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SERIALIZAWLITY THEORY 

2.1 WSTORIES 

Serializability theory is a mathematical tool that allows us to prove whether or 
not a scheduler works correctly. In the theory, we represent a concurrent execu- 
tion of a set of transactions by a structure called a history. A history is called 
serializable if it represents a serializable execution. The theory gives precise 
properties that a history must satisfy to be serializabIe. 

Transactions 

We begin our development of serializability theory by describing how transac- 
tions are modelled. As we said in Chapter 1, a transaction is a particular 
execution of a program that manipulates the database by means of Read and 
Write operations. From the viewpoint of serializability theory, a transaction is 
a representation of such an execution that identifies the Read and Write opera- 
tions and indicates the order in which these operations execute. For each Read 
and Write, the transaction specifies the name, but not the value, of the data 
item read and written (respectively). In addition, the transaction contains a 
Commit or Abort as its last operation, to indicate whether the execution it 
represents terminated successfully or not. 

For example, an execution of the following program 
Procedure P begin 

Start; 
temp : = Read(x); 
temp : = temp + 1; 
Write(x, temp); 
Commit 

end 
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may be represented as: T, [x] --t w, [x] -+ c, . The subscripts identify this particu- 
lar transaction and distinguish it from other transactions that happen to access 
the same data items in the same order-for instance, other executions of the 
same program. 

In general, we use r,[x] (or wJx]) to denote the execution of a Read (or 
Write) issued by transaction T, on data item X. To keep this notation unambig- 
uous, we assume that no transaction reads or writes a data item more than 
once. None of the results in this chapter depend on this assumption (see Exer- 
cise 2.10). We use c, and a, to denote T,‘s Commit and Abort operations 
(respectively). In a particular transaction, only one of these two can appear. 
The arrows indicate the order in which operations execute. Thus in the exam- 
ple, w,[x] follows (“happens after”) r,[x] and precedes (“happens before”) c,. 

As we saw in Chapter 1, a transaction may be generated by concurrently 
executing programs. For example, a program that reads data items x and y and 
writes their sum into z might issue the two Reads in parallel. This type of 
execution is modelled as a partial order. In other words, the transaction need 
not specify the order of every two operations that appear in it. For instance, 
the transaction just mentioned would be represented as: 

This says that w,[z] must happen after both TJX] and rL[y], but that the 
order in which TJX] and ~~[y] take place is unspecified and therefore arbitrary. 

If a transaction both reads and writes a data item X, we require that the 
partial order specify the relative order of Read(x) and Write(x). This is because 
the order of execution of these operations necessarily matters. The value of x 
returned by Read(x) depends on whether this operation precedes or follows 
Write(x). 

We want to formalize the definition of a transaction as a partial ordering 
of operations. In mathematics, it is common practice to write a partial order as 
an ordered pair (C, <), where C is the set of elements being ordered and < is 
the ordering relation. ’ In this notation, we wouId define a transaction T, to be 
an ordered pair (C,, < !), where C, is the set of operations of 7-, and <i indicates 
the execution order of those operations. 

This notation is a bit more complex than we need. We can do away with 
the symbol C by using the name of the partial order, in this case T,, to denote 
both the partial order and the set of elements (i.e., operations) in the partial 
order. The meaning of a symbol that denotes both a partial order and its 
elements, such as T,, will always be clear from context. In particular, when we 
write T,[x] E T,, meaning that r$[x] is an element (i.e., operation) of r,, we are 

‘The definition of partial orders is given in Section A.4 of the Appendix. 
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using Tj to denote the set of operations in the partial order. We are now ready 
to give the formal definition. 

A transaction T, is a partial order with ordering relation <; where 

I. Tj E (ri[x], wi[x] j x is a data item} U (ai, ci}; 

2. ai E T; iff ci 0 T,; 

3. if t is c, or aj (whichever is in TJ, for any other operation ,D E Ti, p <; t; 
and 

4. if T;[x], WJX] E T;, then either Y;[x] <; w;[x] or w;[x] <i ri[x]. 

In words, condition (1) defines the kinds of operations in the transaction. 
Condition (2) says that this set contains a Commit or an Abort, but not both. 
<i indicates the order of operations. Condition (3) says that the Commit or 
Abor.t (whichever is present) must follow all other operations. Condition (4) 
requires that <i specify the order of execution of Read and Write operations 
on a common data item. 

We’ll usually draw transactions as in the examples we’ve seen so far, that 
is, as directed acyclic graph? (dags) with the arrows indicating the ordering 
defined by <i. To see the relationship between the two notations, consider the 
following transaction. 

Formally, this says that T, consists of the oeerations { TJx], r,[y], w,[z], c,> 
and c2 = {(T&I, w[4), (r2bl, w,[zl), (44, 4 (~z[xl, 4, (rhl, cJ~.~ Note 
that we generally do not draw arcs implied by transitivity. For example, the arc 
TJX] --t c, is implied by TJX] + w,[z] and w,[z] + cZ. 

