
Multi-Ring Paxos

Parisa Jalili Marandi

University of Lugano (USI)

Switzerland

Marco Primi

University of Lugano (USI)

Switzerland

Fernando Pedone

University of Lugano (USI)

Switzerland

Abstract—This paper addresses the scalability of group
communication protocols. Scalability has become an issue of
prime importance as data centers become commonplace. By
scalability we mean the ability to increase the throughput
of a group communication protocol, measured in number
of requests ordered per time unit, by adding resources (i.e.,
nodes). We claim that existing group communication protocols
do not scale in this respect and introduce Multi-Ring Paxos,
a protocol that orchestrates multiple instances of Ring Paxos
in order to scale to a large number of nodes. In addition to
presenting Multi-Ring Paxos, we describe a prototype of the
system we have implemented and a detailed evaluation of its
performance.

I. INTRODUCTION

State-machine replication is a fundamental approach to

building fault-tolerant services. By replicating a server in

multiple nodes, clients will observe a highly available ser-

vice despite the failure of one or more replicas. State-

machine replication dictates how client requests must be exe-

cuted against the replicated servers such that the behavior of

the system is indistinguishable from the behavior of a single-

server setup. In brief, state-machine replication requires

requests to be executed by every replica (agreement) in the

same order (total order) [1], [2]. These two requirements

are encapsulated by group communication protocols, such

as atomic broadcast or total order broadcast [3]. Encapsu-

lating agreement and total order in group communication

primitives has been proved quite convenient as it provides a

separation of concerns: application designers can focus on

the service to be replicated and system designers can focus

on developing efficient group communication protocols.

Years of research on the design and implementation of

group communication have resulted in efficient protocols

(e.g., [4], [5], [6], [7]). Existing systems, however, offer poor

scalability, if any. By scalability we mean the ability of a

group communication system to increase throughput, mea-

sured in number of messages ordered per time unit, when re-

sources (i.e., nodes) are added. Unfortunately, existing group

communication systems do not behave like this: In general,

increasing the number of nodes that participate in an atomic

broadcast protocol improves its tolerance to failures, but not

its throughput. We observe that the maximum throughput

This work was supported in part by the Swiss National Science Founda-
tion under grant number 200020 134553.

of an atomic broadcast protocol is typically determined by

the capacity of the individual nodes that participate in the

protocol (i.e., limited by each node’s resources such as CPU

and disk), not by the aggregated capacity of the nodes.

We illustrate our observation with Ring Paxos [5], a highly

efficient atomic broadcast protocol. Ring Paxos is based

on Paxos [8]. It orders messages (e.g., containing service

requests issued by clients) by executing a sequence of

consensus instances. In each consensus instance several mes-

sages can be ordered at once. The durability of a consensus

instance is configurable: If a majority of acceptors, the nodes

that accept a consensus decision, is always operational, then

consensus decisions can be stored in the main memory of ac-

ceptors only (hereafter, “In-memory Ring Paxos”). Without

such an assumption, consensus decisions must be written on

the acceptors’ disks (hereafter, “Recoverable Ring Paxos”).

The maximum throughput of In-memory Ring Paxos is

determined by what the CPU or the network interface of

an acceptor can handle, whichever becomes a bottleneck

first. In Recoverable Ring Paxos, the maximum throughput

is limited by the bandwidth sustained by an acceptor’s disks.

Figure 1 shows the performance of In-memory Ring

Paxos and the performance of Recoverable Ring Paxos

(see Section VI-A for setup description). In-memory Ring

Paxos is CPU-bound: throughput can be increased until

approximately 700 Mbps, when the coordinator, an acceptor

with a distinguished role, reaches its maximum processing

capacity. When this happens, even small increases in the

coordinator load result in large increases in delivery latency.

Recoverable Ring Paxos is bounded by the bandwidth of

the acceptors’ disks. At maximum throughput, around 400

Mbps, the acceptors approach the maximum number of con-

sensus instances they can store on disk per time unit. Notice

that at this point the coordinator has moderate processing

load, around 60%. In either case, adding resources (i.e.,

acceptors) will not improve performance.

If executing requests is more costly than ordering them,

then throughput will be dictated by the number of requests

a server can execute per time unit, not by the number of

requests that Ring Paxos can order. In such cases, one

solution is to partition the service into sub-services (e.g.,

[9], [10]), each one replicated using state-machine repli-

cation. Requests involving a single partition are submitted

to and executed by the involved partition only; requests

978-1-4673-1625-5/12/$31.00 ©2012 IEEE

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800

L
at
en
cy
 (
m
se
c)

Delivery throughput per server (Mbps)

62.5% 97.6%

57.5% 92.4%

Disk bound CPU bound

Recoverable Ring Paxos
In-memory Ring Paxos

Figure 1. Performance of In-memory and Recoverable Ring Paxos.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8

O
v
er
al
l
se
rv
ic
e
th
ro
u
g
h
p
u
t
(M
b
p
s)

Number of partitions

Figure 2. Performance of a partitioned service using In-memory Ring Paxos.

involving multiple partitions must be consistently ordered

across partitions and executed by all involved partitions. As

a result, if most requests affect a single partition (or few

partitions), the scheme improves performance as the various

partitions can execute requests in parallel. Ring Paxos can be

configured to work with partitioned services by ordering all

messages and selectively delivering them to the concerned

partitions only [9]. By partitioning a service, the cost of

executing requests can be distributed among partitions. But

if a service can be partitioned into a large number of sub-

services, then throughput may be limited by the overall

number of requests that Ring Paxos can order and deliver

to the various partitions, not by the capacity of the servers

to execute the requests.

Figure 2 illustrates this case with a multi-partition service

implemented using In-memory Ring Paxos. To emphasize

our point, we assess the overall system throughput of a

dummy service: delivered messages are simply discarded by

the servers, that is, requests take no time to be executed. In

this experiment, all submitted requests were single-partition

and evenly distributed among partitions. The graph shows

that the throughput of Ring Paxos does not increase as

partitions and nodes (three per partition) are added. Instead,

since the total throughput sustained by Ring Paxos is approx-

imately the same for the various configurations, the more

partitions a configuration has, the less throughput can be

allocated to each partition.

