
Secrets of Matrix Factorization:
Supplementary Document

Je Hyeong Hong
University of Cambridge

jhh37@cam.ac.uk

Andrew Fitzgibbon
Microsoft, Cambridge, UK

awf@microsoft.com

Abstract

This document consists of details to which the original submission article has made references. These include a list of
symbols, some matrix identities and calculus rules, a list of VarPro derivatives, symmetry analysis of the un-regularized
VarPro Gauss-Newton matrix and MTSS computation details.

Symbol Meaning

Rp×q The space of real matrices of size p× q
Sp The space of symmetric real matrices of size p× p
M The measurement matrix ∈ Rm×n (may contain noise and missing data)
W The weight matrix ∈ Rm×n
U The first decomposition matrix ∈ Rm×r
V The second decomposition matrix ∈ Rn×r
u vec(U) ∈ Rmr
v vec(V>) ∈ Rnr
m The number of rows in M

n The number of columns in M

p The number of visible entries in M

pj The number of visible entries in the j-th column of M
f The objective ∈ R
ε The vector objective ∈ Rp
J Jacobian
H Hessian
V∗ arg minV f(U, V) ∈ Rn×r
Π Projection matrix ∈ Rp×mn selecting nonzero entries of vec(W)
W̃ Π diag(vec(W)) ∈ Rp×mn
m̃ W̃ vec(M) ∈ Rp
Ũ W̃(In ⊗ U) ∈ Rp×nr
Ṽ W̃(V⊗ Im) ∈ Rp×mr

Kmr The permutation matrix satisfying vec(U>) = Kmr vec(U) ∈ Rmr×mr
Knr The permutation matrix satisfying vec(V>) = Knr vec(V) ∈ Rnr×nr
R W� (UV> − M) ∈ Rm×n
Z (W� R)⊗ Ir ∈ Rmr×nr

Table 1: A list of symbols used in [1].

1



1. Symbols
A list of symbols used in [1] can be found in Table 1.

2. Matrix identities and calculus rules
Some of the key matrix identities and calculus rules in [6, 5] are illustrated and extended below for convenience.

2.1. Vec and Kronecker product identities

Given that each small letter in bold is an arbitrary column vector of appropriate size, we have

vec(A� B) = diag(vec A) vec(B), (1)

vec(AXB) = (B> ⊗ A) vec(X), (2)

vec(AB) = (B> ⊗ I) vec(A) = (I> ⊗ A) vec(B), (3)
(A⊗ B)(C⊗ D) = AC⊗ BD, (4)

(A⊗ b)C = AC⊗ b, (5)

vec(A>) = KA vec(A), (6)

(A⊗ B) = K>1 (B⊗ A)K2, and (7)

(A⊗ b) = K>1 (b⊗ A). (8)

2.2. Differentiation of µ-pseudo inverse

Let us first define µ-pseudo inverse X−µ := (X>X + µI)−1X>. The derivative of µ-pseudo inverse is

∂[X−µ] = ∂[(X>X + µI)−1]X> + (X>X + µI)−1∂[X]> (9)

= −(X>X + µI)−1∂[X>X + µI](X>X + µI)−1X> + (X>X + µI)−1∂[X]> (10)

= −(X>X + µI)−1(∂[X>]X + X>∂[X])(X>X + µI)−1X> + (X>X + µI)−1∂[X]> (11)

= −(X>X + µI)−1∂[X>]XX−µ − (X>X + µI)−1X>∂[X]X−µ + (X>X + µI)−1∂[X]> (12)

= −X−µ∂[X]X−µ + (X>X + µI)−1∂[X]>(I− XX−µ). (13)

The derivative of pseudo-inverse X† := (X>X)−1X> is then simply the above for µ = 0.

3. Derivatives for variable projection (VarPro)
A full list of derivatives for un-regularized VarPro can be found in Table 2. Derivations are illustrated in [2]. The

regularized setting is also discussed in [2].

3.1. Differentiating v∗(u)

From [1], we have

v∗(u) := arg min
v

f(u,v) = Ũ−µm̃. (14)

Substituting (14) to the original objective yields

ε∗1(u,v∗(u)) = Ũv∗ − m̃ = −(I− ŨŨ−µ)m̃. (15)

Taking ∂[v∗] and applying (13) gives us

∂[v∗] = −Ũ−µ∂[Ũ]Ũ−µm̃ + (Ũ>Ũ + µI)−1∂[Ũ]>(I− ŨŨ−µ)m̃ (16)

= −Ũ−µ∂[Ũ]v∗ − (Ũ>Ũ + µI)−1∂[Ũ]>ε∗1 // noting v∗(u) = Ũ−µm̃ and (15) (17)

