor by using the sequential execution time collected in ad-
vance for each input query. We compare TPC using its cur-
rent predictor with using the perfect predictor, and the results
show that they perform rather similarly. More specifically, at
P99, the performance difference between using the current
predictor and the perfect predictor is only 4.0% on average
across all loads. For much higher percentiles, dynamic cor-
rection helps to recover from prediction errors and reduce
the performance gap. For example, their performance differ-
ence in P99.9 is 7.8% on average across the loads. This is a
significant improvement over TP (i.e., TPC without dynamic
correction): TP has 44.1% higher latency than using the per-
fect predictor. These results show that dynamic correction
effectively compensates prediction error, making TPC more
resilient to inaccurate predictors.

The number of parallelism efficiency groups. With
more groups, predictive parallelism can potentially apply
more accurate speedup efficiency information given query
execution time. For example, by grouping queries into long,

138

mid, and short separately, we obtain more latency reduc-
tion than treating all queries indifferently. However, when
we increase from 3 groups to 6 groups (we obtain 6 groups
by evenly dividing each of the 3 groups into 2 subgroups),
no further improvement exists — the most improvement we
observe across loads is 0.65%. This is because the speedup
profiles of queries among neighboring groups have become
similar when we divide the groups even further. It supports
why our algorithms use parallelism efficiency profiles of 3
groups.

5. Applicability Beyond Web Search
This section summarizes the properties of the interactive
workloads where TPC can effectively reduce tail latency. We
show that another application — a finance server — satisfies
these properties, and TPC reduces its P99 by 52% compared
with sequential execution and by 20% compared to the best
prior work.

TPC preferred workload properties. (1) CPU process-
ing dominates the latency, (2) Request service demands ex-
hibit high variability, (3) Requests are parallelizable and the
parallelism degree can vary at runtime, and (4) Per-request
execution time can be estimated before running the request.

Discussion. Several interactive services are often compu-
tationally intensive [14, 27, 34]. Increasing the degree of par-
allelism is supported by several threading frameworks and
runtimes, such as Cilk Plus [5], TBB [7], and TPL [25]. If
the request service demand is constant, tail latency becomes
lower and there is little opportunity to differentiate process-
ing among requests. On the other hand, the higher the vari-
ability, the higher the tail latency, leading to bigger benefits
from TPC. Request service demand can be known or esti-
mated in several settings [17, 41].

5.1 Evaluation Using a Finance Server
Banks and fund management companies evaluate thousands
of financial derivatives everyday, submitting requests that
value derivatives and use the results to make immediate trad-
ing decisions. Finance servers are interactive and reducing
their tail latency is crucial because slower responses are
lost investment opportunities. We use Intel TBB runtime to
parallelize request execution and evaluate TPC on finance
servers.

Workload. We implement an option pricing server that
uses Monte Carlo methods for complex path-dependent
Asian options. Request processing is CPU-bound, has a reg-
ular structure, and consists of iterations. Request sequential
execution time can be estimated accurately (as a function of
the structure size and number of iterations). To parallelize a
request, we fork a number of tasks at each iteration matching
the parallelism degree and join them after the computation.

Experimental setup. For evaluation, input requests con-
tain 10% long requests, for which the service demand is 9
times that of a short request, and requests are issued follow-

10 60 110 160 210 260 310 360

RPS

0

10

20

30

40

50

60

70

80

9
9

th
-p

e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
)

Sequential

AP

Pred

TPC

Figure 10. 99th-percentile latency for finance server.

ing a Poisson distribution. We vary the load by controlling
the mean inter-arrival rate of requests, i.e., requests per sec-
ond (RPS). We compare TPC to two parallelization policies,
AP and Pred, and to Sequential for reference. In both TPC
and AP, the maximum degree of parallelism is four. Pred
does not adjust to the load, and we use its best setting with
parallelism degree two for long requests.

Experimental results. TPC consistently outperforms the
three other policies over a wide range of loads as depicted in
Figure 10, which shows P99 latency. At light and moderate
load, TPC reduces the tail latency over Pred by up to 40%
because TPC exploits system load and uses the available
resources more aggressively in speeding up long requests.
At high load, TPC reduces the tail latency over AP by up to
50% because TPC exploits per-request predicted execution
time to parallelize long requests only.

10 60 110 160 210 260 310 360

RPS

0

10

20

30

40

50

60

70

80

9
9

.9
th

-p
e
rc

e
n
ti

le
 l
a
te

n
c
y
 (

m
s
e
c
)

Sequential

AP

Pred

TPC

Figure 11. 99.9th-percentile latency for finance server.