In this paper we present Multi-Ring Paxos, a protocol that

addresses the scalability of group communication protocols.

Multi-Ring Paxos’s key insight is to compose an unbounded

number of parallel instances of Ring Paxos in order to scale

throughput with the number of nodes. While the idea behind

Multi-Ring Paxos is conceptually simple, its realization en-

tailed non-obvious engineering decisions, which we discuss

in the paper. Multi-Ring Paxos implements atomic multicast,

a group communication abstraction whereby senders can

atomically multicast messages to groups of receivers; atomic

multicast ensures ordered message delivery for receivers that

deliver messages in common. In brief, Multi-Ring Paxos

assigns one instance of Ring Paxos to each group (or set

of groups). Receivers that subscribe to a single group will

have their messages ordered by the Ring Paxos instance re-

sponsible for this group. Receivers that subscribe to multiple

groups will have multiple sources of messages and use a

deterministic merge mechanism to ensure ordered delivery.

Most of the complexity of Multi-Ring Paxos lies in its

deterministic merge procedure, which accounts for dynamic

load and imbalances among the various instances of Ring

Paxos, without sacrificing performance or fault tolerance.

We have implemented a prototype of Multi-Ring Paxos

using an open-source version of Ring Paxos [11] and

conducted a series of experiments with our prototype. The

results are encouraging: By composing eight instances of

In-memory Ring Paxos, for example, we can reach an

aggregated throughput of more than 5 Gbps, eight times

the throughput of a single Ring Paxos instance. Recoverable

Ring Paxos has similar scalability, linear in the number

of Ring Paxos instances. In summary, Multi-Ring Paxos

overcomes the limitations of existing group communication

systems by composing independent instances of protocols,

which individually do not scale. Although we have devel-

oped Multi-Ring Paxos using Ring Paxos, some of our ideas

could be exploited with other atomic broadcast protocols.

The remainder of this paper is structured as follows.

Section II presents the system model and some definitions

used in the paper. Section III reviews Paxos and Ring Paxos.

Section IV introduces Multi-Ring Paxos. Section V reviews

related works and Section VI discusses the performance of

Multi-Ring Paxos. Section VII concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

In this section we define our system model, present

some group communication abstractions used throughout the

paper, and illustrate the use of atomic multicast.

A. Processes and communication

We assume a distributed system composed of a set Π =
{p1, p2, ...} of interconnected processes. Processes may fail

by crashing, but do not experience arbitrary behavior (i.e.,

no Byzantine failures). The network is mostly reliable and

subject to small latencies, although load imbalances (e.g.,

peak demand) imposed on both nodes and the network

may cause variations in processing and transmission delays.

Communication can be one-to-one, through the primitives

send(p,m) and receive(m), and one-to-many, through the

primitives ip-multicast(g,m) and ip-deliver(m), where m

is a message, p is a process, and g is the group of processes

m is addressed to. Messages can be lost but not corrupted.

Our protocols ensure safety under both asynchronous

and synchronous execution periods. The FLP impossibil-

ity result [12] states that under asynchronous assumptions

consensus cannot be both safe and live. We thus assume

that the system is partially synchronous [13], that is, it is

initially asynchronous and eventually becomes synchronous.

The time when the system becomes synchronous is called

the Global Stabilization Time (GST) [13], and it is unknown

to the processes. Before GST, there are no bounds on the

time it takes for messages to be transmitted and actions to

be executed. After GST, such bounds exist but are unknown.

After GST nodes are either correct or faulty. A correct

process is operational “forever” and can reliably exchange

messages with other correct processes. This assumption is

only needed to prove liveness properties about the system.

In practice, “forever” means long enough for one instance

of consensus to terminate.

B. Consensus, atomic broadcast and atomic multicast

Ring Paxos implements atomic broadcast as a sequence of

consensus executions. Multi-Ring Paxos implements atomic

multicast, a generalization of atomic broadcast. In the fol-

lowing we define these problems.

Consensus is defined by the primitives propose(v) and de-

cide(v), where v is an arbitrary value. Consensus guarantees

that (i) if a process decides v then some process proposed

v (uniform integrity); (ii) no two processes decide different

values (uniform agreement); and (iii) if one or more correct

processes propose a value then eventually some value is

decided by all correct processes (termination).

Atomic broadcast is defined by the primitives broad-

cast(m) and deliver(m), where m is a message. Atomic

broadcast guarantees that (i) if a process delivers m, then

all correct processes deliver m (uniform agreement); (ii) no

two processes deliver any two messages in different orders

(uniform total order); and (iii) if a correct process broadcasts

m, then all correct processes deliver m (validity).

Atomic multicast implements the abstraction of groups

Γ = {g1, ..., gγ}, where for each g ∈ Γ, g ⊆ Π. Conse-

quently, processes may belong to one or more groups. If

process p ∈ g, we say that p subscribes to group g.

Atomic multicast is defined by the primitives multi-

cast(g,m) and deliver(m), and ensures that (i) if a process

delivers m, then all correct processes in g deliver m (uniform

agreement); (ii) if processes p and q deliver messages m

and m′, then they deliver them in the same order (uniform

partial order); and (iii) if a correct process multicasts m to

g, then all correct processes in g deliver m (validity). If Γ

is a singleton, then atomic multicast is equivalent to atomic

broadcast.

C. A scalable service based on atomic multicast

To illustrate the implications and consequences of atomic

broadcast and atomic multicast on the design of a replicated

system, consider a simple database service accessed through

requests insert(k), delete(k) and query(kmin, kmax), where

the insert and delete requests involve a single key k and the

query request returns every key k in the database such that

kmin ≤ k ≤ kmax [9].

If the service is replicated by means of state-machine

replication, then each replica contains a full copy of the

database and client requests can be propagated to the replicas

using atomic broadcast. Consequently, every replica delivers

and executes each request. A request is completed once the

client receives the response from one of the replicas. The

throughput of the service will be determined by the number

of requests per time unit that can be either (a) ordered and

delivered by the atomic broadcast primitive or (b) executed

by the replicas, whichever bound is reached first.