Our formal definition of a transaction does not capture every observable 
aspect of the transaction execution it models. For example, it does not describe 
the initial values of data items or the values written by Writes. Moreover, it 
only describes the database operations, and not, for example, assignment or 
conditional statements. Features of the execution that are not modelled by 
transactions are called uninterpreted, meaning unspecified. When analyzing 
transactions or building schedulers, we must be careful not to make assump- 
tions about uninterpreted features. For example, we must ensure that our anal- 
ysis holds for all possible initial states of the database and for all possible 
computations that a program might perform in between issuing its Reads and 
Writes. Otherwise, our analysis may be incorrect for some database states or 
computations. 

lThe definition of dags and their relationship to partial orders is given in Sections A.3 and A.4 
of the Appendix. 
3A standard notation for a binary relation cz is the set of pairs (x, y) such that x <z y. 
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For example, in the transaction rJx] + w,[x] --t c,, we cannot make any 
assumptions about the initial value of x or the computation performed by T, in 
between the Read and Write. In particular, we cannot tell whether or not the 
Lgalue written into x by the Write depends on the value of x that was read. To 
ensure that our analysis is valid for all interpretations of a transaction, we 
assume that each value written by a transaction depends on the values of all the 
data items that it previously read. To put it more formally, for every transac- 
tion T, and for all data items x and 3: the value written by w)[x] is an arbitrary 
function of the values read by all r,[y] <, w,[x]. 

You may object that the value written by w,[x] might also depend on infor- 
mation supplied to T, by input statements executed before w,[x]. This is true 
and is a good reason for including input statements in transactions. But we can 
take care of this without expanding the repertoire of operations by modelling 
input statements as Reads and output statements as Writes. Each such Read or 
Write operates on a unique data item, one that is referenced by no other opera- 
tion. These data items must be unique to accurately model the fact that a value 
read from or written to a terminal or similar I/O device by one transaction 
isn’t read or written by any other transaction. For example, a Write to a termi- 
nal produces a value that is not read by any subsequent Read on that terminal. 
In this way we can incorporate input and output statements in our model of 
execurions without complicating the model. 

The choice of what information to incorporate in a formal model of a 
transaction and what information to leave out is based on the scheduler’s view 
of the system. Our model includes only those aspects of a transaction that we 
choose to allow the DBS’s scheduler to exploit when trying to attain a se- 
rializable execution. Of course, we must give the scheduler enough informa- 
tion to successfully avoid nonserializable executions. As we will see, we have 
defined transactions in a way that satisfies this requirement. 

Histories 

When a set of transactions execute concurrently, their operations may be inter- 
leaved. We model such an execution by a structure called a history. A history 
indicates the order in which the operations of the transactions were executed 
relative to each other. Since some of these operations may be executed in paral- 
lel, a history is defined as a partial order. If transaction 7, specifies the order of 
two of its operations, these two operations must appear in that order in any 
history that includes T,. In addition, we require that a history specify the order 
of all conflicting operations that appear in it. 

Two operations are said to conjlict if they both operate on the same data 
item and at least one of them is a Write. Thus, Read(x) conflicts with Write(x), 
while Write(x) conflicts with both Read(x) and Write(x). If two operations 
conflict, their order of execution matters. The value of x returned by Read(x) 
depends on whether or not that operation precedes or follows a particular 
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Write(x). Also, the final value of x depends on which of two Write(x) opera- 
tions is processed last. 

Formally, let T = {T,, T,, . . . . T,} be a set of transactions. A complete 
history H over T is a partial order with ordering relation <H where: 

2. H = U:,rT,; 

2. <H 1 U:=r <j; and 

3. for any two conflicting operations p, q E H, either p <H q or q <H p. 

Condition (1) says that the execution represented by H involves precisely 
the operations submitted by T,, T,, . . . . T,. Condition (2) says that the execu- 
tion honors all operation orderings specified within each transaction. Finally, 
condition (3) says that the ordering of every pair of conflicting operations is 
determined by <H. When the history under consideration is clear from the 
context, we drop the H subscript from <H. 

A history is simply a prefix of a complete history.+ Thus a history repre- 
sents a possibly incomplete execution of transactions. As we mentioned in 
Chapter 1, we’ll be interested in handling various types of failures, notably 
failures of the DBS. Such a failure may interrupt the execution of active trans- 
actions. Therefore our theory of executions must accommodate arbitrary his- 
tories, not merely complete ones. We draw histories as dags, employing the 
same conventions as for transactions. 

To illustrate these definitions consider three transactions. 

T, = r,[x] -+ w,[xl --+ cl 

Tj = T,[x] + w~[YI + WA[XI + ~3 
T, = rJy1 * w,[xl + m,[yl + wdzl + ~4 

A complete history over {T,, T3, T4) is 

~,[~l+f4[YI+~3[xl+~3 
t ‘I‘ 

H, = re[y] + ~,[x!+~,[y~-)~~[z]-‘~~ 

A history over the same three transactions (that also happens to be a prefix 
of H,) is 

~&l-w[Yl 
t t 

H,’ = yJy1 -+ ~Jxl-+~~[yI 
t 

%ee Section A.4 of the Appendix for the definition of prefix of a partial order. 
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As usual we do not draw all arrows implied by transitivity. 
We will often deal with histories that are total orders of operations, 

such as: 

We will normally drop the arrows when writing such histories, as in: 

A transaction T, is committed (or aborted) in history H if cj E H (or a, E H). 
?; is active in H if it is neither committed nor aborted. Of course a complete 
history has no active transactions. Given a history H, the committed projec- 
tion ojH, denoted C(H), is the history obtained from H by deleting all opera- 
tions that do not belong to transactions committed in H.’ 