Figure 11 depicts P99.9 latency, which has a similar trend
as P99. While web search requires dynamic correction to
reduce P99.9 to recover from prediction errors, the finance
server never calls dynamic correction because the estimated
stencil computation time is accurate. At 200 RPS, with TPC,
there are on average 3.5 concurrent requests in the system
competing for server resources. At this load, TPC runs short
requests sequentially and long requests with degree four re-
sulting in short tail latency (P99=37 ms, P99.9=41 ms). In
contrast, AP (which does not exploit the request service de-
mand) runs all requests with average degree 3.9, resulting in

139

high tail latency (P99=77 ms, P99.9=79 ms) as extra CPU re-
sources are needed to parallelize short requests. Pred (which
does not use system load to adapt the parallelism degree)
runs short requests sequentially but executes long request
with degree two rather than a higher degree, contributing to
higher tail latency (P99=46 ms, P99.9=48 ms).

6. Related Work
Section 4 compares TPC with several recent algorithms that
decide request parallelism degree on interactive server sys-
tems, and we do not repeat them here. Prior work shows
how to adapt parallel program execution to runtime variabil-
ity and hardware characteristics [4, 16, 24, 28, 31] either to
improve performance of a single program or to reduce aver-
age latency on a multiprogrammed environment where job
characteristics are unknown a priori. This work addresses a
different problem, and we focus on interactive server sys-
tems such as web search.

Search query parallelization. Frachtenberg [12] pro-
poses a heuristic to predict which queries to parallelize
based on runtime information. Query first runs sequen-
tially for a subset of the index partition, and the ratio of
hits to documents is determined. If the ratio is above a
threshold, the query is assumed to have good paralleliza-
tion speedup and is then parallelized; otherwise, the query
runs sequentially. Haque et al. propose few-to-many incre-
mental parallelism, which dynamically increases parallelism
to reduce tail latency [15]. This approach is similar to us-
ing load-aware RampUp but without prediction. Compared
with TPC, long queries under the above two approaches
do not get the resources to speed up their execution at the
earliest possible time. It thus has a similar limitation with
RampUp policy in Section 4, and we show that TPC pro-
vides lower tail latencies by combining prediction with dy-
namic correction. Moreover, their work uses the total num-
ber of instantaneous queries as their load metric, which is
coarse-grained. We propose a more general table construc-
tion method that allows various (coarse- and fine-grained)
load metrics, enabling additional latency savings (Figure 9).
Tatikonda et al. propose a fine-grained intra-query paral-
lelism approach [36], which has some similarities to how
we parallelize a query. However, this paper does not discuss
how to decide the parallelism degree, which is the focus of
this work.

Predicting query execution time for search engine.
Macdonald et al. [26] propose a framework to predict execu-
tion time of web search queries under early termination. Jeon
et al. [21] improve upon the prior query predictor [26] by
incorporating more features, query rewriting, and boosted-
tree regressor, resulting in better accuracy. Our work uses the
predictor proposed in [21] to predict query execution time.

Other techniques for reducing response times in inter-
active services. In web search, graphics processors (GPU) [10],
SIMD instructions [35], and core frequency scaling [18]

have been used to accelerate the processing of a query. In
particular, core frequency scaling offers a complementary
acceleration mechanism to reduce tail latency [18]. Paral-
lelism can achieve additional speedup beyond a single core,
and this potential speedup comes with a key challenge: com-
petition among concurrent queries for cores, which we ad-
dress in this work.

There are studies on reducing the response time for web
search queries across different system components, for ex-
ample, optimizing caching [2, 13] and prefetching [22] to
mitigate I/O costs and improving network protocols between
ISNs and aggregators [37, 40]. Moreover, response quality
can be traded off to reduce response time, especially un-
der heavy load or other exceptional situations in which the
servers could not process queries fast enough [6]. For the
case where other sources of variability, such as interference
from other workloads and hardware variability, contribute to
tail latency, Dean et al. [9] propose to submit multiple copies
of a query to different replicas, and cancel the slower query.
These studies are complementary to our work.

Today’s data analytics clusters have been optimized to of-
fer timely responses for parallel jobs [32, 39]. Compared
to web search, their framework is fundamentally different:
Schedulers are often decentralized and pick a set of ma-
chines to serve a scheduled job. They reduce latency by sam-
pling the machine status and improving the assignment of
jobs to machines.

7. Conclusions
Interactive services are designed to reduce the tail latency
of user requests. We introduce TPC, a new algorithm that
determines request parallelism degree by combining predic-
tive parallelism and dynamic correction. We evaluate TPC
experimentally on both web search and finance servers. The
results show that it significantly reduces the tail latency com-
pared with prior work.

Acknowledgments
We thank anonymous reviewers for their valuable comments
and suggestions. We also thank Chenyu Yan, Fang Liu, Jun
Zhao, and Junhua Wang from Microsoft Bing for their col-
laboration and support during this work.

References
[1] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively paral-

lel sort-merge joins in main memory multi-core database sys-
tems. VLDB, 5(10):1064–1075, June 2012.

[2] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Pla-
chouras, and F. Silvestri. The impact of caching on search
engines. In SIGIR, 2007.

[3] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet:
The google cluster architecture. IEEE Micro, 23(2):22–28,
Mar. 2003.

