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Abstract. We present a data-driven verification framework to automat-
ically prove memory safety and functional correctness of heap programs.
For this, we introduce a novel statistical machine learning technique that
maps observed program states to (possibly disjunctive) separation logic
formulas describing the invariant shape of (possibly nested) data struc-
tures at relevant program locations. We then attempt to verify these
predictions using a theorem prover, where counterexamples to a pre-
dicted invariant are used as additional input to the shape predictor in
a refinement loop. After obtaining valid shape invariants, we use a sec-
ond learning algorithm to strengthen them with data invariants, again
employing a refinement loop using the underlying theorem prover.
We have implemented our techniques in Cricket, an extension of the
GRASShopper verification tool. Cricket is able to automatically prove
memory safety and correctness of implementations of a variety of clas-
sical heap-manipulating programs such as insertionsort, quicksort and
traversals of nested data structures.

1 Introduction

A number of recent projects have shown that it is possible to verify implemen-
tations of systems with complex functional specifications (e.g. CompCert [27],
miTLS [6], seL4 [24], and IronFleet [19]). However, this requires highly skilled
practitioners to manually annotate large programs with appropriate invariants.
While there is little hope of automating the overall process, we believe that this
annotation work could be largely automated. For this, we follow earlier work and
infer likely invariants from observed program runs [14–16,39–43].

A key problem in verification of heap-manipulating programs is the inference
of formal data structure descriptions. Separation logic [33, 36] has often been
used in automatic reasoning about such programs, as its frame rule favors compo-
sitional reasoning and thus promises scalable verification tools. However, the re-
sulting techniques have often traded precision and soundness for automation [12],
required extensively annotated inputs [20, 31, 35], or focused on the restricted
case of singly-linked lists (often without data) [3, 5, 7, 9, 13,17,18,29,34].

At its core, finding a program invariant is searching for a general “concept”
(in the form of a formula from an abstract domain) that overapproximates all
occurring program states. This is similar to many of the problems considered in
statistical machine learning, and recent results have shown that program analysis
questions can be treated as such problems [15,16,22,32,38–41]. With the exception
of [32,38], these efforts have focused on numerical program invariants.



We show how to treat the prediction of formulas similarly to predicting natural
language or program source code in Sect. 3. Concretely, we define a simple
grammar for our abstract domain of separation logic formulas with (possibly
nested) inductive predicates. Based on a set of observed states, a formula can then
be predicted starting from the grammar’s start symbol by sequentially choosing
the most likely production step. As our grammar is fixed, each such step is a
simple classification problem from machine learning: “Considering the program
states and the formula produced so far, which is the most likely production
step?” Our technique can handle arbitrary (pre-defined) inductive predicates
and nesting of such predicates, and can also produce disjunctive formulas.

We show how to use this technique in a refinement loop with an off-the-shelf
program verifier (GRASShopper [35]) to automatically prove memory safety of
programs in Sect. 4. We add a second refinement loop integrating numerical
invariants into the predicted shape invariants in Sect. 5, adapting a technique
developed for functional programming [43]. Finally, we combine everything in our
tool Cricket and experimentally evaluate it in Sect. 6, showing that it can fully
automatically verify programs that are beyond the capabilities of other tools.

Limitations. As we rely on the underlying program verifier to check correctness of
our invariant predictions, we “inherit” its C-like “simple programming language”
(SPL). Furthermore, our performance depends on that of the underlying verifier,
and in fact, time spent in GRASShopper dominates our implementation’s runtime.
As our technique relies on observing a sample of occurring program states, it is
sensitive to the choice of initial samples (randomly sampled, taken from a test
suite, or provided by a human) used in the sample collection phase. Finally, our
two-step approach (first shape, then arithmetic invariants) is not able to reason
about programs whose memory safety depends on arithmetic arguments, e.g.,
examples in which memory safety depends on two lists having the same length.

Related Work. Memory safety proofs have long been a focus of research, and we
only discuss especially recent and close work here, and compare our implementa-
tion with some tools in Sect. 6. (Bi)-abduction based shape analyses [10–12,25,26]
have been used successfully in memory safety proofs, and can also be used to
abduce needed preconditions or the required inductive predicates. In another
recent line of work, forest automata have been used to verify heap-manipulating
programs [1], but require hard-coded support for specific data structures.

In property-directed shape analysis [21], predicate abstraction over user-
provided shape predicates ((sorted) list segments, . . . ) is combined with a vari-
ation of the IC3 property-directed reachability algorithm [8] to prove memory
safety and data properties. This can be viewed as continuation of three-valued
logic-based works (e.g. [37]), reducing the data type specification requirements.
Similary, SplInter extends the Impact [30] safety prover with heap reasoning based
on an interpolation technique for separation logic. While we could not obtain
working copies of the implementations, the reported results indicate that they
cannot prove correctness of more advanced examples such as sorting algorithms.

Closest to this work is [32] which infers likely heap invariants from program
traces (i.e., it infers shapes from usage patterns) using machine learning tech-
niques. However, it is not able to reason about data in these data structures.
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1 procedure insert ( lst : Node, elt : Node) returns ( res : Node)
2 requires slseg ( lst , null ) &∗& elt.next |−> null

3 ensures lseg ( res , null ) slseg ( res , null ) {
4 if ( lst == null || lst .data > elt .data) {
5 elt .next := lst ;
6 return elt ;
7 } else {
8 var cur := lst ;
9 while (cur .next != null && cur.next.data <= elt.data)

10 invariant cur!=null &∗& elt!=null &∗& lseg(lst,cur) &∗& lseg(cur,null ) &∗& lseg(elt, null )

11 invariant cur!=null &∗& elt!=null &∗& lslseg( lst ,cur ,cur .data) &∗& slseg(cur, null ) &∗&
12 lseg ( elt , null ) &∗& cur.data <= elt.data

13 { cur := cur.next; }
14 elt .next := cur.next;
15 cur .next := elt ;
16 return lst ; } }

Fig. 1: Procedure inserting element into a sorted list. Inferred shape (resp. shape-
data) loop invariants and postconditions are shown in a box (resp. dashed box).