Alternatively, one can divide the database into parti-

tions P0, P1, ..., Pl and replicate each partition using state-

machine replication. Partition Pi is responsible for a range

of database keys from the key space [14]. A request to

insert or delete key k is multicast to the partition where k

belongs; a query(kmin, kmax) request is multicast either to

partition Pi, if kmin and kmax fall within Pi’s range, or to all

partitions otherwise. To map this scheme to atomic multicast,

we can have one group gi per partition Pi and a group

gall for all partitions. Each replica p in Pi belongs to gi
and gall. Thus, except for queries that address all partitions,

every replica delivers and executes requests that concern its

partition only—a replica that delivers a query whose range

does not fall within its partition simply discards it.

The throughput of each partition is limited by the requests

per unit of time that (a) atomic multicast can order and

deliver to the partition, and (b) the partition can execute.

If requests access single partitions, then one can expect a

system with n partitions to provide n times the throughput

of a single-partition system, that is, a scalable system. In

reality, as shown in Figure 2, this only happens if the

group communication primitive itself scales: the number

of messages per time unit ordered and delivered by the

primitive grows with the size of the system. Multi-Ring

Paxos is an atomic multicast primitive with this property.

III. PAXOS AND RING PAXOS

Ring Paxos is a variation of Paxos [8], optimized for

clustered systems. In the following we briefly describe Paxos

and Ring Paxos.

A. Paxos in a nutshell

Paxos distinguishes three roles: proposers, acceptors, and

learners. A node can execute one or more roles simultane-

ously. In a client-server setup, clients act as proposers and

servers as learners. A value is a command proposed by a

client to be executed by the servers; the decided value is

the next command to be executed. Each instance of Paxos

proceeds in two phases: During Phase 1, the coordinator, a

node among the acceptors, selects a unique round number

c-rnd and asks a quorum Qa (i.e., any majority) of acceptors

to promise for it. By promising, an acceptor declares that,

for that instance, it will reject any request (Phase 1 or 2)

with round number less than c-rnd. Phase 1 is completed

when Qa confirms the promise to the coordinator. Notice

that Phase 1 is independent of the value, therefore it can

be pre-executed by the coordinator. If any acceptor already

accepted a value for the current instance, it will return this

value to the coordinator, together with the round number

received when the value was accepted (v-rnd).

Once a coordinator completes Phase 1 successfully, it can

proceed to Phase 2. Phase 2 messages contain a value and

the coordinator must select it with the following rule: if

no acceptor in Qa accepted a value, the coordinator can

select any value (i.e., the next client-submitted value). If

however any of the acceptors returned a value in Phase 1,

the coordinator is forced to execute Phase 2 with the value

that has the highest round number v-rnd associated to it. In

Phase 2 the coordinator sends a message containing a round

number (the same used in Phase 1). When receiving such

a request, the acceptors acknowledge it, unless they have

already acknowledged another message (Phase 1 or 2) with

a higher round number. Acceptors update their c-rnd and v-

rnd variables with the round number in the message. When a

quorum of acceptors accepts the same round number (Phase

2 acknowledgement), consensus terminates: the value is

permanently bound to the instance, and nothing will change

this decision. Thus, learners can deliver the value. Learners

learn this decision either by monitoring the acceptors or by

receiving a decision message from the coordinator.

As long as a nonfaulty coordinator is eventually selected,

there is a majority quorum of nonfaulty acceptors, and

at least one nonfaulty proposer, every consensus instance

will eventually decide on a value. A failed coordinator is

detected by the other nodes, which select a new coordinator.

If the coordinator does not receive a response to its Phase

1 message it can re-send it, possibly with a bigger round

number. The same is true for Phase 2, although if the

coordinator wants to execute Phase 2 with a higher round

number, it has to complete Phase 1 with that round number.

Eventually the coordinator will receive a response or will

suspect the failure of an acceptor.

B. Ring Paxos in a nutshell

Ring Paxos [5] differs from Paxos in a few aspects that

make it more throughput efficient. The steps mentioned next

refer to Figure 3, where Paxos’s Phase 1 has been omitted.

• Acceptors are organized in a logical ring. The coordi-

nator is one of the acceptors. Phase 1 and 2 messages

are forwarded along the ring (Steps 3 and 4). Upon

receiving a Phase 2 message, each acceptor appends its

decision to the message so that the coordinator, at the

end of the ring, can know the outcome (Step 5).

• Ring Paxos executes consensus on value IDs: for each

client value, a unique identification number is selected

by the coordinator. Consensus is executed on IDs which

are usually significantly smaller than the real values.

• The coordinator makes use of ip-multicast. It triggers

Phase 2 by multicasting a packet containing the client

value, the associated ID, the round number and the

instance number to all acceptors and learners (Step 3).

• The first acceptor in the ring creates a small message

containing the round number, the ID and its own

decision and forwards it along the logical ring.

• An additional acceptor check is required to guarantee

safety. To accept a Phase 2 message, the acceptor must

know the client value associated with the ID contained

in the packet.

• Once consensus is reached, the coordinator can inform

all the learners by just confirming that some value ID

has been chosen. The learner will deliver the corre-

sponding client value in the appropriate instance (Step

6). This information can be piggybacked on the next

ip-multicast message.

Message losses may cause learners to receive the value

proposed without the notification that it was accepted, the

notification without the value, or none of them. Learners

recover lost messages by inquiring other nodes. Ring Paxos

assigns each learner to a preferential acceptor in the ring, to

which the learner can ask lost messages. Lost Phase 1 and

2 messages are handled like in Paxos. The failure of a node

(acceptor or coordinator) requires a new ring to be laid out.

IV. MULTI-RING PAXOS

In this section, we present Multi-Ring Paxos. We also

discuss failure handling, reconfigurations, extensions and

optimizations. We argue for Multi-Ring Paxos correctness

in the appendix.

Proposer

Coordinator

Acceptor n

Acceptor 1

Acceptor 2

Learners

. . .

v = {m}

Phase 2A

!

"

Phase 2B

#

Phase 2B

$

Decision
%

. . .