Note that C(H) is a complete history over the set of committed transac- 
tions in H. If H represents an execution at some point in time, C(H) is the only 
part of the execution we can count on, since active transactions can be aborted 
at any time, for instance, in the event of a system failure. 

2.2 SERIALIZABLE HISTORIES 

Histories represent concurrent executions of transactions. We are now ready to 
characterize serializable histories, that is, histories that represent serializable 
executions. Recall that an execution is serializable if it’s equivalent to a serial 
execution of the same transactions. Our plan is to 

L define conditions under which two histories are equivalent; 

TJ define conditions under which a history is serial; and 

tl define a history to be serializable if it is equivalent to a serial one. 

Equivalence of Histories 

We define two histories H and H’ to be equivalent (=) if 

1. they are defined over the same set of transactions and have the same 
operations; and 

2. they order conflicting operations of nonaborted transactions in the 
same way; that is, for any conflicting operations p, and q, belonging to 
transactions T, and T, (respectively) where d,, ~7, $J H, if p, <H q1 then 
Pi <H’ q,.” 

“More formall): C(H) is the restriction of H on domain UCsE~ T, (cf. Section A.4 of the 
Appendix.) 
“Nore that this Implies: pI <,f q, iff ii, <ii’ q, (why?). 
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H, = ~*bl + 7,[Yl - w,[xl - w,[xl - Cl 

\ / 
w&l 

r2[z3 - Ll\ 
’ c2 

H, = 
7,[xl - 

/ w[xl , 

/ 

rIbI, 
AYI ’ c’ 
T 

72[zl - 

w2bl 

WL[YI y 
’ c2 

FlGURE 2-l 
Example Histories 
H2 and H3 are equivalent, but H4 is not equivalent to either. 

The idea underlying this definition is that the outcome of a concurrent execu- 
tion of transactions depends only on the relative ordering of conflicting opera- 
tions. To see this observe that executing two nonconflicting operations in 
either order has the same computational effect. Conversely, the computational 
effect of executing two conflicting operations depends on their relative order. 

For example, given the three histories shown in Fig. 2-1, H2 E H, but H, is 
not equivalent to either. (Keep in mind the orderings implied transitively by the 
arrows shown.) 

Serializable Histories 

A complete history H is serinl if, for every two transactions T, and T, that 
appear in H, either all operations of Ti appear before all operations of T, or 
vice versa. Thus, a serial history represents an execution in which there is no 
interleaving of the operations of different transactions. Each transaction 
executes from beginning to end before the next one can start. 

We’ll often denote a serial history over (T,, T,, .., T,,} as Tj, Tii . . . Tj,, 
where i,, i,, . . . . i, is a permutation of 1, 2, . . . . IZ. This means that Ti, appears 
first in the serial history, T;, second, and so on. 

At this point we would like to define a history H to be serializable if it is 
equivalent to some serial history H,. This would be a perfectly reasonable defi- 
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nition if H were a collzplete history. Otherwise there are problems. First, there 
is an artificia1 problem in that a partial history can never be equivalent to a 
serial one. This is because serial histories must be complete by definition, and 
two histories can be equivalent only if they contain the same set of operations. 
But even assuming for the moment that we did not insist on serial histories 
being complete, we would still have a problem-a problem of substance and 
not mere definition. Namely, an incomplete execution of a transaction does not 
necessarily preserve the consistency of the database. Thus, serializability 
would be an inappropriate correctness condition if it merely stated that a 
history be computationally equivalent to a serial execution of some possibly 
partial transactions, since such a history does not necessarily represent a 
consistency preserving execution. 

We are therefore Ied to a slightly more complex definition of serializability. 
Although more complex, the definition is still natural and, most importantly, 
sound. A history H is serializable (SR) if its committed projection, C(H), is 
equivalent to a serial history H,. 

This takes care of the problems, because C(H) is a complete history. More- 
over, it is not an arbitrarily chosen complete history. If H represents the execu- 
tion so far, it is really only the committed transactions whose execution the 
DBS has unconditionally guaranteed. All other transactions may be aborted. 

2.3 THE SERIALIZABILITY THEOREM 

We can determine whether a history is serializable by analyzing a graph derived 
from the history called a serialization graph. Let [-I be a history over T = {T,, 
..‘) TN). The serialization gritph (SC) for H, denoted SG(H), is a directed 
graph whose nodes are the transactions in T that are committed in H and 
whose edges are all T, -+ T, (ifj) such that one of 7,‘s operations precedes 
and conflicts with one of T,‘s operations in H. For example: 

~I[X]-w3[X]-+CI 
/ 

H, = rL~~l~,~~l~~,bl-+~~ 

YJX]+WL[yJ-)f~ 

SG(H,) = T,qT, 

The edge T, + T, is in SG(H,) because UJ~[X] < r,[x], and the edge TL + I, 
is in SG(H,) because r,[x] < ZU~[X]. Notice that a single edge in SG(H3) can be 
present because of more than one pair of conflicting operations. For instance, 
the edge TL -+ I, is caused both by rl[x] < w,[x] and u~~[y] < x~,[Y]. 