2 Example

We demonstrate the key points of our method on a simple example. The
program in Fig. 1 is taken from the GRASShopper test suite, and our goal is to
automatically infer a loop invariant and postcondition.

The program operates on singly-linked lists where list elements are Nodes with
a next and a data field, and inserts a given element into the correct position
of a sorted list. So if lst is [2, 4, 6, 9] (a list containing the elements 2, 4,
6, and 9) and elt is the singleton list [7], insert modifies lst such that it
is [2, 4, 6, 7, 9]. In the precondition, slseg(lst, null) means that there
is a (possibly empty) sorted list segment from lst to null. The separating
conjunction from separation logic is written as &*& and elt.next |-> null

indicates that (i) elt.next is null and that (ii) elt is non-null.6 Without an
explicit loop invariant, GRASShopper cannot prove memory safety nor correctness.
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Fig. 2: insert states

Shape Invariants. First, we prove memory
safety using only shape properties. We sam-
ple program states satisfying the precondi-
tion slseg(lst, null) &*& elt.next |->

null, obtaining states such as the one at the
top of Fig. 2, where a node is a heap cell,
data is displayed in it, and next pointers are
shown as edges. We then execute the program
on these states and record execution states at the head of the while loop to obtain
a set of reachable program states S+ (displayed in Fig. 2 below the line).

The set S+ is then passed to our shape invariant predictor Platypus. Platypus
predicts a separation logic formula by following its syntactic structure (i.e., it
predicts a syntax tree top-down). Thus, formula prediction reduces to predicting a
sequence of single production steps. Each such step has a simple intuitive meaning,
e.g., which data structure is used in a part of a heap graph, or at which variable
such a data structure starts. These predictions are implemented using standard
tools from statistical machine learning, based on features extracted from the

6 (ii) follows implicitly from the statement about one of elt’s fields.
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observed program states and the partial formula predicted so far. For our example,
we predict lseg(lst, cur) &*& lseg(cur, null) &*& lseg(elt, null). A
standard nullness analysis additionally yields cur != null &*& elt != null

and leads to the loop invariant shown in Fig. 1, which we ask GRASShopper to
verify for the program. The postcondition lseg(res, null) is inferred similarly.

This proof succeeds, and thus we have proven memory safety of the program.
If the proof had failed, a counterexample state would have been returned, which
would be used as additional input for Platypus to produce a more precise invariant.

Shape/Data Invariants. In a second step, we strengthen the obtained memory
safety proof to prove functional correctness of our program. We use the same
samples that we used to predict the shape invariants above, splitting the observed
data into different groups according to the inferred shape predicates, and infer
data invariants on these groups. The data for different components (observed
lists and data fields of structs referenced directly by stack variables) is shown in
Fig. 3. Following [43], we use the observed data to learn quantified invariants.

State element Iter. 1 Iter. 2 Iter. 3

lseg(lst,cur) [] [2] [2,4]

lseg(cur,nil) [2,4,6,9] [4,6,9] [6,9]

lseg(elt,null) [7] [7] [7]

lst.data 2 2 2

cur.data 2 4 6

elt.data 7 7 7

Fig. 3: Data of insert on [2,4,6,9].

For this, we use the footprint FP
of a separation logic predicate, e.g.,
FP(lseg(lst, cur)) contains the
Node objects in the list between lst

and cur. We define a containment
predicate u ∈ FP(lseg(lst, cur))
to check whether a node u is in the
footprint, and an ordering predicate
FP(lseg(lst, cur)) : u →+ v
which is true iff v can be reached from u by repeated dereference in the footprint
(these predicates are similar to those used in [21]).

We infer universally quantified arithmetic invariants with quantifiers ranging
over the footprints of the considered list segments using our observations. In our
case, this yields ∀u. u ∈ FP(lseg(lst, cur))⇒ u.data ≤ cur.data, reflecting
that every element of the list from lst to cur only contains elements smaller
than cur.data. Similarly, we also find ∀u, v. FP(lseg(lst, cur)) : u→+ v ⇒
u.data ≤ v.data, ∀u, v. FP(lseg(cur, null)) : u →+ v ⇒ u.data ≤ v.data,
reflecting sortedness in these footprints, and cur.data ≤ elt.data. In Fig. 1 we
denote this by using slseg for sorted list segments and lslseg(x, y, v) for a
sorted list segment from x to y whose values are bounded by v. After strengthening
the loop invariant obtained before with this information, GRASShopper can prove
that the postcondition of insert shown in Fig. 1 always holds.

3 Predicting Shape Invariants from Heaps

In this section, we first discuss a general technique to predict derivations in
a grammar G from a set of objects Ĥ, given functions that compute features
from Ĥ. We then show how to apply this to our setting, using separation logic as
language and heap graphs as input objects, and discuss the used features. Finally,
we discuss some extensions that were useful for our implementation Platypus.
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3.1 General Parse Tree Prediction

Let G be a context-free grammar, S the set of all (both terminal and nonterminal)
symbols ofG, andN just the nonterminal symbols. We aim to learn how to predict
parse trees in G, following a similar technique that predicts source code from
natural language [2]. We represent parse trees as tuples T = (A, g(·), ch(·)) where
A = {1, . . . , A} is the set of nodes for some A ∈ N, g : A → S maps a node to a
terminal or nonterminal node from the grammar, and ch : A → A∗ maps a node
to its direct children in the syntax tree. A partial parse tree T<a is a parse tree
T restricted to nodes {1, . . . , a − 1}, where the ordering on nodes comes from
the order in which they are predicted (see below).

