
Filo: consolidated consensus as a cloud service

Parisa Jalili Marandi Christos Gkantsidis Flavio Junqueira Dushyanth Narayanan
Microsoft Research, Cambridge, UK

Abstract
Consensus is at the core of many production-grade dis-

tributed systems. Given the prevalence of these systems,
it is important to offer consensus as a cloud service. To
match the multi-tenant requirements of the cloud, con-
sensus as a service must provide performance guaran-
tees, and prevent aggressive tenants from disrupting the
others. Fulfilling this goal is not trivial without over-
provisioning and under-utilizing resources.

We present Filo, the first system to provide consensus
as a multi-tenant cloud service with throughput guaran-
tees and efficient utilization of cloud resources. Tenants
request an SLA by specifying their target throughput and
degree of fault-tolerance. Filo then efficiently consol-
idates tenants on a shared set of servers using a novel
placement algorithm that respects constraints imposed
by the consensus problem. To respond to the load vari-
ations at runtime, Filo proposes a novel distributed con-
troller that piggybacks on the consensus protocol to co-
ordinate resource allocations across the servers and dis-
tribute the unused capacity fairly. Using a real testbed
and simulations, we show that our placement algorithm
is efficient at consolidating tenants, and while obtain-
ing comparable efficiency and fairness, our distributed
controller is ∼ 5x faster than the centralized baseline ap-
proach.

1 Introduction

Distributed consensus is a problem where several pro-
cesses must agree on a common value [11]. Consen-
sus is used by many systems to elect leaders [43, 38,
31], access shared objects [9], and order transactions in
replicated services [44, 30, 8]. Consensus protocols are
complex and difficult to implement correctly. Because
of this difficulty, systems such as ISIS [7], Chubby [9],
Apache ZooKeeper [23], and OpenReplica [46] offer
consensus as a black box service.

Why consensus as a cloud service. Consensus is at the
heart of many distributed applications that are or will be-
come cloud residents. Hence, offering consensus as a
simple-to-use cloud service will relieve people from the
hurdles of developing and maintaining it. Similarly to
systems such as key-value stores that are ubiquitously
available as cloud services [13, 10, 3], we envision a fu-
ture where consensus is available as a cloud offering.
Why consolidated consensus. The key to a cloud
provider’s success is reducing server footprint; this
means reduced costs for the provider and also for the
users. Sharing computing, storage, and network re-
sources is essential for decreasing the number of servers.
Our goal then is to consolidate consensus instances of
many tenants (users) and deploy them on shared servers.
Sharing is advantageous: reserved but under-utilized re-
sources can be (temporarily) re-allocated to other tenants
who demand higher performance at runtime, and prices
can be accordingly adjusted. Re-allocations are impos-
sible if tenants are promised dedicated resources. When
sharing, it is essential to dynamically adjust allocations at
real time to minimize the durations for which resources
remain idle, and to use techniques that prevent aggressive
tenants from monopolizing the resources.
Filo. Thus, to successfully offer consensus as a cloud
service we should (a) design a simple API, (b) efficiently
and fairly utilize shared servers, and (c) ensure perfor-
mance isolation among tenants. We propose Filo, a
multi-tenant consensus service that provides throughput
SLA guarantees and meets these requirements. Filo’s
API is intuitive: users specify their SLAs in application-
level request rates, and choose from a range of reliabil-
ity options by specifying the number of replicas and the
durability mode of their data (i.e., storing data in mem-
ory, or on stable storage), and thus trade performance or
price for reliability.

Filo co-locates replicas of various tenants on shared
servers (consolidation). To consolidate, we have de-
signed a novel placement algorithm that packs replicas,



while respecting SLAs and the constraints imposed by
the properties of the consensus protocols (e.g., replicas
of a tenant are placed on distinct servers to resist fail-
ure). Filo uses an empirical approach similar to [26, 1]
to translate the high level SLAs specified by the users to
low level resource costs (i.e., CPU, network bandwidth,
storage IO). Our placement algorithm uses these values
to select servers that will host the replicas.

Consolidating replicas on shared servers raises an im-
mediate concern with performance isolation. Filo guar-
antees performance isolation by rate limiting requests us-
ing multi-resource token buckets [1]. Filo dynamically
calculates and tunes the budgets of these token buckets.

Anecdotal evidence suggests that tenants may mis-
estimate their SLA requirements. To account for these
inaccuracies, Filo monitors resource utilization at run-
time and fairly re-distributes free resources among the
tenants using a distributed controller. Centralized con-
trollers are popular due to their accuracy at efficient re-
source allocations. However, the overhead of these tech-
niques is also well-understood: all the servers in a clus-
ter must transfer their status to the centralized controller
regularly, and computations must be performed over a
rather large set of data. Our contribution here is the de-
sign of a distributed controller that eliminates this over-
head and yet results in highly efficient resource alloca-
tions. In a system such as Filo, where a tenant’s replicas
are placed on a rather small subset of servers (i.e., 3, 5), a
distributed controller has a high opportunity for calculat-
ing allocations that compete closely with the centralized
techniques. To coordinate resource allocations across the
servers, our distributed controller leverages the underly-
ing consensus connections to transfer its messages.
Contributions. To summarize, in addition to building
consolidated consensus as a cloud service, this paper
makes the following contributions: (i) we propose an
API that simplifies user’s interactions with the system
and abstracts away low level resource specifications that
are needed for efficient replica placement, (ii) we design
a novel placement algorithm to efficiently pack replicas
on a shared set of servers while respecting the constraints
imposed by consensus protocols, and (iii) we design a
new distributed controller that dynamically, fairly, and
efficiently adjusts resource allocations at runtime.
Results. We have implemented consolidated consen-
sus and evaluated its performance in various workloads.
These evaluations are essential for bounding feasible
SLAs and translating SLAs to resource costs. We have
thoroughly evaluated our placement algorithm and the
distributed controller. Our placement algorithm effi-
ciently places replicas on the servers while allocating
above 98% of the resources. And our distributed con-
troller converges to allocations with 95% efficiency of
the centralized techniques while being ∼ 5x faster.

2 Consensus in Filo

Consensus enables a set of processes (replicas) to reach
agreement on some value [11]. Consecutive execution of
consensus produces a log of ordered entries. Each entry
indicates the request that must be executed next in the
sequence by the application. Filo provides consensus as
a service by assigning to each tenant a set of replicas.
We refer to each such set that executes consensus and
orders the requests as a consensus group, and to the size
of this group as replication degree. To be fault tolerant,
replicas of a tenant must be placed on distinct servers.
We differentiate between a server and a replica. A server
is a physical machine and can host multiple replicas.

Separating ordering from execution. Tenants use
Filo only for the ordering and durability guarantees. It
is left to the tenants to execute their ordered requests, as
Filo is agnostic to user-application semantics and treats
requests as arbitrary bytes. Separating ordering from the
execution has been the subject of previous studies [51, 8,
28]. This design choice is of crucial importance to Filo
as it targets a diverse collection of cloud residents each
with their own specific applications. Thus, we differenti-
ate between the servers on which tenant applications are
running (execution) and the servers on which Filo is run-
ning (ordering). We assign a dedicated cluster of servers
to Filo which is not used by other applications. 1 Thus
since tenant applications are outside the boundaries of
Filo, they are free to use their desired caching or replica-
tion mechanisms, while using Filo only for the ordering
and durability of their requests.