In general, the existence of edges T, -+ T, and T, -+ Tk in an SG does not 
necessartly imply the existence of edge T, --t 7-h. For instance, with UJ,[Z] 
replacing w,[x] in T,, SG(H,) becomes 



2.3 THE SERIALIZABILITY THEOREM 33 

since there is no conflict between T, and T,.; 
Each edge Ti + T, in SC(H) means that at least one of Tis operations 

precedes and conflicts with one of T,‘s. This suggests that T, should precede Tj 
in any serial history that is equivalent to H. If we can find a serial history, H,, 
consistent with all edges in SG(H), then H, s H and so H is SR. We can do this 
as long as SG(H) is acyclic. 

In our previous example, SG(H,) is acyclic. A serial history where transac- 
tions appear in an order consistent with the edges of SG(H,) is T2 T, T,. Indeed 
this is the only such serial history. You can easily verify that H, is equivalent to 
T2 T, T, and is therefore SR. We formalize this intuitive argument in the 
following theorem-the fundamental theorem of serializability theory. 

Theorem 2.1: (The Serializability Theorem) A history H is serializable iff 
SG(H) is acyclic. 

Proof: (if) Suppose H is a history over T = ( T,, T,, . . . , T,}. Without 
loss of generality, assume T,, T,, . . . . T,, (m I n) are all of the transactions 
in T that are committed in H. Thus T,, TL, . . . , T,,, are the nodes of SG(H). 
Since SG(H) is acyclic it may be topologically sorted.* Let i,, . . . . i, be a 
permutation of 1, 2, . . . . m such that Ti,, T;>, . . . . Ti,,t is a topological sort of 
SG(H). Let H, be the serial history Ti, TiL . . . Ti,,,. We claim that C(H) E H,. 
To see this, let pi E Ti and qj E Tj, where T,, Tj are committed in H. 
Suppose pi, qj conflict and pi <H ql. By definition of SG(H), Ti + T; is an 
edge in SC(H). Therefore in any topological sort of SG(H), T, must appear 
before Tje Thus in H, all operations of T, appear before any operation of 
Tj, and in particular, pi <H, qj. We have proved that any two conflicting 
operations are ordered in C(H) in the same way as H,. Thus C(H) = H, 
and, because H, is serial by construction, H is SR as was to be proved. 

(only if) Suppose history His SR. Let If, be a serial history equivalent to 
C(H). Consider an edge T, + Tj in SG(H). Thus there are two conflicting 
operations pi, qj of T,, Tj (respectively), such that pi <H qj. Because C(H) 
- = H,, pi <H, qj. Because H, is serial and et in T; precedes qj in T,, it follows 
that T, appears before Tj in H,. Thus, we’ve shown that if Ti + Tj is in 
SG(H) then T; appears before Tj in H,. Now suppose there is a cycle in 
SG(H), and without loss of generality let that cycle be T, + T, + . ..-+ Tb 
-+ T,. These edges imply that in H,, T, appears before 7’, which appears 
before T, which appears . . . before Tk which appears before T,. Thus, the 
existence of the cycle implies that each of T,, T2, . . . . Tk appears before 

‘We say that two transactions conJict if they contain conflicting operations. 
8See Section A.3 of the Appendix for a definition of “topological sort of a directed acyclic 
graph.” 
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itself in the serial history H,, an absurdity. So no cycle can exist in SG(H). 
That is, SG(H) is an acyclic directed graph, as was to be proved. q 

From the proof of the “if” part of this theorem we see that if a complete history 
H has an acyclic SG(H), then H is equivalent to any serial history that’s a topo- 
logical sort of SG(H). Since the latter can have more than one topological sort, 
H may be equivalent to more than one serial history. For instance, 

has the serialization graph 

SG(H,) = T? 

which has two topologica1 sorts, T,, T,, T, and T,, T,, TL. Thus H, is equiva- 
lent to both T, T2 Tj and T, T, T2. 

2.4 RECOVERABLE HISTORIES 

In Chapter 1, we saw that to ensure correctness in the presence of failures the 
scheduler must produce executions that are not only SR but also recoverable. 
We also discussed some additional requirements that may be desirable- 
preventing cascading aborts and the loss of before images-leading us to the 
idea of strict executions. Like serializability, these concepts can be conveniently 
formulated in the language of histories. 

A transaction T, reads data item x from Tl if Tj was the transaction that 
had last written into x but had not aborted at the time 7, read x. More 
precisely, we say that T, rends x from T, in history H if 

1. q[xl < Td2: 1; 
2. a1 Q r,[x19 and 

3. if there is some wk[x] such that zu,Jx] < wk[x] < r,[x], then ak < Y,[x]. 

We say that T, reads from Tj in H if T, reads some data item from Tl in H. 
Notice that it is possible for a transaction to read a data item from itself (i.e., 
WJXI < ~J[Xl). 

A history H is called recoverable (RC) if, whenever T, reads from r, 
(i # j) in H and c, E H, c1 < c,. IntuitiveIy, a history is recoverable if each trans- 
action commits after the commitment of al1 transactions (other than itself) 
from which it read. 

A history H avoids cascading aborts (ACA) if, whenever 7-, reads x from T, 
(i # j), c, < rJx]. That is, a transaction may read only those values that are 
written by committed transactions or by itself. 