We formulate the algorithm as a sequential prediction task where we predict
the parse tree in a depth-first left-to-right node order. Each prediction step is con-
ditional upon all of the predictions that have been made so far, and corresponds
to picking a production rule from G to expand the current nonterminal N ∈ N .
To make these predictions, we extract a feature vector φN (Ĥ, T ) ∈ RDN (where
DN is the number of features for N) that depends on the considered nonterminal
N , the input objects Ĥ and the partial syntax tree T generated so far.

Depending on the kind of production rules we have to expand N , we can then
view this either as a multiclass classification task (if there is a fixed, small number
of productions) or as a ranking task (if the production requires us to pick from a
set of terminals that are not fixed at training time, such as program variables). A
standard machine learning algorithm can then be used on the computed features
to make a prediction. In practice, we use logistic regression for all classification
tasks and a simple two-layer neural network for the ranking tasks. The pseudocode
for this procedure PlatypusCore is given in Alg. 1, which is initially called with a
parse tree containing only the grammar’s start symbol. The probability of a full
parse tree T can be expressed as the product of probabilities of the individual
production choices, i.e., p(T | Ĥ) =

∏
{a∈A|g(a)∈N} p(ch(a) | Ĥ, T<a).

Algorithm 1 Pseudocode for PlatypusCore (extension of [2])

Input: Grammar G, input objects Ĥ, (partial) parse tree T = (A, g, ch), nonterminal
node a to expand

1: N ← g(a) {nonterminal symbol of a in T }
2: φ← φN (Ĥ, T ) {compute features (see Sect. 3.2)}
3: P ← most likely production N → S+ from G considering φ
4: T ← insert new nodes into T according to P
5: for all children a′ ∈ ch(a) labeled by nonterminal do
6: T ← PlatypusCore(G, Ĥ, T , a′)
7: return T

To train the overall system, we process input sets Ĥ with their corresponding
ground truth parse tree T to obtain pairs (φg(a)(Ĥ, T<a), P )a∈A of feature vectors
and chosen production rules P . For this, we follow the parse tree structure
analogously to Alg. 1, at each step extracting the feature vector and the chosen
ground truth production rule. We then use the extracted data as training data
for the individual classifiers and rankers.
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3.2 Predicting Separation Logic Formulas

Inputs Our inputs are directed, possibly cyclic, graphs representing the heap
of a program and the values of program variables. Intuitively, each graph node v
corresponds to an address in memory at which a sequence of pointers v0, . . . , vt
is stored.7 Edges reflect these pointer values, i.e., v has edges to v0, . . . , vt la-
beled with 0, . . . , t. The node 0 is special (corresponding to the null pointer in
programs) and may not have outgoing edges. Furthermore, we use unique node
labels to denote the values of program variables PV and auxiliary variables V.

Definition 1 (Heap Graphs). Let PV be a set of program variables. The set

of Heap Graphs ĤG is then defined as 2N × 2(N\{0})×N×N × (PV ∪ V → N).

Outputs We consider a fragment of separation logic [33,36]. Our method allows
the separating conjunction ∗, list-valued points-to expressions v 7→ [e1, . . . , en],
existential quantification and higher-order inductive predicates [5], but no −∗. As
pure formulas, we only allow conjunctions of (dis)equalities between identifiers,
and use the constant 0 as the special null pointer. We will only discuss the singly-
linked list predicate ls and the binary tree predicate tree in the following, though
our method is applicable to generic inductive predicates. Given a set of fresh
variables V, the following grammar describes our formulas:

ϕ := ∃V.ϕ | Π : Σ Σ := emp | σ ∗Σ σ := ls(E,E, λV,V,V,V → ϕ)

Π := true | π ∧Π π := E = E | E 6= E | tree(E, λV,V,V,V → ϕ)

E := 0 | V | PV | V 7→ [E . . . E] | PV 7→ [E . . . E]

Semantics are defined as usual for separation logic, i.e., Ĥ |= σ1 ∗σ2 for some

Ĥ = (V,E,L) ∈ ĤG if Ĥ can be partitioned into two subgraphs Ĥ1, Ĥ2 such

that Ĥ1 (resp. Ĥ2) is a model of σ1 (resp. σ2) after substituting variables in σ1
and σ2 according to L. The empty heap emp is true only on empty subgraphs,
and v 7→ [e1, . . . , en] holds iff for all 1 ≤ i ≤ n, there is some edge (v, i, ei). For
detailed semantics, we refer to [33,36]. The semantics of inductive predicates are
the least fixpoint of their definitions, where nested formulas describe the shape
of a nested data structure. For example, ls and tree are defined as follows:

ls(x, y, ϕ) ≡(x = y) ∨ (∃v, n.x 7→ [v, n] ∗ ls(n, y, ϕ) ∗ ϕ(x, y, v, n))

tree(x, ϕ) ≡(∃v, l, r.l 6=0 ∧ r 6=0:x 7→ [v, l, r] ∗ tree(l, ϕ) ∗ tree(r, ϕ) ∗ ϕ(x, v, l, r))

∨ (∃v, r.r 6=0:x 7→ [v, 0, r] ∗ tree(r, ϕ) ∗ ϕ(x, v, 0, r))

∨ (∃v, l.l 6=0:x 7→ [v, l, 0] ∗ tree(l, ϕ) ∗ ϕ(x, v, l, 0))

∨ (∃v.x 7→ [v, 0, 0] ∗ ϕ(x, v, 0, 0))

We use > ≡ λv1, v2, v3, v4 → true : emp to denote “no further nesting”. Thus,
ls(x, y, λf1, f2, e1, e2 → tree(e1,>)) describes a list of binary trees from x to y.