Consolidated consensus using Chain Replication.
Filo implements consensus using Chain Replication [42].
Each tenant is assigned a chain composed of n replicas
to which we will refer as tenant replicas. These are de-
ployed on Filo’s server cluster. Chain Replication or-
ganizes replicas on a chain and distinguishes between
head and tail replicas. Clients send their write and read
requests to the head and tail replicas respectively; thus
both of these replicas communicate with the clients. To
simplify the management of the client connections, and
without affecting correctness, here we replace chain with
a ring. The tail sends an ack to the head replica when a
write request is finalized. Read and write requests are all
received by the head. We refer to the replicas other than
the head as followers. Note that we do not dedicate one
server to each tenant replica, but rather servers are shared
among the replicas belonging to various chains. We refer
to this as the consolidated deployment of the chains.

Why Chain Replication. Majority-based protocols
such as Paxos [30] need 2 f +1 replicas to tolerate f fail-

1Dedicating a cluster to a critical service such as Filo is important
to protect its performance.

2



ures. Higher number of replicas enhances liveness but
not performance. Given the importance of resource ef-
ficiency, we prefer protocols that achieve similar perfor-
mance with fewer replicas. Chain Replication is one such
protocol that with f +1 replicas tolerates f failures. But
unlike Paxos, to make progress it requires all the replicas
to be non-faulty. Because of its efficiency we have cho-
sen Chain Replication to implement consensus. Despite
this the choice of a consensus protocol is orthogonal to
the focus of this paper and the techniques proposed in
this paper are generalizable to others.

Failures. When replicas in a chain fail, the chain must
be reconfigured before it can resume its operation with
the initial degree of resiliency. As in [42], here failures
are detected and resolved by an external replicated mas-
ter. In our consolidated model there is only one master
that is shared by all the chain instances. This is similar
to Vertical Paxos [32] where many groups exists in the
system and a master handles reconfigurations for all of
them (see § 4.1 for more details).

Assumptions. We assume a crash-recovery failure
model and exclude byzantine failures. Network is asyn-
chronous with a possibility of message loss and arbitrary
delays. We deploy consensus groups in in-mem, or per-
sistent durability modes. In the latter, logs are made
durable on a storage device. The system needs f + 1
replicas to tolerate f failures.

Logger. To manage the logs, we have designed a sub-
system similar to Bookkeeper [2] called Logger. Logger
implements group commit with a buffer for receiving re-
quests. As the number of concurrent requests increases,
buffers transmit more data to the storage device with ev-
ery fluch, and, hence, efficiency increases (without being
subject to timeouts). Compared with random writes, Se-
quential writes benefit the most from group commit; thus
we have one sequential log per server to which requests
from all tenants are appended. Logger constantly and
in the background prepares per-replica logs on a second
storage device. Our servers must be provisioned by at
least two storage devices for better performance.

3 System Design

Filo’s main components are: (a) a simple API that al-
lows tenants to specify their performance and reliability
requirements, and (b) rate limiters and the resource allo-
cator that manage server resources.

API. A new applicant starts by submitting an admis-
sion request to the Admission Controller (AC), a central
component of the system. An admission request contains
the following attributes:

(durability mode,replication degree,

request size, throughput SLA)
(1)

Durability mode is either in-mem or persistent; repli-
cation degree is the number of requested servers; the
throughput SLA is the application-level request rate for
requests of a fixed size (request size). (For brevity, we
omit attributes related to user account and other authen-
tication information.) If the admission request can be sat-
isfied by Filo the applicant is admitted to the system, af-
ter which it becomes a tenant. The tenant is given a han-
dle to its consensus group, which will be used for submit-
ting requests. Filo guarantees rates up to the throughput
SLA, and can also accommodate higher rates if there is
available capacity (see § 4.2 for more details).2 The ten-
ants submit read or write requests. Writes trigger consen-
sus and are appended to the log (see § 2). Reads retrieve
previously ordered data from the log. The throughput
SLA agreed above is the sum of read and write requests.
Writes are more expensive than reads as they are prop-
agated to other replicas. Hence we concentrate on the
write requests.

Rate limiters. To enforce throughput SLAs, Filo in-
stalls rate limiters in the form of multi-resource token
buckets [49, 1] on the servers that host head replicas of
the consensus groups and also on the external servers on
which tenant applications execute. The token budget for
each tenant is determined based on the request size spec-
ified in its admission request (1). Note that tenants are
not prohibited from varying their request size at runtime.
SLAs apply only to the initial request sizes, however. To
prevent this variation from affecting other tenants, a re-
quest passes through the system if token buckets have
sufficient tokens; requests of different sizes translate to
different amount of tokens. Moreover, Filo constantly
monitors resource usage at runtime (see below) and ad-
justs the budgets dynamically.

Resource allocator. The most important element of
Filo is the resource allocator which is composed of two
entities: an admission controller that executes the admis-
sion phase, and a distributed controller that executes the
work conservation phase. During the admission phase,
admission controller runs a placement algorithm to effi-
ciently place tenant replicas on the servers. Placement is
done based on the translation of the admission requests
to resource usages (CPU, network bandwidth, storage
IO), which is done using an empirical strategy; prior to

2Before launching Filo, we extensively evaluate its performance un-
der various workloads to find its peak performance. Peak performance
caps the range of SLAs that Filo can promise to its users. For example
if we can order 10 reqs/sec at best, we can not admit an applicant that
asks for 11 reqs/sec.

3



launching the service, we extensively benchmark the sys-
tem to build a performance profile. During the work con-
servation phase, the distributed controller monitors re-
source utilization and adjusts the allocations to absorb
the exceeding demands of its tenants.

4 Resource Allocator

Filo’s objective is to offer consensus as a service while
providing SLA guarantees, and fairly and efficiently al-
locating CPU, network, and storage resources. To ac-
complish these goals, it is essential to manage replica
placement when admitting tenants, to dynamically adjust
resource allocations at runtime, and to control the rates
at which tenants submit their requests. We have designed
resource allocator to handle these tasks. We next define
the concepts and constraints of our problem, and then
present our algorithms for implementing the resource al-
locator via the admission and work conservation phases.

Definitions. Let S be a set of m servers, each with k
resources. Let (r1, ...,rk) be a resource vector. Each
server has two vectors Rno and R for the nominal and
free amount of its resources (r ∈ R≥0, and Rno is con-
stant). Let A and T be the set of applicants and tenants.
An applicant turns to a tenant if it is admitted to the sys-
tem. Let nt be the replication degree of tenant t. Tenant t
has a demand profile P, which is a set of nt demand vec-
tors (one vector per replica). Demand vector p specifies
the resources needed by one replica. Let Fa, feasibility
region of applicant a, be the set of servers that can be
considered for placing its replicas. Let Et be the set of
the elected servers at the end of t’s admission (|Et |= nt ).

Example setup. To simplify the description of our al-
gorithms in the next sections, we outline a hypotheti-
cal example setup here. Assume 4 servers and 3 re-
sources as CPU (count), network bandwidth (Gbps), and
storage IO (IOps). Resource vectors of our servers are
R1 = (2,2,250), R2 = (2,2,400), R3 = (8,4,100), R4 =
(4,2,250). We assume 2 applicants with 2 replicas each,
and resource profiles as shown in Table 1.3

Constraints. Resource allocator is subject to the fol-
lowing constraints:
• Cons1. A replica is indivisible; all the values in its

vector are demanded from exactly one server, and it is
placed if there exists a server to satisfy it.

• Cons2. An applicant is indivisible; an applicant is ad-
mitted if there is a set of servers that can host all of its
replicas.

• Cons3. To cope with failures a server can host at most
one replica of an applicant.
3In Chain Replication the head replica is loaded more than the other

roles. Similarly in Paxos protocol, the replica that plays the coordinator
role demands more resources than the others.