= −Ũ−µṼ∗∂u− (Ũ>Ũ + µI)−1Z∗>Kmr∂u, // noting bilinearity and the results in [2] (18)

and hence
dv∗

du
= −(Ũ>Ũ + µI)−1(Ũ>Ṽ∗ + Z∗>Kmr). (19)



Quantity Definition ALS (RW3) + [Approx. Gauss-Newton (RW2)]RW2

+ [Full Gauss-Newton (RW1)]RW1 + [Full Newton]FN
w/o 〈Damping〉 w/o 〈Projection constraint〉P

v∗(u) ∈ Rnr v∗ := arg min
v

f(u,v) v∗ = Ũ†m̃
(m̃ ∈ Rp consists of non-zero elements of m.)

dv∗

du
∈ Rnr×mr

dv∗

du
:=

d vec(V∗>)

d vec(U)

dv∗

du
= −[Ũ†Ṽ∗]RW2 − [(Ũ>Ũ)−1Z∗>Kmr]RW1

(Z∗ := (W� R∗)⊗ Ir)

Cost vector
ε∗1 ∈ Rp ε∗1 ε∗1 := Ũv∗ −m

Jacobian
J∗1 ∈ Rp×mr J∗1 :=

dε∗1
du

J∗1 = (Ip − [ŨŨ†]RW2)Ṽ∗ − [Ũ†>Z∗>Kmr]RW1

Cost function
f∗1 ∈ R f∗1 := ‖ε∗1‖22 f∗1 = ‖W� (UV∗> − M)‖F

Ordinary gradient
g∗1 ∈ Rmr

g∗1 :=
df∗1
du

1
2g
∗
1 = Ṽ∗>ε∗1 = vec((W� R∗)V∗)

Projected gradient
g∗p ∈ Rmr

g∗p := Ppg
∗
1

(Pp := Imr − Ir ⊗ UU>)

1
2g
∗
p = 1

2g
∗
1

Reduced gradient
g∗r ∈ Rmr−r2

g∗r := Prg
∗
1

(Pr := Ir ⊗ U>⊥)

1
2g
∗
r = 1

2Prg
∗
1

Ordinary Hessian
H∗1GN , H

∗
1 ∈ Smr

1
2H
∗
1GN := J∗>1 J∗1 + 〈λI〉

1
2H
∗
1 := 1

2

dg1

du
+ 〈λI〉

1
2H
∗
1GN = Ṽ∗>(Ip − [ŨŨ†]RW2)Ṽ∗

+ [K>mrZ
∗(Ũ>Ũ)−1Z∗>Kmr]RW1 + 〈λImr〉

1
2H
∗
1 = 1

2H
∗
1GN − [2K>mrZ

∗(Ũ>Ũ)−1Z∗>Kmr]FN

− [K>mrZ
∗Ũ†Ṽ∗ + Ṽ∗>Ũ†>Z∗>Kmr]FN + 〈λImr〉

Projected Hessian
H∗pGN , H

∗
p ∈ Smr

1
2H
∗
pGN := PpJ

∗>J∗Pp + 〈λI〉
1
2H
∗
p := 1

2Pp
dgp
du

Pp + 〈λI〉

(Pp := Ir ⊗ (Im − UU>))

1
2H
∗
pGN = 1

2H
∗
1GN

1
2H
∗
p = 1

2H
∗
pGN − [2K>mrZ

∗(Ũ>Ũ)−1Z∗>Kmr]FN

− [K>mrZ
∗Ũ†Ṽ∗Pp + PpṼ

∗>Ũ†>Z∗>Kmr]FN

+ 〈αIr ⊗ UU>〉P + 〈λImr〉

Reduced Hessian
H∗r ∈ S(mr−r2)

1
2H
∗
r := 1

2PrH
∗
pPr
>

(Pr := Ir ⊗ U>⊥)

1
2H
∗
r = 1

2PrH
∗
pPr
> = 1

2PrH
∗
1Pr
> = 1

2Pr
dg∗1
du

Pr
> + 〈λImr〉

Kmr vec(U) = vec(U>)

R∗ := W� (UV∗> − M)

Z∗ := (W� R∗)⊗ Ir

Ordinary update Ordinary update for U U← U− unvec(H∗−11 g∗1)
Projected update Grassmann manifold retraction U← qf(U− unvec(H∗−1p g∗p))

Reduced update Grassmann manifold retraction U← qf(U− Pr
> unvec(H∗−1r g∗r))

Table 2: List of derivatives and extensions for un-regularized variable projection on low-rank matrix factorization with
missing data. This includes notions to Ruhe and Wedin’s algorithms.