Example 2. A “pan-handle list” starting in i2 is described by ϕ(i1, i2, i3, i4) ≡
∃t.ls(i2, t,>) ∗ ls(t, t,>), where an acyclic list segment leads to a cyclic list. Here,
t is the existentially quantified node at which “handle” and “pan” are joined.

7 In this section, we discard non-pointer values.
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Fig. 4: Tree of panhandle lists

The formula ψ(x) ≡ tree(x, ϕ) describes a
binary tree whose nodes in turn contain
panhandle lists. An example of a heap satis-
fying the formula ψ is shown in Fig. 4. Blue
nodes are elements of the tree data struc-
ture, having three outgoing edges labeled
0, 1, 2. Each of the green boxes in Fig. 4
corresponds to a subheap that is described
by the subformula ϕ. In each of these sub-
heaps, one node (where the “handle” of a
panhandle list meets the “pan”) is labeled with t – note that t is not a program
variable, but introduced through the existential quantifier in ϕ.

We found that our procedure PlatypusCore was often imprecise when gen-
erating the pure subformula Π and 7→ atoms. For this reason, we generate Π
deterministically with a nullness analysis (see Sect. 3.3), and completely omit 7→.
Our grammar thus simplifies as follows (where Π is now a terminal symbol).

ϕ := ∃V.ϕ | Π : Σ Σ := emp | σ ∗Σ
E := 0 | V | PV σ := ls(E,E, λV,V,V,V → ϕ) | tree(E, λV,V,V,V → ϕ)

Predicting Flat Formulas We first consider the case where the input is a
single graph Ĥ with nodes V , and predict formulas from a restricted separation
logic grammar without nesting. These two restrictions are connected, as we treat
nested data structures by considering each “subheap” as an additional input (see
below). We will discuss the construction of φN for this simple case first.

For any a, we define I(T<a) as the set of identifiers that are in scope at
point a in the partial parse tree, and D(T<a) ⊆ I(T<a) as the set of “defined”
identifiers that occur in the first argument of ls and tree predicates (i.e., whose
corresponding data structure has already been predicted). We use this to compute
features useful for predicting the expansion of an E nonterminal into an identifier.

An important class of features is based on the notion of n-grams of heap graph
paths. Each node v is identified with a 1-gram: A pair (indeg(v), outdeg(v)) ∈ N2

corresponding to its in- and outdegree. A 2-gram is a pair of the 1-grams for two
nodes connected by an edge in Ĥ. Based on this, we define a measure of depth.
For a path v1 . . . vt in the heap graph, we define its 1-gram depth as the number
of times the 1-gram changes, i.e., |{i ∈ {1 . . . t − 1} | indeg(vi) 6= indeg(vi+1) ∨
outdeg(vi) 6= outdeg(vi+1)}|. Then, depth(v) is the minimal depth of paths leading
from a node labeled by a variable to v. In our method, we extend 1-grams by this
depth notion, i.e., represent each node by a (indeg(v), outdeg(v), depth(v)) triple.
Intuitively, this information helps to discover the level of data structure nesting.
To extract features from a heap graph, we count the number of occurrences of an
n-gram in that graph, only considering the n-grams observed at training time.

As an example, consider Fig. 4 again. There, node 1 has 1-gram depth 0,
nodes 3, 4, and 13 have 1-gram depth 1 (note that we haven’t drawn the edges
to 0 for some “tree” nodes), and nodes 8, 9, 2, 11 and 14 have 1-gram depth 2.
Thus for the whole graph, we compute the 1-gram features 1gram(0,3,0) = 1 (for
node 1), 1gram(1,3,1) = 3 (for nodes 3, 4, and 13) and so on.
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Features for Σ, σ Nonterminals Intuitively, the Σ production step depends on
whether the syntax tree generated so far “explains” the observed heap graphs,
or if further heaplets are needed. In the σ production step, the right predicate
(i.e., either ls or tree) needs to be picked. To this end, we use a simple procedure
that approximates the footprint of the syntax tree generated so far, denoted V<a

for some syntax tree node a.8 We then compute 1- and 2-gram features from
above restricted to the nodes V \ V<a, i.e., those nodes that are not covered by
the data structures described by the partial formula predicted so far. Their node
degrees, contained in the 1-gram features, are indicators of the data structures
that have not been predicted yet.

Let I−a = I(T<a) \ D(T<a) be the identifiers that are in scope, but have
not appeared in the first position of a predicate. We compute n-gram features
restricted to V |I−a \ V<a, where V |I−a denotes the nodes in Ĥ reachable from I−a .
Note that we use fresh names for all V bound by λ in the σ production rules.

Features for E Nonterminals Here, we pick an expression as argument to a pred-
icate. When making a prediction for E at node a, the set of legal outputs is
I(T<a) ∪ {0}; i.e., the set of all identifiers that are in scope at this point and 0.