Applicant Replica CPU Net-bw Storage IO

a1

p1 1 1 100
p2 3 1 100

p1 + p2 4 2 200

a2

p1 3 4© 100
p2 1 1 150

p1 + p2 4 5 250

R1 +R2 +R3 +R4 16 10 1000

Table 1: Example setup

Note. Algorithms designed in this section are inspired by
DRF [20] due to its fairness criteria: when dividing mul-
tiple goods among many suppliants the goal is to max-
imize each suppliant’ share, while equalizing the share
of their most demanded good. Moreover, DRF is com-
putationally light which is essential for making quick re-
source adjustments (see § 7).

4.1 Admission Phase
Admission phase is executed by the admission con-

troller (AC), which analyzes admission requests and finds
servers to place replicas. We propose a placement algo-
rithm that efficiently places replicas on shared servers.
Our algorithm runs until all applicants are admitted to
the system or denied admission if satisfying their SLAs
is infeasible. As described in § 3 an applicant uses Filo’s
API to specify its desired SLA and reliability require-
ments, which are then translated to CPU, network, and
storage usage and saved as its demand profile. Using
these profiles at each iteration the algorithm must decide:
(a) which applicant, (b) which replica of the selected ap-
plicant, and (c) which server, to consider next in its al-
locations so to be efficient. Our choices are based on 3
policies that we explain next with the rational for each:
(POa). To maximize resource usage, we prioritize the
applicant with the highest dominant share. To get an ap-
plicant’s dominant share: we divide the aggregated re-
source demand of its replicas by the total free amount
of resources in the system, and choose the highest value
(see Eq 2). In the above example we prioritize applicant
a2 with the dominant share of 5/10 (see Table 1).
(POb). For the selected applicant, we prioritize the
replica with the highest dominant share. If there is no
server to fit the heaviest replica, there is no point in fit-
ting the others. To get a replica’s dominant share: we di-
vide its demand by the total free amount of the resources
in the system, and choose the highest value among the
resources. In the above example we prioritize a2’s first
replica with the dominant share of 4/10 (due to its net-
work bandwidth, note the circle in Table 1).
(POc). To place the selected replica, we prioritize the
servers with more free resources. The rational is to even-
tually balance resource utilization across the servers.

4



Placement Algorithm. Alg. 1 encapsulates our con-
straints and policies in more detail. The dominant share
of applicant a (line 2) is obtained as follows. Be-
fore the admission, the feasibility region of an appli-
cant is the entire server cluster, hence, its dominant share
must be calculated without constraining the server set.
Thus we compute the global amount of free resources
as Rg = ∑∀s∈S Rs. We use a similar formula to calculate
Pa

g for applicant a (in the example Rg = (16,10,1000),
Pa1

g = (4,2,200), and Pa2
g = (4,5,250), as in Table 1).

Then we use Eq 2 to calculate a’s dominant share:

Da =
k

max
i=1
{(Pa

g)i/(R
g)i} (2)

(e.g., Da2 is 5/10). Rg and Pa
g remain constant during the

execution of the algorithm. Thus, the dominant shares of
the applicants are calculated once at the beginning. Sim-
ilarly, Dp, dominant share of replica p (line 5) is calcu-
lated using Eq 2, where pi replaces (Pa

g)i. To find the
most free servers we calculate servers’ dominant shares
(line 20) relative to their nominal capacity using Eq 3:

Ds =
k

max
i=1
{(Rno

s −Rs)i/(Rno
s )i} (3)

i.e., dominant share of a server is determined by its most
consumed resource. As Rs is modified frequently, at the
end of an admission, Ds is recalculated to respect POc
(line 15). Updating Ds at the middle of an admission is
unnecessary as the elected servers are removed from the
feasibility region to respect Cons3 (line 24). Resource
usage across the servers is gradually equalized (POc) us-
ing ElectServer. Once an applicant is admitted (i.e., all
of its replicas are placed), Filo activates token buckets
and assigns their budgets based on the agreed SLA.

Failures. A chain is disrupted if any of its replicas fails.
We invoke ElectServer on demand to replace failed repli-
cas. Replacing failed replicas is prioritized over admit-
ting new applicants. As moving correct replicas is un-
necessary, the overhead of resuming the chain is con-
fined to placing only the failed replicas. To restore the
initial degree of resiliency we must also fetch the logs
from the correct replicas (recovery). Recovery consumes
resources and may impact the performance of the other
tenants. An approach to preventing this issue is to always
leave a fraction of the server resources unallocated. De-
termining this value is a trade off between recovery time
and resource efficiency. A larger value speeds up the re-
covery, but reduces the efficiency of resource utilization
at failure-free intervals. This value must be determined
based on the frequency of failures and the uptime guar-
antees. If failures occur when all the servers are fully
allocated, it will be impossible to place the failed repli-
cas. To avoid this problem, similar to Cheap Paxos [33],
we reserve a small subset of the servers as auxiliary that
are used for placing failed replicas.

Algorithm 1 Placement (executed by AC)
1: while A 6= /0 do {run until all applicants are addressed}
2: pick applicant a ∈ A with highest dominant share {POa}
3: Fa← S
4: while Pa 6= /0 do {run until all replicas of a are addressed}
5: pick replica p ∈ Pa with highest dominant share {POb}
6: ElectServer (p) {see line 18}
7: if replica p is not placed then
8: ∀s ∈ Ea: update Rs {redeem resources}
9: A← A\{a} {Cons2: a is rejected if any replica is not

placed}
10: exit loop and goto (1)
11: else {replica p is placed}
12: Pa← Pa \{p}
13: end
14: // if here, all replicas of applicant a are placed successfully
15: ∀s ∈ Ea : update Ds {POc}
16: A← A\{a} {a is admitted}
17: end

18: ElectServer (p):
19: while Fa 6= /0 do
20: pick server s ∈ Fa with the lowest dominant share {POc}
21: if p≤ Rs then {Cons1: a server is found to place replica}
22: Rs = Rs− p
23: Ea← Ea∪{s} {update the set of elected servers}
24: Fa← Fa \{s} {Cons3}
25: exit and return (replica p is placed)
26: end
27: return (replica p is not placed) {no server is found}

4.2 Work Conservation Phase
Tenants that have miss-estimated their SLAs at ad-

mission time, will need resources above or below their
reservations at runtime. Filo monitors usage at runtime
and temporarily re-distributes resources to address miss-
estimations. Filo’s objective at this phase is to frequently
and fairly adjust allocations, and maximize global uti-
lization without over-allocating. This phase executes in
control intervals of a few seconds. After the resource ad-
justments, budgets of the token buckets must also be up-
dated properly. Filo assigns either the idle or the unallo-
cated resources to the demanding tenants. To understand
the difference note that we only used the unallocated re-
sources to admit tenants. Some tenants may not use all
of their resources at runtime; these are allocated but un-
used resources. Idle resources include both the unallo-
cated and the unused ones. Thus, by allocating from idle
resources, Filo has more resources to (re-)use, but is sub-
ject to temporary SLA violations, which cannot happen
by allocating only from unallocated resources. Accept-
ing this risk is a decision left to Filo’s operator, to which
our algorithms are agnostic.
Example setup extended. We elaborate on our example
from previous section to clarify this phase. Lets assume
a1’s admission SLA is 100 reqs/sec that is equivalent to

5



the resource usage shown in Table 1. Thus for example
on replica p1 each request costs (0.01 CPU, 0.01 Gbps,
1 storage IO). At runtime, a1 realizes that in addition to
100 requests, it needs to submit 10 more reqs/sec (110
in total). This phase tries to maximize the number of
additional requests it can grant to a1, called its utility,
while being fair to all the other tenants that demand extra
requests (note that at the end we may only be able to
grant 3 requests to a1, although it wishes for 10).