140

[4] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D.
Antonopoulos, and M. Curtis-Maury. Runtime scheduling of
dynamic parallelism on accelerator-based multi-core systems.
Parallel Comput., 33(10-11):700–719, Nov. 2007.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In PPOPP, 1995.

[6] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras, S. Bana-
chowski, B. Cui, S. Lim, and B. Bridge. A refreshing per-
spective of search engine caching. In WWW, 2010.

[7] G. Contreras and M. Martonosi. Characterizing and improv-
ing the performance of intel threading building blocks. In
IISWC, 2008.

[8] J. Dean. Challenges in building large-scale information re-
trieval systems: invited talk. In WSDM, 2009.

[9] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74–80, Feb. 2013.

[10] S. Ding, J. He, H. Yan, and T. Suel. Using graphics processors
for high performance ir query processing. In WWW, 2009.

[11] S. Eyerman and L. Eeckhout. The benefit of smt in the multi-
core era: Flexibility towards degrees of thread-level paral-
lelism. In ASPLOS, 2014.

[12] E. Frachtenberg. Reducing query latencies in web search
using fine-grained parallelism. In WWW, 2009.

[13] Q. Gan and T. Suel. Improved techniques for result caching
in web search engines. In WWW, 2009.

[14] R. Guida. Parallelizing a computationally intensive financial
r application with zircon technology. In The R User Confer-
ence, 2010.

[15] M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bianchini,
and K. S. McKinley. Few-to-many: Incremental parallelism
for reducing tail latency in interactive services. In ASPLOS,
2015.

[16] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient on-
line nonclairvoyant adaptive scheduling. IEEE Trans. Parallel
Distrib. Syst., 19(9):1263–1279, Sept. 2008.

[17] Y. He, S. Elnikety, and H. Sun. Tians scheduling: Using partial
processing in best-effort applications. In ICDCS, 2011.

[18] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner,
T. Wenisch, J. Mars, L. Tang, and R. G. Dreslinski.
Adrenaline: Pinpointing and reining in tail queries with quick
voltage boosting. In HPCA, 2015.

[19] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,
and C. Yan. Speeding up distributed request-response work-
flows. In SIGCOMM ’13, 2013.

[20] M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. Adap-
tive parallelism for web search. In EuroSys ’13, 2013.

[21] M. Jeon, S. Kim, S.-W. Hwang, Y. He, S. Elnikety, A. L. Cox,
and S. Rixner. Predictive parallelization: Taming tail latencies
in web search. In SIGIR, 2014.

[22] S. Jonassen, B. B. Cambazoglu, and F. Silvestri. Prefetching
query results and its impact on search engines. In SIGIR,
2012.

[23] J. Kwon, K.-W. Kim, S. Paik, J. Lee, and C.-G. Lee. Multi-
core scheduling of parallel real-time tasks with multiple par-
allelization options. In RTAS, 2015.

[24] J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread tailor:
dynamically weaving threads together for efficient, adaptive
parallel applications. In ISCA, 2010.

[25] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task
parallel library. In OOPSLA, 2009.

[26] C. Macdonald, N. Tonellotto, and I. Ounis. Learning to predict
response times for online query scheduling. In SIGIR, 2012.

[27] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: increasing utilization in modern warehouse scale
computers via sensible co-locations. In MICRO, 2011.

[28] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic pro-
cessor allocation policy for multiprogrammed shared-memory
multiprocessors. ACM Trans. Comput. Syst., 11(2):146–178,
May 1993.

[29] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and
T. F. Wenisch. Power management of online data-intensive
services. In ISCA, 2011.

[30] MSDN. Using the pdh functions to consume counter
data. http://msdn.microsoft.com/en-us/library/

windows/desktop/aa373214(v=vs.85).aspx.

[31] S. C. Muller, G. Alonso, A. Amara, and A. Csillaghy. Pydron:
Semi-automatic parallelization for multi-core and the cloud.
In OSDI, 2014.

[32] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In SOSP, 2013.

[33] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August.
Parallelism orchestration using dope: the degree of parallelism
executive. In PLDI, 2011.

[34] S. Ren, Y. He, S. Elnikety, and K. S. McKinley. Exploit-
ing processor heterogeneity in interactive services. In ICAC,
2013.

[35] B. Schlegel, T. Willhalm, and W. Lehner. Fast sorted-set
intersection using simd instructions. In ADMS, 2011.

[36] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira. Posting
list intersection on multicore architectures. In SIGIR, 2011.

[37] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware
datacenter tcp (d2tcp). In SIGCOMM, 2012.

[38] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy. Doubleplay: Parallelizing
sequential logging and replay. In ASPLOS, 2011.

[39] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J.
Franklin, and I. Stoica. The power of choice in data-aware
cluster scheduling. In OSDI, 2014.

[40] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
never than late: meeting deadlines in datacenter networks. In
SIGCOMM, 2011.

[41] Y. Zhu and V. J. Reddi. High-performance and energy-
efficient mobile web browsing on big/little systems. In HPCA,
2013.

141