To handle this, we compute one feature vector φE
z for each z ∈ I(T<a)∪ {0},

based on connectivity to other graph nodes. Intuitively, we need to find the
“start” of a data structure (i.e., x in tree(x)) or something reachable from the
start (i.e., y in ls(x, y)). For this, we define the sequence of “enclosing defined
identifiers” e1, . . . , et ∈ I(T<a), i.e., identifiers appearing in predicates enclosing
the currently considered node a. As an example, consider the partially predicted
formula ls(x, y, λi1, i2, i3, i4 → ls(v, ?, . . .)), where we are interested in predicting
the expression at ?. Here, we have e1 = v and e2 = x. We use one boolean feature
to denote reachability of (resp. from) each e1, . . . , et from (resp. of) z.

To make a prediction, we use a neural network NN (with learnable parameters
θE) to compute a score sz = NN(φE

z ; θE). The probability of z is then computed
via a softmax, i.e., p(z) = exp sz∑

z′∈I(T<a)∪{0} exp sz′
.

Features for ϕ Nonterminals Here, we need to decide whether to declare new
identifiers via existential quantification, so that we can later refer back to them
(e.g., for panhandle lists). We found it advantageous to not only predict that we
need a quantifier, but also by which graph node it should be instantiated.

We proceed similar to the E case and compute a feature vector φϕ
v for each

node v ∈ Ĥ. Features are standard graph properties, such as membership in a
strongly connected component, existence of labels for a node, and the 1- and
2-gram features discussed above. We use a neural network NN (with learnable pa-
rameters θϕ) to compute a score sv = NN(φϕ

v ; θϕ). The output is passed through
a logistic sigmoid to give the probability that a new identifier, corresponding to
node v in the heap graph, should be instantiated. When choosing a production
for ϕ, we thus make independent predictions for each v and instantiate a fresh
identifier iv for each v that was predicted to be “on”.

8 For p(v, v1, . . . , vn), we compute the footprint approximation as all those heap nodes
reachable via recursive fields used in the definition of p without passing nodes v1 . . . vn.
See Sect. 6.2 for how to instead learn this approximation.
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Predicting Nested Formulas In the general case we have several input heap
graphs Ĥ, and data structures may in turn contain other data structures. This
requires us to make predictions that are based on the information in all graphs,
and sometimes on several subgraphs of each of the graphs. As an example, consider
again the heap in Fig. 4, and imagine that we have successfully predicted the outer
part of the corresponding formula, i.e., tree(x, λi1, i2, i3, i4.?), and are now trying
to expand ?. This subformula needs to describe all the subheaps corresponding to
the contents of the green boxes in Fig. 4. To handle this, we now allow modifying
the input Ĥ after a production step (between line 4 and 5 of PlatypusCore).
So for our example, we would change Ĥ to contain one heap graph with labels
{x 7→ 1, i1 7→ 3, i2 7→ 8, i3 7→ 0, i4 7→ 0} for the leftmost box, one with labels
{x 7→ 1, i1 7→ 1, i2 7→ 2, i3 7→ 3, i4 7→ 4} for the second box, and so on.

Everything but ϕ Nonterminals We directly lift the techniques from Sect. 3.2.
The main difference is that we now have to handle a set of heap graphs Ĥ. We
compute feature vectors for each heap graph independently as before, and then
merge them into a new single feature vector by computing features based on the
maximum fmax , minimum fmin , and average value favg of each feature f .

ϕ nonterminals This covers the prediction of ∃t, where t corresponds to one node
in each of the green boxes in Fig. 4. As the number of nodes may differ between
the different heap graphs, we cannot simply lift our technique from above.

This problem is a basic form of the structured prediction problem [4]. Suppose
there are R heap graphs. For each of the graphs, there is a set of nodes Vr which
may require an existential quantifier to be described in our setting (in Fig. 4, these
are the contents of the green boxes). Let yv be a boolean denoting the event that
a new identifier is declared for node v. We train a neural network like in the single-
heap case so that the probability of declaring a variable for node v is p(yv = 1) =
exp sv

1+exp sv
, where sv is the score output by the NN. To make predictions, we set the

probabilities of illegal events to 0 and then predict using the distribution over the
remaining possibilities. Letting Zr =

∏
v∈Vr

(1 + exp sv), the probability of not

declaring any variables is
∏

r

∏
v∈Vr

(1− p(yv = 1)) =
∏

r
1
Zr

. The probability of

selecting exactly node v from subheap r is exp sv
1+exp sv

∏
v′∈Vr,v′ 6=v

1
1+exp sv

= exp sv
Zr

.
As the choice of node from each subheap is independent given that we are
declaring a new identifier, the probability of choosing the set of nodes {vr}r is
the product

∏
r

exp svr
Zr

. Noting that all legal joint configurations have the same
denominator

∏
r Zr, we can drop the denominator and compute the normalizing

constant for the constrained space later. The total unnormalized probability of
declaring a variable is the sum of the unnormalized probabilities of all ways to
choose one vr from each subheap r, which can be written as

∏
r

∑
v∈Vr

exp sv.

To make predictions, we compute the set of scores sr = {sv | v ∈ Vr}. We first
decide whether to declare a new identifier. Following from above, the probability
of not declaring a new identifier is 1

1+
∏

r

∑
v∈Vr

exp sv
while the probability of

declaring a new identifier is
∏

r

∑
v∈Vr

exp sv

1+
∏

r

∑
v∈Vr

exp sv
. To make a prediction under these

constraints, we can first compute the probability that a new identifier is declared
in each subheap. If we decide not to declare a variable, we instead choose the
Π : Σ production. If we decide to declare a variable, then we draw one node
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from each subheap according to a softmax over the scores; i.e., the probability of
choosing node v in subheap r is exp sv∑

v′∈Vr
exp sv′

. Similar reasoning can be applied

to find the most likely configuration of yv variables to make a prediction.