More precisely, we define utility(t) to be the number of
t’s extra granted requests at runtime. During this phase,
t’s feasibility region is limited to Et : in other words ex-
tra requests are granted if sufficient free resources on Et
exist (Cons4). Computing new allocations quickly is cru-
cial for reducing the intervals in which resources remain
idle. In the next section we first show how this phase
can be done using a centralized algorithm (§ 4.2.1). Cen-
trally controlling and re-assigning resources is computa-
tionally intensive; moreover, its overhead increases with
the size of the system (see § 6). To alleviate this over-
head, we propose two new distributed algorithms (Sec-
tions 4.2.2 and 4.2.3). Our key insight in designing dis-
tributed algorithms is: servers do not need global visibil-
ity over all the other servers to dynamically adjust alloca-
tions as each tenant’s replicas are placed on a small set of
servers. Servers that manage the same consensus group
need to coordinate with each other; hence, servers coor-
dinate locally, and they do not need a centralized oracle.
The distributed controller implements those algorithms.

4.2.1 Centralized DRF (C-DRF)
As a baseline, we first illustrate C-DRF (Alg. 2). C-DRF

maximizes tenant utilities while equalizing their dom-
inant shares. Differently from DRF [20], C-DRF takes
the indivisibility of the demand profiles into account
and is subject to Cons4, which is not previously ad-
dressed [20, 18]. C-DRF has two inputs, vector ~R and
set T. To produce ~R, we concatenate the free resource
vectors of the servers, |~R| = m× k (in our example
~R = (2,2,250, 2,2,400, 8,4,100, 4,2,250)). Simi-
larly, we extend t’s demand profile as:

~Pt = p1 . p2 . .. . pm (4)

Any server not in Et is presented by ~0 in Eq 4
(assume a1 is admitted to Ea1 = {1,3} then in
the granularity of one request we have ~Pa1 =
(0.01,0.01,1, 0,0,0, 0.03,0.01,1, 0,0,0)): recall that
the feasibility region of a tenant during this phase is re-
stricted to the servers it is placed on.4 We use Eq 5 to
calculate t’s dominant share (line 3):

Dt =
k×m
max
i=1

(~Pt×utility(t))i/(
~R)i (5)

4For simplicity we have not modified servers’ resource vectors.
Note that after admission servers have fewer resources.

In this formula utility(t) is multiplied by each member of
~Pt, producing a new vector of size m× k. As utility(t) is
updated after each allocation (line 6), Dt must be recal-
culated (line 7). Servers periodically send their Rs vec-
tors to AC, which centrally executes C-DRF. T in Alg. 2
includes only the tenants that request extra resources at
runtime.

As we will see in § 6.3, C-DRF is computationally in-
tensive. In the next two sections we propose two efficient
distributed algorithms.

Algorithm 2 C-DRF (~R,T )

1: ∀t ∈ T : utility(t) = 0
2: while T 6= /0 do
3: pick tenant t with the lowest dominant share
4: if ~Pt ≤ ~R then
5: ~R = ~R− ~Pt
6: utility(t) = utility(t)+1
7: update Dt
8: else
9: T ← T \ t {Et is saturated relative to t}

10: end

4.2.2 Head-DRF
Head-DRF (Alg. 3), our first distributed algorithm, is

composed of two phases. During the allocation phase
utilities are calculated by the head servers only using a
local execution of C-DRF, and disseminated to the fol-
lowers for voting. At voting phase followers cast their
votes by prioritizing the allocations that maximize their
local resource utilization (POd).5

Allocation Phase is executed by all the head servers in
parallel. Server s is a head server if it hosts the head
replica of at least one tenant. Server s uses Eq 6 to cal-
culate its perspective of free resources in the cluster, ~Rs:

~Rs = R1 . R2 . .. . Rm (6)

Any server that has no tenant in common with s is pre-
sented by ~0 in Eq 6. (|~Rs| = k×m). Each server pe-
riodically sends its R vector to all the servers that host
the head replicas of its tenants. Demand profiles are ex-
tended using Eq 4, and their dominant shares are calcu-
lated using Eq 5, where ~Rs replaces ~R. Head servers use
this data to execute C-DRF locally, and compute the utili-
ties. Head servers then calculate the potential allocations
for each tenant (ut -line 4), and propose them to the rel-
evant followers. The proposed allocation for tenant t is
accepted only if all the servers in Et vote for its accep-
tance (lines 3—6).

Given that head servers lack the global visibility over
the entire cluster and may concurrently consider com-
mon servers for allocations, server resources maybe

5NTP is used to synchronize control intervals, allocation, and voting
phases.

6



over-allocated. The voting phase is designed to reduce
the amount of over-allocations to zero.
Voting Phase is executed by all the servers in parallel.
Each server receives exactly one proposal, ut , for each
of its tenants. At the beginning of the voting phase a
server has received the proposals for all the tenants for
which it hosts one of their replicas. Servers follow POd
to cast their votes by prioritizing the tenant with the high-
est dominant share (line 9). Dominant shares are calcu-
lated by Eq 5, where ~Rs replaces ~R. A server accepts
a proposal only if sufficient free resources are available
(line 10). Proposed allocations are unbreakable, meaning
that servers can only vote for the whole allocation (ut ).

Followers are at the intersection of the disconnected
perspectives of the head servers. By voting based on their
local free resources, they protect themselves from over-
allocations. Rejecting full proposals (ut ), however, might
induce a low utilization of the servers. We next propose
All-DRF to alleviate this inefficiency.

Algorithm 3 Head-DRF
1: Ths: is the set of tenants that their head replica is on s.

2: Allocation Phase: Executed by s ∈ S if s is head for some t

3: {utility(t)}← C-DRF(~Rs,Ths)
4: ∀t ∈ Ths : ut = (Pt ×utility(t)) ,
5: propose(ut) to t’s followers ,
6: accept(ut) if all replicas voted accept

7: Voting Phase: Exe. by ∀s ∈ S

8: while true do
9: pick ut with the highest dominant share {POd}

10: if ut ≤ Rs then {else reject}
11: Rs = Rs−ut
12: vote(ut ,accept)
13: end

4.2.3 All-DRF
All-DRF (Alg. 4) is also composed of two phases. Dif-

ferently from Head-DRF:
Allocation Phase is executed by all servers in paral-
lel (hence the name). Each server executes C-DRF lo-
cally and sends its utilities to the relevant head servers.
Differently from Head-DRF, servers propose utilities
(utilityt ) rather than the full allocations (ut ). Similarly
to Head-DRF there is a high chance of over-allocation,
which is eliminated during the voting phase.
Voting Phase is executed by the head servers only. For
each t, a head server chooses the minimum of the utili-
ties proposed by all the servers in Et . As we will see in
the experiments the allocations obtained by All-DRF are
often closer to C-DRF.

4.2.4 Comparison
Communication complexity. We compare complexi-

ties of our algorithms assuming that at the start of a con-

Algorithm 4 All-DRF
1: Ts: is the set of tenants that any of their replicas is on s.
2: Allocation Phase: Executed by all s ∈ S

3: {utility(t)}← C-DRF(~Rs,Ts)
4: ∀t ∈ Ts : propose(utility(t)s) to t’s head server

5: Voting Phase: Exec. by s ∈ S if s is head for some t
6: ∀t ∈ Ths : utility(t) = min∀s∈Et

{utlity(t)s}

trol interval, servers have sent their Rs vectors to AC in
C-DRF and to head servers in Head-DRF. Assuming that
tenants send their runtime profiles to AC, one commu-
nication step is sufficient to finalize the allocations for
C-DRF: (1) AC runs C-DRF, and broadcasts its allocations
to head servers and tenants, to tune their token buck-
ets. Assuming that tenants send their runtime profiles to
head servers, 3 steps are necessary to finalize the alloca-
tions for both Head-DRF and All-DRF. In Head-DRF: (1)
head servers run C-DRF and broadcast their allocations to
the followers, (2) followers send their votes to the head
servers, and (3) head servers summarize the votes, tune
their token buckets, and inform tenants. All-DRF is mea-
sured similarly.