‘p Q q denotes that operation p does not precede q in the partial order. 
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A history His strict (ST) if whenever wj[x] < OJX] (i # j), either aj < o,[x] 
or cj < o;[x] where o;[x] is Yi[x] or wi[x]. That is, no data item may be read or 
overwritten until the transaction that previously wrote into it terminates, 
either by aborting or by committing. 

We illustrate these definitions using the following four histories, over 
transactions: 

H, = w,[xl w,[YI ~L[~I w&l ~JYI WAYI wk CI ~2 

H, = w,[xl WEYI ?;[ul WAXI w,[zl cl rAyI w,[yl cz 

H,, = w,[xl WJYI maul 44 ~1 w[xl rAyI WAYI ~2 

H, is not an RC (i.e., recoverable) history. To see this, note that T, reads y 
from T,, but c, < c,. H, is RC but not ACA (i.e., does not avoid cascading 
aborts), because T, reads y from T, before T, is committed. H, is ACA but not 
ST (i.e., strict), because T, overwrites the value written into x by T, before the 
latter terminates. H,, is ST 

In the remainder of this section, we will use RC, ACA, ST, and SR to 
denote the set of histories that are recoverable, avoid cascading aborts, are 
strict, and are serializable (respectively). Our next theorem says that recover- 
ability, avoiding cascading aborts, and strictness are increasingly restrictive 
properties. 

Theorem 2.2: ST C ACA C RC 

Proof: Let H E ST. Suppose Ti reads x from Tj in H (i # j). Then we 
have wj[x] < T~[x] and aj 4 T;[x]. Thus, by definition of ST, Cj < Y~[x]. 
Therefore H E ACA. This shows that ST G ACA. History H, (above) 
avoids cascading aborts but isn’t strict, implying ST + ACA. Hence ST c 
ACA. 

Now let H E ACA, and suppose Ti reads x from Tj in H (i + j) and c; E 
H. Because H avoids cascading aborts, we must have wj[x] < cj < T~[x]. 
Since c; E H, T~[x] < c; and therefore cj < ci, proving H E RC. Thus ACA 
G RC. History H, (above) is in RC but not in ACA, proving ACA # RC. 
Hence ACA c RC. 0 

SR intersects all of the sets RC, ACA, and ST, but is incomparable to each 
of them.l” The relationships among the four sets are illustrated in Fig. 2-2 by a 
Venn diagram. The diagram shows where histories H, - H,, belong. All inclu- 
sions shown in Fig. 2-2 are proper (see Exercise 2.7). 

loTwo sets are incomparable if neither is contained in the other. 
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~- - 

All histories 

FIGURE 2-2 
Relationships between Histories that are SR, IX, ACA, and ST 

Figure 2-2 illustrates that there exist histories that are SR but not RC. In a 
DBS that must correctly handle transaction and system failures (as most must 
do), the scheduler must enforce recoverabihty (or the even stronger properties 
of cascadeIessness or strictness) in addition to serializability. 

We conclude this section with an important observation. A property of 
histories is called prefix commit-closed if, whenever the property is true of 
history H, it is also true of history C(H’), for any prefix H’ of H. A correctness 
criterion for histories that accounts for transaction and system failures must be 
described by such a property. To see this, suppose that H is a “correct” history, 
that is, one that could be produced by a correct scheduler. Hence, any prefix 
H’ of H could also be produced by the scheduler. But suppose at the time H’ 
had been produced, the DBS failed. Then, at recovery time, the database 
should reflect the execution of exactly those transactions that were committed 
in H’ that is, it should reflect the execution represented by C(H’). If the DBS is 
to handle transaction and system failures, C(H’) had better be a “correct” 
history too. 

It is easy to verify that RC, ACA, and STare indeed prefix commit-cIosed 
properties (Exercise 2.9). As shown in the following theorem, serializability 
is too. 
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Theorem 2.3: Serializability is a prefix commit-closed property. That is, 
if H is an SR history, then for any prefix H’ of II, C(H’) is also SR. 

Proof: Since H is SR, SG(H) is acyclic (from the “only if’ part of Theorem 
2.1). Consider SG(C(H’)) where H’ is any prefix of II. If T; + T1 is an edge 
of this graph, then we have two conflicting operations pi, q1 belonging to 
Tj, Tj (respectively) with pI < c(H’) qj. But then clearly el <H qj and thus the 
edge T; -+ Tj exists in SC(H) as well. Therefore SG( C( H’)) is a subgraph of 
SG(H). Since the latter is acyclic, the former must be too. By the “if” part 
of Theorem 2.1, it follows that C(H’) is SR, as was to be proved. q 

2.5 OPERATIONS BEYOND READS AND WRITES 

In Chapter 1 we assumed that Read and Write are the only operations that 
transactions can perform on the database. However, neither the theoretical nor 
practical results presented in this book depend very much on this assumption. 
To help us understand how to treat a more general set of operations, let’s 
reexamine serializability theory with new operations in mind. 

