
APPENDIX 

This appendix presents the definitions and elementary properties of graphs, 
digraphs and partial orders used in the book. Since we anticipate that most of 
these will be familiar to most readers, we have organized the appendix to facil- 
itate its use as a reference. 

A.1 GRAPHS 

An undirected graph G = (N, E) consists of a set N of elements called nodes 
and a set E of unordered pairs of nodes called edges. Diagramatically a graph 
is usually drawn with its nodes as points and its edges as line segments connect- 
ing the corresponding pair of nodes, as in Fig. A-l. 

A path in a graph G = (N, E) is a sequence of nodes v,, vZ, . . . , vk such that 
[vi, ui+ i] E E for 15 i < k. Such a path is said to connect u1 and vk. For example, 
1, 2, 4, 3, 6, 5 is a path connecting 1 and 5 in Fig. A-l. 

A graph G = (hJ, E) is connected if there is a path connecting every pair of 
nodes. The graph in Fig. A-l is connected. Fig. A-2 illustrates an unconnected 
graph. 

A graph G’ = (N’, E’) is a subgraph of G if N’ G N and E’ 5 E. For exam- 
ple, the graph of Fig. A-2 is a subgraph of that in Fig. A-l. 

A partition of G is a collection G, = (N,, E,), . . . . Gk = (Nk, Ek) of 
subgraphs of G such that each Gi is connected and the node sets of these 
subgraphs are pairwise disjoint; i.e., N; n Nj = {} for l<i+j<k. (We use 
“{ }” to denote the empty set.) Each Gi in the collection is called a component 
of the partition. In this definition we do not require U?=I Nj = N or U:=r 
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N = (1 ,2,3,4,5,6} 

E = {{1,2}, {1,51, v,f+ 12,31, i2,411 
{3,4}, {3,6}, {4,61, {5,6)} 

FIGURE A-l 
A Graph G = (N, E) 

FIGURE A-2 
Unconnected Graph 

E, = E (but U r= ~N,z N and U := IE, EE). Thus the graph in Fig. A-2 is a parti- 
tion of the graph in Fig. A-l, consisting of two components. 

A.2 DIRECTED GRAPHS 

A directed graph (or digraph) G = (N, E) consists of a set N of elements called 
nodes and a set E of ordered pairs of nodes, called edges. Diagrammatically a 
digraph is drawn with points representing the nodes and an arrow from point a 
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E = ((1 I 2)s (2, 3)s 
(4, 6), (5, I)> 

FIGURE A-3 
A Digraph 

to point b representing the edge (a, b). An example of a digraph is shown in 
Fig. A-3. 

A path in a digraph G is a sequence of nodes nr, n,, . . ., tik such that (rzi, 
tzi+ r) E E for 1 I i < k. Such a path is said to be from n, to ?&. By convention a 
single node n constitutes a trivial path. (This is different from an edge from n 
to itself, which is a path from n to n.) A path is simple if all nodes, except 
possibly the first and last in the sequence, are distinct. A cycle is a simple non- 
trivial path where the first and last nodes are identical. For example, 1,2, 3,4, 
6, 5, 1 is a cycle in the digraph of Fig. A-3. If n,, n2, . . . . tik, n1 is a cycle, then 
each edge (ni, ni+ 1) for 1 I i < k and (nk, n,) is said to be a member of or in the 
cycle. A cycle is minimal if for every two nodes n; and nj in the cycle, if (ni, nj) E 
E, then (IZ,, nj) is in the cycle. The previous example is not a minimal cycle be- 
cause 1, 2, 3, 6, 1 is a subsequence of it that is also a cycle (indeed a minimal 
one). 

A.3 DIRECTED ACYCLIC GRAPHS 

A directed acyclic graph or dag is a digraph that contains no cycles. Examples 
of dags are shown in Fig. A-4 and Fig. A-5. A source is a node with no incom- 
ing edges. A dag must necessarily contain at least one source (why?). A dag 
with a unique source is called a rooted dag and the source is called the dag’s 
root. The dag in Fig. A-4 is rooted while that in Fig. A-S is not. 
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FIGURE A-4 
A Rooted Dag 

6 

FIGURE A-5 
A Dag With Many Sources 

If (a, 6) is an edge in a dag, a is called a parent of b and b is a child of a. If 
there is a path from a to b, then a is an ancestor of b and b a descendant of a. 
a is a proper ancestor of b if it is an ancestor of b and a f 6; “proper descen- 
dant” is defined analogously. Note that the acyclicity of a dag implies that a 
node cannot be both a proper ancestor and a proper descendant of another. If 
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FIGURE A-6 
Transitive Closure of a Rooted Dag 

a and b are distinct nodes neither of which is an ancestor of the other, we say 
that a is unrelated to b. 