A B

C

D

E

t
2

t
1

t
3

t
4

t
5

10 10

10

10

10

t
6

Figure 1: An example scenario for § 4.2.4

Efficiency. Distributed algorithms may diverge from
the centralized approach. Consider All-DRF in Fig 1,
with 5 servers each with 1 resource of 10 free units.
t1 as (1,1,1,0,0) is placed on [A,B,C(head)], and t2 as
(1,0,0,1,1) on [A,D(head),E]. At the end of the alloca-
tion phase, C,D,E assign 10, A assigns 5, and B assigns
2 utilities to their tenants (B is shared by other tenants).
Head servers in parallel finalize the allocations: t2 and t1
receiving 5 and 2 utilities each. A has 3 free units that t2
could use in an ideal situation (the values can be easily
obtained by walking through the algorithm). Our evalua-
tions will show that this inefficiency is negligible due to
the large number of tenant replicas packed on a server.

4.3 Coordinating the two phases
To avoid over-allocation of the resources due to the

concurrent execution of the admission and work conser-
vation phases, AC notifies the elected servers before fi-
nalizing the admissions. If the servers have simultane-
ously allocated their resources, they either immediately
terminate their allocations or ask AC to delay the admis-
sions until the temporary allocations expire.

7



External Logger
Internal

Tx Rx

Tenants

1

1

4

2

3

1 Writes to Head

2 Traffic between replicas

Rate
Controller

3 Acks from tail to head 4 Responses to tenants

Figure 2: Internal architecture of a replica server. Dashed
arrows refer to inter-server communications.

5 Implementation

Filo is written in C/C++ (11.5 KLOC). Each server is
implemented as a pipeline of 3 multi-threaded stages
(Fig 2). The external stage handles connections of ten-
ants with the head replicas. The Logger stage persists
data on the storage device, and the internal stage han-
dles connections among servers. The number of threads,
MPL (Multi Programming Level) at each stage is 1 to
4. Each server also has a thread for the distributed con-
troller. Communications among the stages is based on
shared memory. We optimized network performance by
using jumbo frames (8968 B), by disabling Nagle algo-
rithm, and by enabling Receive Side Scaling (RSS) [24].
In some experiments, the RSS mapping resulted in an un-
even distribution, at which point despite the availability
of free cores the performance was capped. We also im-
plemented a simulator in C/C++ (2.5 KLOC) to test the
resource allocator in larger configurations.

6 Evaluation

We evaluate Filo’s performance in failure-free scenarios.
In § 6.1 we extensively evaluate performance under vari-
ous workloads, which is needed for bounding SLA guar-
antees, and calculating costs. Then we feed our findings
into the simulator and evaluate the placement algorithm
(§ 6.2), and the distributed controller (§ 6.3) with various
number of applicants. In § 6.4 we demonstrate the effect
of our resource allocator in the testbed.

Testbed. We ran the experiments in a cluster of
10 Dell DCS7220N servers each with two 10-core In-
tel(R) Xeon(R) CPU E5-2470 v2, 2.40 GHz CPUs, a
10 Gbps Mellanox ConnectX-3 Pro NIC, and 128 GB of
RAM with hyper threading enabled (due to the admin-
istrative requirements disabling hyper threading was not
an option.) and two HDDs (Seagate ST2000NM0033-
9ZM175). Our servers use Microsoft Windows Server
2012 Data center. Unless mentioned otherwise, we
ran each experiment for 60 seconds. Our graphs report
the average application-level throughput in number of
reqs/sec (throughput in network bandwidth can be di-

rectly calculated), total CPU utilization, and CPU uti-
lization of the busiest logical core on one selected server.

6.1 Service benchmarking
Fig 3 shows Filo’s performance in the following setup.
Setup. We vary request sizes from 64 B to 32 KB, and

MPL from 1 to 4 for in-mem and persistent modes. In
the persistent mode data is asynchronously transferred
to the storage device and 2 (with MPL ≤ 2) and 4 (with
MPL ≥ 3) threads are created by the Logger(s). Tenants
send their requests in an open loop bounded by a pending
window (e.g., with a window of 10, a tenant can have at
most 10 outstanding requests). We varied window size
until peak performance was reached. In each setting the
number of tenants is equal to MPL, and each has 3 repli-
cas on 3 servers. Note that requests of a specific tenant
at any given point must be handled by one thread at most
for safety. One thread, however can handle the requests
of many tenants. Each vertical CPU bar shows the total
CPU (horizontal line) and the CPU of the busiest core.

General Results. The in-mem mode has higher
throughput than the persistent mode, as the latter is
capped by the capacity of the storage device and the
Logger’s CPU. The in-mem mode has lower latency (1-5
msec) than the persistent mode (1-8 msec).

In-mem mode. As MPL increases, throughput in-
creases for 64 B-4 KB requests. For 8 KB-32 KB re-
quests, throughput increases when MPL (number of ten-
ants effectively) increases from 1 to 2, and then drops:
as the number of tenants increases, so does the num-
ber of outstanding requests; resources used for receiv-
ing requests are now spent for receiving requests from
new tenants, exchanging new acks, and responses. As
an example for in-mem, 2 KB, MPL = 3, and throughput
of 150 Kreq/s, in addition to 150K requests, 150K acks,
and 150K responses are transmitted among the servers,
and to the tenants respectively (overhead not shown in
the graphs). Often one core is saturated by the interrupts
caused by sending and receiving network messages.

Persistent mode. Throughput increases as MPL in-
creases. With MPL≤ 2 each server has only one Logger,
through which all the threads in the storage stage transfer
their requests to the disk. When MPL increases from 1 to
2, group commit improves and throughput increases (the
reason our throughput surpasses IoMeter [25]). Logger
is a point of synchronization, and eventually saturates its
core for the≤2 KB requests and disk’s bandwidth for re-
quests≥4 KB. To scale with MPL≥ 3 we added a second
Logger to each server (latency was 1-8 msec).

Aiding the admission phase. We use our numbers to
bound (a) SLAs, and (b) the number of tenants with spe-
cific admission requests that can be packed on a server.
To understand (a) notice that for example Filo can at most
promise 76 K (64 B, in-mem) reqs/sec to a single tenant.

8



0

40

80

120

160

200

T
h
r
 
(
K
 
r
e
q
/
s
) MPL-1

MPL-2

MPL-3

MPL-4

IoMeter

 0

 20

 40

 60

 80

 100

.06 1 2 4 8 16 32

In-mem Persistent

.06 1 2 4 8 16 32

Request size in KB

C
P
U
 
(
%
)

Figure 3: Evaluating Filo’s performance.

0

2

4

6

8

0.06 1 2 4 8 16 32

In-mem

M
a
x
-
C
P
U
(
%
)
(

×1
0
0
0
)

MPL-1

MPL-2

MPL-3

MPL-4

0

2

4

6

8

0.06 1 2 4 8 16 32

Persistent

Request size in KB

M
a
x
-
C
P
U
(
%
)
(

×1
0
0
0
)

Figure 4: CPU costs, Y-axis is magnified by
1000 for readability (§ 6.1.1).

Promising SLAs above this value to one tenant is mean-
ingless: requests of a specific tenant must be handled
sequentially, therefore the peak SLA for a tenant is de-
termined by MPL = 1. In other words, multiple threads
in a replica can not handle the same tenant’s requests. To
understand (b) notice that for example a server can pro-
cess 170 K (64 B, in-mem) reqs/sec at most. Thus the
aggregate SLAs of all the tenants on one server for 64 B
reqs should not exceed this value.

6.1.1 Calculating Resource Costs
We use our numbers from § 6.1 to estimate the costs

of different workloads on CPU, network bandwidth, and
storage IO, which are used for translating SLAs to re-
source costs.