(up to n-1)

broadcast(m)

deliver(m)

&

'

Consensus instance

propose(v)

decide(v)

Figure 3. Ring Paxos: broadcast and delivery of message m (in black)
and one consensus instance deciding on a single message (in gray).

A. Overview

Multi-Ring Paxos uses multiple independent instances of

Ring Paxos to scale throughput without sacrificing response

time—hereafter, we refer to a Ring Paxos instance as a

“ring” and assume the existence of one ring per group (we

revisit this issue in Section IV-D).

Learners subscribe to the groups they want to deliver

messages from. Within a group, messages are ordered by

the ring responsible for the group. If a learner subscribes

to multiple groups, it uses a deterministic procedure to

merge messages coming from different rings. Although

deterministically merging messages from multiple rings is

conceptually simple, its implementation has important per-

formance consequences, as we now explain.

In general, learners implement the deterministic merge in

round-robin fashion, delivering a fixed number of messages

from each group they subscribe to in a pre-defined order.

More precisely, each group has a unique identifier, totally or-

dered with any other group identifier. If a learner subscribes

to groups gl1 , gl2 , ..., glk , where l1 < l2 < ... < lk, then

the learner could first deliver M messages from gl1 , then

M messages from gl2 , and so on, where M is a parameter

of the algorithm. In order to guarantee ordered delivery, the

learner may have to buffer messages that do not arrive in

the expected pre-defined order.

This scheme has two drawbacks, which we illustrate with

an example. Assume that a learner subscribes to groups

g1 and g2, which generate messages at rates λ1 and λ2,

respectively, where λ1 < λ2. First, the learner’s delivery rate

will be 2λ1, as opposed to the ideal λ1 + λ2. Second, the

learner’s buffer will grow at rate λ2−λ1 and will eventually

overflow.

One way to address the problems above is to define a

value of M per group that accounts for different rates:

If for each M1 messages delivered for g1, the learner

delivers M2 = M1λ2/λ1 messages for g2, then its total

delivery rate will tend to the ideal. In the general case of a

learner that subscribes to groups gl1 , gl2 , ..., glk , it follows

that Ml1
/λl1

= Ml2
/λl2

= ... = Mlk
/λlk

must hold in

order for the learner to deliver messages at the ideal rate of

λl1
+ λl2

+ ...+ λlk
.

Such a mechanism, however, requires estimating the

message rate of each group and dynamically adapting this

estimate during the execution. Moreover, to avoid buffer

overflows, learners have to quickly adapt to changes in the

message rate of a group. Our strategy does not require

adapting to a group’s message rate. Instead, we define λ, the

maximum expected message rate of any group, a parameter

of the system. The coordinator of each ring monitors the

rate at which messages are generated in its group, denoted

µ, and periodically compares λ to µ. If µ is lower than λ,

the coordinator proposes enough “skip messages” to reach

λ. Skip messages waste minimum bandwidth: they are small

and many can be batched in a single consensus instance.

Figure 4 illustrates an execution of Multi-Ring Paxos with

two groups. Learner 1 subscribes to group g1; learner 2

subscribes to groups g1 and g2. Notice that after receiving

message m4 learner 2 cannot deliver it since it must first

deliver one message from group g2 to ensure order—in the

execution, M = 1. Therefore, learner 2 buffers m4. Since

learner 1 only subscribes to g1, it can deliver all messages it

receives from Ring Paxos 1 as soon as it receives them. At

some point, the coordinator of Ring Paxos 2 realizes its rate

is below the expected rate and proposes to skip a message.

As a consequence, learner 2 can deliver message m4.

Proposer 1

Learner 1

Proposer 2

Learner 2

g1

g1, g2

(g1,m1)

m1

skip
message

(g1,m3)

(g2,m2) (g1,m4)

m2 m3

m4m1 m2

Ring Paxos 1 : g1

Ring Paxos 2 : g2

m3

m4

Figure 4. Muli-Ring Paxos execution with two rings and M = 1.

B. Algorithm in detail

Algorithm 1 details Multi-Ring Paxos. To multicast mes-

sage m to group g, a proposer sends m to the coordinator

of g (lines 3–4), which upon receiving m, proposes m in

consensus instance k (lines 11–12). The acceptors execute

consensus instances as in Ring Paxos (line 22; see also

Figure 3). For simplicity, in Algorithm 1 one message is

proposed per consensus instance. In our prototype, multiple

messages are batched and proposed in a single instance.1

Since consensus instances decide on batches of fixed size,

if we set λ to be the maximum expected consensus rate,

as opposed to the maximum expected message rate, we can

easily determine λ since we know the maximum throughout

of Ring Paxos.

1: Algorithm 1: Multi-Ring Paxos (executed by process p)

2: Task 1 (proposer)
3: To multicast message m to group g:
4: send m to coordinator of g

5: Task 2 (coordinator)
6: Initialization:
7: k ← 0
8: prev k ← 0
9: set timer to expire at current time + ∆

10: upon receiving m from proposer
11: propose(k,m)
12: k ← k + 1

13: upon timer expires
14: µ ← (k − prev k)/∆
15: if µ < λ then
16: skip ← prev k +∆λ
17: for k ← k to skip do
18: propose(k,⊥)
19: prev k ← k
20: set timer to expire at current time + ∆

21: Task 3 (acceptor)
22: execute consensus (Phases 1 and 2 of Ring Paxos)

23: Task 4 (learner)
24: Initialization:
25: for i ← 1 to γ do
26: if p ∈ gi then ki ← 0

27: repeat forever
28: for i ← 1 to γ do
29: if p ∈ gi then
30: repeat M times
31: wait for decide(ki, v)
32: if v %=⊥ then deliver v
33: ki ← ki + 1

34: Algorithm variables:
35: k : current consensus instances in a group (coordinator)
36: prev k : value of k at the beginning of an interval
37: µ : number of consensus instances per time in a group
38: skip : consensus instances below optimum in last interval
39: ki : the next consensus instance at group gi (learner)

40: Algorithm parameters:
41: γ : number of groups
42: ∆ : duration of an interval (i.e., time between samplings)
43: M : number of consecutive messages delivered for a group
44: λ: expected number of consensus instances per ∆

The coordinator sets a local timer (lines 9 and 20), which

expires in intervals of ∆ time units. In each interval, the

1A consensus instance is triggered when a batch is full or a timeout
occurs. We use batches of 8 kB as this results in high throughput (see
Marandi et al. [5] for more details).

coordinator computes µ, the number of consensus instances

proposed in the interval (line 14). If µ is smaller than λ

(line 15), the coordinator proposes enough skip instances,

i.e., empty instances, to make up for the missing ones

(lines 16–18). Notice that although in Algorithm 1 the

coordinator executes a propose for each missing instance,

in our prototype this is implemented much more efficiently

by proposing a batch of instances using the same physical

messages. The coordinator then sets the timer for the next

interval (line 20).