3.3 Predictions with Platypus

As discussed above, we have separate procedures to produce pure subformulas and
to generate disjunctive formulas. Furthermore, we have adapted PlatypusCore to
not only greedily select the most likely production rule at each step, but to sample
several invariant candidates, returned in order of their respective probability.

Pure Subformulas We use a deterministic procedure to expand the nonterminal
Π describing the pure part of our formulas, using a simple aliasing and nullness
analysis. Namely, for all pairs of identifiers x, y ∈ PV ∪ {0}, we check if x = y
or x 6= y holds in all input heap graphs. Π is then set to the conjunction of all
equalities that hold in all inputs graphs.

Handling Disjunctions We found disjunctive separation logic formulas to be
needed even for surprisingly simple examples, as in many cases, the initial or
final iteration of a loop requires a (slightly) different shape description from all
other steps. In our setting, the problem of deciding how many and what disjuncts
are needed can be treated as a clustering problem of heap graphs. As features,
we use booleans indicating reachability between program variables as above. As
clustering algorithm, we use standard k-means clustering, using the Euclidean
distance between feature vectors as heap graph distance. In our implementation,
we run the clustering algorithm for k ∈ 1..4 and use the clustering that results
in the formula with highest probability according to our formula predictor.

Generating Training Data Training the logistic regressors and neural nets from
above requires large amounts of training data, i.e., heap graphs labeled with
corresponding formulas. To obtain this data, we fix program variables PV and
enumerate derivations of formulas in our grammar, similar in spirit to [23].9 For
each of the generated formulas, we enumerate models by expanding inductive
predicates until only 7→ atoms remain. From this we read off heap graphs by
resolving the remaining ambiguous possible equalities between variables.

4 Refining and Verifying Shape Invariants

We construct our fully automatic memory safety verifier Locust (pseudocode
in Alg. 2) by connecting our shape predictor from Sect. 3 with the program
verifier GRASShopper. For this, we keep a list of positive S+(`) and negative
state samples S−(`) for every program location ` at which program annotations
for GRASShopper are required (i.e., loop invariants and pre/post-conditions for
subprocedures). We collect an initial set of positive samples by simply executing
the program. Then we obtain a set of candidate formulas from Platypus for each
location and enter a refinement loop. If verification using these candidates fails,
GRASShopper returns a counterexample state at some location `, which we use to
extend the sets S+(`) and S−(`). If no counterexample is returned, soundness of
GRASShopper implies memory safety. It is possible that no correct set of program

9 In practice, this set is so large that we only sample from it.
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annotations can be found (either in case of an incorrect program, or due to
imprecisions in our procedure). If the same counterexample is reported for the
second time (i.e., we stopped making progress), our algorithm reports failure.
Algorithm 2 Pseudocode for Locust
Input: Program P and entry procedure p with precondition ϕp, locations L requiring

program annotations
1: I ← sample initial states satisfying ϕp {see Sect. 4.1}
2: S+ ← execute P on I to map location ` ∈ L to set of observed states
3: while true do
4: for all ` ∈ L do
5: ϕ1

` , . . . , ϕ
k
` ← obtain k candidates from Platypus(S+(`))

6: ϕ` ← first ϕi
` proven consistent with all S+(`), S−(`) {see Sect. 4.3}

7: P ′ ← annotate P with inferred ϕ`

8: if GRASShopper(P ′) returns counterexample s then
9: if s is new counterexample then

10: update S+, S− to contain s for correct location {see Sect. 4.2}
11: else return FAIL
12: else return SUCCESS

To simplify the procedure, we assume that Platypus always returns the most
precise formula from our abstract domain holding for the given set of input heap
graphs (†). While this is not guaranteed, the system was trained to produce this
behavior, and we observe that our implementation behaves like this in practice.

4.1 Initial State Sampling

We assume the existence of some set of preconditions describing the input to
the main procedure of the program in separation logic.10 To sample from these
preconditions, we can add assert false to the beginning of the program. Then,
every counterexample returned by GRASShopper is a model of the precondition.
To get more samples, and to ensure different sizes of input lists, we add cardinality
constraints to the precondition. For example, to force a list starting at lst to
have length ≥ 3, we add requires lst.next.next != null. States at other
locations are then obtained by executing the program from the initial sample.

While this strategy is complete relative to the fragment of separation logic
supported by GRASShopper, it is slow even for simple preconditions. Thus, in
practice, we use a simple heuristic sampling algorithm for simple preconditions
(without arithmetic constraints), and generate sample states of varying sizes.

4.2 Handling Counterexamples

If the program is incorrect, or the current annotations are incorrect or insufficient
to prove the program correct, then GRASShopper returns a counterexample at
a location `. Depending on the context of such a counterexample and its exact
form, we treat it as a positive or negative program state sample as follows.

– Case 1: A candidate invariant does not hold on loop entry. The counterex-
ample state is reachable, but is not covered by the candidate loop invariant,
and thus, the counterexample can be added as a positive sample to S+(`).

10 Conceivably, these could be provided by users in a pre-formal language and translated
to separation logic using an interactive elaboration procedure. Alternatively, given a
test suite, Platypus could predict the initial precondition as well.
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– Case 2: A candidate loop invariant is not inductive. This is an implication
counterexample [15, 40], i.e., a state s that is a model of the candidate loop
invariant and a state s′ reached after evaluating the loop body on s. Based
on our assumption (†), we conclude that s is likely to be a reachable state,
and thus s′ is. Hence, we treat s′ as a positive sample and add it to S+(`).

– Case 3: A postcondition does not hold for a state s. Again, by (†), we conclude
that s is a reachable state, and thus add the counterexample to S+(`).