CPU. We use Fig 3 to obtain the costs on the saturated
CPU as shown in Fig 4. Y-axis is magnified by a fac-
tor of 1000 for readability. The cost on the total CPU
can be obtained similarly. For all MPL the overhead on
the CPU increases as the size of the requests increases.
Larger requests result in higher number of interrupts and
therefore higher cost on the CPU; this is because larger
requests are broken into more frames (note MTU). The
CPU cost in the persistent mode is higher than in-mem
due to Logger’s overhead.

Storage IO. Throughputs in Fig 3 benefit from the
group commit offered by Logger. We must exclude this
benefit when the system is not highly loaded. Thus to
calculate storage costs we use IoMeter’s values instead.
At its maximum, IoMeter measures ∼40 K IOs for 1-
8 KB requests. With a peak value of 40 K IOs, requests
≤ 8 KB translate to one IO each. 16 KB and 32 KB
requests translate to 2 and 4 IOs respectively. To under-
stand note that for 16 KB and 32 KB requests, IoMeter

measures 20 K and 10 K IOs respectively. Given that
Logger writes each request twice (spread across two stor-
age devices), we multiply the number of IOs by 2 .

Network bandwidth. To calculate network costs we
use request sizes directly (e.g., a 1 KB request costs 1 KB
network bandwidth).

Inaccuracies in the cost model. The assessment space
of a complex system such as Filo is extremely large, and
Fig 3 covers only a tiny fraction of this space. Hence,
calculating costs using only Fig 3 is prone to inaccura-
cies that can lead to SLA violations. To prevent SLA
violations we can base our admission decisions on x %
of the peak throughput. For example if Filo can provide
76 K (64 B, in-mem) reqs/sec, with x as 80% a tenant can
at most be promised ≈ 60 K reqs/sec. If x is chosen con-
servatively, resources will be under-allocated, but work
conservation phase will compensate for it.

Generalizing costs. For workloads not covered by our
evaluations costs are obtained by scaling.

Recalculating costs. As the hardware specifications
or the implementation changes, performance must be re-
assessed, and cost estimations must be recalculated.

6.2 Admission Phase
We use our simulator to evaluate the placement algo-

rithm (§ 4.1) in on-line and off-line settings; applicants
arrive one at a time in the former and all at once in the
latter. We order tenants with increasing and decreasing
dominant shares in on-line and off-line settings respec-
tively, to account for the worst and best cases for each.

Setup. We assume 10 servers and up to 150 applicants
with a mixture of requirements. We use uniform distribu-
tions to choose durability mode (in-mem or persistent),
requests sizes (64 B to 32 KB), and replication degree

9



0

100

200
O
n

Servers
Tenants

 0

 25

 50

1 50 100 150

O
f
f

(1)

Replicas

 0

 10

 20

 30
Rep/Ser

 0

 3

 6

1 50 100 150

(2)

 0

 50

 100

CPU

 0

 50

 100

1 50 100 150

(3)

Net-bw
Storage-IO

Figure 5: Placement algorithm in on-line and off-line settings. X-axis shows the number of applicants (§ 6.2).

(3,5,7). To simulate our testbed characteristics the SLA
for each applicant is bound by our evaluations in § 6.1
(e.g., with 64 B, in-mem the peak SLA an applicant can
be promised is 76 K reqs/sec). Replica placement on
each server is bound by our numbers from Fig 3. We
use our cost model from § 6.1.1 to translate admission
requests to resource profiles.

Results. Fig 5 shows results in 3 graphs. Left: num-
ber of used servers, admitted tenants, and replicas; Mid-
dle: number of replicas per server (average, 95% con-
fidence interval); Right: percentage of free resources at
the end of the admission phase. In both on-line and off-
line modes the applicants are denied admission if any of
the resources (in this case, CPU) is saturated. In the on-
line mode as the number of applicants increases, fewer
tenants are admitted but the number of replicas increases
(e.g., with 150 applicants, ≈ 200 replicas are packed on
10 servers). On-line case admits more tenants and packs
more replicas. As expected, off-line mode selects fewer
applicants but the ones that maximize resource utiliza-
tions. Although off-line results in more efficient alloca-
tions (Fig 5(right)), it is hard to know the list of appli-
cants a priori. In both cases our placement algorithm is
efficient and all the 10 servers are efficiently utilized.

6.3 Work Conservation Phase
We use our simulator to compare C-DRF, Head-DRF

and All-DRF for computation and communication over-
heads, utilization, fairness, and SLA violations in the on-
line setup of § 6.2. We consider a case where half of the
tenants are not using their reservations, and the other half
demand extra rates. Resource profiles for the work con-
servation phase are equal to the admission profiles, but in
the granularity of one request (see § 4.2 for explanation).

Computation overhead. Fig 6(a) shows the time it
takes to compute allocations. As the number of tenants
increases, compared to the centralized, distributed algo-
rithms perform faster (∼ 5 times at best). We argued in
§ 4.2 that computing allocations quickly is important for
reducing the periods in which resources remain idle.

Communication overhead. Fig 6(b) shows the num-
ber of messages. Compared with C-DRF, distributed al-
gorithms exchange about 8 times more messages (150
msgs at worst). Given the amount of service-level mes-

sages, this overhead is negligible. These messages can
further be piggybacked on the service messages.

Resource utilization. Fig 6(c) shows the aggregate
amount of the free resources before and after work con-
servation (we have eliminated network and storage due
to space limits). Our distributed algorithms result in al-
locations that compare closely with the C-DRF: All-DRF
is 95% as efficient as C-DRF, and Head-DRF about 75%.

Fairness. Fig 6(d) shows fairness. As a fairness cri-
terion, we have used normalized standard deviation for
the utility, with C-DRF as the reference. An algorithm is
more fair if this value is smaller. For example if with a
total budget of 15 reqs/sec and 3 tenants, an algorithm al-
locates 5 to each tenant, it is more fair than an algorithm
that allocates 10, 5, and 0. Unlike Head-DRF, All-DRF’s
fairness compares closely to that of the C-DRF. This is
because proposals can only be accepted as a whole in
Head-DRF, but partially in All-DRF.

SLA violations. To absorb the exceeding demands of
the tenants we used all the idle resources. C-DRF and
All-DRF are subject to above 95% SLA violations. This
is because these two algorithms are very efficient at al-
locating resources. Whether to use reserved resources is
part of system’s policy and does not affect the semantics
of our algorithms (see § 4.2 for details).

To conclude, All-DRF compares well with C-DRF in
efficiency and fairness and in addition is about 5× faster.
Head-DRF has lower computation time, but it is 70% as
efficient as C-DRF and is less fair. We observed similar
results in other settings, where for example replica de-
mand vectors were skewed.

6.4 Performance Isolation
Fig 7 shows the impact of the resource allocator and

rate limiters with 3 tenants, 3 replicas each in the persis-
tent mode, and SLA of 6.5 K-1 KB reqs/sec each. As-
sume A and B will need more resources at runtime. In
the first 4 minutes only B and C are in the system, and
in the first 2 minutes rate limiters are disabled. At min
1, B increases its rate above its SLA and affects C’s per-
formance. At min 2 rate limiters are enabled and hence
SLAs restored. At min 3, C voluntarily reduces its rate
for the next 3 minutes. At min 4 we activate All-DRF,
admit A, but intentionally leave its runtime extra demand

10



 0

 100

 200

 300

 400

 500

 600

1 50 100 150

T
i
m
e
 
(
s
e
c
s
)

0

50

100

150

200

1 50 100 150

N
u
m
b
e
r
 
o
f
 
M
s
g
s

C-DRF
Head-DRF
All-DRF

 0

 25

 50

 75

 100

1 50 100 150

F
r
e
e
 
C
P
U
(
%
) at start

 0

 1

 2

 3

1 50 100 150

F
a
i
r
n
e
s
s

(a) (b) (c) (d)
Figure 6: Evaluating C-DRF, Head-DRF, All-DRF. X-axis shows the number of applicants (§ 6.3 for details).

out of All-DRF’s sight. The algorithm grants to B all of
C’s underutilized resources neglecting A. At min 5, A is
considered by All-DRF as well. At this point the under-
utilized resources of C are fairly divided between A and
B. At min 6, C restores its SLA rate.