4. Additional symmetry of the Gauss-Newton matrix for un-regularized VarPro
To observe the additional symmetry, we first need to know how the un-regularized VarPro problem can be reformulated in

terms of column-wise derivatives. Below is a summary of these derivatives found in [2].

4.1. Summary of column-wise derivatives for VarPro

The unregularized objective f∗1 (u,v∗(u)) can be defined as the sum of squared norm of each column in R∗(u,v∗(u)). i.e.

f∗1 (u,v∗(u)) :=

n∑
j=1

‖W̃j(Uv∗j −mj)‖22, (20)

where v∗j is the j-th row of V∗(U), mj is the j-th column of M and W̃j is the non-zero rows of diag vec(wj), where wj ∈ Rm

is the j-th column of W. Hence, W̃j is a pj ×m weight-projection matrix, where pj is the number of non-missing entries in
column j.

Now define the followings:

Ũj := W̃jU (21)

m̃j := W̃jmj , and (22)

ε∗1j = Ũjv
∗
j − m̃j . (23)

Hence,

v∗j := arg min
vj

n∑
j=1

‖Ũjv∗j − m̃j‖22 (24)

= arg min
vj

‖Ũjv∗j − m̃j‖22 = Ũ
†
jm̃j , (25)

which shows that each row of V∗ is independent of other rows.

4.1.1 Some definitions

We define

Ṽ∗j := W̃j(v
∗
j
> ⊗ Im) ∈ Rpj×mr, and (26)

Z∗j := (wj � r∗j )⊗ Ir ∈ Rmr×r. (27)

4.1.2 Column-wise Jacobian J∗1j

The Jacobian matrix is also independent for each column. From [2], the Jacobian matrix for column j, J∗1j , is

J∗1j = (I− Ũj Ũ
†
j)Ṽ
∗
j − Ũ

†>
j Z∗>j Kmr (28)

= (I− Ũj Ũ
†
j)Ṽ
∗
j − Ũ>j

(
(Ũ>j Ũj)

−1 ⊗ (wj � r∗j )
>) . (29)

4.1.3 The column-wise form of Hessian H∗1

From [2], the column-wise form of H∗1 is

1

2
H∗1 =

n∑
j=1

[
Ṽ∗>j (I− [Ũj Ũ

†
j ]RW2)Ṽ∗j + [−1]FN × [K>mrZ

∗
j (Ũ
>
j Ũj)

−1Z∗>j Kmr]RW1

− [Ṽ∗>j Ũ
†>
j Z∗>j Kmr + K>mrZ

∗
j Ũ
†
j Ṽ
∗
j ]FN

]
+ 〈λI〉. (30)

All Z∗>j Kmr can be replaced with I⊗ (wj � r∗j )
> using (8).



4.2. Symmetry analysis

As derived in [2], the Gauss-Newton matrix for un-regularized VarPro is identical to its projection to the tangent space of
U. The column-wise representation of this is

1

2
H∗GN1 =

n∑
j=1

[
Ṽ∗>j (I− [Ũj Ũ

†
j ]RW2)Ṽ∗j + [K>mrZ

∗
j (Ũ
>
j Ũj)

−1Z∗>j Kmr]RW1

]
+ 〈λI〉. (31)

Simplifying the first term yields

Ṽ∗>j Ṽ∗j = (v∗j ⊗ I)W̃>j W̃j(v
∗
j
> ⊗ I) (32)

= (v∗j ⊗ W̃>j )(v∗j
> ⊗ W̃j) = v∗jv

∗
j
> ⊗ W̃>j W̃j , // noting (5) (33)

which is the Kronecker product of two symmetric matrices.
Now defining ŨjQ := qf(Ũj) gives Ũj Ũ

†
j = ŨjQŨ

>
jQ. Hence, simplifying the second term yields

−Ṽ∗>j (Ũj Ũ
†>
j )Ṽ∗j = −(v∗j ⊗ W̃>j )(ŨjQŨ

>
jQ)(v

∗
j
> ⊗ W̃j) (34)

= −v∗jv∗j> ⊗ W̃>j ŨjQŨ
>
jQW̃j . // noting (5) (35)

Given that Ũj = ŨjQŨjR, we can transform (Ũ>j Ũj)
−1 to Ũ−1jR Ũ

−>
jR . The last term then becomes

K>mrZ
∗
j (Ũ
>
j Ũj)

−1Z∗>j Kmr = (I⊗ (wj � r∗j ))Ũ
−1
jR Ũ
−>
jR (I⊗ (wj � r∗j )

>) // noting (8) (36)

= Ũ−1jR Ũ
−>
jR ⊗ (wj � r∗j )(wj � r∗j )

>. // noting (5) (37)

Hence, all the terms inside the square brackets in (31) can be represented as the Kronecker product of two symmetric
matrices, which has an additional internal symmetry that can be exploited. This means that computing the Gauss-Newton
matrix for un-regularized VarPro can be sped up by factor of 4 at most.