Each learner keeps in variable ki the number of the next

consensus instance in which it will participate, for each

group gi to which the learner subscribes (lines 25–26).

The procedure at the learner consists in deterministically

delivering M messages (lines 30–32) multicast to each group

gi subscribed by the learner (lines 28–29). Since groups are

totally ordered according to their unique identifiers, each two

learners will round robin through the groups they subscribe

to in the same order, and hence respect multicast order.

C. Failures and reconfigurations

Algorithm 1 assumes that rings guarantee progress indi-

vidually. Therefore, for each ring, up to f < n/2 acceptors

can fail, where n is the total number of acceptors in a Ring

Paxos instance. To reduce response time, Ring Paxos keeps

f+1 acceptors in the ring only [5]; the remaining acceptors

are spares and could be shared by multiple rings in Multi-

Ring Paxos, similarly to Cheap Paxos [15].

When an acceptor is suspected to have failed, its ring

must be reconfigured, excluding the suspected acceptor and

including a new one, from the spares. Until the ring is

reconfigured, learners that subscribe to this ring cannot

deliver messages broadcast to this ring and to any other ring

the learner also subscribes. We assess the effects of recon-

figuration in Section VI-F. Recovering from lost messages

is done with retransmissions, as in Ring Paxos [5].

D. Extensions and optimizations

Algorithm 1 can be optimized for performance in a

number of ways. As described in the previous sections,

the coordinator does not propose a single message in a

consensus instance, but a batch of messages. Moreover,

multiple skip instances for an interval are executed together.

Thus, the cost of executing any number of skip instances is

the same as the cost of executing a single skip instance.

Another issue concerns the mapping of groups to rings

(i.e., instances of Ring Paxos). If there are as many rings

as groups, then we can have one group per ring—this is

the setting used in our experiments. Alternatively, multiple

groups can be mapped to the same ring. The drawback of

such a setting is that some learners may receive messages

from groups they do not subscribe to. Such messages will not

be delivered to the application, but they waste the learner’s

incoming bandwidth and processor.

While there are many strategies to address this issue (e.g.,

a simple one is to assign the busiest groups to different

rings), we note that mapping γ groups to δ rings, where

γ > δ, is an optimization problem with implications that go

beyond the scope of this paper [16].

V. RELATED WORK

Multi-Ring Paxos is an atomic multicast protocol. Differ-

ently from atomic broadcast, atomic multicast protocols can

be made to scale under certain workloads. In the following

we focus the discussion mostly on atomic multicast and

review a few atomic broadcast protocols that share some

similarities with Multi-Ring Paxos.

Although the literature on atomic broadcast protocols

is vast [17], few atomic multicast algorithms have been

proposed. Possibly, the first atomic multicast algorithm is

due to D. Skeen, an algorithm for failure-free scenarios [18].

In Skeen’s algorithm, the destination processes of a message

m exchange timestamps and eventually decide on m’s final

timestamp. The destinations deliver messages according to

the message’s final timestamp. The algorithm scales under

certain workloads since only the destinations of a message

are involved in its ordering.

Several papers have proposed extensions to render Skeen’s

original algorithm fault tolerant [19], [20], [21], [22]. The

basic idea behind these algorithms is to replace failure-

prone processes by fault-tolerant groups of processes; each

group implementing the logic in Skeen’s algorithm by

means of state-machine replication. Different algorithms

have proposed different optimizations of this basic idea,

all of which based on the assumption that groups do not

intersect. An algorithm that departures from the previous

proposals appears in [23]. The idea is to daisy-chain the set

of destination groups of a message according to the unique

group ids. The first group runs consensus to decide on the

delivery of the message and then hands it over to the next

group, and so on. Thus, the latency of a message depends

on the number of destination groups.

Most previous work on atomic multicast had a theoretical

focus. One notable exception is the Spread toolkit [6].

Spread is a highly configurable group communication sys-

tem, which supports the abstraction of process groups. It

relies on interconnected daemons, essentially the compo-

nents that handle the physical communication in the system,

to order messages. Participants connect to a daemon to

multicast and deliver messages. The abstraction of groups

in Spread, however, was not created for performance, but

to easy application design. In Section VI we experimentally

compare Multi-Ring Paxos and Spread.

Mencius is a protocol that implements state-machine

replication in a wide-area network [24]. Mencius is a multi-

leader protocol derived from Paxos. The idea is to partition

the sequence of consensus instances among the leaders to

amortize the load and better balance the bandwidth available

at the leaders. Similarly to Multi-Ring Paxos, leaders can

account for load imbalances by proposing skip instances

of consensus. Differently from Multi-Ring Paxos, Mencius

does not implement the abstraction of groups; it is essentially

an atomic broadcast protocol.

Multi-Ring Paxos’s deterministic merge is conceptually

similar to the work proposed in [25], which aims to totally

order message streams in a widely distributed publish-

subscribe system. Differently from Multi-Ring Paxos merge

scheme, the mechanism proposed in [25] uses approximately

synchronized clocks to estimate the expected message rates

of all publishers and then merge messages throughout the

network in the same way.

VI. PERFORMANCE EVALUATION

In this section we evaluate Multi-Ring Paxos experimen-

tally. In the first set of experiments, reported in Section VI-B,

we assess the effect of two important configurations on the

performance of Multi-Ring Paxos. To this end the values of

the parameters involved in the design of the protocol are

kept constant. Then the effects of λ, ∆, and M , the three

main parameters, are evaluated in Sections VI-C, VI-D,

and VI-E while keeping the configuration of Multi-Ring

Paxos constant. In Section VI-F, we investigate the effect of

coordinator failures on the performance of the system.