A topological sort of a digraph G is a sequence of (all) the nodes of G such 
that if a appears before b in the sequence< there is no path from b to a in G. A 
fundamental characterization of dags is provided by Proposition A. 1. 

Proposition A.l: A digraph can be topologically sorted iff it is a dag. q 

For a given dag, there may exist several topological sorts. For example, the dag 
in Fig. A-4 has two topological sorts, namely, 

1, 3, 2,4, 5, 6 and 1, 3, 2,4, 6, 5. 

The transitive closure of a digraph G = (N, E) is a digraph G+ = (N, 
E + ) such that (a, b) E E + iff there is a non-trivial path from a to b in G. Infor- 
mally, G + has an edge anywhere G has a (non-trivial) path. It is easy to show 
that 

Proposition A.2: G f is a dag iff G is a dag. 0 

A more “procedural” definition of transitive closure of a digraph G is: 

begin 
G+ := G; 
whiIe G+ contains edges (a, b) and (b, c) but not (a, c) for some a, 6, c 

in N do add edge (a, c) to G f 
end 
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6 

FIGURE A-7 
Transitive Closure of a Dag with Many Sources 

FIGURE A-8 
A Tree 

The transitive closures of the dags in Fig. A-4 and Fig. A-5 are shown, 
respectively, in Fig. A-6 and Fig. A-7. The added edges are drawn in broken 
lines. A digraph is transitively closed if it is equal to its own transitive closure 
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(i.e., G = G + ). Obviously, the transitive closure of any graph is transitively 
closed. 

A tree is a rooted dag with the additional property that there is a unique 
path from the root to each node. Figure A-8 shows a tree. Ordinarily tree 
edges are drawn without arrows; the implicit direction is “away from the 
root.” Since there is a unique path from the root to each node, this convention 
is unambiguous. 

Also, the uniqueness of the path from the root to a node implies that in a 
tree each node has a unique parent, except for the root, which has no parent at 
all. A node may have several children, however. 

A.4 PARTiAL ORDERS 

A partial order L = (E, < ) consists of a set C called the domain of the partial 
order and an irreflexive, transitive binary relation < on E.’ 

If a < b we say that a precedes b and that b follows a in the partial order. 
If neither of two distinct elements precedes the other, the two elements are 
incomparable in the partial order. 

A partial order L’ = (C’, < ‘) is a restriction of L on domain E’ if E’ s E 
and for all a, b E E’, a < ’ b iff a < b. L’ is a prefix of L, written L’ 5 L, if L’ is 
a restriction of L and for each a E E’, all predecessors of a in L (i.e., all 
elements b E E such that b < a) are also in C’. 

A partial order L = (E, <) can be naturally viewed as a dag G = (N, E) 
where N = E and (a, b) E E iff a < b. That G is acyclic follows from the 
irreflexivity and transitivity of < . To see this, suppose G had a cycle a,, a,, . . . , 
ah, a,. By construction of G, a, <a,, a,< a3, . . . . ak<ul; by transitivity of < , 
a, < a,, contradicting the irreflexivity of <. Moreover, the transitivity of 
< implies that G is a transitively closed graph. 

Conversely, we can construct a partial order L = (E, < ) from a given dag 
G = (N,E)bytakingE = Nanda < biff(a, b)EE+,whereG+ = (N,E+) 
is the transitive closure of G. To verify that L is indeed a partial order, note that 
< is irreflexive (because (a, a) @ E + for any a E N, since G is acyclic), and < is 
transitive (because G + is transitivity closed). 

Thus we can regard a partial order as a dag and vice versa. 

‘A binary relation < on C is irreflexive if, for all a E C, a e a (i.e., “a < a” is false); it is 
transitive if, for all a, b, c E C, and a < b and b < c imply a < c. 
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