L
a
t
e
n
c
y
 
(
m
s
)

Time (minute)

 0

 1

 2

 3

0 1 2 3 4 5 6 7 8

T
h
r
 
(
K
 
r
e
q
/
s
e
c
)

A B C

0

10

20

30

40

0 1 2 3 4 5 6 7 8

Figure 7: The impact of the distributed controller.

7 Related work

Consensus. Consensus is widely studied in the database
and distributed systems communities [7, 30, 17, 16, 14,
19, 34]. Although some works have studied the co-
location of consensus instances on shared servers [12, 37,
5], no one has considered the problem of efficient replica
placement and the impact of sharing on the performance
of individual instances. Filo is the first system to provide
consensus as a service for the multi-tenant environment
of the cloud platforms, while providing SLA guarantees,
performance isolation, and efficiency of resource utiliza-
tion. Similarly to Filo, [36, 4] use Chain Replication [42]
for providing ordering and storage guarantees.
Token Buckets. Filo uses token buckets for rate limit-
ing. Token buckets are previously used in network rate
limiting [48, 1]. Filo’s approach in determining and con-
stantly updating the budget of the token buckets is novel,
which is realized by its resource allocator component.
Distributed Controller. Filo is similar to Retro [35] in
its objectives for ensuring performance isolation and ef-
ficient resource utilization. Unlike Retro, Filo uses a dis-
tributed controller for dynamically tuning the rate lim-
iters. Few works have considered distributed rate tuning.
[41] proposes a distributed approach, where each node is
equipped with a rate limiter. A user is given an aggregate
global budget, and each rate limiter’s bucket is initialized

with this budget. Each node removes tokens based on its
own usage rate and the estimated sum of the usage rates
at all the other nodes. This work is later extended in [47].
Consensus groups in Filo are composed of small number
of servers that can locally coordinate their resource us-
age and achieve high resource efficiency without need-
ing visibility over the entire cluster. Moreover, given the
distributed model of the consensus and the connection
links that are already established, designing a distributed
controller in Filo had no additional cost. Our evaluations
showed that our distributed algorithms exchange a small
amount of messages to coordinate and finalize the alloca-
tions. Compared with centralized controllers, distributed
controllers are computationally less intensive and faster.
Resource Allocation. Multi-resource allocation is a
multi-resource bin packing problem [6, 15, 22, 27,
29, 45]. Filo’s allocation algorithms are inspired by
DRF [20, 18, 40]. DRF is not guaranteed to converge
to the global optimum; [39, 21] propose heuristics algo-
rithms for converging to the global optimum, which are
computationally intensive and not suitable in our context.
Empirical quantification. We used an empirical ap-
proach to quantifying Filo prior to its launch [50, 26,
1]. Our strategy can be enhanced further by dynamically
modifying the assessments at runtime.

8 Conclusion

We presented Filo, the first system to provide multi-
tenant consolidated consensus as a cloud service. We
argued that providing performance guarantees and iso-
lation is particularly important in the cloud platforms
where tenants share and compete over resources. We
proposed a novel placement algorithm for admitting ten-
ants, and two distributed algorithms for efficient and fair
allocation of free resources at runtime. Our algorithms
exploit the nature of the consensus service, and while be-
ing much faster provide comparable efficiency and fair-
ness compared with the centralized algorithms.

9 Acknowledgments

We thank Miguel Castro, Austin Donnelly, Greg O’Shea,
Richard Black, reviewers, and Mohit Aron for their feed-
back and support.

11



References

[1] S. ANGEL, H. BALLANI, T. KARAGIANNIS, G.
OSHEA, AND E. THERESKA End-to-end perfor-
mance isolation through virtual datacenters. In:
Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation.
USENIX Association. 2014.

[2] Apache BookKeeper. Apache. 2014. URL: http:
//bookkeeper.apache.org/.

[3] Apache HBase. Apache. 2015. URL: http : / /
hbase.apache.org/.

[4] M. BALAKRISHNAN, D. MALKHI, T. WOBBER,
M. WU, V. PRABHAKARAN, M. WEI, J. D.
DAVIS, S. RAO, T. ZOU, AND A. ZUCK Tango:
Distributed data structures over a shared log. In:
Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles. ACM.
2013.

[5] S. BENZ, P. J. MARANDI, F. PEDONE, AND B.
GARBINATO Building global and scalable sys-
tems with atomic multicast. In: Proceedings of the
15th International Middleware Conference. ACM.
2014.

[6] A. A. BHATTACHARYA, D. CULLER, E. FRIED-
MAN, A. GHODSI, S. SHENKER, AND I. STO-
ICA Hierarchical scheduling for diverse datacen-
ter workloads. In: Proceedings of the 4th annual
Symposium on Cloud Computing. ACM. 2013.

[7] K. P. BIRMAN, R. VAN RENESSE, ET AL. Re-
liable distributed computing with the Isis toolkit.
Vol. 85. IEEE Computer society press Los Alami-
tos, 1994.

[8] W. J. BOLOSKY, D. BRADSHAW, R. B. HAA-
GENS, N. P. KUSTERS, AND P. LI Paxos Repli-
cated State Machines as the Basis of a High-
Performance Data Store. In: NSDI. 2011.

[9] M. BURROWS The Chubby lock service for
loosely-coupled distributed systems. In: Proceed-
ings of the 7th symposium on Operating systems
design and implementation. USENIX Associa-
tion. 2006.

[10] F. CHANG, J. DEAN, S. GHEMAWAT, W. C.
HSIEH, D. A. WALLACH, M. BURROWS, T.
CHANDRA, A. FIKES, AND R. E. GRUBER
Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Sys-
tems (TOCS) 26, 2 (2008).

[11] B. CHARRON-BOST, F. PEDONE, AND A.
SCHIPER Replication: theory and Practice.
Vol. 5959. springer, 2010.

[12] B. DARNELL Scaling Raft. 2015. URL: http://
www . cockroachlabs . com / blog / scaling -

raft/.

[13] G. DECANDIA, D. HASTORUN, M. JAMPANI,
G. KAKULAPATI, A. LAKSHMAN, A. PILCHIN,
S. SIVASUBRAMANIAN, P. VOSSHALL, AND W.
VOGELS Dynamo: amazon’s highly available
key-value store. ACM SIGOPS Operating Systems
Review 41, 6 (2007).

[14] D DOLEV, AND H. STRONG Distributed commit
with bounded waiting. IBM Thomas J. Watson Re-
search Division, 1982.

[15] D. DOLEV, D. G. FEITELSON, J. Y. HALPERN, R.
KUPFERMAN, AND N. LINIAL No justified com-
plaints: On fair sharing of multiple resources. In:
Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. ACM. 2012.

[16] C. DWORK, N. LYNCH, AND L. STOCKMEYER
Consensus in the presence of partial synchrony.
Journal of the ACM (JACM) 35, 2 (1988).

[17] M. J. FISCHER, N. A. LYNCH, AND M. S. PATER-
SON Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM)
32, 2 (1985).

[18] E. FRIEDMAN, A. GHODSI, AND C.-A. PSOMAS
Strategyproof allocation of discrete jobs on mul-
tiple machines. In: Proceedings of the fifteenth
ACM conference on Economics and computation.
ACM. 2014.