A. Experimental setup

We ran the experiments in a cluster of Dell SC1435

servers equipped with 2 dual-core AMD-Opteron 2.0 GHz

CPUs and 4 GB of main memory. The servers are intercon-

nected through an HP ProCurve2900-48G Gigabit switch

(0.1 msec of round-trip time). In all the experiments, unless

specified otherwise, λ, ∆, and M were set to 9000 con-

sensus instances per interval, 1 millisecond, and 1 message,

respectively. The size of application-level messages was 8

kB in all the experiments.

In all experiments each group has a dedicated ring. Re-

coverable Multi-Ring Paxos uses buffered disk writes. Thus,

in the experiments both In-memory and Recoverable Multi-

Ring Paxos assume that a majority of acceptors is opera-

tional during each consensus instance. To remove peaks in

latency due to flushes to disk, we report the average latency

after discarding the 5% highest values. When analyzing

throughput, we report the aggregated throughput of the

system, which combines the throughput of each group. Our

prototype uses an open-source version of Ring Paxos [11].

B. Performance of Multi-Ring Paxos

Depending on the number of learners and groups, there

can be many configurations of Multi-Ring Paxos. Two

extreme cases are when (1) each learner subscribes to only

one group and (2) each learner subscribes to all groups. The

first case assesses the scalability of Multi-Ring Paxos since

throughput is not limited by the incoming bandwidth of a

1

2

3

4

5

6

1 2 4 8 1 2 4 8 2 4 8 16 1 2 4 8 1 2 4 8

T
h
ro
u
g
h
p
u
t
(G
b
p
s)

Spread

Ring Paxos

LCR

DISK M-RP

RAM M-RP

10 K

20 K

30 K

40 K

50 K

60 K

70 K

80 K

90 K

1 2 4 8 1 2 4 8 2 4 8 16 1 2 4 8 1 2 4 8

T
h
ro
u
g
h
p
u
t
(m
sg
/s
)

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 1 2 4 8 2 4 8 16 1 2 4 8 1 2 4 8

L
at
en
cy
 (
m
se
c)

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8 2 4 8 16 1 2 4 8 1 2 4 8

C
P
U
 (
%
)

Figure 5. Performance of In-memory Multi-Ring Paxos (RAM M-RP) and Recoverable Multi-Ring Paxos (DISK M-RP), compared with Spread, Ring
Paxos and LCR. The x-axis shows number of partitions for RAM M-RP, DISK M-RP and Ring Paxos; number of daemons/groups for Spread; and number
of nodes in the ring of LCR. There are 2 acceptors per partition in RAM M-RP and DISK M-RP, and a fixed number of 2 acceptors in Ring Paxos. The
CPU of the most-loaded node is reported, which for RAM M-RP, DISK M-RP and Ring Paxos is the coordinator. In Spread messages are 16 kB long and
in LCR they are 32 kB long.

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 1 2 4 8

T
h
ro
u
g
h
p
u
t
(M
b
p
s)

DISK M-RP RAM M-RP

2 K

4 K

6 K

8 K

10 K

12 K

14 K

16 K

1 2 4 8 1 2 4 8

T
h
ro
u
g
h
p
u
t
(m
sg
/s
)

 0

 5

 10

 15

 20

1 2 4 8 1 2 4 8

L
at
en
cy
 (
m
se
c)

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8

C
P
U
 (
%
)

Figure 6. Performance of Multi-Ring Paxos when each learner subscribes to all groups.

learner. The second case assesses the ability of learners to

combine messages from multiple rings.

When each learner subscribes to only one group (see

Figure 5), the throughput of the learner is bound by the

maximum throughput of the ring in charge of the learner’s

group. This is because before the learner uses up its lo-

cal resources, the coordinator of each ring in In-memory

Multi-Ring Paxos saturates its CPU and the acceptors in

Recoverable Multi-Ring Paxos reach their maximum disk

bandwidth (see also Figure 1). The throughput of both Multi-

Ring Paxos protocols grows linearly with the number of

partitions, peaking at more than 5 Gbps with In-memory

Multi-Ring Paxos and about 3 Gbps with Recoverable Multi-

Ring Paxos. As a reference, we also present the performance

of Spread, Ring Paxos, and LCR. The first two systems

implement the abstraction of groups but do not scale with

the number of groups. LCR is a high performance atomic

broadcast protocol and does not implement groups.

Figure 6 shows the performance of Multi-Ring Paxos

when learners subscribe to all groups. For both Multi-Ring

Paxos protocols, with one ring the bottleneck is the single

Ring Paxos instance. As groups (i.e., rings) are added, the

aggregate throughput of the various rings eventually satu-

rates the learners’ incoming links. To reach the maximum

capacity of a learner, In-memory Multi-Ring Paxos needs

two rings and Recoverable Multi-Ring Paxos needs three

rings. This experiment illustrates how Multi-Ring Paxos can

combine multiple “slow” atomic broadcast protocols (e.g.,

due to disk writes) to build a much faster protocol.

C. The effect of ∆ on Multi-Ring Paxos

Recalling from Section IV-B, ∆ is the interval in which

the coordinator of a ring samples the number of executed

consensus instances to then check for the need of skip

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

L
at
en
cy
 (
m
se
c)

Throughput (Mbps)

! = 1 msec
! = 10 msec
! = 100 msec

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P
U
 (
%
) ! = 1 msec

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P
U
 (
%
) ! = 10 msec

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P
U
 (
%
)

Throughput (Mbps)

! = 100 msec

Figure 7. The effect of ∆ on Multi-Ring Paxos. Latency versus throughput (left) and CPU at the coordinator of one of the rings (right).