Suppose we allow other database operations in addition to Read and 
Write. If transactions can interact through these operations, then these opera- 
tions must appear in histories. Since every pair of conflicting operations in a 
history must be related by < , we must extend the definition of conflict to 
cover the new operations. The definition should be extended so that it retains 
the essence of conflict. Namely, two operations must be defined to conflict if, 
in general, the computational effect of their execution depends on the order in 
which they are processed. I’ The computational effect of the two operations 
consists of both the value returned by each operation (if any) and the final 
value of the data item(s) they access. If we extend the definition of conflict in 
this way, the definition of equivalent histories will remain valid in that only 
histories with the same computational effect will be defined to be equivalent. 

The definition of SG remains unchanged. Moreover, since the proof of Theo- 
rem 2.1 only depends on the notion of conflict, not on the nature of the opera- 
tions, it remains unchanged too. That is, a history is SR iff its SG is acyclic. 

So, to add new operations in addition to Read and Write, the only work 
we need to do is to extend the definition of conflict. 

For example, suppose we add Increment and Decrement to our repertoire 
of operations. Increment(x) adds 1 to data item x and Decrement(x) subtracts 
1 from X. (This assumes, of course, that x’s value is a number.) An Increment 
or Decrement does not return a value to the transaction that issued it. We 
abbreviate these operations by incJx] and c!ec,[ x], where the subscript denotes 
the transaction that issued the operation. Since transactions can interact 

“Note the qualification “in general” in this phrase. For example, one can think of particttlar 
Write operations that access the same data item and do not conflict, such as two Writes that 
write the same value. However, in general, two Writes on the same data item do conflict. 
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Read Write Increment Decrement 

FIGURE 2-3 
A Compatibility Matrix 

through Increments and Decrements (via Reads and Writes), Increments and 
Decrements must appear in histories. 

We define two operations to conflict if they operate on the same data item 
and either at least one of them is a Write, or one is a Read and the other is an 
Increment or Decrement. We can conveniently express which combinations of 
operations conflict by a table called a compatibility matrix. The compatibility 
matrix for Read, Write, Increment, and Decrement is shown in Fig. 2-3, A “y” 
entry indicates that the operations in the corresponding row and column are 
compatible (i.e., do not conflict), while an “n” indicates that they are incom- 
patible (i.e., conflict). Take a moment to convince yourself that the computa- 
tional effect of executing two operations (as defined previously) depends on 
the order in which they were processed iff there is an “n” in the row and 
column combination corresponding to the operations. 

A history that uses these operations is given below along with its SG. 

Since SG(H,,) is acyclic, the generalized Serializability Theorem says that H,, is 
SR. It is equivalent to the serial history T, T3 TL T,, which can be obtained by 
topologically sorting SG(H,,). 

2.6 VIEW EQUIVALENCE 

This section explores another notion of history equivalence. To introduce it, 
let’s rethink the concept from first principles. 
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We want to define equivalence so that two histories are equivalent if they 
have the same effects. The effects of a history are the values produced by the 
Write operations of unaborted transactions. 

Since we don’t know anything about the computation that each transac- 
tion performs, we don’t know much about the value written by each Write. All 
we do know is that it is some function of the values read by each of the transac- 
tion’s Reads that preceded the Write. Thus, if each transaction’s Reads read the 
same value in two histories, then its Writes will produce the same values in 
both histories. From this observation and a little careful thought, we can see 
that (1) if each transaction reads each of its data items from the same Writes in 
both histories, then all Writes write the same values in both histories, and (2) if 
for each data item x, the final Write on x is the same in both histories, then the 
final value of all data items will be the same in both histories. And if all Writes 
write the same values in both histories and leave the database in the same final 
state, then the histories must be equivalent. 

This leads us to the following definition of history equivalence. The final 
write of x in a history H is the operation wi[x] E H, such that a; g H and for any 
wj[x] E H (j + i) either wj[x] < wi[x] or a, E N. TWO histories II, H’ are equiva- 
lent if 

1. they are over the same set of transactions and have the same operations; 

2. for any Ti, Tj such that ai, aj E If (hence a;, aj P H’) and for any x, if Ti 
reads x from Tj in H then Ti reads x from Tj in H’ and 

3. for each x, if wi[x] is the final write of x in H then it is also the final 
write of x in H’. 

As we’ll see later, this definition of equivalence is somewhat different from 
the one we’ve used so far, so to distinguish it we’ll give it a different name, view 
equivalence (since, by (2), each Read has the same view in both histories). For 
clarity, we’ll call the old definition conflict equivalence (since it says that two 
histories are equivalent if conflicting operations of unaborted transactions 
appear in the same order in both histories). 

View equivalence will be very useful in Chapters 5 and 8 for our formal 
treatment of concurrency control algorithms for multicopy data. 

*View Serializability’* 

In Section 2.2 we defined a history H to be serializable if its committed projec- 
tion, C(H), is (conflict) equivalent to some serial history. We can use the defini- 
tion of view equivalence in a similar manner to arrive at a new concept of 

lZThe asterisk before this section title means that the rest of this section goes deeper into 
serialfzability theory than is needed to understand succeeding nontheoretical sections (cf. the 
Preface). 
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serializability. Specifically, we define a history H to be view serializable (VSR) 
if for any prefix H’ of H, C(H’) is view equivalent to some serial history, For 
emphasis we’ll use conflict serjaalizable (CSR) for what we have thus far simply 
called serializable. 