– Case 4: Invalid heap access inside the loop. The counterexample state is
consistent with the candidate loop invariant, but triggers an invalid heap
access such as a null access. It is a negative sample and is added to S−(`).

4.3 Consistency checking

For each prediction returned by the predictor, we check its consistency with the
positive and negative samples obtained so far. This is needed because Platypus
cannot provide correctness guarantees, and does not make use of negative samples.
Thus we check each returned formula ϕ` for consistency with the observed samples,
i.e., ∀Ĥ ∈ S+(`).Ĥ |= ϕ` and ∀Ĥ ∈ S−(`).Ĥ 6|= ϕ`. As in our sampling strategy,
we use the underlying program verifier for this. For this, we translate a state Ĥ
into a formula ϕĤ that describes the sample Ĥ exactly, by introducing variables

nv for each node v and representing each edge (n, f, n′) as n.f 7→ n′. Then Ĥ is
a model of ϕ` iff all models of ϕĤ also satisfy ϕ`. However, since by construction

ϕĤ only has the model Ĥ, this is equivalent to checking if ϕĤ ∧ ϕ` has a model.
This can be checked using a complete program verifier such as GRASShopper by
using ϕĤ ∧ ϕ` as precondition of a procedure whose body is assert false.

5 Learning Shape/Data Invariants

Finally, we show how to use samples from program runs to strengthen predicates
in memory safety proofs with data invariants. Such shape/data invariants can,
for example, be used to prove that a linked list is sorted. We adapted the DOrder
procedure [43] originally developed for immutable data in functional programs to
our setting, calling our extension DOrderImp. It inherits all relative completeness
guarantees of DOrder. Note that while we only discuss linked lists and binary
trees here, the procedure is applicable to all linked data structures. The overall
analysis Beetle (see Alg. 3) proceeds similarly to our procedure Locust, but takes
a memory safety proof as additional input.

DOrder uses a hypothesis domain of atomic predicates used to express shape
properties (e.g., list segments) and data properties (e.g., arithmetic relations). We
focus on membership properties of heap nodes in a data structure and relations
establishing ordering between two nodes found within a data structure.

The main difference of DOrderImp relative to DOrder is the set and semantics
of the considered shape predicates. While DOrder can derive these from algebraic
type definitions, we extract them from the shape annotations generated by Locust.
For a separation logic predicate d, we use FP(d) to denote the footprint of d,
i.e., all nodes in the heap that are part of the data structure described by d. A
containment predicate u ∈ FP(d) holds if and only if the heap node u is in the
footprint of d. If d is a list predicate, FP(d) : u→+ v relates a pair (u, v) to d if
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Algorithm 3 Pseudocode for Beetle
Input: Program P and entry procedure p with precondition ϕp, locations L requiring

program annotations, shape annotations ϕ` for ` ∈ L
1: I ← sample initial states satisfying ϕp {see Sect. 4.1}
2: S+ ← execute p on I to map location ` ∈ L to set of observed states
3: while true do
4: for all ` ∈ L do
5: ϕsd

` ← DOrderImp(ϕ`, S
+(`), S−(`))

6: P ′ ← annotate P with inferred ϕsd
`

7: if GRASShopper(P ′) returns counterexample s then
8: if s is new counterexample then
9: update S+, S− to contain s for correct location {see Sect. 4.2}

10: else return FAIL
11: else return SUCCESS

u occurs before v in d (transitively). Similar definitions are given if d refers to
a tree. For example, the predicate FP(d) : u↘ v is satisfied only if v occurs in
a subtree of d rooted at u. The semantics of ordering predicates directly inherit
the semantics of reachability predicates (cf. Btwn) in GRASShopper [35].

When inferring shape-data properties at program location `, we first extract
the atomic separation logic predicates (e.g. lseg(x,y)) from the given shape
annotation ϕ` using the function Mem(ϕ`). We then consider the following set
of (well-typed) predicates over the footprints of separation logic predicates in ϕ`:

Ωshape(ϕ`) = {u ∈ FP(d),FP(d) : u→+ v,FP(d) : u↘ v | d ∈ Mem(ϕ`)}

Our data predicates are binary predicates, which are restricted to range over
relational data ordering properties. For this, let Vars(`) be the stack variables
in scope at ` and u, v be two fresh variables not used in the program. Given ϕ`,
the data domain, over some object field fld containing integer data (denoted by
Ωfld), is constructed from the following atomic predicates

Ωfld(`) ={u.fld ≤ x, x ≤ u.fld , u.fld ≤ x.fld , x.fld ≤ u.fld | x ∈ Vars(`)}
∪ {u.fld ≤ v.fld , v.fld ≤ u.fld}

where only well-typed predicates are considered. While Ωfld only permits few
predicates, our experiments show that it is sufficient to learn useful properties.

For a given program location `, we now look for shape/data invariants of the
form ∀u, v. ωshape ⇒ ψfld where ωshape ∈ Ωshape(ϕ`) and ψfld is an arbitrary
boolean combination of predicates from Ωfld(`). To solve this inference problem,
we compute ∀u, v. Learn(S+(`), Ωdata(`), Ωshape(ϕ`)) where Learn implements the
relational learning algorithm from DOrder [43]. In the algorithm, the free variables
u and v range over node objects observed in the footprints of the samples in S+(`).
The learned formulas are “separators” between positive and negative samples,
such that they are true on all positive samples and false on at least some of the
negative samples. This algorithm produces exactly the specifications described
in Sect. 2 using our hypothesis domain for the program in Fig. 1. For verification,
we translate discovered invariants into annotations and ask GRASShopper to
verify them. The translation is straightforward because the ordering predicates
follow the reachability predicates in GRASShopper as discussed above.
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Fig. 5: Overview of our tool Cricket.