[19] H. GARCIA-MOLINA Elections in a distributed
computing system. Computers, IEEE Transac-
tions on 100, 1 (1982).

[20] A. GHODSI, M. ZAHARIA, B. HINDMAN, A.
KONWINSKI, S. SHENKER, AND I. STOICA
Dominant Resource Fairness: Fair Allocation of
Multiple Resource Types. In: NSDI. Vol. 11. 2011.

[21] R. GRANDL, G. ANANTHANARAYANAN, S.
KANDULA, S. RAO, AND A. AKELLA Multi-
resource packing for cluster schedulers. In: Pro-
ceedings of the 2014 ACM conference on SIG-
COMM. ACM. 2014.

[22] A. GUTMAN, AND N. NISAN Fair allocation
without trade. In: Proceedings of the 11th Inter-
national Conference on Autonomous Agents and
Multiagent Systems-Volume 2. International Foun-
dation for Autonomous Agents AND Multiagent
Systems. 2012.

[23] P. HUNT, M. KONAR, F. P. JUNQUEIRA, AND
B. REED ZooKeeper: Wait-free Coordination for
Internet-scale Systems. In: USENIX Annual Tech-
nical Conference. Vol. 8. 2010.

[24] Introduction to Receive Side Scaling. Microsoft.
URL: https://msdn.microsoft.com/en-us/
library/windows/hardware/ff556942(v=

vs.85).aspx.
[25] Iometer benchmark. Intel Corporation. 2013.

URL: http://www.iometer.org/.

12

http://bookkeeper.apache.org/
http://bookkeeper.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://www.cockroachlabs.com/blog/scaling-raft/
http://www.cockroachlabs.com/blog/scaling-raft/
http://www.cockroachlabs.com/blog/scaling-raft/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556942(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556942(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556942(v=vs.85).aspx
http://www.iometer.org/


[26] V. JALAPARTI, H. BALLANI, P. COSTA, T. KARA-
GIANNIS, AND A. ROWSTRON Bazaar: Enabling
predictable performance in datacenters. Microsoft
Res., Cambridge, UK, Tech. Rep. MSR-TR-2012-
38 (2012).

[27] C. JOE-WONG, S. SEN, T. LAN, AND M.
CHIANG Multiresource Allocation: Fairness–
Efficiency Tradeoffs in a Unifying Framework.
Networking, IEEE/ACM Transactions on 21, 6
(2013).

[28] M. KAPRITSOS, Y. WANG, V. QUEMA, A.
CLEMENT, L. ALVISI, M. DAHLIN, ET AL. All
about Eve: Execute-Verify Replication for Multi-
Core Servers. In: OSDI. Vol. 12. 2012.

[29] I. KASH, A. D. PROCACCIA, AND N. SHAH No
agent left behind: Dynamic fair division of mul-
tiple resources. Journal of Artificial Intelligence
Research (2014).

[30] L. LAMPORT Paxos made simple. ACM Sigact
News 32, 4 (2001).

[31] L. LAMPORT, D. MALKHI, AND L. ZHOU Re-
configuring a state machine. ACM SIGACT News
41, 1 (2010).

[32] L. LAMPORT, D. MALKHI, AND L. ZHOU Ver-
tical paxos and primary-backup replication. In:
ACM symposium on Principles of distributed com-
puting. ACM. 2009.

[33] L. LAMPORT, AND M. MASSA Cheap paxos. In:
Dependable Systems and Networks, 2004 Interna-
tional Conference on. IEEE. 2004.

[34] B. W. LAMPSON Replicated commit. In: Circu-
lated at a workshop on Fundamental Principles
of Distributed Computing, Pala Mesa, CA. 1980.

[35] J. MACE, P. BODIK, R. FONSECA, AND M.
MUSUVATHI Retro: Targeted Resource Man-
agement in Multi-tenant Distributed Systems. In:
Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation.
NSDI’15. USENIX Association, 2015.

[36] D. MALKHI, M. BALAKRISHNAN, J. D. DAVIS,
V. PRABHAKARAN, AND T. WOBBER From
paxos to CORFU: a flash-speed shared log. ACM
SIGOPS Operating Systems Review 46, 1 (2012).

[37] P. J. MARANDI, M. PRIMI, AND F. PEDONE
Multi-ring paxos. In: Dependable Systems and
Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on. IEEE. 2012.

[38] L. E. MOSER, Y. AMIR, P. M. MELLIAR-SMITH,
AND D. A. AGARWAL Extended virtual syn-
chrony. In: Distributed Computing Systems, 1994.,
Proceedings of the 14th International Conference
on. IEEE. 1994.

[39] R. PANIGRAHY, K. TALWAR, L. UYEDA, AND U.
WIEDER Heuristics for vector bin packing. re-
search. microsoft. com (2011).

[40] D. C. PARKES, A. D. PROCACCIA, AND N. SHAH
Beyond dominant resource fairness: extensions,
limitations, and indivisibilities. ACM Transactions
on Economics and Computation 3, 1 (2015).

[41] B. RAGHAVAN, K. VISHWANATH, S. RAMAB-
HADRAN, K. YOCUM, AND A. C. SNOEREN
Cloud control with distributed rate limiting. ACM
SIGCOMM Computer Communication Review 37,
4 (2007).

[42] R. van RENESSE, AND F. B. SCHNEIDER Chain
Replication for Supporting High Throughput and
Availability. In: OSDI. Vol. 4. 2004.

[43] N. SCHIPER, AND S. TOUEG A robust and
lightweight stable leader election service for dy-
namic systems. In: Dependable Systems and Net-
works With FTCS and DCC, 2008. DSN 2008.
IEEE International Conference on. IEEE. 2008.

[44] F. B. SCHNEIDER Implementing fault-tolerant
services using the state machine approach: A tu-
torial. ACM Computing Surveys (CSUR) 22, 4
(1990).

[45] D SHAH, AND D WISCHIK Principles of re-
source allocation in networks. In: Proceedings of
the ACM SIGCOMM Education Workshop. 2011.

[46] E. G. SIRER, AND D. ALTINBUKEN Commodify-
ing Replicated State Machines with OpenReplica.
Technical Report 1813-29009. Cornell University,
2012.

[47] R. STANOJEVI, AND R. SHORTEN Fully de-
centralized emulation of best-effort and processor
sharing queues. ACM SIGMETRICS Performance
Evaluation Review 36, 1 (2008).

[48] A. S. TANENBAUM Computer networks, 4-th edi-
tion. ed: Prentice Hall (2003).

[49] E. THERESKA, H. BALLANI, G. O’SHEA, T.
KARAGIANNIS, A. ROWSTRON, T. TALPEY, R.
BLACK, AND T. ZHU Ioflow: A software-
defined storage architecture. In: Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM. 2013.

[50] B. URGAONKAR, P. SHENOY, AND T. ROSCOE
Resource overbooking and application profiling in
shared hosting platforms. ACM SIGOPS Operat-
ing Systems Review 36, SI (2002).

[51] J. YIN, J.-P. MARTIN, A. VENKATARAMANI, L.
ALVISI, AND M. DAHLIN Separating agreement
from execution for byzantine fault tolerant ser-
vices. In: ACM SIGOPS Operating Systems Re-
view. Vol. 37. 5. ACM. 2003.

13


	Introduction
	Consensus in Filo
	System Design
	Resource Allocator
	Admission Phase
	Work Conservation Phase
	Centralized DRF (C-DRF)
	Head-DRF
	All-DRF
	Comparison

	Coordinating the two phases

	Implementation
	Evaluation
	Service benchmarking
	Calculating Resource Costs

	Admission Phase
	Work Conservation Phase
	Performance Isolation

	Related work
	Conclusion
	Acknowledgments