The reason for insisting that the committed projection of every prefix of H 
(instead of just the committed projection of H itself) be view equivalent to a 
serial history is to ensure that view serializability is a prefix commit-closed 
property. Consider, for instance, 

C(H),) = H,? and is view equivalent to T, Tz T,. However, if we take H’,L to be 
the prefix of H,, up to and including c,, we have that C(H’,,) is not view equiva- 
lent to either T, T, or T2 T,. Thus we wouldn’t get a prefix commit-closed 
property if we had defined view serializability by requiring only that the 
committed projection of that history itself be equivalent to a serial history.” As 
discussed at the end of Section 2.2, this would make view serializability an 
inappropriate correctness criterion in an environment where transactions or 
the system are subject to failures. 

The two “versions” of serializability are not the same. In fact, as the 
following theorem shows, view serializability is a (strictly) more inclusive 
concept. 

Theorem 2.4: If H is conflict serializable then it is view serializable. The 
converse is not, generally, true. 

Proof: Suppose H is conflict serializable. Consider an arbitrary prefix H’ 
of H. By assumption, C(H’} is conflict equivalent to some serial history, 
say H,. We claim that C( H’) is view equivalent to H,. Clearly, C( H’) and H, 
are over the same set of transactions and have the same operations (since 
they are conflict equivalent). It remains to show that C(H’) and H, have 
the same reads-from relationships and final writes for all data items. 
Suppose T, reads x from T, in C(H’). Then, w,[x] <c(H’) T,[x] and there is 
no wk[x] such that w,[x] <c[H’) wk[x] < QH,) T,[x]. Because w,[x], T,[x] 
conflict with each other and wk[x] conflicts with both, and because C(H’) 
and H, order conflicting operations in the same way, it follows that ZL;,[X] 
<H, ri[x] and there is no u?h[x] such that w,[x] <H. wk[x] <H, Y,[x]. Hence 
T, reads x from 7J in H,. If T, reads x from T, in H,, then the same argu- 
ment implies T, reads x from T, in C(H’). Thus C(H’) and H, have the 
same reads-from relationships. Because Writes on the same data item 
conflict and C( H’) and H, order conflicting operations in the same way, the 

“In case of con,f7ict serializability, hobvever, requiring that rhe committed projection of the 
history be conflict equivalent to a serial history was sufficient to ensure prefix commit closure 
(see Theorem 2.3). 



BIBLIOGRAPHIC NOTES 41 

two histories must also have the same final write for each data item. C(H’) 
and H, are therefore view equivalent. Since H’ is an arbitrary prefix of H, 
it follows that H’ is view serialiiable. 

To show that the converse is not, generally, true, consider 

H,, = wEx1 dxl WJYI cz w[yl w,[xl w[yl ~3 w,[zl ~1. 

H,, is view serializable. To see this, consider any prefix H’,, of H,,. If H:, 
includes c, (i.e. H’,, = H,,, it is view equivalent to T, T2 T3; if H:, includes 
c, but not c,, it is view equivalent to T2 T3; if H’,, includes c2 but not c3, it is 
view equivalent to T2; finally, if H:, does not include c2 it is view equivalent 
to the empty serial history. However, H,, is not conflict serializable because 
its SG, shown below, has a cycle. 

SGW,,) = 

Even though view serializability is more inclusive than conflict 
serializability, there are reasons for keeping the latter as our concurrency 
control correctness criterion. From a practical point of view, all known concur- 
rency control algorithms are conflict based. That is, their goal is to order 
conflicting operations in a consistent way, and as a result produce only conflict 
serializable histories. From a theoretical standpoint, it is hopeless to expect 
efficient schedulers to be based on view serializability Technically, it can be 
shown that an efficient scheduler that produces exactly the set of all view 
serializable histories can only exist if the famous P=NP? problem has an 
affirmative answer. This is considered very unlikely, as it would imply that a 
wide variety of notoriously difficult combinatorial problems would be solvable 
by efficient algorithms. 

Thus, in the rest of the book we continue to use the terms equivalent and 
serializable (histories) to mean conflict equivalent and conflict serializable 
(histories), unless otherwise qualified. 

BlBLlQGRAPHlC NOTES 

Virtually all rigorous treatments of concurrency control use some form of the history 
model of executions. See [Bernstein, Shipman, Wong 791, [Gray et al. 751, 
[Papadimitriou 791, and [Stearns, Lewis, Rosenkrantz 761. An extensive treatment of 
serializability theory appears in [Papadimitriou 861. 

The definition of equivalence and serializability used here and the Serializability Theo- 
rem are from [Gray et al. 7.51. View equivalence and view serializability are defined in 
[Yannakakis 841. Recoverability, avoidance of cascading aborts, and strictness are de- 
fined in [Hadzilacos 831 and [Hadzilacos 861. See also [Papadimitriou, Yannakakis 851. 
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[Papadimitriou 791 proves rhat no efficient scheduler can output all view serializable 
histories, unless P=NI? (For the P= NP? question see [Garey, Johnson 791.) 