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

L
at
en
cy
 (
m
se
c)

Throughput (Mbps)

M = 1
M = 10
M = 100

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P
U
 (
%
) M = 1

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P
U
 (
%
) M = 10

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P
U
 (
%
)

Throughput (Mbps)

M = 100

Figure 8. The effect of M on Multi-Ring Paxos. Latency versus throughput (left) and corresponding CPU usage in the learner (right).

instances. The value assigned to ∆ should be big enough to

avoid unnecessary samplings and checks, and small enough

to allow quick corrections in the rate of the ring. To inves-

tigate the effects of ∆, we deployed an In-memory Multi-

Ring Paxos configuration with two rings and one learner that

subscribed to both rings. Messages were created at the same

rate in both rings and this rate did not change over time.

From the graph on the left of Figure 7, a large ∆ results in

high latency at the learners, suggesting that small values are

preferred. Notice that even though each ring has the same

rate, small variations in the transmission and handling of

messages can lead to the buffering of messages at the learn-

ers and increased latency. For large values of ∆ (e.g., 100

milliseconds), latency decreases with the throughput since

fewer skip instances are needed. The graphs on the right of

Figure 7 assess the processing cost of ∆. First, the maximum

throughput is not affected by ∆, as all configurations reach

the approximately same maximum. Second, small values of

∆ have no effect on the CPU usage of the coordinator.

Therefore, choosing small values of ∆ is justifiable.

D. The effect of M on Multi-Ring Paxos

We evaluate next the effect of M in the execution. We

recall that M is the number of consensus instances that a

learner handles at a time from each ring it expects messages

from. In these experiments, we have deployed an In-memory

Multi-Ring Paxos with two rings, and one learner that

receives messages from both of them. As the left graph of

Figure 8 implies, by augmenting the value of M , the average

latency increases. The reason is that while M instances of a

ring are handled in the learner, instances of other rings are

buffered and delayed. As M increases, this delay increases

and so does the average latency. As it is evident in Figure 8

(right side), M has no effect on the throughput and CPU

usage of the learner. Therefore, a small M is a good choice.

E. The effect of λ on Multi-Ring Paxos

If a learner subscribes to several groups, each with a

different message rate, slow groups will delay the delivery

of messages multicast to faster groups, and therefore neg-

atively affect the latency and overall throughput observed

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

M
u
lt
ic
as
t
ra
te

(M
b
p
s)

ring 1
ring 2
total

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

Time (seconds)

! = 0

< 10%

< 20%

< 10% < 20% < 50%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

! = 1000

< 10% < 10%

< 20% < 30%

< 50%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

Time (seconds)

! = 1000

< 10% < 10%

< 20% < 30%

< 50%

! = 5000

< 10% < 10% < 20% < 30% < 50%

Figure 9. The effect of λ when the rates of the rings are constant and equal (percentages show load at ring coordinators).

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

M
u
lt
ic
as
t
ra
te

(M
b
p
s)

ring 1
ring 2
total

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

Time (seconds)

! = 1000

< 10%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

! = 5000

< 10% < 30% < 30% < 40%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

Time (seconds)

! = 5000

< 10% < 30% < 30% < 40%

! = 9000

< 10% < 20% < 40% < 40% < 70%

Figure 10. The effect of λ when the rates of the rings are constant and one is twice the other (percentages show load at ring coordinators).

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

M
u
lt
ic
as
t
ra
te

(M
b
p
s)

ring 1
ring 2
total

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

Time (seconds)

! = 5000

< 10% < 10% < 20% < 30%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

! = 9000

< 10% < 10% < 20% < 30%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at
en
cy

(m
se
c)

Time (seconds)

! = 9000

< 10% < 10% < 20% < 30%

! = 12000

< 10% < 10% < 20% < 30% < 70%

Figure 11. The effect of λ when the rates vary over time and in average one is twice the other (percentages show load at ring coordinators).

 0

 200

 400

 600

 800

 1000

10 20 30 40

R
ec
ei
v
in
g
 t
h
ro
u
g
h
p
u
t
(M
b
p
s)

Time (seconds)

ring 1
ring 2
total

 0

 200

 400

 600

 800

 1000

10 20 30 40

D
el
iv
er
y
 t
h
ro
u
g
h
p
u
t
(M
b
p
s)

Time (seconds)

4250

ring 1
ring 2
total

Figure 12. The effect of a coordinator failure in a learner of In-memory Multi-Ring Paxos.

by the learners. Multi-Ring Paxos copes with these issues

by skipping consensus instances and by carefully setting λ,

the maximum expected consensus rate of any group. In the

following, we investigate the effect of λ on the system.

We have conducted three sets of experiments using In-

memory Multi-Ring Paxos with two rings and one learner.

In the first experiment (see Figure 9) proposers multicast

messages to the two groups at a fixed and equal rate. In

the second experiment (see Figure 10) the ratio of multicast

messages to one of the groups is twice the other, though

the multicast rate is constant in both groups throughout

the execution. In the last experiment (see Figure 11), not

only the ratio of multicast messages to one of the groups

is twice the other, but their submission rates oscillates over

the time such that the average is the same as in the previous

experiment. In all the cases, we increase the multicast rate

every 20 seconds. In all the figures, the top left graph shows

the individual multicast rate per group and the total multicast

rate in the system.

In Figure 9, we initially set λ to 0 (i.e., no mechanism

to skip consensus instances). Even though the group rates

are the same, even under low rates the traffic from the

rings gets “out-of-sync” at the learner and messages have

to be buffered, a phenomenon that the learner does not

recover from. With λ equal to 1000, latency remains stable

with higher loads, but the problem still exists at very high

load. With λ set to 5000 the problem is solved. Figure 10

illustrates the problem when the learner buffers overflow

(i.e., λ = 1000 after 20 seconds and λ = 5000 after 80

seconds). A buffer overflow brings the learner to a halt since

it cannot deliver buffered messages and new messages keep

arriving. A large value of λ is enough to handle the most

extreme loads in this experiment. Figure 11 shows a similar

situation, which is only solved when λ is set to 12000.

Skipping up to 12000 consensus instances in an interval of

one second, where each instance decides on messages of

8 kB, corresponds to “skipping” up to 750 Mb of data per

second, approximately the maximum throughput achieved by

a ring. We recall that all such instances are skipped using a

single consensus execution.