5. Computing Mean time to second success (MTSS)
As mentioned in [1], computing MTSS is based on the assumption that there exists a known best optimum on a dataset to

which thousands or millions of past runs have converged.
Given that we have such dataset, we first draw a set of random starting points, usually between 20 to 100, from an isotropic

Normal distribution (i.e. U = randn(m, r) with some predefined seed). For each sample of starting points, we run each
algorithm and observe two things,

1. whether the algorithm has successfully converged to the best-known optimum, and

2. the elapsed time.

Since the samples of starting points have been drawn in a pseudo-random manner with a monotonically-increasing seed
number, we can now estimate how long it would have taken each algorithm to observe two successes starting from each
sample number. The average of these yields MTSS.

An example is included in the next section to demonstrate this procedures more clearly.

5.1. An example illustration

Table 3 shows some experimental data produced by an algorithm on a dataset of which the best-known optimum is 1.225.
For each sample of starting points, the final cost and the elapsed time have been recorded.

We first determine which samples have yielded success, which is defined as convergence to the best-known optimum
(1.225). Then, for each sample number, we can calculate up to which sample number we should have run to obtain two
successes. e.g. when starting from sample number 5, we would have needed to run the algorithm up to sample number 7.
This allows us to estimate the times required for two successes starting from each sample number (see Table 3). MTSS is
simply the average of these times, 432.4/7 = 61.8.



Sample no. 1 2 3 4 5 6 7 8 9 10
Final cost 1.523 1.225 1.647 1.225 1.52 1.225 1.225 1.647 1.225 1.774
Elapsed time (s) 23.2 15.1 24.7 19.5 25.4 16.3 15.5 21.2 17.8 21.0
Success (S) S S S S S
Sample numbers of
next 2 successes

2 & 4 2 & 4 4 & 6 4 & 6 6 & 7 6 & 7 7 & 9 N/A N/A N/A

Time required for
2 successes (s)

82.5 59.3 85.9 61.2 57.2 31.8 54.5 N/A N/A N/A

Table 3: Above example data is used to compute MTSS of an algorithm. We assume that each sample starts from randomly-
drawn initial points and that the best-known optimum for this dataset is 1.225 after millions of trials. In this case, MTSS is
the average of the bottom row values which is 61.8.

6. Results
The supplementary package includes a set of csv files that were used to generate the results figures in [1]. They can be

found in the <main>/Results directory.

6.1. Limitations

Some results are incomplete for the following reasons:

1. RTRMC [3] fails to run on FAC and Scu datasets. The algorithm has also failed on several occasions when running on
other datasets. The suspected cause of such failure is the algorithm’s use of Cholesky decomposition, which is unable
to decompose non-positive definite matrices.

2. The original Damped Wiberg code (TO DW) [7] fails to run on FAC and Scu datasets. The way in which the code
implements QR-decomposition requires datasets to be trimmed in advance so that each column in the measurement
matrix has at least the number of visible entries equal to the estimated rank of the factorization model.

3. CSF [4] runs extremely slowly on UGb dataset.

4. Our Ceres-implemented algorithms are not yet able to take in sparse measurement matrices, which is required to handle
large datasets such as NET.

References
[1] Authors. Secrets of matrix factorization: Approximations, numerics and manifold optimization. 2015. 1, 2, 5, 6
[2] Authors. Secrets of matrix factorization: Further derivations and comparisons. Technical report, further.pdf, 2015. 2, 4, 5
[3] N. Boumal and P.-A. Absil. RTRMC: A Riemannian trust-region method for low-rank matrix completion. In Advances in Neural

Information Processing Systems 24 (NIPS 2011), pages 406–414. 2011. 6
[4] P. F. Gotardo and A. M. Martinez. Computing smooth time trajectories for camera and deformable shape in structure from motion with

occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 33(10):2051–2065, Oct 2011. 6
[5] J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics. 3rd edition, 2007. 2
[6] T. P. Minka. Old and new matrix algebra useful for statistics. Technical report, Microsoft Research, 2000. 2
[7] T. Okatani, T. Yoshida, and K. Deguchi. Efficient algorithm for low-rank matrix factorization with missing components and perfor-

mance comparison of latest algorithms. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), pages
842–849, 2011. 6