EXERCISES 

2.1 Let H, and H, be totally ordered histories. Define a (symmetric) rela- 
tion - between such histories as follows: 

HI - Hz iff H, = p,pr . . . pi-i pr pi+ 1 . . . pn and 
H? = P,P~ . . . pi-1 P,+I P, pi+? . . . in 

where pi, pi+ i are operations such that either the operations do not conflict 
or (at least) one of the two transactions issuing the operations is aborted in 
H, (and hence in H?). Extend - to arbitrary (not necessarily totally 
ordered) histories as follows: 

HI - H, iff there exist totally ordered histories 
H’,, H> compatible with H,, H, (respectively), such that H’, - H>. 

(fit is compatible with H if they have the same operations and p <H q 
implies p <H. 4). Finally, define = to be the transitive closure of -. 
That is, 

H= E-l’ iff there exist histories H,, H?, . . . , Hk (k L 1) such that 
H = H, - H: - . . . - Hk = H’. 

Prove that H’ E H iff H = H’. 
2.2 Prove that if two histories are equivalent then their serialization 

graphs are identical. 

2.3 The converse of Exercise 2.2 is obviously not true. For example, the 
histories w,[x] w,[x] and w,[y] wz[y] have the same serialization graph but 
are clearly not equivalent. Is the following, stronger version of the 
converse in Exercise 2.2 true: If histories H and H’ are over the same set of 
transactions, have the same operations, and have the same serialization 
graphs, then H E H’. 

2.4*14 A blind write is a Write on some data item x by a transaction that did 
not previously read X. Suppose we insist that transactions have no blind 
writes. Formally, this means replacing condition (4) in the definition of 
transaction (cf. Section 2.1) by the stronger 

(4’) if w,[x] E T, then 7,[x] E T, and r,[x] <i w,[x]. 

Prove that under this assumption a history is view serializable iff it is 
conflict serializable. 

‘“Starred exercises are not necessarily difficult, but require knowledge of starred sections in the 
text. 
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2.5” Prove that if H and H’ are complete, recoverable, and view equivalent 
histories then they are conflict equivalent. Also prove that the require- 
ments “complete and recoverable” are necessary for the truth of this 
statement. 

2.6’” A view graph of history H is a directed graph with nodes correspond- 
ing to the committed transactions in H and edges defined as follows: 

a. if T;, Tj are committed transactions such that Tj reads from T, then Ti 
+ Tj is an edge in the view graph, and 

b. if Ti, Tj, Tk are committed transactions, Tj reads x from Ti and Th 
writes x then either Tk + T; or Tj --f Tk is an edge in the view graph. 

As can be seen from (b), there may be several view graphs corresponding 
to the history H. Prove that H is view serializable iff for every prefix H’ of 
H, C(H’) has some acyclic view graph. 

2.7” The following Venn diagram summarizes the relationships among the 
five sets of histories defined in Chapter 2. 

All histories 

Hi2 
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Prove that all regions in the diagram represent non-empty sets by provid- 
ing example histories H, - H,,. 

2.8 In a draft of a proposed standard on commitment, concurrency and 
recovery (ISO, “Information Processing-Open Systems Interconnection- 
Definition of Common Application Service Elements-Part 3: Commit- 
ment, Concurrency and Recovery,” Draft International Standard ISO/DIS 
8649/3) the following definition of concurrency control correctness is 
given (p. 6): 

Concurrency control [ensures] that an atomic action is nor committed unless 

1, all atomic actions which have changed the value of a datum prior to its period 
of use by this atomic action have committed; and 

2. no change has been made to the value of a datum during its period of use, 
except by [...I this atomic action. 

The period of use of a datum by an atomic action is defined as “the time 
from first use of the datum by [. ..] the atomic action to the last use of that 
datum by the atomic action.” 

In our terminology an atomic action is a transaction and a datum is a 
data item. 

a. What did we call condition (1) in this chapter? 
b. Express this definition of concurrency control as conditions on his- 

tories. 
c. How does the above, definition of concurrency control relate to 

serializability and recoverability? (Is it equivalent, stronger, weaker or 
unrelated to them?) 

d. Suppose we define the period of use of a datum by an atomic action as 
the time from the first use of the datum by the atomic action to the 
time of the action’s commitment or abortion. How does this change 
affect your answer to (c)? 

2.9 Prove that RC, ACA, and STare prefix commit-closed properties. 
2.10 Redefine the concept of “transaction” in serializability theoretic terms 

so that each transaction T, can read or write a data item more than once. 
To do this, you need to distinguish two Reads or Writes by T,, say by 
another subscript, such as T,~[x] and rJac 1. Using this modified definition 
of “transaction,” redefine each of the following terms if necessary: 
complete history, history, equivalence of histories, and serialization graph. 
Prove Theorem 2.1, the Serializability Theorem, for this new model, 

2.11 Using the modified definition of “transaction” in the previous prob- 
lem, redefine the concept of view equivalence and prove Theorem 2.4, 
that conflict serializable histories are view serializable. 

2.12 Two transactions are not interleaved in a history if every operation of 
one transaction precedes every operation of the other. Give an example of 
a serializable history H that has all of the following properties: 
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a. transactions T, and TL are not interleaved in H; 
b. T, precedes T, in H; and 
c. in any serial history equivalent to H, Tz precedes T,. 

The history may include more than two transactions. 
2.13 Prove or disprove that every history H having the following property 

is serializable: If p;, q1 E: H and pi, qj conflict, then Ti and Tj are not inter- 
leaved in H. (See Exercise 2.12 for the definition of interleaved.) 
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