6 Experiments & Conclusion

Our tool Cricket combines the procedures Locust and Beetle as an extension of
GRASShopper [35] (see Fig. 5 for an overview of all components). Platypus is
implemented as a stand-alone tool in F#.

6.1 Experimental Evaluation

We have evaluated our tool on a number of standard example programs. One
set are the example programs distributed with GRASShopper that operate on
lists with integer data, including standard algorithms such as traversal, filtering,
and concatenation of sorted and bounded lists, as well more complex algorithms
such as quicksort, mergesort and insertionsort. For these, we prove the “natural”
program properties, i.e., that modification of a sorted structure again yields a
sorted structure, and that sorting algorithms turn an unsorted list into a sorted
list. Furthermore, we considered four simple traversal routines of nested list/tree
data structures. We could not obtain another tool that could automatically prove
the considered shape/data properties. Instead, we compare Locust as a memory
safety prover to S2/HIP [25, 26], Predator [13] and Forester [1]. The full set of
results is displayed in Tab. 1, where a 3 indicates that a tool was successful,
and 7 that it failed (either explicit failure or timeout after 300s). For Platypus,
we also note the number of disjuncts in generated invariants, and for Locust
and Beetle the number of iterations in the counterexample-refinement loop. As
our implementation is not optimized (e.g., each invocation of Platypus starts
a new .Net VM and initializes all machine learning components) we do not
report runtimes. We cannot distribute our tool at this time due to dependencies
on proprietary machine learning components, but have provided detailed log
files of the experiments and the examples under https://www.dropbox.com/s/
n2trg7hajr50yjy/experiment_data.zip and are working on open-sourcing our
implementation.

Analysis We find that we can easily prove memory safety of all considered bench-
marks. In most cases, Platypus directly predicts the correct shape annotations
from the state samples gathered in the initial execution on sampled inputs.
Overall, Cricket was able to prove functional correctness of almost all programs
(including “hard” cases such as insertionsort with its nested loops and many
interacting variables in scope) fully automatically.

Most time spent in Locust is spent on the consistency check of annotations
and samples, which could be improved using a more specialized tool. The Cricket
failures on double all and pairwise sum are due to the fact that the abstract
domain used by DOrderImp is insufficient to represent information such as 2·x = y.
The failure on strand sort is due to GRASShopper timing out (i.e., needing more
than 5 minutes) to check annotations provided by Beetle.
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Example Platypus Locust Beetle Cricket S2/HIP Forester Predator

concat 3 (1 disj.) 3 (1 it.) 3 (4 it.) 3 3 7 3
copy 3 (1 disj.) 3 (1 it.) 3 (2 it.) 3 7 3 3
dispose 3 (1 disj.) 3 (1 it.) 3 (2 it.) 3 7 3 3
double all 3 (1 disj.) 3 (1 it.) 7 7 7 3 3
filter 3 (2 disj.) 3 (1 it.) 3 (2 it.) 3 7 3 3
insert 3 (1 disj.) 3 (1 it.) 3 (1 it.) 3 7 3 3
insertion sort 3 (2 disj.) 3 (1 it.) 3 (30 it.) 3 7 3 3
merge sort 3 (3 disj.) 3 (4 it.) 3 (41 it.) 3 7 7 7
pairwise sum 3 (1 disj.) 3 (1 it.) 7 7 7 3 3
quicksort 3 (1 disj.) 3 (1 it.) 3 (11 it.) 3 7 7 7
remove 3 (2 disj.) 3 (1 it.) 3 (5 it.) 3 7 3 3
reverse 3 (2 disj.) 3 (1 it.) 3 (1 it.) 3 7 3 3
strand sort 3 (3 disj.) 3 (5 it.) 7 7 7 3 3
traverse 3 (1 disj.) 3 (1 it.) 3 (1 it.) 3 3 3 3

ls ls trav 3 (1 disj.) 3 (1 it.) – – 7 7 7
ls ls trav rec 3 (1 disj.) 3 (1 it.) – – 7 7 7
tr ls trav 3 (1 disj.) 3 (1 it.) – – 7 7 7
ls tr trav 3 (1 disj.) 3 (1 it.) – – 7 7 7

Table 1: Experimental results of Cricket on example set.

6.2 Conclusion & Future Work

We have presented a new technique for data-driven shape analysis using machine
learning techniques, which can be combined with an off-the-shelf program verifier
to automatically prove memory safety of heap-manipulating programs. Further-
more, we have combined this with a second technique to strengthen such shape
invariants with information about the data contained in the described data struc-
tures. All of our contributions have been implemented in our tool Cricket, whose
experimental evaluation shows that it is able to automatically prove (functional)
correctness of programs that are beyond other state-of-the-art tools.

We plan to extend this work in three aspects. Firstly, we aim to extend Lo-
cust to support the introduction of existential quantifiers that Platypus allows.
Secondly, one aspect of Platypus that still requires manual and skilled work is
feature extraction, which makes it difficult to extend the tool to handle new
inductive separation logic predicates precisely. We would like to automate the
extraction of relevant features for each production rule, and have already made
steps in this direction. We recently introduced Gated Graph Sequence Neural
Networks [28] — a technique that leverages deep-learning techniques to make
the predictions directly on graph-structured inputs instead of feature vectors.
We plan to integrate this into our framework. Initial tests have shown promising
results, but some of the features supported by Platypus (most significantly, dis-
junctive formula predictions) are not yet available in this new method. Finally,
we are interested in integrating our method with interactive program verification
assistants, to support verification engineers in their daily work.
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