F. The effect of discontinued communication

We now investigate the effect of discontinued commu-

nication (e.g., due to a coordinator failure) in Multi-Ring

Paxos. Our experiment consisted in deploying two rings and

a learner that listened to these rings. Each ring generates

messages with the same constant rate of approximately 4000

messages per second in average. In steady state, the learner

receives and delivers approximately 500 Mbps of data (see

Figure 12). After 20 seconds we stop the coordinator of ring

1, bringing the receiving throughout from this ring at the

learner to zero. Although messages still arrive at the learner

from ring 2, the learner buffers such messages as it cannot

execute its deterministic merge procedure. The result is that

the delivery throughput at the learner drops to zero (graph

on the right of Figure 12). Notice that after ring 1 stops, the

incoming throughput from ring 2 decreases, as the learner

does not acknowledge the delivery of messages from group

2 to the node that multicasts to ring 2 and this one slows

down its sending rate.

Three seconds later the execution at ring 1 proceeds. We

forced a restart after three seconds to emphasize the effects

of the discontinuity of traffic. In reality, it takes much less

time to detect the failure of a coordinator and replace it

with an operational acceptor. When the coordinator of the

first ring starts, it notices that no consensus instances were

decided in the last intervals and proposes to skip multiple

consensus instances. As a result, the learner delivers all

messages it has enqueued, momentarily leading to a high

peak in the delivery throughput. Then the execution proceeds

as normal.

ACKNOWLEDGEMENTS

We wish to thank Carlos Eduardo Bezerra, Daniele Sci-

ascia, and the anonymous reviewers for their help and

suggestions to improve the paper.

VII. CONCLUSIONS

This paper presented Multi-Ring Paxos, a protocol that

combines multiple instances of Ring Paxos to implement

atomic multicast. While atomic broadcast induces a total

order on the delivery of messages, atomic multicast induces

a partial order. Multi-Ring Paxos exploits the abstraction of

groups in a different way than previous atomic multicast

algorithms: In Multi-Ring Paxos, messages are addressed to

a single group only, but processes can subscribe to multiple

groups. In all atomic multicast algorithms we are aware of,

messages can be multicast to multiple groups, and often

groups cannot intersect. Finally, although Multi-Ring Paxos

uses Ring Paxos as its ordering protocol within a group, one

could use any atomic broadcast protocol within a group, a

conjecture that we plan to investigate in the future.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: A tutorial,” ACM Computing
Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[3] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and
related problems,” in Distributed Systems, 2nd ed. Addison-
Wesley, 1993, ch. 5.

[4] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma,
“Throughput optimal total order broadcast for cluster envi-
ronments,” ACM Trans. Comput. Syst., vol. 28, pp. 5:1–5:32,
July 2010.

[5] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring
Paxos: A high-throughput atomic broadcast protocol,” in In-
ternational Conference on Dependable Systems and Networks
(DSN), 2010, pp. 527 –536.

[6] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. Stan-
ton, “The Spread toolkit: Architecture and performance,”
Johns Hopkins University, Tech. Rep., 2004, cNDS-2004-1.

[7] K. P. Birman and R. van Renesse, Reliable Distributed
Computing with the ISIS Toolkit. IEEE Press, 1994.

[8] L. Lamport, “The part-time parliament,” ACM Transactions
on Computer Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[9] P. Marandi, M. Primi, and F. Pedone, “High performance
state-machine replication,” in International Conference on
Dependable Systems and Networks (DSN), 2011.

[10] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a
workload-driven approach to database replication and parti-
tioning,” Proc. VLDB Endow., vol. 3, pp. 48–57, 2010.

[11] http://libpaxos.sourceforge.net.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty processor,” Journal
of the ACM, vol. 32, no. 2, pp. 374–382, 1985.

[13] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” Journal of the ACM, vol. 35,
no. 2, pp. 288–323, 1988.

[14] M. T. Ozsu and P. Valduriez, Principles of Distributed
Database Systems. Prentice Hall, 1999.

[15] L. Lamport and M. Massa, “Cheap Paxos,” in International
Conference on Dependable Systems and Networks (DSN),
2004, pp. 307–314.

[16] M. Adler, Z. Ge, J. F. Kurose, D. F. Towsley, and S. Zabele,
“Channelization problem in large scale data dissemination,”
in Proceedings of the Ninth International Conference on
Network Protocols, 2001, pp. 100–109.

[17] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM Com-
puting Surveys,, vol. 36, no. 4, pp. 372–421, Dec. 2004.

[18] K. P. Birman and T. A. Joseph, “Reliable communication in
the presence of failures,” ACM Transactions on Computer
Systems (TOCS), vol. 5, no. 1, pp. 47–76, Feb. 1987.

[19] R. Guerraoui and A. Schiper, “Genuine atomic multicast in
asynchronous distributed systems,” Theor. Comput. Sci., vol.
254, no. 1-2, pp. 297–316, 2001.

[20] N. Schiper and F. Pedone, “On the inherent cost of atomic
broadcast and multicast in wide area networks,” in Interna-
tional conference on Distributed computing and networking
(ICDCN), 2008, pp. 147–157.

[21] J. Fritzke, U., P. Ingels, A. Mostefaoui, and M. Raynal, “Fault-
tolerant total order multicast to asynchronous groups,” in
Proceedings of the The 17th IEEE Symposium on Reliable
Distributed Systems, 1998, pp. 228–234.

[22] L. Rodrigues, R. Guerraoui, and A. Schiper, “Scalable atomic
multicast,” in International Conference on Computer Commu-
nications and Networks, 1998, pp. 840–847.

[23] C. Delporte-Gallet and H. Fauconnier, “Fault-tolerant genuine
atomic multicast to multiple groups,” in Proceedings of the
12th International Conference on Principles of Distributed
Systems (OPODIS), 2000, pp. 107–122.

[24] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building
efficient replicated state machines for wans,” in Proceedings
of the 8th USENIX conference on Operating systems design
and implementation (OSDI), 2008, pp. 369–384.

[25] M. K. Aguilera and R. E. Strom, “Efficient atomic broadcast
using deterministic merge,” in Proceedings of the nineteenth
annual ACM symposium on Principles of distributed comput-
ing (PODC), 2000, pp. 209–218.

